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1 Function of a single variable and
complex number

1.1 Limit

Definition 1.1 Suppose that f a real function defined on R and (x0, L) ∈ R2. It is said the
limit of f , as x approaches x0, is L and written

lim
x→x0

f(x) = L,

if the following property holds:

For every real ε > 0, there exists a real δ > 0 such that for all real x, 0 < |x−x0| < δ implies
|f(x)− L| < ε.

Definition 1.2 Alternatively x may approach x0 from above (right) or below (left), in which
case the limits may be written as

lim
x→x+0

f(x) = L,

or
lim
x→x−0

f(x) = L,

respectively. If these limits exist at x0 and are equal there, then this can be referred to as the
limit of f(x) at x0. If the one-sided limits exist at x0, but are unequal, there is no limit at x0

(the limit at x0 does not exist). If either one-sided limit does not exist at x0, the limit at x0 does
not exist.

Exercice 1.1 Let f be the function defined by f(x) = x +
√
x2/x. Determine the domain of

existence of f , named Df , derive the limits of f at {0+, 0−} and simplify f for x ∈ Df .

Definition 1.3 If a function f is real-valued, then the limit of f at x0 is L if and only if both
the right-handed limit and left-handed limit of f at x0 exist and are equal to L.

Definition 1.4 The function f is continuous at x0 if and only if the limit of f(x) as x ap-
proaches x0 exists and is equal to f(x0).

Theorem 1.1 If the limit of f(x) as x approaches x0 is L and the limit of g(x) as x approaches
x0 is P , then the limit of f(x) + g(x) as x approaches x0 is L + P . If a is a scalar, then the
limit of af(x) as x approaches x0 is aL.

9



10 CHAPTER 1. FUNCTION OF A SINGLE VARIABLE AND COMPLEX NUMBER

Theorem 1.2 If f is a real-valued (or complex-valued) function, then taking the limit is com-
patible with the algebraic operations, provided the limits on the right sides of the equations below
exist (the last identity only holds if the denominator is non-zero). This fact is often called the
algebraic limit theorem.

lim
x→x0

[f(x)± g(x)] = lim
x→x0

f(x)± lim
x→x0

g(x),

lim
x→x0

[f(x)× g(x)] = lim
x→x0

f(x)× lim
x→x0

g(x),

lim
x→x0

f(x)

g(x)
=

lim
x→x0

f(x)

lim
x→x0

g(x)
.

Theorem 1.3 Limit of a composition of functions. If (a, L, L′) ∈ R3, lim
x→a

f = L and lim
x→L

g = L′,

then lim
x→a

g(f(x)) = L′.

Theorem 1.4 Limit of a rational function. If and n and p are positive integers, then

lim
x→±∞

a1x+ a2x
2 + . . .+ anx

n

b1x+ b2x2 + . . .+ bpxp
= lim

x→±∞

anx
n

bpxp
.

Exercice 1.2 Show the above theorem. Derive the limits for the cases n = p, n > p and n < p.

The limits of indeterminate forms (sometimes difficult to derive) are

0

0
,
∞
∞
, 0×∞, 1∞,+∞−∞ , (1.1)

independently of the signs. The indetermination may be solved as:

1. a variable transformation on the function and the use of theorem 1.3,

2. a variable transformation on the value x0, for which the limit is derived,

3. for a function with square roots, by multiplying the function by its conjugate expression,

4. using a Taylor series expansion of the function near x0, for which the limit is derived,

5. using the Hospital’rule (particular case of a Taylor series expansion): If the expression f(x)
g(x)

has the form ∞
∞ or 0

0 for x = a and if g′(a) 6= 0 (derivative of g on a), then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(a)

g′(a)
. (1.2)

Exercice 1.3 Derive the following limits:
lim
x→2

√
2x− 2√

x+ 1−
√

2x− 1
lim
x→0

sin(x)

x

lim
x→0+

x lnx lim
x→+∞

(
x+ a

x+ b

)x .
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1.2 Derivative

Function Derivative

cos(x)

sin(x)

tan(x)

f(x) + g(x)

f(x)g(x)

f(x)/g(x)

ln[f(x)]

exp[f(x)]

[f(x)]g(x)

√
f(x)

[f(x)]p

Table 1.1: Usual derivatives.

Differentiation is the action of computing a derivative. The derivative of a function y = f(x)
of a variable x is a measure of the rate at which the value y of the function changes with respect
to the change of the variable x. It is called the derivative of f with respect to x. If x and y are
real numbers, and if the graph of f is plotted versus x, the derivative is the slope of this graph
at each point.

Definition 1.5 Derivative at the point x0. A function f has a derivative at x0 if and only if
the rate growth of f at the point x has a finite value when x tends toward x0. Then

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

h→0

f(x0 + h)− f(x0)

h
. (1.3)

Exercice 1.4 Give a geometrical interpretation of the derivative and give the equation of the
tangent at the point a of the representative curve of f , named Cf .

Exercice 1.5 From the definition of the derivative calculate the derivative of the function f
defined as f(x) =

√
x.
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Definition 1.6 Alternatively x may approach x0 from above (right) or below (left), in which
case the limits may be written as

f ′(x0) = lim
h→0+

f(x0 + h)− f(x0)

h
,

or

f ′(a) = lim
h→0−

f(x0 + h)− f(x0)

h
,

respectively. If these limits exist at 0 and are equal there, then this can be referred to the derivative
of f at x0. If the one-sided limits exist at 0, but are unequal, the function is not derivable at x0.
If either one-sided limit does not exist at 0, the function is not derivable at x0.

Theorem 1.5 Increasing and decreasing of a function. If f is a differentiable function on the
range [a; b], then f is an increasing function on [a; b], if and if only ∀x ∈ [a; b], f ′(x) ≥ 0 and
f is an decreasing function on [a; b], if and if only ∀x ∈ [a; b], f ′(x) ≤ 0.

If the inequality becomes strict, then f is strictly an increasing and decreasing function.

If at the point x0, the derivative exits and change of sign, then f has an extremum (minimum
or maximum) at x0.

An inflexion point is a point, for which, the curve crosses its tangent.

Theorem 1.6 Inflexion point. If f is a function two times differentiable on [a; b], then f is
convex on [a; b] if and only if f ′′(x) ≥ 0. It is concave on [a; b] if and only if f ′′(x) ≤ 0. If
f ′′(x) vanishes and changes of sign at x0, then f has at x0 an inflexion point.

Exercice 1.6 Give the inflexion point of the function f(x) = x3.

Exercice 1.7 Fill the following table of the usual derivatives. To know.

Table 1.2 presents de different notations met in the books.

Origin Notation

Leibniz
dy

dx
,
df

dx
(x),

d

dx
f(x)

Lagrange f ′(x)

Newton ẏ

Euler Dxy, Dxf(x)

Table 1.2: Different notations of the derivatives of the function y = f(x).
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1.3 Taylor series expansion

Theorem 1.7 The Taylor series expansion of a real function f that is infinitely differentiable
at a real x0 is the power series

f(x) = f(x0) + (x− x0)f ′(x0) + . . .+
(x− x0)n

n!
f (n)(x0) + o [(x− x0)n] . (1.4)

Notation of Landau : We note y(x) = o [(x− x0)n] if lim
x→x0

y(x)

(x− x0)n
vanishes.

The formula of Mac-Laurin is obtained for x0 = 0. The table below gives the aylor series
expansions of usual functions.

Functions aylor series expansion

cos(x) 1− x2

2!
+
x4

4!
− . . .+ (−1)n

x2n

(2n)!
+ o(x2n)

sin(x) x− x3

3!
+
x5

5!
− . . .+ (−1)n

x2n+1

(2n+ 1)!
+ o(x2n+1)

exp(x) 1 + x+
x2

2!
+ . . .+

xn

n!
+ o(xn)

1

1 + x
1− x+ x2 − x3 + . . .+ (−1)nxn + o(xn)

√
1 + x 1 +

x

2
− x2

8
+
x3

16
+ o(x3)

Table 1.3: Taylor series expansion near zero of usual functions.

Exercice 1.8 Show the Taylor series expansions listed in above table 1.3.

Exercice 1.9 Calculate the Taylor series expansion of the real function f(x) =
√

1 +
√

1 + x
at the order 2 and near x = x0 = 0.

Exercice 1.10 Calculate the Taylor series expansion of the real function f(x) = tan(x) at the
order 3 and near x = x0 = 0.

1.4 Integral

Integrals appear in many practical situations. If a swimming pool is rectangular with a flat
bottom, then from its length, width, and depth we can easily determine the volume of water it
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can contain (to fill it), the area of its surface (to cover it), and the length of its edge (to rope
it). But if it is oval with a rounded bottom, all of these quantities call for integrals. Practical
approximations may suffice for such trivial examples, but precision engineering (of any discipline)
requires exact and rigorous values for these elements.

1.4.1 Geometrical interpretation

To start off, consider the curve y = f(x) between x = 0 and x = 1 with f(x) =
√
x (see

figure 1.1). We ask: What is the area under the function f and the equation y = 0, in the interval
from 0 to 1? And call this (yet unknown) area the (definite) integral of f . The notation for this
integral will be ∫ 1

0

√
xdx.

The exact value of this integral is 2/3 ≈ 0.66667.

Figure 1.1: Approximations to integral of
√
x from 0 to 1, with 5 rectangles (yellow) and 12

rectangles (green).

As a first approximation, look at the unit square given by the sides x = 0 to x = 1 and
y = f(0) = 0 and y = f(1) = 1. Its area is exactly 1. As it is, the true value of the integral must
be somewhat less than 1. Decreasing the width of the approximation rectangles and increasing
the number of rectangles shall give a better result; so cross the interval in five steps, using the
approximation points 0, 1/5, 2/5, and so on to 1. Fit a box for each step using the right end
height of each curve piece, thus

√
1/5,

√
2/5, and so on to

√
1 = 1. Summing the areas of these

rectangles, we get a better approximation for the sought integral, namely√
1

5

(
1

5
− 0

)
+

√
2

5

(
2

5
− 1

5

)
+ · · ·+

√
5

5

(
5

5
− 4

5

)
≈ 0.7497.

We are taking a sum of finitely many function values of f , multiplied with the differences of
two subsequent approximation points. We can easily see that the approximation is still too large.
Using more steps produces a closer approximation, but will never be exact: replacing the five
subintervals by twelve in the same way, but with the left end height of each piece, we will get an
approximate value for the area of 0.6203, which is too small. The key idea is the transition from
adding finitely many differences of approximation points multiplied by their respective function
values to using infinitely many fine, or infinitesimal steps.
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1.4.2 Riemann integral

Definition 1.7 The Riemann integral is defined in terms of Riemann sums of functions with
respect to tagged partitions of an interval. Let [a, b] be a closed interval of the real line; then a
tagged partition of [a1; a2] is a finite sequence (see figure 1.2)

a1 = x0 ≤ ξ1 ≤ x1 ≤ ξ2 ≤ x2 ≤ · · · ≤ xn−1 ≤ ξn ≤ xn = a2.

This division into sub-intervals [xi−1;xi] indexed by i, each of which is “tagged” with a
distinguished point ξi ∈ [xi−1;xi]. A Riemann sum of a function f with respect to such a
tagged partition is defined as

n∑
i=1

f(ξi)∆i = Sn

Thus each term of the sum is the area of a rectangle with height equal to the function value at
the distinguished point of the given sub-interval, and width the same as the sub-interval i defined
as ∆i = xi − xi−1.

Then, the limit of Sn, when n tends toward the infinity, that is ∆i tends to zero, is named
definite integral of the function f assumed to be continuous on the integration range [a1; a2];
it writes

I =

∫ a2

a1

f(x)dx = lim
n→+∞

i=n∑
i=1

yi∆xi , (1.5)

where dx is the differential of the variable x

Figure 1.2: Definition of a defined integral.

1.4.3 Properties

If f is a function defined and continued on [a; b] (a < b), then∫ b

a
f(x)dx = −

∫ a

b
f(x)dx.



16 CHAPTER 1. FUNCTION OF A SINGLE VARIABLE AND COMPLEX NUMBER

If c ∈ [a; b] and if f is integrable on [a; c] and [c; b], then∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.

If λ ∈ R (constant), then ∫ b

a
λf(x)dx = λ

∫ b

a
f(x)dx.

If f is an even and odd fonction, respectively, then∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx

∫ a

−a
f(x)dx = 0.

If two functions f and g are integrable on [a; b] then∫ b

a
[f(x)± g(x)] dx =

∫ b

a
f(x)dx±

∫ b

a
g(x)dx.

1.4.4 Primitive or antiderivative

Roughly speaking, the operation of integration is the reverse of differentiation. For this
reason, the term integral may also refer to the related notion of the “antiderivative”, a function
F whose derivative is the given function f . Here, the term “primitive” will be used.

Definition 1.8 Link between integral and primitive. We call primitive of the function f , as-
sumed to be definite and continuous, any function F which satisfies

F ′(x) =
dF

dx
= f(x) . (1.6)

Theorem 1.8 If the function F is a primitive of the function f , then∫ b

a
f(x)dx = F (b)− F (a) . (1.7)

Exercice 1.11 Fill the following table 1.4 of the usual primitives. To know.

1.4.5 Usual methods of integration

If the calculation of the indefinite (no limits) integral
∫
f(x)dx is impossible, a variable

transformation x = g(t), where dx = g′(t)dt, can be used. Then∫
f(x)dx =

∫
f [g(t)] g′(t)dt =

∫
φ(t)dt , (1.8)
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Function Primitive

cos(x)

sin(x)

1

x

ex

xn, n > 0 integer

1

1 + x2

2ax+ b

ax2 + bx+ c
, (a 6= 0, b, c) ∈ R3

f ′(x)f(x)n, n > 0 integer

f ′(x)

f(x)

Table 1.4: Usual Primitives.

where the primitive of the function φ(t) is known. For a definite integral, we have

∫ b

a
f(x)dx =

∫ β

α
f [g(t)] g′(t)dt =

∫ β

α
φ(t)dt with

{
a = g(α)

b = g(β)
. (1.9)

Exercice 1.12 Calculate the integral I =

∫ 1

−1

√
1− x2dx. We can set x = cos(t).

Theorem 1.9 Integration by parts. Let u and v be two derivative functions of x such as f(x) =
u(x)v′(x), then ∫ b

a
f(x)dx =

∫ b

a
u(x)v′(x)dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x)dx . (1.10)

Exercice 1.13 Calculate the primitive of lnx for x ∈]0; +∞[.

1.4.6 Integration of a rational function

Definition 1.9 Rational function. A rational function is defined as the ratio of two polynomial
functions:

a0 + a1x+ a2x
2 + . . .+ anx

n

b0 + b1x+ b2x2 + . . .+ bdxd
=
N(x)

D(x)
,
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The integer n > 0 stands for the degree of the numerator whereas the integer d > 0 stands for
the degree of the denominator. In addition, the coefficients ai∈[1;n] and aj∈[1;d] are real.

