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1 Reflection from a dielectric
medium

1.1 Maxwell’s equations

1.1.1 The 4 Maxwell’s equations

The laws of electricity and magnetism were established in 1876 by James Clerk Maxwell
(1831-1879). In three-dimensional vector notation, the Maxwell equations are

folH = aB 9T (1.1)

It is important to note that the four Maxwell equations depend both on the time ¢ and the
position vector T =27+ y7 +27.

Eq. (1.1) is Ampere’s law or the generalized Ampere circuit law. Eq. (1.2) is Faraday’s law
or Faraday’s magnetic induction law. Eq. (1.3) is Coulomb’s law or Gauss’ law for electric fields.
Eq. (1.4) is Coulomb’s law or Gauss’ law for magnetic fields. Maxwell’s contribution to the laws
of electricity and magnetism is the addition of the displacement term 33 /Ot in Ampere’s law

(1.1).

For more clarity, the notations are reported in table 1.1.1. The couple (ﬁ, ﬁ) are named
the electromagnetic field.

In Cartesian coordinates (7, 7, 7), the operator nabla ? is defined as
v = —? + —7 + 5 (1.5)
Then, in Cartesian coordinates, the scalar operator diVZ = 3 . Z (dot product), where Z =

A, T+ Ay7 +A,7 = (Az, Ay, A.), is expressed as

) _0A, 04, 0A,
dwz_ Oz * oy + 0z

(1.6)
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Variable Name Unity
Electric field V/im
Magnetic field A/m

Electric displacement C/m?
Magnetic flux density | Wb/m?

Electric current density | A/m?
Electric charge density | C/m?

> <l wl ozl =]

TABLE 1.1 — Variables involved in the Maxwell equations.

. — .
Moreover, the vectorial operator rotZ = ? A Z (cross product) is expressed as

7T Y 7

——= | 0 0 0 |_ 04, 04, 04,  0A, 04, 0A;

roi 4 = Ox 0Oy 0z _?<6y 62)+7<8z 0$>+?(8x 8y> (L7)
A, Ay, A,

From the Maxwell equations, Eqgs. (1.3) and (1.4) are scalar, whereas Eqgs. (1.1) and (1.2)
are vectorial, thus 8 scalar equations. In fact, these 8 equations are not independent. Indeed,

taking the div of Eq. (1.1) and since div(a ) = 0 for any vector A, then
dp
div/ =22 1.8
vy =% (1.8)

1.1.2 Constitutive relations in free space

The Maxwell’s equations are fundamental laws governing the behavior of electromagnetic
fields in free space and in media. Free space! is characterized by the constitutive relations :

D= eoﬁ (1.9a)
where
€0 = 1/(367 x 109) ~ 8.85 x 1072 F/m
—7 (1.10)
o = 4w x 107" H/m

are, respectively, the permittivity and the permeability in free space. Giving the velocity of light
in free space being ¢ = 3 x 108 m/s, the permittivity ¢y = 1/(uoc?), which follows from the
dispersion relation as derived below.

1.1.3 Wave equation

The Maxwell equations in differential form are valid at all times for every point in space.
First we shall investigate solutions to the Maxwell equations in regions devoid of source, namely

1. Free space is a medium assumed to be linear, homogeneous and isotropic.
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in regions where 7 = 0 and p = 0. This of course does not mean that there is no source
anywhere in all space. Sources must exist outside the regions of interest in order to produce
fields in these regions. Thus in source-free regions in free space, The Maxwell equations become

oF
?/\ﬁzeoﬁ

(1.11)
OH
VAE = ~io 5 (1.12)
V.H=0 (1.13)
V.E =0 (1.14)
In the form of scalar partial differential equations, we have from Eqgs. (1.6) and (1.7)
OH, .
o = e (o
- 9
o~ oy =€ (C)
oFE
G- o= _/‘OZ%I (a)
o~ o = —HoSE  (¢)
0H, 0H, O0H,
=0 1.17
ox oy + 0z ( )
0E, O0E, OE,
=0 1.18
ox + oy + 0z ( )

A wave equation for E can be derived by eliminating ﬁ from Egs. (1.15) and (1.16). Taking
time derivatives of Eq. (1.15a) and substituting Egs. (1.16¢) and (1.16b), we have

O*E, o (0E, OE, o0 (0E, OFE,
HOE0 (5 = — - + -
ot oy \ Oz oy 0z \ 0z Ox
_ 0*E, 0*E, O0*E, O°FE.
o Oy? 022  Oydx 0z20x
0’E, 0*E, 0°E, [OEq. (1.18)]
= f 1.1
Oy? 022 + a2z o Ox (1.19)
Thus, we obtain the following equations for the three components of ﬁ :
0? 0? 0? 0?
g g Z_\E, =
(ax; + oy + R 87522) 0
0 0 0 0
- 4 2 4z - = 1.20
(8:62 + 0y? + 9.2~ Mg Ey=0 (1.20)
0? 0? 0? 0? >
(axawyﬁazfﬂoeoc@tz) ==0
Introducing the scalar Laplacian operator V2 = ? . ? in Cartesian coordinates
0? 0? 0?
2 e — —_— —_—
Ve = 92 + B + 9.2 (1.21)
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we have

PE
V2E - HoCo g = 0 (1.22)

This is known as the Helmholtz wave equation.