If n ≤ d, then it is necessary to perform the Euclidean division of N by D, using polynomial
long division, giving N(x) = E(x)D(x) + R(x) with r < n, in which r is the degree of the
polynomial function R. Dividing by Q(x) this gives

N(x)

D(x)
= E(x) +

R(x)

D(x)
,

where E is a polynomial function. A primitive of E is then obtained from the idendity

∫
xndx = C +

xn+1

n+ 1
with n+ 1 6= 0 and C ∈ R . (1.11)

The shape of the partial fraction decomposition of R/D depends on the number and of the
nature (complex or real) of the roots xi of D (D(xi) = 0, where xi can be a complex number).

1.4.6.1 Case for which D has N single and real roots

If D has N single and real roots, then

R(x)

D(x)
=

n=N∑
n=1

An
x− xn

. (1.12)

The constant An can be derived either by identifying the powers equal x or by calculating
the following limit

lim
x→xn

R(x)

D(x)
(x− xn) = An. (1.13)

The primitive of R(x)
D(x) is then

∫
R(x)

D(x)
dx = C +

n=N∑
n=1

An ln |x− xn| . (1.14)

Exercice 1.14 Show that

f(x) =
2x4 − 6x3 + 7x2 − 8x+ 6

x2 − 3x+ 2
= 2x2 + 3 +

x

x2 − 3x+ 2
.

Applying a partial fraction decomposition of x/(x2− 3x+ 2), calculate a primitive of f over the
domain of existence Df .
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1.4.6.2 Case for which D has one multiple M and real root

If D has one multiple M and real root, then

R(x)

D(x)
=

m=M∑
m=1

Bm
(x− x1)m

. (1.15)

The constant Bn can be derived either by identifying the powers equal x or by calculating
the following limit

BM = lim
x→x1

[
R(x)

D(x)
(x− x1)M

]
,

BM−1 = lim
x→x1

d

dx

[
R(x)

D(x)
(x− x1)M

]
,

BM−m =
1

m!
lim
x→x1

dm

dxm

[
R(x)

D(x)
(x− x1)M

]
.

The primitive of R(x)
D(x) is then∫
1

(x− x1)m
dx = C +

(x− x1)1−m

1−m
with m 6= 1 and C ∈ R . (1.17)

Exercice 1.15 Make a partial fraction decomposition of the function f(x) = x
(x−2)2

and derive

a primitive of f .

1.4.6.3 Case for which D has N single and complex roots

If D has N single and complex roots, then the roots are complex conjugates. For N roots,
{xn = αn + jβn, x̄n = αn − jβn}, the partial fraction decomposition has the shape

R(x)

D(x)
=

n=N∑
n=1

xAn +Bn
(x− xn)(x− x̄n)

=
n=N∑
n=1

xAn +Bn
x2 + α2

n + β2
n − 2xαn

. (1.18)

Moreover

x2 + α2
n + β2

n − 2xαn = (x− αn)2 + β2
n = β2

n

[
1 +

(
x− αn
βn

)2
]
.

The variable transformation t = x−αn
βn

where dt = dx
βn

leads to∫
R(x)

D(x)
dx =

1

βn

∫
An(tβn + αn) +Bn

1 + t2
dt = An

∫
tdt

1 + t2
+
Anαn +Bn

βn

∫
dt

1 + t2
.

Then∫
R(x)

D(x)
dx = C +

An
2

ln
∣∣1 + t2

∣∣+
Anαn +Bn

βn
arctan(t) avec t =

x− αn
βn

. (1.19)

Exercice 1.16 Derive a primitive of the function f(x) =
x

x2 − 4x+ 5
.
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1.4.6.4 Much more complicated cases

For more complicated cases, the resulting partial fraction decomposition is a linear combi-
naison of the previous cases. For example, if D(x) = (x− 1)(x− 2)(x− 3)2(x2 + 1)(x2 + 4)2, the
single real roots are {1, 2}, the one multiple real root is x = 3 (its multiplicity is 2), the one single
complex roots are x = ±j and the one multiple complex roots are x = ±2j (its multiplicity is
2), leading to the following partial fraction decomposition

R(x)

D(x)
=

A1

x− 1
+

A2

x− 2
+

B1

x− 3
+

B2

(x− 3)2

α1 + β1x

x2 + 1
+
α2 + β2x

x2 + 4
+
α3 + β3x

(x2 + 4)2
.

The constants {A1, A2} are calculated from Eq. (1.13), the constants {B1, B2} are calculated
from Eq. (1.16) and the constants {αi, βi} (i = {1, 2, 3}) by identifying the powers of x and/or
by taking limits as particular points.

1.4.7 Integration of a rational function of trigonometric func-
tions

Definition 1.10 You want to derive the following indefinite integral∫
R(sin(x), cos(x))dx =

∫
f(x)dx,

where R is a rational function.

The use of rules’s Bioche allows us to convert this integral into a conventional rational
function. Then

1. If f(−x)d(−x) = f(x)dx, then the variable transformation t = cos(x) is applied.

2. If f(π − x)d(π − x) = f(x)dx, then the variable transformation t = sin(x) is applied.

3. If f(π + x)d(π + x) = f(x)dx, then the variable transformation t = tan(x) is applied.

In addition d(π ± x) = dπ + d(±x) = dπ ± dx = ±dx since dπ = 0 (π is a constant). In
general, df = f ′(x)dx since f ′(x) = df/dx.

It is always possible to apply the variable transformation t = tan
(
x
2

)
because

sin(x) =
2t

1 + t2
cos(x) =

1− t2

1 + t2

dt =
dx

2

[
1 + tan2

(
x
2

)]
⇒ dx =

2dt

1 + t2

. (1.20)

Then, the integral is converted into the integral of a rational function over t.

If the rational function as only tan(x) terms, then the variable transformation t = tan(x) is
applied and dt = dx(1 + t2) since (tan(x))′ = 1 + tan2(x) = 1 + t2.
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Exercice 1.17 Calculate the primitive of the function R(x) = 1
sin(x) by using two methods:

• The Bioche rule.

• By setting t = tan
(
x
2

)
.

1.5 Ordinary differential equation

Definition 1.11 Ordinary differential equation (ODE) of n-th order. An Ordinary differential
equation (ODE) of n-th order satisfies by the function y(x) has the shape

F

(
x, y(x),

dy

dx
,
d2y

dx2
, . . . ,

dn−1y

dxn−1

)
= 0 , (1.21)

where x is the independent variable. The general solution is a function y = f(x,C1, C2, . . . , Cn),
which depends on n arbitrary constants. These constants are determined from particular

conditions, which are the values taken by y, dy
dx , d2y

dx2
, . . ., dn−1y

dxn−1 for given values of x. If x = 0,
the conditions are named initial conditions.

An ordinary differential equation (ODE) is an equation containing a function of one in-
dependent variable and its derivatives. The term “ordinary” is used in contrast with the term
partial differential equation which may be with respect to more than one independent variable.

An ODE is linear if the unknown function and its derivatives have degree 1 (products of
the unknown function and its derivatives are not allowed) and nonlinear otherwise.

An ODE is homogeneous if the right-hand side of the equality is zero.

ODEs are described by their order, determined by the term with the highest derivatives.
An equation containing only first derivatives is a first-order ODE, an equation containing the
second derivative is a second-order ODE, and so on.

Exercice 1.18 Give a “name” (linear or not, order, homogeneous or inhomogeneous) to the
following ODEs :

1. xy′(x) + y(x) = 0.

2. y′(x) + y(x) = 2x.

3. y′′(x) + y2(x) = 0.

4. y′(x) + sin(y(x)) = exp(x).

1.5.1 First-order linear ODE

Definition 1.12 First-order linear ODE. A first-order linear ODE is defined as

y′(x) +B(x)y(x) = Φ(x) . (1.22)
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The function Φ(x) stands for the right-hand side of the equality. The ODE y′(x)+B(x)y(x) =
0 is the homogeneous ODE, that is Φ = 0.

The general solution can be written as

y(x) = yH(x) + yP (x) , (1.23)

where yH is the homogeneous solution of the ODE and yP is the particular solution of the
inhomogeneous ODE.

1.5.1.1 Derivation of the homogeneous solution

By definition, yH satisfies

y′H(x) +B(x)yH(x) = 0,

which leads for yH 6= 0 to

dyH(x)

yH(x)
= −B(x)dx⇒ ln |yH(x)| = −

∫
B(x)dx+ C1 with C1 ∈ R.

Then

yH(x) = C × u(x) with u(x) = exp

(
−
∫
B(x)dx

)
and C = exp(C1) ∈ R . (1.24)

We can note that yH 6= 0 because the exponential function differs from zero.

1.5.1.2 Derivation of the particular solution

To find yP , the method of the variation of the constant of Lagrange is applied. This consists
in considering that the constant C is an unknown solution of the variable variable x. Then

yP (x) = C × u(x)→ yP (x) = C(x)× u(x) and y′P (x) = [C(x)× u(x)]′

= C(x)u′(x) + u(x)C ′(x).

Reporting this equation in the inhomogeneous ODE, y′(x)+B(x)y(x) = Φ(x) with y(x) =
yP (x), it leads to

C(x)
[
u′(x) +B(x)u(x)

]
+ u(x)C ′(x) = Φ(x).

In addition, since the function Cu(x) satisfied the homogeneous ODE, we have u′(x) +
B(x)u(x) = 0, which implies that

C ′(x) =
Φ(x)

u(x)
⇒ C(x) =

∫
Φ(x)

u(x)
dx+K with K ∈ R.

Then

yP (x) = C(x)u(x) =

[∫
Φ(x)

u(x)
dx+K

]
u(x) . (1.25)
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Condition Solution of the characteristic equation yH(x)

∆ > 0 2 real roots: r1,2 =
−b±

√
∆

2a
= −λ± Ω C1e

r1x + C2e
r2x =

with λ =
b

2a
et Ω =

∆

2a
e−λx(C1e

Ωx + C2e
−Ωx)

∆ = 0 1 double real root: r1 = r2 = − b

2a
= −λ e−λx(C1 + C2x)

∆ < 0 2 complex conjugate roots: e−λx [C1 cos(ωx) + C2 sin(ωx)]

r1,2 =
−b± j

√
−∆

2a
= −λ± jω

with λ =
b

2a
et ω =

√
−∆

2a

Table 1.5: Solution of yH for a second-oder ODE with constant coefficients.

1.5.1.3 General solution

The General solution is then

y(x) = yH(x) + yP (x) = Cu(x) +

[∫
Φ(x)

u(x)
dx+K

]
u(x)

=

[∫
Φ(x)

u(x)
dx+K1

]
u(x) with K1 = (C +K) ∈ R (1.26)

Exercice 1.19 Solve the following ODE (1 + x2)y′(x) + xy(x) = x.

1.5.2 Second-order linear ODE

Definition 1.13 Second-order linear ODE. A second-order linear ODE is defined as

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = Φ(x) , (1.27)

where a, b, c and Φ are four known functions. The homogeneous ODE is defined as a(x)y′′(x) +
b(x)y′(x) + c(x)y(x) = 0, that is Φ(x) = 0.

As previously, the general solution can be written as

y(x) = yH(x) + yP (x) , (1.28)

where yH is the homogeneous solution of the ODE and yP is the particular solution of the
inhomogeneous ODE.

To illustrate the method of the variation of the constant of Lagrange and to simplify the
problem, we assume that the functions (a, b, c) are constants (independent of the variable x).
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Expression of Φ(x) Particular solution

Φ(x) = P (x) where P is a yP is a polynomial function of degree

polynomial function of degree n. - n, if c 6= 0.

- n+ 1, if c = 0 and b 6= 0.

- n+ 2, if c = 0 and b = 0.

Φ(x) = Φ0e
βx where Φ0 ∈ R. If β is not a root of the haracteristic equation,

then yP (x) = Ceβx.

If β is a single root, then yP (x) = Cxeβx.

If β is a double root, then yP (x) = Cx2eβx.

Φ(x) = Φ1 cos(βx) + Φ2 sin(βx). yP (x) = C1 cos(βx) + C2 sin(βx).

Φ(x) = P (x)eβx, where P is yP (x) = xkQ(x)eβx, where Q is a polynomial function

a polynomial function of degree n. of degree n and

- k = 0, if β is not a root of the characteristic equation.

- k = 1, if β is a single root.

- k = 2, if β is a double root.

Table 1.6: Particular solution for a second-order ODE with constant coefficients.

1.5.2.1 Derivation of the homogeneous solution

By definition yH is defined as

ay′′H(x) + by′H(x) + c = 0.

The solution has the form yH(x) = erx where r ∈ R. The homogeneous ODE then becomes
erx(ar2 + br + c) = 0. As erx differs from zero, the previous relation is satisfied for any x if r is
a root of the following second-degree equation

ar2 + br + c = 0,

named characteristic equation. Three cases can be distinguished versus the sign of the dis-
criminant ∆2 = b2 − 4ac (table 1.5).

In general, the homogeneous solution can be written as yH(x) = C1y1(x) + C2y2(x), where
C1 and C2 are two constants and y1(x), y2(x) are two solutions linearly dependent of the
homogeneous solution. The particular solution yP (x) is found from the method of the variation
of the constant of Lagrange, which states that the constant C1 and C2 are functions that depend
on the variable x. Then, we can show that the functions C1(x) and C2(x) satisfy the ODE system
of two unknowns defined as{

y1(x)C ′1(x) + y2(x)C ′2(x) = 0

a [y′1(x)C ′1(x) + y′2(x)C ′2(x)] = Φ(x) + c
.

With respect the expression of Φ(x), table 1.6 is obtained.

This method can be extended if the constants (a, b, c) become functions of the variable x.
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1.6 Complex number

Definition 1.14 A complex number is a number that can be expressed in the form a + bi =
a + ib = a + jb, where a and b are real numbers and (i, j) is the imaginary unit, satisfying the
equation i2 = j2 = −1. In this expression, a is the real part and b is the imaginary part of the
complex number. If z = a+ bi, then we write Re(z) = a and Im(z) = b.

Complex numbers extend the concept of the one-dimensional number line to the two-
dimensional complex plane by using the horizontal axis for the real part and the vertical axis
for the imaginary part. The complex number a+ bi can be identified with the point (a, b) in the
complex plane (see figure 1.3). A complex number whose real part is zero is said to be purely
imaginary, whereas a complex number whose imaginary part is zero is a real number.

Figure 1.3: A complex number z = a+ bi can be visually represented as a pair of numbers (a, b)
forming a vector in the Cartesian system (x, y).

Complex numbers allow solutions to certain equations that have no solutions in real numbers.
For example, the equation (x+ 1)2 = −9 has no real solution, since the square of a real number
cannot be negative. Complex numbers provide a solution to this problem. The idea is to extend
the real numbers with the imaginary unit i where i2 = −1, so that solutions to equations like
the preceding one can be found. In this case the solutions are −1 + 3i and −1− 3i.

Definition 1.15 Polar representation. A complex number z = x + iy may also be defined in
terms of its magnitude r = |z| (distance) and direction relative to the origin φ = arg(z). These
are emphasized in a complex number’s polar form (see figure 1.4). The angle φ is obtained
by calculating the argument, named arg, of z and the amplitude r by calculating the modulus,
named ||, of z. Then,

z = |z|ej arg(z) = rejφ = r [cos(φ) + j sin(φ)] ,

where

r =
√
x2 + y2 cosφ =

x

r
sinφ =

y

r
.

Definition 1.16 Complex conjugate. The complex conjugate of the complex number z = x+ yi
is defined to be x− yi. It is denoted by either z̄ or z∗. Formally, for any complex number z:

z̄ = Re(z)− Im(z)i.
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Figure 1.4: A complex number z = x+ yi = rejϕ in polar coordinates.

Geometrically z̄ is the “reflection” (see Fig. 1.4) of z about the real axis. Conjugating twice
gives the original complex number: ¯̄z = z.

The real and imaginary parts of a complex number z can be extracted using the conjugate:

Re(z) =
1

2
(z + z̄) Im(z) =

1

2i
(z − z̄)

Moreover, a complex number is real if and only if it equals its conjugate.

Some properties. To know.

z1 ± z2 = z̄1 ± z̄2.

z1z2 = z̄1z̄2.
z1

z2
=
z̄1

z̄2
.

z1 ± z2 = (a1 + b1i)± (a2 + b2i) = (a1 ± a2) + (b1 ± b2)i.

z1z2 = (a1 + b1i)(a2 + b2i)

= a1a2 + a1b2i+ b1a2i− b1b2
= a1a2 − b1b1 + (a1b2 + b1a2)i,

then Re(z1z2) 6= Re(z1)Re(z2) and Im(z1z2) 6= Im(z1)Im(z2).

z1

z2
=

a1 + b1i

a2 + b2i

=
(a1 + b1i)(a2 − b2i)
(a2 + b2i)(a2 − b2i)

=
a1a2 − a1b2i+ b1a2i+ b1b2

a2
2 + b22

=
a1a2 + b1b2
a2

2 + b22
+
b1a2 − a1b2
a2

2 + b22
i

In polar representation, z1 = r1e
jφ1 and z2 = r2e

jφ2 , we have

z1z2 = r1r2e
j(φ1+φ2) (1.29)
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z1

z2
=
r1

r2
ej(φ1−φ2) (1.30)

Exercice 1.20

1. Calculate the real and imaginary parts of 1+2i
1−3i .

2. Calculate the modulus and the argument of 1+i, −1+i, (1+i)(−1+i) and (1+i)/(−1+i).

3. Give the real and imaginary part of 1/(a+ z) where z = x+ yi and (a, x, y) ∈ R3.

4. Show that z1z2 = r1r2[cos(φ1 + φ2) + sin(φ1 + φ2)]. Representing then z1z2 in the complex
plane from z1 and z2.

5. Calculate |z| where z = a+ bejφ and (a, b) ∈ R2.

6. Show that [cos(φ) + sin(φ)i]n = cos(nφ) + sin(nφ)i.

7. We set
√
x+ yi = ±(a+ bi). Calculate a and b from x and y, where (x, y, a, b) ∈ R4.

1.7 Homework

Make the exercises on a copy with a clean presentation and underline the final results. Do
not forgot to write your name and surname on all sheets. The copy will be read by the Professor
in the next session (course).

1.7.1 Limit

Calculate the following limits:

1. lim
x→0

1− cosx

x(2− x) tan(2x)
.

2. lim
x→0

(1− ex) sinx

x2 + x3
.

3. lim
x→ 1

2

(2x2 − 3x+ 1) tan(πx).

4. lim
x→0

ln [cos(ax)]

ln [cos(bx)]
avec a et b reals.

5. lim
x→0

ax − bx

x
avec (a, b) ∈ R+,∗ × R+,∗.

1.7.2 Taylor series expansion

Calculate the following Taylor series expansion:
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1. f(x) =
x

ex − 1
near 0 and at the order 2.

2. f(x) = ecosx near 0 and at the order 3.

3. f(x) = (1 + x)
1
x near 0 and at the order 2.

4. f(x) =
x

sinx
near 0 and at the order 3.

1.7.3 Indefinite integral: Primitive

Let Df be the domain of existence of f defined as F (x) =
∫
f(x)dx. Calculate Df and F of:

1.

∫
x lnxdx.

2.

∫
ln
(
x+

√
a2 + x2

)
dx with a 6= 0.

3.

∫
dx

a2 − x2
.

4.

∫
dx

(a− x)(b− x)2
dx.

5.

∫
sin2 θdθ

cos θ
.

6.

∫
tan2 θdθ.

7.

∫
sin3 θ cos2 θdθ.

1.7.4 Definite integral

Calculate the following definite integrals:

1. I1 =

∫ 0

−1
ex
√

1− exdx. We can set t = ex.

2. I2 =

∫ +1

−1

(
1 + x2

)√
1− x2dx. We can set x = sin t.

3. I3 =

∫ π/4

0

tanx

1 + cosx
dx.
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4. I4 =

∫ 1

0

x3 + 2x2 + 1

x2 + x+ 1
dx.

1.7.5 ODE

1. Solve y′(x)− y(x) = x2. Give the solution for y(0) = 0.

2. Solve xy′(x)− y(x) = ln(x) (x > 0).

3. Solve y′′(x)− ω2
0y(x) = 0 with ω0 real. Give the solution for y(0) = a ∈ R and y′(0) = 0.

4. Solve y′′(x)− 4y′(x) + 3y(x) = xex.
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2 Function of several variables and
vectorial calculus

In this chapter, the concepts defined in chapter 1 are extended to several variables.

2.1 Partial derivative

In mathematics, a partial derivative of a function of several variables is its derivative with re-
spect to one of those variables, with the others held constant (as opposed to the total derivative,
in which all variables are allowed to vary).

The partial derivative of a function f(x, y, . . .) with respect to the variable x is mainly
denoted by

f ′x ∂xf
∂f

∂x
.

The partial-derivative symbol is ∂.

Suppose that f is a function of more than one variable. For instance,

z = f(x, y) = x2 + xy + y2.

The graph (see figure 2.1(a)) of this function defines a surface in Euclidean space. To every
point on this surface, there is an infinite number of tangent lines. Partial differentiation is the
act of choosing one of these lines and finding its slope. Usually, the lines of most interest are
those that are parallel to the xz-plane, and those that are parallel to the yz-plane (which result
from holding either y or x constant, respectively.)

To find the slope of the line tangent to the function at P (1, 1) that is parallel to the xz-plane,
the y variable is treated as constant. On the graph below it, we see the way the function looks
on the plane y = 1. By finding the derivative of the equation while assuming that y is a constant,
the slope of f at the point (x, y) is found to be:

∂f

∂x
= 2x+ y.

So at (1, 1), by substitution, the slope is 3. Therefore

∂f

∂x
= 3,

at the point (1, 1). That is, the partial derivative of z with respect to x at (1, 1) is 3, as shown
in the graph (see figure 2.1(b)).

31
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(a) z = f(x, y) = x2 + xy + y2. (b) z = f(x, y) = x2+xy+y2 for y = 1.

Figure 2.1: On the left, z(x, y) versus (x, y). On the left, z(x, y) versus x for y = 1.

Definition 2.1 Partial derivative. In general, the partial derivative of an n-variables function
f(x1, ..., xn) in the direction xi at the point (a1, ..., an) is defined to be:

∂f

∂xi

∣∣∣∣
xi=ai

=
∂f

∂xi
(ai) = g(ai)

= lim
xi→ai

f(xi, a1, . . . , an 6=i)− f(ai, a1, . . . , an6=i)

xi − ai

= lim
h→0

f(ai + h, a1, . . . , an6=i)− f(a1, a2, . . . , an)

h
. (2.1)

In the above difference quotient, all the variables except xi are held fixed. That choice of
fixed values determines a function of one variable g(xi) = f(xi, a1, a2, . . . , an 6=i), where the n−1
variables {an6=i} are constants.

Even if all partial derivatives
∂f

∂xi
(−→a ) exist at a given point −→a = (a1, a2, . . . , an), the function

need not be continuous there. However, if all partial derivatives exist in a neighborhood of −→a
and are continuous there, then f is totally differentiable in that neighborhood and the total
derivative is continuous. In this case, it is said that f is a C1 function.

The partial derivative
∂f

∂xi
can be seen as another function and can again be partially dif-

ferentiated. If all mixed second order partial derivatives are continuous at a point (or on a set),
f is termed a C2 function at that point (or on that set); in this case, the partial derivatives can
be exchanged

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

Exercice 2.1 Let f be the function defined by f(x, y) = x3− 3x2y− 2y3. Determine de domain
of existence of f . Calculate the partial derivatives of orders one and two.
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2.2 Primitive or antiderivative

There is a concept for partial derivatives that is analogous to primitives or antiderivatives for
regular derivatives. Given a partial derivative, it allows for the partial recovery of the original
function.

Consider the example of ∂z
∂x = 2x+ y. The “partial” integral can be taken with respect to x

(treating y as constant, in a similar manner to partial differentiation):

z =

∫
∂z

∂x
dx = x2 + xy + g(y).

Here, the “constant” of integration is no longer a constant, but instead a function of all the
variables of the original function except x. The reason for this is that all the other variables are
treated as constant when taking the partial derivative, so any function which does not involve x
will disappear when taking the partial derivative, and we have to account for this when we take
the antiderivative. The most general way to represent this is to have the “constant” represent
an unknown function of all the other variables.

2.3 Taylor series expansion

Let f be a function defined on Df ⊂ Rn and of class Cp, we note[
i=n∑
i=1

hi
∂f

∂xi
(x10, . . . , xn0)

][p]

=
∑

i1+...+in=p

p!

i1! . . . in!
hi11 . . . h

in
n

∂pf

∂xi11 . . . x
in
n

(x10, . . . , xn0).

Theorem 2.1 Taylor-Lagrange series expansion. Let f be a function defined on Df ⊂ Rn
(opened) of class Cp. Then

f(x1, . . . , xn) = f(a1, . . . , an) +

[
i=n∑
i=1

hi
∂f

∂xi
(a1, . . . , an)

]

+
1

2!

[
i=n∑
i=1

hi
∂f

∂xi
(a1, . . . , an)

][2]

+ . . .

+
1

k!

[
i=n∑
i=1

hi
∂f

∂xi
(a1, . . . , an)

][k]

+ O
([
h2

1 + . . .+ h2
n

]k/2)
, (2.2)

where hi = xi − ai is close to zero.

Exercice 2.2 Write a Taylor series expansion up the order two of a function f(x, y) of two
variables near the point (0, 0).

Exercice 2.3 Write a Taylor series expansion up to the order two of a function f(x, y) = xexy

near the point (0, 0).
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2.4 Extremum

(a) Minimum. (b) Maximum. (c) Saddle point.

Figure 2.2: Three possible cases at a given critical point.

Definition 2.2 Relative extremum. If f : Df ⊂ Rn → R has a relative extremum at the point
−→a of Df and if f is differentiable at −→a , then

∂f

∂xi
(−→a ) = 0 for all i.

Theorem 2.2 Let f(x, y) : Df ⊂ R2 → R be the function of class C2, for which ∂f
∂x (−→a ) =

∂f
∂y (−→a ) = 0. Setting

r =
∂2f

∂x2
(a) s =

∂2f

∂x∂y
(a) t =

∂2f

∂y2
(a) . (2.3)

Then

• If rt − s2 > 0 and r > 0, then −→a = (x0, y0) is a local minimum of f (case (a) of figure
2.2).

• If rt − s2 > 0 and r < 0, then −→a = (x0, y0) is a local maximum of f (case (b) of figure
2.2).

• If rt− s2 < 0, then −→a = (x0, y0) is a saddle point of f (case (c) of figure 2.2).

• If rt − s2 = 0, then the second derivative test is inconclusive, and the point −→a = (x0, y0)
could be any of a minimum, maximum or saddle point.

This theorem can be generalized by introducing the Hessian matrix, for which the elements

(i, j) (row, column) of the matrix is
∂2

∂xi∂xj
and by calculating the eigenvalues of the Hessian

matrix at the critical points.

Exercice 2.4 Study the relative extrema of the function f defined by f(x, y) = x3 +y3−3xy+1.



2.5. MULTIPLE INTEGRAL 35

2.5 Multiple integral

The multiple integral is a definite integral of a function of more than one real variable, for
example, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in R2 are
called double integrals, and integrals of a function of three variables over a region of R3 are
called triple integrals.

We focus on the case of a function of two variables.

2.5.1 Definition

Let (0x,Oy) be a Cartesian space, for which a domain D limited by a closed line Γ (figure
2.3(a)). D is decomposed into n non-overlapping elementary domains ∆Di of area ∆Ai (i =
{1, 2, . . . , n}) and let Mi(xi, yi) be a point belonging ∆Di. Let f(x, y) be a function defined
and continued on D. At the point Mi ∈ ∆Di it takes the value f(xi, yi). Let be the sum

Sn =
i=n∑
i=1

f(xi, yi)∆Ai.

Definition 2.3 Double integral. If the limit of Sn exists when n → ∞ and all the ∆Di tend
toward zero, then the sum is called ordinary double integral of f on the domain D; It writes

I =

∫∫
D
f(x, y)dxdy = lim

n→∞

i=n∑
i=1

f(xi, yi)∆Ai . (2.4)

(a) Definition. (b) geometrical interpretation.

Figure 2.3: On the left, definition of a double integral. On the right, geometrical interpretation
of a double integral.

Let Σ be the representative surface of the function z = f(x, y) (see figure 2.3(b)). The sum

Sn =

i=n∑
i=1

zi∆Ai,
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stands for a approximated value of the volume V ranged from the plane (Ox,Oy), the surface Σ
and the lines parallel to the axis (Oz) lying on the contour Γ of D. If n→∞, the limit exactly
corresponds to the volume V ; Thus

I =

∫∫
D
z(x, y)dA = lim

n→∞

i=n∑
i=1

z(xi, yi)∆Ai = V . (2.5)

2.5.2 Calculation in Cartesian coordinates

This method is applicable to any domain D for which (see figure 2.4):

• The projection of D onto either the x-axis or the y-axis is bounded by the two values,
(a1, a2) and (b1, b2), respectively.

• Any line perpendicular to this axis that passes between these two values intersects the do-
main in an interval whose endpoints are given by the graphs of two functions, (y1(x), y2(x))
and (x1(y), x2(y)), respectively.

(a) x constant and y moves. (b) y constant and x moves.

Figure 2.4: Illustration of the Fubini theorem.