1.1.4 Wave solution

Solutions of the wave (1.22) that satisfy all Maxwell equations are electromagnetic waves.
We shall now study a solution to Eq. (1.19) assuming E, = E, = 0. Let E, be a function only
of z and ¢ and independent of x and y. The electric field vector can be written as

E = Eu(z,0)7 (1.23)
The wave equation it satisfied follows from Eq. (1.22), which becomes
O*E, O*E,
_ i 1.24
92 Moo g 0 (1.24)
The simplest solution to Eq. (1.24) takes the form
E = Ey(2,8)@ = Eocos (kz — wt) @ (1.25)

Substituting Eq. (1.25) into Eq. (1.24), we find that the following equation, called the dis-
persion relation, must be satisfied :
k? = w?poeo (1.26)

The dispersion relation provides an important connection between the spatial frequency k
and the temporal frequency w.

There are two points of view useful in the study of a space-time varying quantity such as
E,(z,t). The temporal view point is to examine the time variations at fixed points in space.
The spatial view point is to examine spatial variations at fixed times, a process that amounts
to taking a series of pictures.

1.1.5 Time representation

From the temporal view point, we first fix our attention on particular point in space, say
z = 0. We then have the electric field E,(z = 0,t) = Ey cos(wt). Plotted as a function of time in
Fig. 1.1, we find that the waveform repeats itself in time as wt = 2mm for any integer m. The
period is defined as the time T', for which w1 = 27. The number of periods in a time of one
second is the frequency f defined as f = 1/T, which gives

L w
o

f (1.27)

The unity for the frequency f is Hertz (Hz) with 1Hz = 1 s™!, which is equal to the number
of cycles per second. Since, w = 27 f, w is the angular frequency of the wave.
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v wi
3n

wl = 27

E.(z=0,t) = Eycoswt

FIGURE 1.1 — Electric field strength as a function of wt at z = 0.

The temporal frequency w characterizes the wave in time. We plot in Fig. 1.2a E,(z = 0,1)
as a function of ¢ instead of wt. Let there be one period within the time interval of 1 second.
Thus, f = fo = 1 Hz, and we let w = wp = 27 rad/s. In Fig. 1.2b, we plot w = 2wy ; there are
two periods in a time interval of one second and the period in time is 0.5 second. In Fig. 1.2c,
w = 3wp and there are three periods in one second.

t t t

1 sec 1 sec 1 sec
E, = FEycoswt E, = FEycos 2wt E, = Eycos 3wt
B Wia— W =r2miHY b. w=2w, =47 Hz ¢ W= 3w, =i0m Hz

FIGURE 1.2 — Electric field strength as a function of ¢ for different angular frequencies w.

1.1.6 Space representation

To examine behavior from spatial view point, we let wt = 0 and plot E.(z,t = 0) in Fig.
1.3. The waveform repeats itself in space when kz = 2mmr for integer values of m. The spatial
frequency k characterizes the variation of the wave in space. The wavelength is defined as the
distance for which kA = 2. Thus, A = 27 /k, or

k= (1.28)

We call k the spatial frequency of the wavenumber which is equal to the number of wave-
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lengths in a distance of 27 and has the dimension of inverse length.

=

o

}
>
il
)
A

E.(2,t =0) = Egcoskz

F1GURE 1.3 — Electric field strength as a function of kz for ¢t = 0.

To further understand the meaning of k as a spatial frequency, we plot in Fig. 1.4a E,(z,t =
0) as a function of z instead of kz. Let there be one period within the wavelength of 1 meter.
We defined Ky = 27 rad/m. Thus k = 1Ky = 27 rad/m. In Fig 1.4b, we plot k = 2Ky ; there
are two periods in a spatial distance of one meter and the wavelength is 27 /k = 27 /(2Ky) = 0.5
meter. In Fig 1.4c, k = 3Kj; there are three periods in one meter.

1m Im 1m
E, = Eycos K,z E, = Eycos 2Kz E. = Egcos 3K,z
] T b | o= 2 c, o=k,

FIGURE 1.4 — Electric field strength as a function of z for with different spatial frequency.