Such a domain will be here called a normal domain.

x-axis If the domain D is normal with respect to the x-axis, and f : D → R is a continuous
function; then y1(x) and y2(x) (both of which are defined on the interval [a1; a2]) are the two
functions that determine D. Then, by Fubini’s theorem

I =

∫∫
D
f(x, y)dxdy =

∫ a2

a1

dx

[∫ y2(x)

y1(x)
f(x, y)dy

]
. (2.6)

y-axis If the domain D is normal with respect to the y-axis, and f : D → R is a continuous
function; then x1(y) and x2(y) (both of which are defined on the interval [b1; b2]) are the two
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functions that determine D. Then, by Fubini’s theorem

I =

∫∫
D
f(x, y)dxdy =

∫ b2

b1

dy

[∫ x2(y)

x1(y)
f(x, y)dx

]
. (2.7)

This procedure can be easily generalize to a function of n variables.

Example 2.1 Consider the domain D defined by D = {(x, y) ∈ R2, x ≥ 0, y ≤ 1, y ≥ x2} (see
figure 2.5). Calculate the definite integral

I =

∫∫
D

(x+ y)dxdy.

Figure 2.5: Domain D = {(x, y) ∈ R2, x ≥ 0, y ≤ 1, y ≥ x2}.

x-axis From figure 2.5, (a1, a2) = (0, 1) and (y1(x), y2(x)) = (x2, 1). Then

I =

∫ 1

0

[∫ 1

x2
(x+ y)dy

]
dx =

∫ 1

0

[
yx+

y2

2

]1

x2
dx.

At first the second integral is calculated considering x as a constant. The remaining opera-
tions consist of applying the basic techniques of integration:

I =

∫ 1

0

(
x+

1

2
− x3 − x4

2

)
dx = . . . =

13

20
.

y-axis From figure 2.5, if we choose normality with respect to the y-axis we could calculate

I =

∫ 1

0

[∫ √y
0

(x+ y)dx

]
dy.

2.5.3 Theorem of the variable transformation

Theorem 2.3 Theorem of the variable transformation. From the variable transformation x =
x(u, v) et y = y(u, v), the domain D of the plane (x, y) becomes the domain Duv of the plane
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(u, v); J being the Jacobian of the transformation, we have

I =

∫∫
D
f(x, y)dxdy =

∫∫
Duv

|J | × f (x(u, v), y(u, v)) dudv , (2.8)

where

J = det




∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v


︸ ︷︷ ︸
Jacobian matrix


=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
. (2.9)

where the operator det stands for the determinant (il will be defined in the next chapter).

Example 2.2 Consider the domain D defined by D = {(x, y) ∈ R2, (a ≥ 0, b > a), a2 ≤
x2 + y2 ≤ b2, x ≥ 0} (see figure 2.6). Calculate the definite integral

I =

∫∫
D
e−x

2−y2dxdy.

Figure 2.6: Domain D = {(x, y) ∈ R2, (a ≥ 0, b > a), a2 ≤ x2 + y2 ≤ b2, x ≥ 0}.

The function x2 + y2 = R2 describes a circle of radius R and of center (0, 0). As shown in
figure 2.6, the domain D describes then a half (because x ≥ 0) circular crown of radius a and
b > a. Using the polar coordinates system, {x = ρ cosφ, y = ρ cosφ}, the new domain T depicted
on the right of figure 2.6 is a rectangle of sides (b− a) and π (because x ≥ 0). In addition, the
Jacobian is

J = det


∂x

∂ρ

∂x

∂φ
∂y

∂ρ

∂y

∂φ

 =

[
cosφ −ρ sinφ

sinφ ρ cosφ

]
= ρ

(
cos2 φ+ sin2 φ

)
= ρ. (2.10)

Then, since x2 + y2 = ρ2, the integral I is

I =

∫ b

a

∫ π

0
|r|e−r2dφdr = π

∫ b

a
re−r

2
dr = −1

2

[
e−r

2
]b
a

=
e−a

2 − e−b2

2
.
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2.6 Vectorial calculus

2.6.1 Dot and cross products

A vector is a geometrical object that possesses both a magnitude and a direction. A vector
can be pictured as an arrow. Its magnitude is its length, and its direction is the direction that
the arrow points. The magnitude of a vector −→u is denoted by ‖−→u ‖

Let −→u be a vector of n components (u1, u2, . . . , un) and let −→v be a vector of n components
(v1, v2, . . . , vn).

Definition 2.4 Dot product. The dot product of the two vectors −→u and −→v is a scalar defined
as

s = −→u · −→v =

i=n∑
i=1

uivi.

Definition 2.5 For example, in an unitary orthogonal Cartesian coordinates system (
−→
i ,
−→
j ,
−→
k ),

if −→u = (x1, y1, z1) and −→v = (x2, y2, z2), then

s = x1y1 + x2y2 + x3y3,

where −→u · −→u = 1 for −→u = {−→i ,−→j ,
−→
k } and

−→
i · −→j =

−→
j ·
−→
k =

−→
k · −→i = 0.

The dot scalar product can also be defined as

s = −→u · −→v = ‖−→u ‖ ‖−→v ‖ cos(θ),

where θ is the angle between −→u and −→v .

In particular, if −→u and −→v are orthogonal, then the angle between them is 90° and −→u ·−→v = 0.
At the other extreme, if they are codirectional (or collinear), then the angle between them is 0°
and −→u · −→v = ‖−→u ‖ ‖−→v ‖. In addition, −→u · −→u = ‖−→u ‖2 = u2 and u =

√−→u · −→u .

Exercice 2.5 Generalization of the Pythagore theorem. From figure 2.7, show that c2 = a2 +
b2 − 2ab cos(θ).

Figure 2.7: Generalization of the Pythagore theorem.
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Definition 2.6 Cross product. In Cartesian coordinates, the cross product (it is defined only
in three-dimensional space) is a vector −→w defined as

−→w = −→u ∧ −→v =
(
x1
−→
i + y1

−→
j + z1

−→
k
)
∧
(
x2
−→
i + y2

−→
j + z2

−→
k
)

= (y1z2 − y2z1)
−→
i + (z1x2 − x1z2)

−→
j + (x1y2 − x2y1)

−→
k .

The cross product −→u ∧ −→v is defined as a vector −→w that is perpendicular to both −→u and −→v
(see figure 2.8), with a direction given by the right-hand rule and a magnitude equal to the area
of the parallelogram that the vectors span :

−→u ∧ −→v = ‖−→u ‖ ‖−→v ‖ sin(θ)−→n ,

where θ is the angle between −→u and −→v in the plane containing them (hence, it is between 0°
and 180°), ‖−→u ‖ and ‖−→v ‖ are the magnitudes of vectors −→u and −→v , and −→n is an unit vector
perpendicular to the plane containing −→u and −→v in the direction given by the right-hand rule (see
figure 2.8).

(a) Definition. (b) Right-hand rule.

Figure 2.8: On the left, definition of the cross product. On the right, illustration of the right-hand
rule.

In an unitary orthogonal Cartesian coordinates system, −→u ∧ −→u =
−→
0 for −→u = {−→i ,−→j ,

−→
k }

and
−→
i ∧ −→j =

−→
k ,
−→
k ∧ −→i =

−→
j and

−→
j ∧
−→
k =

−→
i . The cross product of two collinear vectors

vanishes.

Property 2.1

• The sum the two vectors −→u and −→v , −→u +−→v is also a vector of n components equal (u1 +
v1, u2 + v2, . . . , un + vn).

• The dot and cross products are distributive.

• −→u · −→u = u2 and −→u ∧ −→u =
−→
0 .

• −→u · −→v = −→v · −→u and −→u ∧ −→v = −−→v ∧ −→u .

• −→u ∧ (−→v ∧ −→w ) = −→v (−→u · −→w )−−→w (−→u · −→v ).
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2.6.2 Scalar and vector fields

Definition 2.7 Scalar field f = f(x, y, z). A scalar field associates a scalar value to every point
in a space. The scalar may either be a mathematical number or a physical quantity. Examples of
scalar fields in applications include the temperature distribution throughout space or the pressure
distribution in a fluid. These fields are the subject of scalar field theory.

Definition 2.8 Vectorial field
−→
F (x, y, z). A vector field is an assignment of a vector to each

point in a subset of space. A vector field in the plane, for instance, can be visualized as a collection
of arrows with a given magnitude and direction each attached to a point in the plane. Vector
fields are often used to model, for example, the speed and direction of a moving fluid throughout
space, or the strength and direction of some force, such as the magnetic and electric fields, as it
changes from point to point.

2.6.3 Vectorial operators

To express the vectorial operator, it is very convenient to introduce the nabla operator defined
in Cartesian coordinates as

−→
∇ =

∂f

∂x

−→
i +

∂f

∂y

−→
j +

∂f

∂z

−→
k .

2.6.3.1 Gradient

Definition 2.9 Gradient vectorial operator. In mathematics, the gradient is a multi-variable
generalization of the derivative. While a derivative can be defined on functions of a single vari-
able, for functions of several variables, the gradient takes its place. The gradient is a vector-valued
function, as opposed to a derivative, which is a scalar-valued. If f(x1, . . . , xn) is a differentiable,
real-valued function of several variables, its gradient is the vector whose components are the n
partial derivatives of f . Then

−→
F =

−−→
grad(f) =

i=n∑
i=1

∂f

∂xi

−→e i.

The vector {−→e i} are the unit vectors which define the Euclidian space.

In physics, the scalar and vectorial fields depend in general of the spatial coordinates (x, y, z).
Then

−−→
grad(f) =

∂f

∂x

−→
i +

∂f

∂y

−→
j +

∂f

∂z

−→
k =

−→
∇f . (2.11)

The gradient operator convert a scalar field f into a vectorial field
−→
F =

−−→
gradf .

Example 2.3 if f(x, y, z) = 2x+ eay + sin(z), then
−−→
gradf = 2

−→
i + aeay

−→
j + cos(z)

−→
k .
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2.6.3.2 Divergence

Definition 2.10 Divergence scalar operator. In vector calculus, divergence is a vector opera-
tor that produces a signed scalar field giving the quantity of a vector field’s source at each point.

In mathematics, if
−→
F =

∑
Fi
−→e i is a continuously differentiable vector field of several variables,

its divergence is the scalar defined as

div
−→
F =

i=n∑
i=1

∂Fi
∂xi

. (2.12)

In physics, the scalar and vectorial fields depend in general of the spatial coordinates (x, y, z).

If
−→
F = Fx

−→
i + Fy

−→
j + Fz

−→
k , then

div
−→
F =

∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

=
−→
∇ ·
−→
F . (2.13)

The divergence operator convert a vectorial field
−→
F into a scalar field f = div

−→
F .

Example 2.4 if
−→
F (x, y, z) = 2x

−→
i + eay

−→
j + sin(z)

−→
k , then div

−→
F = 2 + aeay + cos(z).

Theorem 2.4 Divergence theorem (see figure 2.9(a)). The divergence theorem, also known as
Gauss’s theorem or Ostrogradsky’s theorem, is a result that relates the flow (that is, flux) of a
vector field through a surface to the behavior of the vector field inside the surface. More precisely,
the divergence theorem states that the outward flux of a vector field through a closed surface is
equal to the volume integral of the divergence over the region inside the surface. Intuitively, it
states that the sum of all sources (with sinks regarded as negative sources) gives the net flux out

of a region. If
−→
F is a continuously differentiable vector field defined on a neighborhood of V ,

then ∫∫∫
div
−→
F dV =

∫
©
∫
S

−→
F ·
−→
dS .

The left side is a volume integral over the volume V , the right side is the surface integral
over the boundary of the volume V . The closed surface S is the boundary of V oriented by
outward-pointing normals, and −→n is the outward pointing unit normal field of the boundary S

(
−→
dS = dS−→n ). The symbol within the two integrals stresses once more that S is a closed surface.

In terms of the intuitive description above, the left-hand side of the equation represents the
total of the sources in the volume V , and the right-hand side represents the total flow across
the boundary S.

2.6.3.3 Curl

Definition 2.11 Curl vectorial operator. In vector calculus, the curl is a vector operator that
describes the infinitesimal rotation of a 3-dimensional vector field. At every point in the field, the
curl of that point is represented by a vector. The attributes of this vector (length and direction)
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(a) Divergence theorem. (b) Condition of application.

Figure 2.9: Illustration of the divergence theorem. The divergence theorem can be used to calcu-
late a flux through a closed surface that fully encloses a volume, like any of the surfaces on the
left of (b). It can not directly be used to calculate the flux through surfaces with boundaries,
like those on the right of (b) (Surfaces are blue, boundaries are red).

characterize the rotation at that point. In mathematics, if
−→
F (x, y, x) = Fx

−→
i +Fy

−→
j +Fz

−→
k is a

differentiable, real-valued vectorial function, its curl is defined as

−−→
curl
−→
F =

(
∂Fz
∂y
− ∂Fy

∂z

)
−→
i +

(
∂Fx
∂z
− ∂Fz

∂x

)
−→
j +

(
∂Fy
∂x
− ∂Fx

∂y

)
−→
k =

−→
∇ ∧

−→
F . (2.14)

The curl operator convert a vectorial field
−→
F into a vectorial field

−→
F 1 =

−−→
curl
−→
F .

Exercice 2.6 If
−→
F (x, y, z) = 2x

−→
i + eay

−→
j + sin(z)

−→
k , then calculate

−−→
curl
−→
F .

Exercice 2.7 Show from two methods that
−−→
curl[
−−→
gradf ] =

−→
0 , where f is a scalar function of

class C2.

Exercice 2.8 Show from two methods that div(
−−→
curl
−→
F ) = 0, where

−→
F is a vectorial function of

class C2.

If div
−→
F = 0, then

−→
F =

−−→
curl
−→
A ; We said that

−→
F derive from a potential vector

−→
A . In fact,

the vector
−→
A is defined to a gradient since if

−→
A ′ =

−→
A +

−−→
gradf , then

−−→
curl
−→
A ′ =

−−→
curl

(−→
A +

−−→
gradf

)
=
−−→
curl
−→
A +

−−→
curl

(−−→
gradf

)
︸ ︷︷ ︸

−→
0 ∀f

=
−−→
curl
−→
A.

If
−−→
curl
−→
F =

−→
0 , then

−→
F = −

−−→
gradf ; We said that

−→
F derive from a potential scalar f .

Exercice 2.9 Let be the vectorial field
−→
F defined on R3 by

−→
F (x, y, z) = 2xz−→e x+yz−→e y + (x2 +

y2/2)−→e z. Show that
−−→
curl
−→
F =

−→
0 and deduce the associated scalar function f .
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Theorem 2.5 Stokes’s theorem (see figure 2.10). The Stokes theorem relates the surface integral

of the curl of a vector field
−→
F over a surface S in Euclidean three-space to the line integral of

the vector field over its boundary S:∮
Γ

−→
F ·
−→
dl =

∫∫
S

−−→
curl
−→
F ·
−→
dS. . (2.15)

Figure 2.10: Illustration of the Stokes theorem. MS is a point on the opened surface and MΓ is
a point on the closed contour.