Similar to the unit in Hz which is cycles per second in temporal variation, Ky is cycles per
meter in spatial variation. For a wave that has a spatial frequency of one period in one meter
distance, k = 1Kj. An electromagnetic wave in free space with k¥ = 5Ky has five spatial periods
in a distance of one meter. From the dispersion relation for electromagnetic waves, the spatial
frequency k£ and and the temporal angular frequency w are related by the velocity of light as
k = w/c. In free space, the conversion factor is ¢ = 1/,/fig€g = 3 x 10® m/s. Thus, for a spatial
frequency of 1K), the corresponding temporal frequency is f = cKy/(27) = ¢ = 300 MHz.
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1.1.7 Phase velocity

In Fig. 1.5, we plot E,(z,t) at two progressive times wt = 7/2 and wt = 7. We observe that
the electric field vector at A appears to be propagating along the 7 direction as time progresses.
The velocity of propagation v, is determined from kz — wt = constant, which gives

dz w
Vpy = — = — 1.29
kz kz kz
3 : 3? 37
2 .27;_ 27
]
m Wﬁ . ‘4 ( $
P~ A
. E, E, 154
T
a. wt=0 b wt:; ek Bh—a
E, = Egcoskz E; = Fpsinkz E, =—Fycoskz

FIGURE 1.5 — Electric field strength as a function of kz at different times.

We call v, the phase velocity. By virtue of the dispersion relation (1.26), we see that v, =
1//to€o, which is equal to the velocity of light in free space.

The spatial frequency k, is according to the dispersion relation, directly related to the tem-
poral frequency w by the phase delay

k
$p = — = VHoo (1.30)

which determines how much time it takes for the wave to propagate on a unit distance. In free
space, ¢, = 1078/3 s/m or it takes 3.3 ns for an electromagnetic wave to travel the distance of
one meter.

1.1.8 Electric and magnetic field vectors

For the wave solution in Eq. (1.25) for electric field vector
E = Ey(z,t)@ = Egcos (kz — wt) 7 (1.31)

the vector magnetic field H can be determined from Eq. (1.12). We find
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- 7T Y 7
0 o o0 0 0E, 0FE, OE,
Hor SVAE -~ dx dy 0z =V - dy .
Ex 0 0 =0 why ?
= FEoksin(kz —wt) Y (1.32)

The magnetic field vector ﬁ is then

k k
H= 7Eo/sin (kz — wt) dt = —— Egcos (kz — wt) o/ (1.33)
Ho WHo

Egs. (1.31) and (1.32) satisfy all the Maxwell equations (1.11), (1.12), (1.13) and (1.14).

Write the amplitude of the magnetic field vector ﬁ as Hy

H= Hy,(2,t)Y = Hycos (kz —wt) Y (1.34)

where Hy = Ey/n and n = \/uo/e0 = 1207 is called the free-space impedance. The electro-
magnetic wave is propagating in the positive 7 direction because as time ¢ increases, z must
increase in order to maintain a constant phase kz — wt. The field vectors of the electromagnetic
wave are transversal to the direction of propagation an lie in the xy—plane, on which the phase
kz — wt of the wave is a constant. Since the phase front of the wave is the xy-plane, we call the
electromagnetic wave as represented by Egs. (1.31) and (1.34) a plane wave. See Fig. 1.6.

* 3
3
o
-~
.
w) &
h, A o,

- ™ By
~ {4
~ e

3
e
>

e 3

"
'
- r
e A
L
L
o My
(N N

FI1GURE 1.6 — Electric and magnetic field vectors of an electromagnetic wave.
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1.2 Polarization

1.2.1 Introduction

The polarization of a wave is conventionally defined by the time variation of the tip of the
electric field E at a fixed point in space. For example :

— If the tip moves along a straight line, the wave is then linearly polarized.
— If the tip moves along a circle, the wave is then circularly polarized.
— If the tip moves along an ellipse, the wave is then elliptically polarized.

Considering the following wave solution

E = BE7+B7
= cos(kz —wt) T + Eoy cos(kz — wt + Y (1.35)

Note that F, = 0 because the wave propagates in the +7Z direction.

From the temporal point of view (z = 0), we have

E = cos(wt) T + Boy cos(wt — 8) 7 (1.36)
E; E

We now study the polarization of the following special cases :

1. § = 2nm, where n is an integer, we have
E = cos(wt) @ + Eoy cos(wt) Y = Ey = Eo E, (1.37)
The tip of the electric field vector moves along a line as shown in figure 1.7(a). The wave

is linearly polarized.
2. 0 = (2n+ 1), we have
E = cos(wt) T — Eoycos(wt) T = Ey, = —Eoy Es (1.38)
The tip of the electric field vector moves along a line as shown in figure 1.7(b). The wave

is linearly polarized.
3. 6 =7/2 and Ey, =1, we have
E = cos(wt) T + sin(wt) Y = E2 + EZ =1 (1.39)
In addition, as ¢ increases, E, decreases whereas E,, increases. As shown in figure 1.7(c),

the wave is right-hand circularly polarized.
4. 6 = —7/2 and Ey, = 1, we have
E = cos(wt) T — sin(wt) Y = E2? + E; =1 (1.40)
In addition, as t increases, E, decreases whereas E, decreases. As shown in figure 1.7(d),
the wave is left-hand circularly polarized.
5. 6 = +m/2 and Ey, # 1, we have

2

E = T cos(wt) T + Egy sin(wt) Y = E2 + 55’ =1 (1.41)
Oy

As shown in figure 1.7(e)-(f), The wave is right-hand elliptically polarized for 6 = 7 /2
and left-hand elliptically polarized for 6 = —7/2, respectively.
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A E}, EO}' A E},

4E b) —;TEX

Ey,

LB L E
c) T+E. a9 T E

AE 3 AE,

Eqy| ™Y T

FI1GURE 1.7 — Different states of polarization.

1.2.2 More general cases
1.2.2.1 Elliptical polarization with a rotation

In general, a polarized wave has en elliptical polarization. The electric field is then

E? Ej
E = Eo, cos(wt — 8p) @ + Eqyy sin(wt — 50)Y = >+ — =1 (1.42)
EOac EOy

As shown at the top of figure 1.8, we see that Fjp, is the major axis of the ellipse and Ej, the
minor axis. With the plus sign, the wave is right-hand elliptically polarized, whereas with the
minus sign, the wave is left-hand elliptically polarized. The shape of the ellipse can be specified
by an ellipticity angle x defined as

Ep b
t =+ =4 1.43
anx =+ =4 (1.43)

In addition, as shown at the bottom of figure 1.8, the ellipse can be undergone a rotation of
an angle a.. In this case, the ellipticity angle is

/
tan y = :l:g (1.44)

This case corresponds, with 7 = wt, to

{ E, = Ey, cos(T + 0;) (1.45)

E, = Eg, cos(T + &)
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' g
a#0 y Ey AT
I Mg
A 7 \ X:
. AL
- = ) ’ : \
’,—’ b /1 o a \\

FIGURE 1.8 — General case of an elliptical polarization.

We then show (see exercise 1.5.2.1) that

E2 E} E, B, 2
+ =L -2 —Z cosd = sin®§ 1.46
E3, " B2, “Eo. Eo, (1.46)

with 6 = 0, — ;. Comparing Eq. (1.46) with Eq. (1.42), an additional term is added related to
the angle of rotation «, as shown in the next subsection.

1.2.2.2 Relations between the angles

We can show (see exercise 1.5.2.2) that the angle of rotation « and of ellipticity x (Eq.
(1.44)) are related to a = Ey,, b = Egy and 6 = 0, — J, by

tan(2a) = 2ab cos

ey and { o € [0 7] (1.47)
) 2absin d X € [-7/4m/4] .
SIH(QX) = m

Eq. (1.47) shows that the polarization of a wave can be defined either from a = Ey,, b = Ey,
and 6 =, — 0, or from the angles o and .

For example, for a linearly polarized wave, a = FEy, = £Fp, and 6 = 0. Thus x = 0 and
tan(2a) — 2(b/a)/[1 — (b/a)?] = 2tan /(1 — tan® ). Thus tana = b/a = £1. Then a = +7/4.

For example, for a circularly polarized wave, a = Ey, = Ep, and 6 = £7/2. Then tan(2a) =
0, implying that & = 0 or = 7/2. In addition, sin(2x) = +£1, implying that y = +x/4. By
convention, the right-hand circularly polarization is obtained for o positive.
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1.3 Wave propagation in a conductor medium

A conductor medium, like copper, sea, and so on, can be characterized by a LHI medium
(like in free space) of permeability p = po (no magnetic medium), permittivity e = ege, with e,
a real number larger than one, without charge p = 0 but =ocF # 0. o0 is the conductiity
in S/m and e, the relative permittivity (dimensionless). In free space (or vacuum), o = 0 and
€ = 1.

From Egs. (1.1), (1.2), (1.3) and (1.4 ), the Maxwell equations become

?/\ﬁ:eo@—%aﬁ (1.48)

ot

VAE = oH (1.49)

—H0 5 a1
V.H=0 (1.50)
V.E=0 (1.51)

We can show that the wave propagation is

92F Mogaﬁ PFE -

- = i 1.52
o0 M5 0 (1.52)

It is a generalization of the wave Helmholtz equation obtained in free space (1.22). As in
free space, a simple solution, but realistic, of this equation is ﬁ(?, t) = Eoe_j (‘*’t_??), where
o is a constant vector, which glves the wave polarization and k denotes the wave vector of
(or spatial frequency). The term wt — k: 7 is the phase

norm the wavenumber k£ = H k ‘

and k -7 = kg + kyy + k.z, where k = (kg,ky, k.) the components of the vector k and,
7= (z,y,z) the components of the vector 7, which stands for the Cartesian coordinates of a
point in space.