In other words: The circulation of the vectorial field
−→
F along of any closed contour Γ equals

the flux of the vectorial field
−−→
curl
−→
F within the opened surface lying on Γ.

2.6.3.4 Scalar Laplacian

Definition 2.12 Laplacian scalar operator. The Laplace operator is a second order differen-
tial operator in the n-dimensional Euclidean space. Thus if f is a twice-differentiable real-valued
function, then the scalar Laplacian of f is defined by

∇2f = div
(−−→

gradf
)

=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
. (2.16)

The notation ∇2 stands for the scalar Laplacian and is obtained from
−→
∇ as

div
(−−→

gradf
)

=
−→
∇ ·

(−→
∇f
)

=
−→
∇ ·
−→
∇f = ∇2f.

2.6.3.5 Vectorial Laplacian

Definition 2.13 Laplacian vectorial operator. The Laplace operator is a second order differ-

ential operator in the n-dimensional Euclidean space. Thus if
−→
F is a twice-differentiable real-

valued vectorial function, then the vectorial Laplacian of
−→
F = Fx

−→
i + Fy

−→
j + Fz

−→
k is defined

by

∇2−→F =
−−→
grad

(
div
−→
F
)
−
−−→
curl

(−−→
curl
−→
F
)

= ∇2Fx
−→
i +∇2Fy

−→
j +∇2Fz

−→
k . (2.17)

Exercice 2.10 From two methods, show that



2.6. VECTORIAL CALCULUS 45

−→
∇2−→F =

(
∂2Fx
∂x2

+
∂2Fx
∂y2

+
∂2Fx
∂z2

)
−→
i

+

(
∂2Fy
∂x2

+
∂2Fy
∂y2

+
∂2Fy
∂z2

)
−→
j

+

(
∂2Fz
∂x2

+
∂2Fz
∂y2

+
∂2Fz
∂z2

)
−→
k .

2.6.4 Operators in cylindrical and spherical coordinates

When we solve a problem in physics, the choice of the coordinates system is very important.
It is therefore necessary to know the expression of the vector operators for such systems.

Let (x, y, z) be the Cartesian (rectangular) coordinates of a point, which depend on (q1, q2, q3)
and defined by 

x = x(q1, q2, q3)

y = y(q1, q2, q3)

z = z(q1, q2, q3)

.

The functions x, y, z, q1, q2 and q3 are assumed to be bijective and have continuous partial
derivatives. Then, the correspondance between (x, y, z) and (q1, q2, q3) is unique. The functions
(q1, q2, q3) are named the curviligne coordinates of the point M(x, y, z).

The metric coefficients {hi} (i = {1, 2, 3}), which depend on the coordinates system, are
defined by

hi =

√(
∂x

∂qi

)2

+

(
∂y

∂qi

)2

+

(
∂z

∂qi

)2

. (2.18)

Then, for the cylindrical and spherical coordinates, table 2.1 is obtained.

Cylindrical Coordinates Spherical Coordinates

Definition


x = r cos θ

y = r sin θ

z = z

et


q1 = r

q2 = θ

q3 = z


x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

et


q1 = r

q2 = θ

q3 = φ

Local basis (−→e r,−→e θ,−→e z) (−→e r,−→e θ,−→e φ)

Metric Coefficients


h1 = hr = 1

h2 = hθ = r

h3 = hz = 1


h1 = hr = 1

h2 = hθ = r

h3 = hφ = r sin θ

Elementary displacement


dx = dr

dy = rdθ

dz = dz


dx = dr

dy = rdθ

dz = r sin θdφ

Geometrical representation Figure 2.11(a) Figure 2.11(b)

Table 2.1: Metric coefficients in cylindrical and spherical coordinates.
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(a) Cylindrical. (b) Spherical.

Figure 2.11: Cylindrical and spherical coordinates.

Exercice 2.11 Calculate the metric coefficients {hi} in cylindrical and spherical coordinates.

In a curvilinear orthogonal coordinates system (−→e 1 · −→e 2 = −→e 1 · −→e 3 = −→e 2 · −→e 3 = 0 and
−→e 1 ∧ −→e 2 = −→e 3), the gradient operator is expressed as

−−→
gradf =

i=3∑
i=1

1

hi

∂f

∂qi

−→e i . (2.19)

The divergence operator is expressed as

div
−→
F =

1

h1h2h3

i=3∑
i=1

∂

∂qi

(
h1h2h3

Fi
hi

)
. (2.20)

The curl operator is expressed as

−−→
curl
−→
F =

1

h1h2h3

∣∣∣∣∣∣∣
 h1

−→e 1 h2
−→e 2 h3

−→e 3

∂
∂q1

∂
∂q2

∂
∂q3

h1F1 h2F2 h3F3


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

h2h3

[
∂

∂q2
(h3F3)− ∂

∂q3
(h2F2)

]
1

h3h1

[
∂

∂q3
(h1F1)− ∂

∂q1
(h3F3)

]
1

h1h2

[
∂

∂q1
(h2F2)− ∂

∂q2
(h1F1)

]
. (2.21)

Note that the equation for each component,
−−→
curl
−→
F · −→e i can be obtained by exchanging each

occurrence of a subscript 1, 2, 3 in cyclic permutation: 1→ 2, 2→ 3, and 3→ 1.
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Exercice 2.12 In a curvilinear orthogonal coordinates system, show that the scalar Laplacian
is expressed as

∇2 =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂f

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂f

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂f

∂q3

)]
.

Exercice 2.13 From table 2.1, show that the gradient operator is expressed in cylindrical coor-
dinates as

−−→
gradf =

∂f

∂r
−→e r +

1

r

∂f

∂θ
−→e θ +

∂f

∂z
−→e z.

Exercice 2.14 From table 2.1, show that the divergence operator is expressed in spherical co-
ordinates as

div
−→
F =

1

r2

∂

∂r

(
r2Fr

)
+

1

r sin θ

[
∂

∂θ
(Fθ sin θ) +

∂Fφ
∂φ

]
.

2.7 Homework

Make the exercises on a copy with a clean presentation and underline the final results. Do
not forgot to write your name and surname on all sheets. The copy will be read by the Professor
in the next session (course).

2.7.1 Partial derivative

1. Let f be the function defined by f(x, y) = x3y + exy
2
. Calculate ∂f

∂x = f ′x, ∂f
∂y = f ′y,

∂2f
∂x2

= f ′′x , ∂2f
∂y2

= f ′′y , ∂2f
∂x∂y = f ′′xy and ∂2f

∂y∂x = f ′′yx.

2. Show that U(x, y, x) = (x2 + y2 + z2)−
1
2 , with x, y and z different of zero, satisfies the

Laplace equation ∂2U
∂x2

+ ∂2U
∂y2

+ ∂2U
∂z2

= 0.

3. If f(x, y) = x2 arctan
(
x
y

)
, calculate then ∂2f

∂x∂y at the point (1, 1).

2.7.2 Extremum

1. Write the Taylor series expansion up to the order 2 at the point (0, π/2) of the function
f defined by f(x, y) = ex sin(x+ y).

2. Find the maxima and the minima of the function f defined by f(x, y) =
x3 + y3 − 3x− 12y + 20.

3. Consider a rectangular box of volume a3 (a > 0). What are the dimensions of the sides to
have a minimum total surface?
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2.7.3 Double integral

1. Consider the domain D = {0 ≤ y ≤ x2, 0 ≤ x ≤ 1}. Plot the domain and calculate the
following integral

I =

∫∫
D

(x2 + y2)dxdy.

2. Consider the domain D = {0 ≤ y ≤ −2x + 2, 0 ≤ x ≤ 1}. Plot the domain and calculate
the following integral

I =

∫∫
D

(2x+ y2)dxdy,

3. Consider the domain D = {|x| + |y| ≤ 1}. Plot the domain and calculate the following
integral

I =

∫∫
D
ex+ydxdy,

4. Consider the domain D = {x2 + y2 ≥ 4, x2 + y2 ≤ 9}. Plot the domain and calculate the
following integral

I =

∫∫
D

√
x2 + y2dxdy,

5. Consider the domain D = R2. Calculate the following integral

I =

∫∫
D
e−(αx+a)2−(βy+b)2dxdy,

where α 6= 0, β 6= 0 and (a, b) ∈ R2. The variable transformation αx + a = r cosφ and
βy + b = r sinφ can be used.

2.7.4 Vectorial calculus

1. Show that −→u ∧ (−→v ∧ −→w ) = −→v (−→u · −→w )−−→w (−→u · −→v ).

2. From the Lentz law

e = −∂Φ

∂t
=

∮
Γ

−→
E ·
−→
dl,

where Φ is the flux of the vector magnetic field
−→
B , show that

−−→
curl
−→
E = −∂

−→
B

∂t
.

3. From the Gauss theorem ∫
©
∫
S

−→
E ·
−→
dS =

Q

ε0
,
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where
−→
E is the vector electric field and Q the total charge inside the volume and the

divergence theorem, show that div
−→
E = ρ/ε0 where ρ is the charge volume density and ε0

is the permittivity of the vacuum.

4. From table 2.1, show that the curl operator in spherical coordinates is expressed as

−−→
curl
−→
F =

1

r sin θ

[
∂

∂θ
(sin θFθ)−

∂Fφ
∂φ

]
−→e r

+
1

r

[
1

sin θ

∂Fr
∂φ
− ∂

∂r
(rFφ)

]
−→e θ

+
1

r

[
∂

∂r
(rFθ)−

∂Fr
∂θ

]
−→e φ.

5. For a linear, homogeneous and isotropic medium without charges, the Maxwell equations
are given by

−→
∇ ∧

−→
H =

∂
−→
D

∂t

−→
∇ ∧

−→
E = −∂

−→
B

∂t
−→
∇ ·
−→
B = 0

−→
∇ ·
−→
D = 0

where

−→
D = ε0

−→
E

−→
B = µ0

−→
H

and ε0 and µ0 are constant.

(a) Show that the wave propagation is expressed as :

−→
∇2−→E − ε0µ0

∂2−→E
∂t2

=
−→
0

You can use the identity
−→
∇ ∧ (

−→
∇ ∧

−→
A ) = −

−→
∇2−→A +

−→
∇(
−→
∇ ·
−→
A ) for any vector

−→
A .

(b) We assume that
−→
E (−→r , t) =

−→
E 0(−→r )e−jωt, −→r = (x, y, z). Show then(−→
∇2 + k2

0

)−→
E 0(−→r ) =

−→
0

where k0 = ω/c, in which c = 1/
√
ε0µ0 is the wave speed in vacuum.
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3 Matrix

3.1 Rectangular matrices

3.1.1 Definition

Definition 3.1 Definition of a matrix. In mathematics, a matrix (plural matrices) is a rectan-
gular array of numbers, symbols, or expressions, arranged in rows and columns. It is expressed
as

[A] =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 ,
where {aij} are real numbers (it can be complex) and are called elements or entries.

In this course, a matrix will be named within brackets.

The horizontal elements

(a11, a12, . . . , a1n) , (a21, a22, . . . , a2n) , . . . , (am1, am2, . . . , amn) ,

are the rows of the matrix and the vertical elements
a11

a21

. . .

am1

 ,


a12

a22

. . .

am2

 , . . . ,


a1n

a2n

. . .

amn

 ,

are the columns.

The element aij corresponds to the intersection of the i-th row with the j-th column. A
matrix being m rows and n columns is called a matrix of size m×n, where the integer numbers
(m,n) give the dimensions or size of the marix.

Two matrices [A] and [B] of same sizes are equal if ∀i ∈ [1;m], ∀j ∈ [1;n], aij = bij .

Exercice 3.1 Let be the matrix defined as

[A] =

[
1 −3 4

0 5 −2

]
.

51
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Give the rows and the columns of [A].

Exercice 3.2 We have : [
x+ y 2z + w

x− y z − w

]
=

[
3 5

1 4

]
.

Derive the values of x, y, w and z.

A matrix having one row can be considered as a row vector and a matrix having one column
can be considered as a column vector.

3.1.2 Addition and multiplication by a scalar

Let be [A] et [B] two matrices of same size m× n

[A] =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 et [B] =


b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...

bm1 bm2 . . . bmn

 .

Definition 3.2 Addition of two matrices. The addition of [A] and [B], [A]+ [B], is the matrix
obtained by adding the elements of the two matrices. Then

[A] + [B] =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

...
. . .

...

am1 + bm1 am2 + bm2 . . . amn + bmn

 . (3.1)

Definition 3.3 Matrix product by a scalar. The matrix product [A] by a real scalar k, k[A], is
the matrix obtained by multiplying each element by k. Then

k[A] =


ka11 ka12 . . . ka1n

ka21 ka22 . . . ka2n

...
...

. . .
...

kam1 kam2 . . . kamn

 . (3.2)

We can note that [A] + [B] and k[A] are matrices m× n. We can also define

−[A] = (−1)× [A] and [A]− [B] = [A] + (−[B]) .

The addition of two matrices of different sizes is not defined.
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Exercice 3.3 We have

[A] =

[
1 −2 3

4 5 −6

]
and [B] =

[
3 0 2

−7 1 8

]
.

Calculate [A] + [B], 3[A] and 2[A]− 3[B].

The null matrix is defined by ∀i ∈ [1;m], ∀j ∈ [1;n], aij = 0. It is named [0]. Then

[A] + [0] = [0] + [A] = [A].

3.1.3 Matrix product

The matrix product [A] by [B], [A][B], is more complicated an then, we start by studying a
particular case.

The matrix product [A][B] of a row vector [A] by a column vector [B], having the same
number of elements, is defined as

[a1, a2, . . . , an]


b1

b2
...

bn

 = a1b1 + a2b2 + . . .+ anbn =

i=n∑
i=1

aibi . (3.3)

We can note that the product [A][B] is a real. The product [A][B] is not defined if [A] and
[B] have a number of elements that differs.

Exercice 3.4 Calculate the product

[8,−4, 5]

 3

2

−1

 .

From the previous definition, it is then easy to calculate the matrix product for a general
case.

Definition 3.4 Suppose that [A] and [B] are matrices, whose the number of columns of [A]
equals the number of rows of [B], that is [A] is matrix m× p and [B] a matrix p×n. Then, the
matrix product [A][B] is a matrix m × n, where the ij−th element is obtained multiplying the
i−th row of [A] by the j−th column of [B]. Then (see also figure 3.1)
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[A][B] =



a11 . . . a1p

...
. . .

...

ai1 . . . aip
...

. . .
...

am1 . . . amp





b11 . . . b1j . . . b1n

...
. . .

...
. . .

...

...
. . .

...
. . .

...

...
. . .

...
. . .

...

bp1 . . . bpj . . . bpn


=



c11 . . . c1n

...
. . .

...
... cij

...
...