Since E — ﬁoe_j(”t_k”_kyy_kzz), we have

@—]k ﬁ
ﬁ = jky ﬁ i?ﬁ_]k‘ﬁ ?—ﬂ]k (1.53)
%j:sz

and then, the operator v = 0/0x 2 4—_?/%1/7 + /827 is then equivalent to +j?. In other

words, ﬁ = j? A E and divE = jk - E, and the same equations are satisfied for H. In
addition, ﬁ
0 7 0
- - _j = — —q 1.54
5 = 5 I (1.54)
Thus, From Egs. (1.51) and (1.50)
— —
K- E=0=KLE (1.55)

jE-H=0=K1B (1.56)
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These both equations show that the fields E and H) are transverse to the propagation direc-

— o
tion defined along the vector k. Since E(ﬁ, t) = Eoe_](“’t_ k-7) is solution of the Helmholtz
equation, from Eq. (1.52), the wave number k verified the dispersion equation

—k? + (epow? + juoow) = 0 = k = v/ epow? + juoow (1.57)

Introducing the refraction index n, the wave number k£ can be expressed as

o
k = \epow? + juoow = wy/eofto | € +j; =koxXn (1.58)
0

where kg = w,/€optp is the wave number in free space, for which ¢, = 1 and ¢ = 0. In addition,
the refraction index n is defined as

o g
— 9 142 1.59
n €r +Jw€0 Ve 1+ — (1.59)

We can notice that the refraction index n is a complex number and depends on the frequency.
The medium is then called dispersive. By analogy, a complex relative permittivity can be
defined as

9 .o 180 . o in S/m
€1 =" —6r+]weo—6r+] 7 with { f in GHz (1.60)

From Egs. (1.48), we have
— —
Jjk /\ﬁ:—jweﬁ—l—aﬁéﬁ/\k:(we—i—ja)ﬁ (1.61)
_>
which shows that (ﬁ, ﬁ, k) are mutually transverse. In addition, from Eq. (1.61), we have

_>
- "= E k‘
H k:‘ HE) = : HBH:» S | 1.62
I7] | ( ) (we + jo) 1= F=oers (1.62)
—_————
=1 why?
B kon  wy/éopon  €\/Eopon
— w6+j0_w6<1+j£)_ TL26
ew

_ ol _m
e n n

where 7 is the wave impedance in ohm. The modulus of 1 gives the ratio modulus of E/H and
the phase of n gives the phase difference between E and H. Unlike the vacuum, 7 is a complex
number.

For example, for a plane wave propagating with respect to the direction 7 and polarized with
respect to 7, ﬁ(z,t) = EyZe JWi=k2) where k = k7. The magnetic field is then ﬁ(z,t) =
Eyge 3=k fy or H (z,t) = (Eo/|nl) T e7=+=%) where ¢ = arg(1).

1.4 Plane wave reflection and transmission from a
plane surface
This section is devoted to the calculation of the reflected and transmitted waves by a plane

surface (of infinite area, which means that no diffraction phenomenon) illuminated by a plane
wave.
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As shown in figure 1.9, the upper medium 1 is defined for z > 0 of permittivity e; and
permeability pu1 = po, and the lower medium 2, is defined for z < 0 of permittivity e and
permeability ps = po.

Medium 1 (ug,€,)
Z=0

Medium 2 (ug,€5)

=l

FIGURE 1.9 — The Snell-Descartes laws.

In general, for an infinite medium (no interface), an incident plane wave is expressed as
ﬁi = BOie*j (“’it*?i'?), where the vector Egi is related to the polarization and the amplitude
of the wave. In addition, w; is the pulsation, k; the wave vector, which gives the direction of
the electric field, and 7 the vector position. All the variables ( E;,w;, k ;) are known.

When we consider the problem shown in figure 1.9, the incident wave is reflected into the
medium 1 and transmitted into the medium 2. For each medium, the Maxwell equations can be
applied leading to that the reflected and transmitted fields can be written in a similar manner

- : (b= E T B = B o—ilwt—Fe7)
as the incident field. They are given by ET = Eme Jwrt=kr7) and E; = Ege i@ )
respectively.

— —
The problem to solve is to determine (ﬁomwm k., ﬁ()t,wt, k). This problem is solved by
applying the boundary conditions on the interface defined at z = 0.

1.4.1 Boundary conditions

Let S be a surface separating a medium 1 from a medium 2 and 7 the normal to the
surface arbitrary oriented from 1 to 2. The boundary conditions at the interface (z = 0) are
then expressed as

A (El - ﬁg) -0 Tangential component (1.63a)
A (ﬁl — ﬁg) = 75 Tangential component (1.63b)
- (Mlﬁl - mﬁg) =0 Normal component (1.63c)
- (elﬁl - EQﬁg) = ps Normal component (1.63d)
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73 is the current electric surface density and pg is the charge electric surface density. We
have then :
— Continuity of the tangential component of the electric field ﬁ and of the normal
component of the magnetic field H.
— Discontinuity of the normal component of the electric field ﬁ (due to the presence of
ps) and of the tangential component of the magnetic field H (due to the presence of 75)

If the media 2 is a perfect conductor?, then Eq. (1.63) becomes

A ﬁl S Tangential component (1.64a)
A ﬁl = 75 Tangential component (1.64b)
- ﬁl =0 Normal component (1.64c)
- ﬁl = ps/e1 Normal component (1.644)

If the media 1 and 2 are perfect dielectric, then 75 = 6> and pg = 0, leading from Eq.

(1.63) to
oA (El - ﬁg) -7 Tangential component (1.65a)
n A(H1— Hy)= 0 Tangential component (1.65b)
s (,ulﬁl - ﬂgﬁg) =0 Normal component (1.65¢)
o (elﬁl — ezﬁg) =0 Normal component (1.65d)

1.4.2 Snell-Descartes laws

By applying the boundary conditions (continuity of the tangential component of the electric
field), a relation between the amplitudes of the three waves (incident, reflected and transmitted)
exist if for z = 0, the phase term of each exponential is equal. From

ﬁi — ﬁOie_j(wit_?i‘?)
ﬁr = EOre_j(wrt_?ri?) (166)

Et e ﬁOte_j(wtt_?i'?)
this leads to
%

Wit — K T mwt— Ke T =wit— Ke- 7 V(T €8,8) (1.67)

Thus
wit — kizx + kiyy = wrt — ko @ + kpyy = wit — ko @ + keyy (1.68)
%
with 7 = (z,y,2) and K ;r¢ = (Kizratzs Kiy,ry,tys Kiz,rz,t2) since for 7 e S, z = 0. Noticing that

the vector ?Z lies in the (yOz) (kiz = 0) plane, V (z,y,t), the above equation becomes

Wi =Wp =W =W
kiy = kry = kty

2. A perfect conductor has a conductivity o — joo
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Then

1. The first equation shows that the pulsations are equal.

2. The second equatlon shows that the 1n01dent reflection and transmission planes, defined
by the vectors (7, s ), (7, ¥ ) and (7, ® +), respectively, are the same.

3. From figure 1.9, the last equation shows that
k;sin@; = k,.sin 60, = k; sin 0; (1.70)

Moreover, k; = k, because the propagation medium is the same and k; ; = koni 2. Thus

{ Or = 10 . (1.71)

nq sin 6; = n9 sin 0,

They are the famous Snell-Descartes laws. The third one is the more famous but do not
forget the others.

1.4.3 Fresnel coefficients
1.4.3.1 Case of a PC surface at a normal incidence for the TE polarization

For a perfectly conducting (PC) surface there is no transmitted field. In addition, we assume
that the incidence angle is 6; = 0.

For the TE polarization, the incident electric field EZ is transverse, i.e., orthogonal to the
incident plane or collinear to the vector .

By applying that a , ﬁl , ki) (TEM structure of a plane wave) is an orthogonal direct basis,
the direction of ﬁ is obtained (rule of the right hand).

[; Transverse

l

e

% |

FIGURE 1.10 — Reflected elecromagnetic fields for a PC surface, the TE case and 6; = 0.

For z = 0, the boundary conditions (Eq. (1.64)) state that the tangential components of the
Q;cal electric field vanishes on the interface S. Thus, smce_;/ construction, the vectors ﬁ and
E,. are tangential to the surface, we have ﬁl + E, 0 = F,. = —E Thus, the direction of E



1.4. PLANE WAVE REFLECTION AND TRANSMISSION FROM A PLANE SURFACE 17

— = =
(=) is opposite to that of ﬁz (+7). In addition, since (Ey., Hy, k) (TEM structure of a plane
wave) is an orthogonal direct basis, the vectors i and H, are in the same direction.

Thus, the reflection and transmission coefficients are

=0 (1.72)

For the TE polarization, the subscript H is used as horizontal.
The total electric and magnetic fields in the medium 1 are then
{ Et = E, + ET = 7 Eye i« (e‘jklz — ejklz) —Qj?Eol-e_j“’t sin (k1 2)

4 . N . 1.73
ﬁt = ﬁz + ﬁr = —7H0ie*3“’t (eijklz + ejklz) = —27H0Z-e*3°” cos (k12) ( )

In addition, Hy; = Eo;/m, where 7 is the wave impedance of the medium 1. We can also
note that ki = kgni, where ny is the refraction index of the medium 1.

1.4.3.2 Case of a dielectric surface at a normal incidence for the TE pola-
rization

Now, we consider that the medium 2 is a perfect dielectric. Thus, a transmitted field can be
propagated in the medium 2.

From figure 1.10 (by convention, we use the picture on the right) and applying the boundary
conditions at z = 0 (Egs. (1.65) on the tangential components), we have

Ey; + Eor = Eot
1.74
{ —Hy; + Hor = —Hoy (1.74)

In addition, Ho; = Eoi/m = ni1Eoi/no, Hor = Eor/m = niEor/no and Hoe = Eoi/12 =
naEot /no. Thus

Eo, + Eo; = Eo;
1.75
{ Eoi — Eor = 12 Eo (1.75)
In conclusion
Ry = Eo, _ 1N
Eoi  n1+n2
(1.76)
E 2n
T ot 1

EOi ni + n9g

For a PC surface, |na| — oo, then Ry = —1 and Eq. (1.72) is retrieved.