. . .
...

cm1 . . . cmn


= [C] ,

(3.4)
where

cij = ai1b1j + ai2b2j + . . .+ aipbpj =

k=p∑
k=1

aikbkj . (3.5)

It is important no note that the product [A][B] is not defined if [A] is a matrix n × p and
[B] a matrix q × n, where p 6= q.

Figure 3.1: Illustration of the matrix product.

Exercice 3.5 Calculate the product[
r s

t u

][
a1 a2 a3

b1 b2 b3

]
.

Exercice 3.6 Calculate the products and conclude.[
1 2

3 4

][
1 1

0 2

]
and

[
1 1

0 2

][
1 2

3 4

]
.

3.1.4 Transpose of a matrix

Definition 3.5 Transpose of a matrix. The transpose of an m×n matrix [A] is the n×m [A]T

formed by turning rows into columns and vice versa:
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a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


T

=


a11 a21 . . . am1

a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

 . (3.6)

In other words, bij = aji for all i and j.

The transpose of a row vector is a column vector and vice versa.

3.1.5 Matrix and linear equation system

Consider the linear system of m equations with n unknowns


a11x1 +a12x2 + . . . +a1nxn = b1

a21x1 +a22x2 + . . . +a2nxn = b2
... +

... +
. . . +

... =
...

am1x1 +am2x2 + . . . +amnxn = bm

.

This system can be casted into


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn





x1

x2

x3

...

xn


=


b1

b2
...

bm

 or [A][X] = [B],

where the matrix [A] is called the coefficient matrix, [X] the column matrix (column vector)
containing the unknowns and [B] the column matrix (column vector) containing the constants.

Exercice 3.7 Cast the following linear system into matrix form:

{
2x+ 3y − 4z = 7

x− 2y − 5z = 3
.
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3.1.6 Summary of the properties

Consider [A], [B] and [C] three matrices of same size and k1, k2 two reals, then

([A] + [B]) + [C] = [A] + ([B] + [C])

[A] + [0] = [A]

[A] + (−[A]) = [0]

[A] + [B] = [B] + [A]

k1 ([A] + [B]) = k1[A] + k1[B]

(k1 + k2) [A] = k1[A] + k2[A]

1× [A] = [A]

0× [A] = [0]

, (3.7)



([A][B]) [C] = [A] ([B][C])

[A] ([B] + [C]) = [A][B] + [A][C]

([B] + [C]) [A] = [B][A] + [C][A]

k ([A][B]) = (k[A]) [B] = [A] (k[B])

[A] [B] 6= [B][A]

[0] [A] = [A][0] = [0]

. (3.8)


([A] + [B])T = [A]T + [B]T(
[A]T

)T
= [A]

(k[A])T = k[A]T

([A][B])T = [B]T[A]T

. (3.9)

3.2 Square matrices

Definition 3.6 Square matrices. A square matrix is a matrix with the same number of rows
and columns. A square matrix n× n is called a matrix of dimension n.

The addition, multiplication and transposition operations of a rectangular matrix remain
valid for a square matrix. In addition, the resulting operation is also a square matrix of same
dimension.

Exercice 3.8 We have

[A] =

 1 2 3

−4 −4 −4

5 6 7

 and [B] =

 2 −5 1

0 3 −2

1 2 −4

 .
Calculate [A] + [B], 2[A], [A]T and [A][B].
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Definition 3.7 Commuting matrix. Two matrices [A] and [B] are said to commute if [A][B] =
[B][A].

Exercice 3.9 Consider

[A] =

[
1 2

3 4

]
et [B] =

[
5 4

6 11

]
.

Calculate [A][B] and [B][A]. Conclude.

3.2.1 Linear transformation

Figure 3.2: The vectors represented by a 2 × 2 matrix correspond to the sides of a unit square
transformed into a parallelogram.

Matrices and matrix multiplication reveal their essential features when related to linear
transformations, also known as linear maps.

For instance, the 2× 2 matrix

[A] =

[
a c

b d

]
, then [A]

[
x

y

]
=

[
ax+ cy

bx+ dy

]
,

can be viewed as the transform of the unit square into a parallelogram with vertices at (0, 0),
(a, b), (a+c, b+d), and (c, d). The parallelogram pictured in figure 3.2 is obtained by multiplying
[A] with each of the column vectors [0 0]T, [1 0]T, [1 1]T and [0 1]T in turn. These vectors define
the vertices of the unit square.

Figure 3.3 shows a number of 2× 2 matrices with the associated linear maps in a Cartesian
system (x, y). The blue original is mapped to the green grid and shapes. The origin (0, 0) is
marked with a black point.
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(a) Horizontal shear with
m = 1.25.

(b) Reflection through the
vertical axis.

(c) Squeeze mapping with
r = 3/2.

(d) Scaling by a factor of
3/2.

(e) Rotation by π/6.

Figure 3.3: Some linear transformations. The matrix of transformations are expressed below.

[A] =

[
1 m

0 1

]
Horizontal shear with m = 1.25,

[A] =

[
−1 0

0 1

]
Reflection through the vertical axis,

[A] =

[
r 0

0 1/r

]
Squeeze mapping with r = 3/2,

[A] =

[
s 0

0 s

]
Scaling by a factor s = 3/2,

[A] =

[
cos θ − sin θ

sin θ cos θ

]
Rotation by θ = π/6.

3.2.2 Diagonal, trace of a matrix and identity matrix

Definition 3.8 Diagonal and trace of a matrix. The diagonal of a square matrix [A] is the
vector of components {a11, a22, . . . , ann}. Its trace, trace[A], is the sum of its diagonal elements.
Then

trace[A] = a11 + a22 + . . .+ ann =

i=n∑
i=1

aii . (3.10)
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Definition 3.9 Identity matrix. The identity matrix, [I], is the n × n matrix in which all the
elements on the main diagonal are equal to 1 and all other elements are equal to 0.

In addition
[A][I] = [I][A] = [A] . (3.11)

Example 3.1 The Kronecker symbol δij is defined as

δij =

{
0 si i 6= j

1 si i = j
.

Then, the elements of the identity matrix can be written as [I]ij = δij .

The scalar matrices defined as [A] = k[I] of dimensions, 2, 3 and 4 corresponding to the
scalar k = 5 are respectively

[
5 0

0 5

]  5 0 0

0 5 0

0 0 5




5

5

5

5

 .

3.2.3 Power and polynomial of a matrix

Definition 3.10 Power of a matrix. If [A] is a square matrix of dimension n, then the power
of [A] is defined as

[A]2 = [A][A] [A]3 = [A]2[A] [A]n+1 = [A]n[A] and [A]0 = [I] . (3.12)

Exercice 3.10 Consider

[A] =

[
1 2

3 −4

]
.

Calculate [A]2 and [A]3.

Definition 3.11 polynomial of a matrix. For any polynomial function defined as

f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n,

where {ai} are real numbers, the polynomial of the square matrix [A] is written as

f ([A]) = a0[I] + a1[A] + a2[A]2 + . . .+ an[A]n . (3.13)

We can note that f ([A]) is obtained from f(x) changing the variable x by the matrix [A]
and the real an by the scalar matrix an[I] = anδij .

For the case where f ([A]) is a null matrix, the matrix [A] is said a zero or a root of f(x).



60 CHAPTER 3. MATRIX

Exercice 3.11 Consider

[A] =

[
1 2

3 −4

]
.

1. Calculate [A]2 and [A]3.

2. Show then

f ([A]) =

[
16 −18

−27 61

]
,

where f(x) = 2x2 − 3x+ 5.

Theorem 3.1 If f(x) and g(x) are two polynomial functions and if [A] is a square matrix of
dimension n, then

• (f + g) ([A]) = f ([A]) + g ([A]).

• (fg) ([A]) = f ([A]) g ([A]).

• f ([A]) g ([A]) = g ([A]) f ([A]).

3.2.4 Diagonal, triangular, symmetric and orthogonal matrices

Definition 3.12 Diagonal matrix. A square matrix [D] is said diagonal if all the off-diagonal
elements equal zero. It can be noted as [D] = Diag (d11, d22, . . . , dnn), where {dii} are real num-
bers.

Example 3.2  3 0 0

0 −7 0

0 0 2

 [
4 0

0 −5

] 
6

0

−9

1

 .

The identity matrix is a particular case of a diagonal matrix.

Definition 3.13 Upper and lower triangular matrices. If all elements of the square matrix [A]
below the main diagonal are zero, [A] is called an upper triangular matrix. Similarly, if all the
elements of [A] above the main diagonal are zero, [A] is called a lower triangular matrix.

The upper triangular matrices of dimensions 2, 3 and 4 are respectively

[
a11 a12

a22

]  a11 a12 a13

a22 a23

a33



a11 a12 a13 a14

a22 a23 a24

a33 a34

a44

 .

The blocks of zeros are removed.
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Definition 3.14 Orthogonal matrix. An orthogonal matrix is a square matrix with real elements
whose columns and rows are orthogonal unit vectors (that is, orthonormal vectors). Equivalently,
a matrix [A] is orthogonal if its transpose is equal to its inverse:

[A]T = [A]−1 then [A][A]T = [I].

Exercice 3.12 Consider

[A] =
1

9

 1 8 −4

4 −4 −7

8 1 4

 .
Show that [A] is an orthogonal matrix.

Let be a matrix of dimension 3

[A] =

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 .
If [A] is orthogonal, then

[A][A]T =

 a1 a2 a3

b1 b2 b3

c1 c2 c3


 a1 b1 c1

a2 b2 c2

a3 b3 c3

 =

 1 0 0

0 1 0

0 0 1

 .
This leads to

a2
1 + a2

2 + a2
3 = 1 a1b1 + a2b2 + a3b3 = 0 a1c1 + a2c2 + a3c3 = 0

b1a1 + b2a2 + b3a3 = 0 b21 + b22 + b23 = 1 b1c1 + b2c2 + b3c3 = 0

c1a1 + c2a2 + c3a3 = 0 c1b1 + c2b2 + c3b3 = 0 c2
1 + c2

2 + c2
3 = 1

.

Then 
−→u 1 · −→u 1 = 1 −→u 1 · −→u 2 = 0 −→u 1 · −→u 3 = 0
−→u 2 · −→u 1 = 0 −→u 2 · −→u 2 = 1 −→u 2 · −→u 3 = 0
−→u 3 · −→u 1 = 0 −→u 3 · −→u 2 = 0 −→u 3 · −→u 3 = 1

,

where −→u 1 = [a1 a2 a3], −→u 2 = [b1 b2 b3], −→u 3 = [c1 c2 c3] are the rows of the matrices [A] (row
vectors). The row vectors −→u 1, −→u 2 and −→u 3 are mutually orthogonal and of unit norms. In other
words, the vectors −→u 1, −→u 2 and −→u 3 form an orthogonal unit basis. The condition [A][A]T also
shows that the column vectors form an orthogonal unit basis.

In compact form, we have

−→u i · −→u j = δij . (3.14)
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3.2.5 Determinant of a matrix

In linear algebra, the determinant is a useful value that can be computed from the elements
of a square matrix. In this course, the determinant of a matrix [A] is denoted det[A]. It can be
viewed as the scaling factor of the transformation described by the matrix.

For a given square matrix [A] of dimension n, we can calculate a real number called deter-
minant of [A]. Then

det


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 .

Le determinant is not a matrix but a real number.

The use of determinants in calculus includes the Jacobian determinant in the change of
variables rule for integrals of functions of several variables. Determinants are also used to define
the characteristic polynomial of a matrix, which is essential for eigenvalue problems in linear
algebra.

3.2.5.1 Determinants of orders 1 and 2

The determinants of orders 1 and 2 are defined as follows

det [A] = a11 det [A] = det

[
a11 a12

a21 a22

]
= a11a22 − a12a21 . (3.15)

As shown in figure 3.2, the absolute value of ad − bc is the area of the parallelogram, and
thus represents the scale factor by which areas are transformed by [A], where

[A] =

[
a c

b d

]
.

Exercice 3.13 Show that

det

[
5 4

2 3

]
= 7 and det

[
2 1

−4 6

]
= 16.

A direct application of the determinant is the resolution of linear system of two unknowns.
If {

a1x+ b1y = c1

a2x+ b2y = c2

⇔

[
a1 b1

a2 b2

]
︸ ︷︷ ︸

[A]

[
x

y

]
=

[
c1

c2

]
.
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Then, the solution can be expressed as
x =

Dx

det[A]
=

det

[
c1 b1

c2 b2

]
det[A]

=
c1b2 − c2b1
a1b2 − a2b1

y =
Dy

det[A]
=

det

[
a1 c1

a2 c2

]
det[A]

=
a1c2 − a2c1

a1b2 − a2b1

. (3.16)

The numerators Dx et Dy giving x et y, respectively, can be obtained changing the column
of the coefficients of the unknowns to determine, in the matrix of the coefficients, by the column
of the constant terms.

Exercice 3.14 Show that the solution of the following linear system:{
2x− 3y = 7

3x+ 5y = 1
,

is x = 2 and y = −1.

3.2.5.2 Determinant of order 3

The determinant of order 3 can be expressed from determinants of order 2 by linear combi-
nations. then

det [A] = det

 a11 a12 a13

a21 a22 a23

a31 a32 a33


= +a11 det

[
a22 a23

a32 a33

]
− a12 det

[
a21 a23

a31 a33

]
+ a13 det

[
a21 a22

a31 a32

]
= a11 (a22a33 − a23a32)− a12 (a21a33 − a23a31) + a13 (a21a32 − a22a31) . (3.17)

The rule of Sarrus is a mnemonic for the 3×3 matrix determinant: the sum of the products of
three diagonal north-west to south-east lines of matrix elements, minus the sum of the products
of three diagonal south-west to north-east lines of elements, when the copies of the first two
columns of the matrix are written beside it as in figure 3.4.

As shown in figure 3.5, the volume of the parallelepiped is the absolute value of the deter-
minant of the matrix formed by the rows constructed from the vectors −→r 1, −→r 2 and −→r 3.

Exercice 3.15 Show that the determinant of the following matrix:

[A] =

 2 1 −1

1 1 1

1 −2 −3

 ,
is 5.
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Figure 3.4: Sarrus’rule: The determinant of the three columns on the left is the sum of the
products along the solid diagonals minus the sum of the products along the dashed diagonals.

Figure 3.5: Volume of the parallelepiped.

3.2.5.3 Determinant of order n

Definition 3.15 Cofactor. Consider a square matrix [A] of dimension n. We define the square
matrix [M ] of dimension n−1 that results from [A] by removing the i-th row and the j-th column.
The determinant of [M ] is called minor of the element aij of the matrix [A]. The cofactor of aij,
denoted as cij, is the minor mij affected of its signature defined by

cij = (−1)i+jmij = (−1)i+j det[M ] . (3.18)

We can note that the signs (−1)i+j of the minors form a chessboard arrangement, with the
sign + on the main diagonal. Then

+ − + − . . .