1.4.3.3 Case of a dielectric surface for the TE polarization

In this subsection, the general case of a perfect dielectric surface is considered for the TE
polarization.
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FIGURE 1.11 — Fresnel coefficients for the TE polarisation and a perfect dielectric medium.

%
By applying that (E,E, k;) is an orthogonal direct basis, the direction of E ii OE;cained
(rule of the right hand). As shown in figure 1.11, the same way is used for (E,, H,, k,) and

(B Hy k).

From Egs. (1.65), the tangential components of the electric and magnetic fields are continuous
on the interface S defined at z = 0. From figure 1.11, this leads for V (z,y) to
{ Eoi + Eor = Eot

—Hy; cos 0; + Hoy cos 6. = —Hog cos 0y (1.77)

Moreover, from Eq. (1.62), Ho; = n1Eoi/no, Hor = n1Eor/no and Hyy = naFot/no, leading
with 91 = 97« to

Eoi + Eor = Eo; ;

N9 COS 1.78
By — Boy = ——LEy, (1.78)
n1 cos 6;

Letting Ry = Eo,/Ep; (reflection coefficient) and Ty = FEy;/Ep; (transmission coefficient),
we obtain

o 2 229,
R nycosf; —nocos@;  T1COS 0; ny — nysin” 6;
H pr— pr—
n cos 0 + na cos by ny cosb; + 1/n3 — n? sin? 6; (1.79)
2n1 cos b;
Tau=1+Ryg= !

n1 cos 0; + no cos by

where the third Snell-Descartes law njsinf; = ngsinf, is used. For 6; = 0, Eq. (1.76) is
retrieved.

1.4.3.4 Case of a dielectric surface for the TM polarization

In this subsection, the general case of a perfect dielectric surface is considered for the TM
polarization (figure 1.12).
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FIGURE 1.12 — Fresnel coefficients for the TM polarization and a perfect-dielectric medium.

From Egs. (1.65), the tangential components of the electric and magnetic fields are continuous
on the interface S defined at z = 0. From figure 1.11, this leads for V (z,y) to

Ey; cos0; — Eo, cos 0, = Ey; cos b, ’
Thus

sin 91

Eoi + Eor = — 0t
sin 6;

(1.81)

cos 6

Eo; — Eor = L Eoi
cos 0;

Letting Ry = Eoy,/Ey; (reflection coefficient) and Ty = Ey;/FEp; (transmission coefficient),
we obtain

2 o 2 _ 24120
R ng cos; —nycos@; M2 CO8 0; —n1y/ny —nysin”0;
V pr— pu—
ng cos 0; + ny cos O n2 cosf; +niy/n2 — n? sin 6 (1.82)
ni 27’L1 COS 92‘
Tv=—(0+Ry)=
9o N9 cos B; + ny cos by

where the third Snell-Descartes law nq sin 6; = ng sin 8, is used.

For the TM polarization, the subscript V is used as vertical.

1.4.3.5 Discussion on the Fresnel formula

For 6; close to zero, sinf; ~ 6; and sin 0y ~ n16;/ns ~ 0;. Thus, from Egs. (1.79) and (1.82),
the Fresnel coefficients can be simplified as
Gt — 91 - ny —ng

Rir = 0, +0; - n1 + no (183)
RV ~ —RH
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In the air-(n; = 1)-glass (ng = 1.5), Ry = —0.2 et Ry = 0.2. This means that for the TE
polarization, the reflected electric field is in opposite sense because Ry < 0.

For grazing incidences, §; = /2, this leads from Egs. (1.79) and (1.82) to

Ru~TRy ~ —1 (1.84)

Figures 1.13 and 1.14 plot the Fresnel coefficients in reflexion and transmission with respect
to the polarizations TM (Ry,Ty) and TE (Rpy, Tx) and for an air-glass interface.

0.4r 1r
— ™ — ™
---TE ---TE
0.2 ‘
5 0.8
5 2
3 €
% £ 06
[0} =
° ©
c ©°
S £ 0.4
= ‘O
3 =]
o 8
Oo0.2

3
0 10 20 30 40 50 60 70 80 90 O0 10 20 30 40 50 60 70 80 90

Angle ei Angle Si
FIGURE 1.13 — Reflexion coefficients for TE FIGURE 1.14 — Transmission coefficients for
and TM polarizations, ny = 1 and no = 1.5. TE and TM polarizations, n; = 1 and no =
1.5

For the TM polarization, we observe that Ry reaches zero. From Eq. (1.79), this angle
satisfied 0;5 + 0,5 = 7/2 (numerator equal zero and nj sin; = ngsiné,), implying that 6,5 =
/2 — 0;5. Moreover, nj sinf;p = ngsin(n/2 — 0;5) = ny cos ;5. Thus

tanf;p = na/ny (1.85)

0;p is called the Brewster angle. For an air-glass interface, 6;p = 56.3 degrees. For this
particular value, Ty (0;5) # 0, Tu(0;5) # 0 and Ry (0;5) # 0, whereas Ry (0;5) = 0. This
property is then used for optics sensors to generate particular polarization states.