− + − + . . .

+ − + − . . .
. . .

. . .
. . .

. . .
. . .

 .

Exercice 3.16 Show that m23 = −6 and c23 = 6 of the following square matrix:

[A] =

 2 3 4

5 6 7

8 9 1

 .
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Theorem 3.2 Determinant of order n. The determinant of the square matrix [A] is equal to the
sum of the products obtained multiplying the elements of an any row (or column, respectively)
by their respective cofactors. Then

det [A] =


ai1ci1 + ai2ci2 + . . .+ aincin =

j=n∑
j=1

aijcij

a1jc1j + a2jc2j + . . .+ anjcnj =

j=n∑
j=1

aijcij

. (3.19)

Exercice 3.17 Show that the determinant of the following matrix:

[A] =


1 2 3 −2

−1 3 1 −1

0 1 −1 3

−2 0 1 1

 .

is equal to −63.

A direct application of the determinant is the resolution of a linear system of n unknowns.
Consider 

a11x1 +a12x2 + . . . +a1nxn = b1

a21x1 +a22x2 + . . . +a2nxn = b2
... +

... +
. . . +

... =
...

an1x1 +an2x2 + . . . +annxn = bn

.

This linear system can be casted into matrix form as [A][X] = [B], where [A] is a square
matrix of dimension n whose elements are aij , [X] the column vector of components the unknown
xi and [B] the column vector of components the constants bi.

Let [M ] be the matrix obtained from the matrix [A] changing the i−th column by the column
vector [B]:

[M ] =


a11 a12 . . . b1 . . . a1n

a21 a22 . . . b2 . . . a2n

...
...

. . .
...

. . .
...

an1 an2 . . . bn . . . ann

 .

Theorem 3.3 The previous linear system has an unique solution if, and only if D = det[M ] 6= 0
and the solution is given by

x1 =
D1

D
x2 =

D2

D
. . . xn =

Dn

D
. (3.20)

In addition:

Theorem 3.4 The system [A][X] = [0] has a non-null solution if, and only if D = det[A] = 0.
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Exercice 3.18 Show that the solution of following linear system:
2x+ y − z = 3

x+ y + z = 1

x− 2y − 3z = 4

,

is x = 2, y = −1 and z = 0.

3.2.6 Inverse of a matrix

Definition 3.16 Adjoint matrix. Consider the square matrice [A] of dimension n. The adjoint
matrix of [A], called Adj[A], is the transpose of the cofactors matrix [C] of elements aij of [A].
Then

Adj[A] =


c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn


T

=


c11 c21 . . . cn1

c12 c22 . . . cn2

...
...

. . .
...

c1n c2n . . . cnn

 . (3.21)

Exercice 3.19 We define

[A] =

 2 3 −4

0 −4 2

1 −1 5

 .
Then show

Adj [A] =

 −18 −11 −10

2 14 −4

4 5 −8

 .
Definition 3.17 Inverse of a matrix. A square matrix [A] is called invertible or non-singular
if there exists a matrix [B] such that [A][B] = [I]. Then [B] = [A]−1 and

[A]−1 =
1

det[A]
Adj[A] =

1

det[A]
[C]T , (3.22)

if det[A] 6= 0.

If [A] is an orthogonal matrix, then [A][A]T = [I] and [A]−1 = [A]T.

Exercice 3.20 Consider

[A] =

 2 3 −4

0 −4 2

1 −1 5

 .
Then show

[A]−1 =


9
23

11
46

5
23

− 1
23 − 7

23
2
23

− 2
23 − 5

46
4
23

 .
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3.2.7 Properties

Consider [A] and [B] two square matrices of same dimension and k a real number. Then

([A][B])−1 = [B]−1[A]−1

det
(
[A]T

)
= det[A]

det ([A][B]) = det[A] det[B]

If [A] has 1 row (or 1 column) of zeros, then det[A] = 0

If [A] has 2 identical rows (or 2 columns), then det[A] = 0

If [A] is a triangular matrix, then det[A] =

i=n∏
i=1

aii

If 2 rows (or 2 columns) of [A] is swapped giving [B], then det[B] = −det[A]

If 1 row (or 1 column) of [A] is multiplied by k, then det[B] = k det[A]

. (3.23)

and 
trace ([A] + [B]) = trace ([A]) + trace ([B])

trace (k[A]) = ktrace ([A])

trace
(
[A]T

)
= trace ([A])

trace ([A][B]) = trace ([B][A])

. (3.24)

3.2.8 Diagonalisation : Eigen values and eigen vectors

3.2.8.1 Eigen values and eigen vectors

Definition 3.18 Eigen values and eigen vectors. Consider a square matrix [A]. A scalar λ is
called eigen value of [A] if is exist a non nul column vector that satisfies

[A][v] = λ[v] . (3.25)

The vector [v] satisfying this equation is called eigen vector associated to the eigen value λ.

From this definition, it is easy to show that the vector k[v] is also an eigen vector of eigen
value λ.

As shown in figure 3.6, in a Cartesian basis (x, y), an eigen vector is parallel or collinear to
[x].

Example 3.3 We consider the square matrix

[A] =

[
2 1

1 2

]

We will show that the eigen values of [A] are λ1 = 1 and λ2 = 3 and the associated eigen
vectors are [v1] = [1 − 1]T and [v1] = [1 1]T. Figure 3.7 then shows the linear transformation
[A][v] and the links with the eigen values and eigen vectors.
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Figure 3.6: Matrix [A] acts by stretching the vector [x], not changing its direction, so [x] is an
eigenvector of [A].

(a) Map of the input vector. (b) Map of the output vec-
tor.

Figure 3.7: On the left, map of the vector [v] = [x y]T. On the right, map of the transformation
[A][v]; the transformation matrix [A] preserves the direction of vectors parallel to [v1] = [1 −1]T

(in purple, where λ1 = 1) and [v1] = [1 1]T (in blue, where λ2 = 3). The vectors in red are not
parallel to either eigenvector, so, their directions are changed by the transformation.

Theorem 3.5 Diagonalization of a matrix. A square matrix of dimension n is diagonalizable,
if and only if it hase n eigen vectors linearly independent. The resulting diagonal matrix
[D] of [A] have for elements the eigen values and the matrice [P ] (of transformation) such as
[D] = [P ]−1[A][P ] has for columns the corresponding eigen vectors.

If a square matrix [A] is diagonalisable, that is [P ]−1[A][P ] = [D], in which the matrix [D]
is diagonal, the following equation is very useful to write [A] from a diagonal matrix. It is called
diagonal decomposition of [A]. Then

[A] = [P ][D][P ]−1 . (3.26)

For instance, this formula is very useful to calculate the power of a matrix since

[A]m =
(
[P ][D][P ]−1

)m
= [P ][D]m[P ]−1 = [P ]Diag (km1 , k

m
2 , . . . , k

m
n ) [P ]−1 , (3.27)

where [D] = Diag (k1, k2, . . . , kn).

Exercice 3.21 We consider

[A] =

[
3 1

2 2

]
[v1] =

[
1

−2

]
[v2] =

[
1

1

]
.
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1. Show that the vectors [v1] and [v2] are eigen vectors of the matrix [A] and calculate the
respective eigen values, λ1 and λ2.

2. Deduce the associated transformation matrix [P ] and show that

[P ]−1 =

[
1
3 −1

3
2
3

1
3

]
.

3. Calculate [P ]−1[A][P ]. Conclude.

4. Show that [P ][D][P ]−1 = [A].

5. Show that

[A]4 =

[
171 85

170 86

]
.

6. Show that

[A]
1
2 =

[
5
3

1
3

2
3

4
3

]
.

3.2.8.2 Characteristic polynomial

Definition 3.19 Characteristic polynomial. Let [A] be a square matrix of dimension n and let
[M ] be the matrix defined as [M ] = [A]−λ[I], where [I] is the identity matrix and λ an unknown
number. Then, the polynomial of degree n defined as

D(λ) = det (λ[I]− [A]) = (−1)n det ([A]− λ[I]) , (3.28)

is called characteristic polynomial of the matrix [A].

Theorem 3.6 Cayley-Hamilton theorem. Any mmatirx [A] is root of its characteristic polyno-
mial. Then D([A]) = [0].

Exercice 3.22 Consider

[A] =

[
1 3

4 5

]
.

1. Show that D(λ) = λ2 − 6λ− 7.

2. Show that

[A]2 =

[
13 18

24 37

]
.

3. Show that D([A]) = [0].

Exercice 3.23 If [A] is a square matrix of dimension 2, then show

D(λ) = λ2 − λtrace[A] + det[A] . (3.29)
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Exercice 3.24 If [A] is a square matrix of dimension 3, then show

D(λ) = λ3 − λ2trace[A] + λ (c11 + c22 + c33)− det[A] , (3.30)

where the reals {cii} are the cofactors of the elements {aii} of [A].

3.2.8.3 Calculation of the eigen values and vectors

This section provides an algorithm to calculate the eigen values and eigen vectors of a square
matrix and establishes l’existence of a regular (or invertible) matrix [P ] such as the matrix
[P ]−1[A][P ] is diagonal.

1. Find the characteristic polynomial D(λ) of [A].

2. Determine the roots of D(λ), which are the eigen values {λi} of [A].

3. For each of the eigen value λi of [A], repeat the following two items:

a) Construct the matrix [Mi] = [A]− λi[I].

b) Determine the solution of the homogeneous linear system [Mi][X] = [0]: this vector
is an eigen vector of [A] linearly independent and of eigen value λi.

4. Study the system S = {[v1], [v2], . . . , [vm]} obtained at the third step:

a) If m 6= n, [A] is not diagonalisable.

b) If m = n, [A] is diagonalisable. Construct then [P ], whose the columns are the column
vectors [v1], [v2], . . . , [vn]. Then

D(λ) = [P ]−1[A][P ] = Diag (λ1, λ2, . . . , λn) , (3.31)

where λi is the eigen value of the eigen vector [vi].

Exercice 3.25 We consider

[A] =

[
4 2

3 −1

]
.

1. Show that D(λ) = (λ− 5)(λ+ 2).

2. Calculate the eigen values λ1 and λ2 < λ1 of the matrix [A].

3. Show that the associated eigen vectors are

[v1] =

[
2

1

]
[v2] =

[
−1

3

]
.

4. Deduce the matrix [P ] and calculate [P ]−1.

5. Then show that

[D] = [P ]−1[A][P ] =

[
λ1 0

0 λ2

]
.
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3.2.8.4 Diagonalisation of real symmetric matrices

Theorem 3.7 If [A] is a (real) symmetric matrix, then the roots of the polynomial characteristic
are real.

Theorem 3.8 If [u] and [v] are two eigen vectors of a (real) symmetric matrix [A], then [u]
and [v] are orthogonal.

These two theorems lead to the following fundamental theorem:

Theorem 3.9 If [A] is a (real) symmetric matrix, then it exists an orthogonal matrix [P ] such
as the matrix [D] = [P ]−1[A][P ] is diagonal with [P ]−1 = [P ]T.

As shown latter, the orthogonal matrix [P ] is obtained by normalizing the eigen vectors.

Exercice 3.26 We consider the following symmetric matrix

[A] =

[
2 −2

−2 5

]
.

1. Show that the eigen values of the matrix [A] are λ1 = 6 and λ2 = 1.

2. Show that the associated eigen vectors are

[v1] =

[
1

−2

]
[v2] =

[
2

1

]
.

3. Show that the vectors [v1] and [v2] are orthogonal.

4. Calculate the associated normalized vector [v̂1] and [v̂2].

5. Deduce de matrix [P ].

6. Verify that [P ] is an orthogonal matrix.

7. Show that

[D] = [P ]−1[A][P ] =

[
λ1 0

0 λ2

]
.

3.2.8.5 Property of the eigen values

Let [A] be an arbitrary n square complex matrix of eigen values {λi∈[1;n]}.

The trace of [A], defined as the sum of its diagonal elements, is also the sum of all eigenvalues:

trace[A] =
n∑
i=1

aii =
n∑
i=1

λi.

The determinant of [A] is the product of all its eigenvalues:

det[A] = λ1λ2 . . . λn.
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3.2.9 Hermitian matrix

Definition 3.20 Hermitian matrix. A Hermitian matrix (or self-adjoint matrix) is a complex
square matrix that is equal to its own conjugate transpose, that is, the element in the i-th row
and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column,
for all indexes i and j:

aij = āji, or [A] = [A]T = [A]H in matrix form.

Example 3.4

[A]H =

 2 1 + i −2 + 2i

1− i 7 i

−2− 2i −i 6

 .
The diagonal elements must be real, as they must be their own complex conjugate.

Property 3.1

• The entries on the main diagonal (top left to bottom right) of any Hermitian matrix are
necessarily real, because they have to be equal to their complex conjugate.

• A matrix that has only real elements is Hermitian if and only if it is a symmetric matrix,
that is, if it is symmetric with respect to the main diagonal. A real and symmetric matrix
is simply a special case of a Hermitian matrix.

• All eigenvalues of a Hermitian matrix [A] with dimension n are real, and that [A] has n
linearly independent eigenvectors. Moreover, Hermitian matrix has orthogonal eigenvectors
for distinct eigenvalues.

• For an arbitrary complex valued vector [v] the product [v]H[A][v] is real because of
[v]H[A][v] = ([v]H[A][v])H.

• If n orthonormal eigenvectors [v1], [v2], . . . , [vn] of a Hermitian matrix are chosen and
written as the columns of the matrix [P ], then one eigen decomposition of [A] is [A] =
[P ][D][P ]H where [P ][P ]H = [P ]H[P ] = [I] and therefore

[A] =
n∑
i=1

λi[vi][vi]
H,

where {λi} are the eigenvalues on the diagonal of the diagonal matrix [D].

The last property it is a generalization of equation (3.26) valid for a real symmetric matrix.

3.3 Homework

Make the exercises on a copy with a clean presentation and underline the final results. Do
not forgot to write your name and surname on all sheets. The copy will be read by the Professor
in the next session (course).
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3.3.1 Matrix product

1. We consider

[A] =

[
2 3 −1

4 −2 5

]
and [B] =

 2 −1 0 6

1 3 −5 1

4 1 −2 2

 .
Calculate [A][B].

2. Find a non-diagonal 2 × 2 matrix [A] whose elements are non null and such as [A]2 is
diagonal.

3. Find an upper triangular real matrix [A] such as

[A]3 =

[
8 −57

0 27

]
.

3.3.2 Determinant and linear system

1. Calculate the determinant of the following matrices:

[A] =

 2 3 4

5 4 3

1 2 1

 [B] =

 1 −2 3

2 4 −1

1 5 −2

 [C] =

 1 3 −5

3 −1 2

1 −2 1

 .
2. From the determinant method, solve the following system

3y − 2x = z + 1

3x+ 2z = 8− 5y

3z − 1 = x− 2y

.

3.3.3 Eigen values and eigen vectors

1. Calculate the characteristic polynomial D and its roots of the following matrices:

[A] =

[
2 5

4 1

]
[B] =

[
3 −2

9 −3

]
.

2. Calculate the characteristic polynomial D and its roots of the following matrix:

[A] =

 1 2 3

3 0 4

6 4 5

 .
We can note that λ = −2 is a root of D
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3. We consider

[A] =

[
3 −4

2 −6

]
.

(a) Calculate the eigen values and eigen vectors of [A].

(b) Find a regular matrix (invertible) [P ] and a diagonal matrix [D] such as [D] =
[P ]−1[A][P ].

(c) Deduce [A]4.

(d) Calculate f([A]) where f(x) = 2 + 3x+ x4.



A Practical work 1: Initiation to
the software MatLab

The software MatLab is a relevant tool to make numerical computation. The syntax program-
ming is very easy and intuitive because the names of the commands are the direct translation
in English of the truncated term. For instance, if you want to compute an integral, use the
command int.

The command help is very useful to obtain further information on the command (for exam-
ple, help int).

A.1 Vector (of 1 dimension)

The power of MatLab is to make operation on a matrix and then on a vector, which is a
particular of a matrix.

A.1.1 Vectors and their manipulation

1. Write a = 0 : 0.2 : 1 and b = 3 ∗ a+ 2, a(1), a(2). Comment the obtained results.

2. Compute size(a), length(a).

3. Compute a+ b, a− b.

4. Write C = [1, 2, 3], D = [C, 4, 5, 6], length(C), length(D), E = D(1 : 2) and length(E).
Explain the interest of these operations.

5. Compute sum(a), prod(a), mean(a). Check the results by “hand”.

6. Compare: a′ ∗ b, a ∗ b′, a. ∗ b. Well understand the difference between these operations
(careful between ∗ and .∗).

A.1.2 MatLab file and plotting a function

1. Click on “file”, “New“ and “Script” and write the following lines:

clear all ; close all

I
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x= -pi :0.1 :pi;

y=sin(x);

plot(x,y);

grid

xlabel(’x’)

ylabel(’y’)

title(’y = f(x)’)

2. Save the program in a chosen directory.

A.1.3 Break figure into sub-figures

Write a program which does:

1. Break a figure window in two parts (help subplot).

2. Plot the curve y = sin(2 ∗ pi ∗ 5 ∗ t), for 0 ≤ t ≤ 1 in the upper part.

3. Plot the curve y = f(t) with t = 1 : 1000 and y = randn(size(t)) (a vector of a Gaussian
random variable of size t) in the lower part.

A.1.4 Statistics analysis of a random variable

Write a program which does:

1. Define a vector, y, composed of 50000 samples of a Gaussian random variable (help randn).

2. Compute the mean value and the standard deviation of y (help mean and std) .

3. Now z = 2 ∗ y+ 3. Compute the mean value and the standard deviation of z and compare
with those of y. Conclude.

4. Plot the histogram of y (upper part) and z (lower part) (help hist) with a number of bars
(rectangle) equals 50.

A.1.5 Complex numbers

Write a program which does:

1. Define z1 = 1 + 2i and z2 = 1− 3i.

2. Calculate a = Re(z1), b = Im(z1)), |z1|, arg(z1), z̄1, z2
1 , z1/z2 and z1z2 (help real, imag,

abs and angle). Check the results by “hand”.
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A.1.6 Polynomial

Matlab represents a polynomial with the help of an array, whose elements are the coefficients
of the polynomial in descending powers. The polynomial P (x) = x2 − 6x+ 4 is represented, for
example, from the array (vector): P = [1 − 6 4].

1. Compute the value of the polynomial P for x = 1 and its roots (help polyval and roots).

2. Plot the polynomial for −5 ≤ x ≤ 5.

3. Solve the equation z4 − 3(1 + 2i)z2 − 8 + 6i = 0. Compute the modulus and the phase of
the solution.

A.2 Matrices

A.2.1 Basic manipulations

1. Write A = [1, 2; 3, 4].

2. Do A(1, :), A(:, 1), A(:). Understand these syntaxes.

3. Extract the first column and the first row of A.

4. Do D = [A; 5, 6]. What do you observe?

5. Extract the first two columns and the first two rows of D.

A.2.2 Basic calculations

The power of MatLab is to make mathematical computations directly on vectors or matrices.

1. Write A = [1, 2; 3, 4] and B = [3, 4; 5, 6].

2. Compute A + B, A − B, A ∗ B and A. ∗ B and compare the results with those obtained
by “hand” to check. What is the difference between .∗ and ∗.

3. Inverse the matrix A (help inv) and compare the result with that obtained by “hand” to
check.

4. Compute the determinant, the trace, the eigen values and the eigen vectors of A and
compare the results with those obtained obtained by “hand” to check.

5. Define P , the matrix containing the column eigen vectors and S the diagonal matrix of
the eigen values. Verify that [A] = [P ][S][P ]−1.



IV APPENDIX A. PRACTICAL WORK 1: INITIATION TO THE SOFTWARE MATLAB

A.2.3 Linear system

1. We consider the following linear system:{
2x1 + 3x2 = 8

x1 + 2x2 = −3
.

2. From MatLab, represent this system by [A][x] = [b] and solve it from [x] = [A]−1[b].

3. Compare the solution with that obtained by “hand” to check (from the determinant
method).



B Practical work 2: Solve f (x) = 0
from the dichotomy method

The bisection method in mathematics is a root-finding method that repeatedly bisects an interval
and then selects a subinterval in which a root must lie for further processing. It is a very simple
and robust method, but it is also relatively slow. This method is also called the interval halving
method, the binary search method, or the dichotomy method.

B.1 Principle

The method is applicable for numerically solving the equation f(x) = 0 for the real variable
x, where f is a continuous function defined on an interval [a; b] and where f(a) and f(b) have
opposite signs. In this case a and b are said to bracket a root since, by the intermediate value
theorem, the continuous function f must have at least one root in the interval [a; b] (see figure
B.1).

At each step the method divides the interval in two by computing the midpoint c = (a+b)/2
of the interval and the value of the function f(c) at that point. Unless c is itself a root (which
is very unlikely, but possible) there are now only two possibilities: either f(a) and f(c) have
opposite signs and bracket a root, or f(c) and f(b) have opposite signs and bracket a root. The
method selects the subinterval that is guaranteed to be a bracket as the new interval to be used
in the next step. In this way an interval that contains a zero of f is reduced in width by 50% at
each step. The process is continued until the interval is sufficiently small.

Explicitly, if f(a) and f(c) have opposite signs, then the method sets c as the new value for
b, and if f(b) and f(c) have opposite signs then the method sets c as the new a. If f(c) = 0 then
c may be taken as the solution and the process stops. In both cases, the new f(a) and f(b) have
opposite signs, so the method is applicable to this smaller interval.

B.2 Iteration tasks

The input for the method is a continuous function f , an interval [a; b] and the expected
precision ε. The function values are of opposite sign (there is at least one zero crossing within
the interval). Each iteration performs these steps:

1. Calculate c, the midpoint of the interval, c = (a+ b)/2.

V
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Figure B.1: A few steps of the bisection method applied over the starting range [a1; b1] (a = a1,
b = b1 and f = F ). The bigger red dot is the root of the function.

2. Calculate the function value at the midpoint, f(c).

3. If convergence is satisfactory (that is, |f(c)| < ε is sufficiently small), return c and stop
iterating.

4. Examine the sign of f(c) and replace either (a, f(a)) or (b, f(b)) with (c, f(c)) so that there
is a zero crossing within the new interval.

B.3 Exercice

To illustrate the method, the function f defined as f(x) = sin(x)ex + x is considered in the
interval [1; 3.5].

1. Write a function on MatLab named “Function f.m” allowing us to calculate f .

2. Write a function on MatLab named “Function Dichotomy.m” allowing us to calculate x0

such as f(x0) = 0. Clearly defined the inputs and the outputs are: x0, f(x0) and n the
number of iterations to reach the convergence.

3. In a main program named “Main1 Dichotomy.m”, plot the function f on the interval
[1; 3.5] and deduce an approximated value of x0. In the same program, compute from the
function “Function Dichotomy.m” an approximated value of x0 for ε = 10−4.

4. In a main program named “Main2 Dichotomy.m”, plot n versus ε (top), plot x0 versus
ε (middle) and plot f(x0) (bottom) versus ε. The figure is broken into three parts and
the horizontal axis is in logarithmic scale (help semilogx). The values of ε are {10−2, 5×
10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 10−5}.



C Practical work 3: Numerical
integration

The trapezoidal rule is one of a family of formulas for numerical integration called Newton-
Cotes formulas, of which the midpoint rule is similar to the trapezoid rule. Simpson’s rule is
another member of the same family, and in general has faster convergence than the trapezoidal
rule for functions which are twice continuously differentiable, though not in all specific cases.
However for various classes of rougher functions (ones with weaker smoothness conditions), the
trapezoidal rule has faster convergence in general than Simpson’s rule.

Figure C.1: Illustration of trapezoidal rule used on a sequence of samples (in this case, a non-
uniform grid).

C.1 Principle

For a domain discretized into N spaced panels, or N + 1 grid points a = x1 < x2 < . . . <
xN+1 = b, the integral of f on the interval [a; b] can be approximated as

I =

∫ b

a
f(x)dx ≈ 1

2

n=N∑
n=1

(xn+1 − xn) [f(xn) + f(xn+1)] .

As shown in figure C.1, the number (xn+1 − xn) [f(xn+1) + f(xn)] /2 is the trapezium area
assumed to be equal to the area under the curve, above the line x = 0 and on the interval
[xn;xn+1].

VII
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C.2 Exercice

To illustrate the method, the function f defined as f(x) = xex is considered in the interval
[0; 3].

1. Calculate I = Iana analytically. It is the exact value or the reference value.

2. Write a function on MatLab named “Function f.m” allowing us to calculate f .

3. Write a function on MatLab named “Function Trapezoidal.m” allowing us to calculate I
for an equally spacing, that is h = xn+1 − xn = constant. Clearly defined the inputs and
the outputs.

4. In a main program named “Main1 Trapezoidal.m”, plot the function f on the interval
[0; 3]. In the same program, compute from the function “Function Trapezoidal.m” an ap-
proximated value of I for h = 0.05.

5. In a main program named “Main2 Trapezoidal.m”, plot I versus h (top) and plot |I −
Iana|/Iana (relative error) versus h (bottom). The figure is broken into two parts and the
horizontal axis is in logarithmic scale (help semilogx). The values of h are {10−2, 5 ×
10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 10−5}. Conclude.



D Practical work 4: Ordinary
differential equation

Consider the problem of calculating the shape of an unknown curve which starts at a given point
and satisfies a given ordinary differential equation (ODE). Here, an ODE can be thought of as
a formula by which the slope of the tangent line to the curve can be computed at any point on
the curve, once the position of that point has been calculated.

The idea is that while the curve is initially unknown, its starting point, which we denote
by A0, is known (see figure D.1). Then, from the ODE, the slope to the curve at A0 can be
computed, and so, the tangent line.

Figure D.1: Illustration of the Euler method. The unknown curve is in blue, and its polygonal
approximation is in red.

D.1 Principle

Take a small step along that tangent line up to a point A1 (see figure D.1). Along this small
step, the slope does not change too much, so A1 will be close to the curve. If we pretend that
A1 is still on the curve, the same reasoning as for the point A0 above can be used. After several
steps, a polygonal curve A0, A1, A2, A3, . . . is computed. In general, this curve does not diverge
too far from the original unknown curve, and the error between the two curves can be made
small if the step size is small enough and the interval of computation is finite:

y′ = f(x, y), y(x0) = y0.

Choose a value h for the size of every step and set xn = x0 + nh. Now, one step of the more
simple method, named Euler, from xn to xn+1 = xn + h is:

yn+1 ≈ yn + hy′n = yn + hf(xn, yn).

IX
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The value of yn is an approximation of the solution to the ODE at xn: yn ≈ y(xn).

D.2 Exercice

To illustrate different methods, the ODE y′−y = x is considered with y(0) = 1 and x ∈ [0; 2].

1. From the Lagrange method, derive analytically the function y = yana.

2. We want to test the three following methods:

Euler: yn+1 = yn + hf(xn, yn).

Improved Euler: yn+1 = yn + hf

(
xn +

h

2
, yn +

h

2
f(xn, yn)

)
.

Runge-Kutta at the order 4: Used the function ode45 on MatLab.

3. For the Euler and Improved Euler methods, write 2 functions on MatLab named “Func-
tion Euler.m” and “Function IEuler.m”. Clearly defined the inputs and the outputs.

4. In a main program named “Main1 ODE.m” for h = 0.05, plot the function y on the interval
[0; 2]. In the same program, compute y from the three methods and plot the solutions in
the same figure as yana to compare. Conclude. Compare also their computing time (help
tic and toc).



E Exam of Mathematics, 20
December 2017, duration 2H00

The only authorized document is a double-sided A4 paper.

The mathematical demonstrations must be rigorous, the copy must be clean
(not a draft) and the final result must be underlined.

E.1 Integral (5 points)

The function f is defined as f(x) = 1
a+b tan(x) , where (a, b) ∈ R× R∗. We want to derive the

integral F (x) =

∫
f(x)dx.

1. Give the domain of definition of f .

2. Give the domain of definition of F by justifying your response.

3. Calculate F . You can set t = tan(x).

E.2 Taylor series expansion (3 points)

The function f is defined as f(x) = x
sin(x) . Calculate the series Taylor expansion up to the

order 4 near 0.

E.3 ODE (4 points)

We consider the ordinary differential equation (ODE) defined as y′(x)x2 + y(x) = x2e
1
x .

1. Give a “name” of the ODE.

2. Calculate y(x) from the constant variation method.

XI
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E.4 Double integral (4 points)

We consider the following integral:

I =

∫∫
Dxy

y2e−(x2+y2)2dxdy.

where the domain Dxy is defined as Dxy = {x ≥ 0, 0 ≤ y ≤ x}.

1. By justifying your response, plot Dxy in the (x, y) Cartesian plane.

2. By justifying your response, plot the new domain Drθ associated to Dxy in the (r, θ) plane,
where (r, θ) are the polar coordinates.

3. Calculate I.

E.5 Eigen values and vectors (4 points)

We consider the matrix [A] defined as

[A] =

[
1− a 2a

2a 1− a

]
,

where a > 0.

1. Calculate the eigen values (λ1, λ2) of [A], where λ1 < λ2 (2 points).

2. Calculate the associated eigen vectors ([v1], [v2]).

E.6 Formula

sin(x) = x− x3

3!
+
x5

5!
+ o(x5).

1

1− x
= 1 + x+ x2 + x3 + x4 + x5 + o(x5).
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physique - II, Hachette, 1995.

[6] Murray R. Spiegel, Analyse vectorielle cours et problème, McGraw-Hill (New-York),
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