If the numbers n; or/and ngy are complex, the Fresnel coefficients are also complex.

If ny > n9, a limit incidence angle, 0;7,, can be calculated for which the transmission angle
equals §; = 7/2. This implies that sinf;;, = ny/n; < 1. For a glass-air interface, it is equal to
42 degrees. As shown in figures 1.15-1.18, above this angle, the Fresnel coefficients give complex
values.
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Coefficient de réflexion en TE
Coefficient de réflexion en TM
<)

.

0 10 20 30 40 50 60 70 80 90 o 10 20 30 40 50 60 70 80 %0
Angle ei Angle Bi
F1GURE 1.15 — Real and imaginary parts of FI1GURE 1.16 — Real and imaginary parts of
the reflection coefficient for the TE polari- the reflection coefficient for the TM pola-
zation, n1 = 1.5 and ny = 1. rization, ny = 1.5 and no = 1.

Coefficient de transmission en TE
Coefficient de transmission en TM

- -

0 10 20 30 40 50 60 70 80 90

Angle ei
FIGURE 1.17 — Real and imaginary parts of FIGURE 1.18 — Real and imaginary parts of
the transmission coefficient for the TE po- the transmission coefficient for the TM po-
larization, n; = 1.5 and ny = 1. larization, n1 = 1.5 and ny = 1.

1.5 Exercises

1.5.1 Exercises on the Fresnel coefficients

1.5.1.1 Exercise 1

We consider an interface of infinite area lied in the plane (?, 7) separating two LHI media.
The upper medium, defined for z > 0, is vacuum and the lower medium, defined for z < 0, is a
perfect dielectric medium of complex refraction index n = n,.+jn; ((n,,n;) € RT). The interface

is illuminated by a, TEM plane wave ﬁz polarized along the direction 7 and propagating along
the 7 direction (ki= kl7) Thus, ﬁz = EgedWwit=kiz) 77

1. Do a figure of the problem.

2. Give the polarization of the incident wave ?
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3. Express the incident wave number k; from the wavelength A\g in the vacuum.

4. Simplified then the expression of EZ
. —
The transmitted electric field is ﬁt = Egedwit—k t'7)?t.

Give the polarization ?t of the transmitted electric field.

Give the relation between w; and w;.

Express ?t from {ko,n, 7., 7}

Express Ey; from Ey; and the transmission coefficient 7 and next n.
Express then ﬁt(z) from {ko,n, Eo;,w;, 7., 7}

E(=)| /[ B and Ip(2)]

Calculate the skin depth z = §, for which |p(z)| = e~*. Conclude.

Calculate p(z) =

NS R W

1.5.1.2 Exercise 2

In LHI conductor medium, the Maxwell equations are given by

Sai-20

where

D=cE
B = pH
7 =0E

1. Give the names of ¢, g and ¢ and their unity.

2. We assume that p = 0. Show that the wave propagation is expressed as :

FE ol oL T

— Koo o 60#07&2

You can use the identity v A (? A Z) LY ( + ?(? : Z) for any vector A.

3. We assume that ﬁ(?,t) = 50(7)6_3@5. Show then
(V24 k§n?) Eo(7) = T

where kg = w/c, in which ¢ = 1/,/egpg is the wave speed in vacuum. Give the expression
of n and its name.
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1.5.1.3 Exercise 3

The power carried by an electric field propagating in a medium with lossy (means that the
refractive index n € C), is defined from the Poynting vector ? as

P = %ﬁ NH (E1)

where ﬁ is the magnetic field and the symbol * is the conjugate. The refractive index n=n +in;
v_v)ith (ni,n,) € RT. We assume that the electric field is expressed as ﬁ = Eo?ej”ko'?, where
k o is the wave vector in the vacuum. An e /*! time dependence is assumed.

1. From a Maxwell equation, calculate ﬁ

*

2 —
2. Show then that P = g ’E‘ W with & = k o/ko (unitary vector). 7o is the wave impe-

dance in the vaccum. For any vectors (V1, V2, V3) we have
ViA(VonVs) = (V1-Va)Ve— (V1 Vo) Vs (E2)
3. We set Ko = ko Z. Express then P(z) versus z.
1. Caleulate p(z) = [P (2)|| /[P (0)|

5. Plot p(z) versus z and conclude.

1.5.1.4 Exercise 4

We consider an incident TEM plane wave which illuminates two infinite interfaces ¥ 4 and X
separating LHI media {1, Q9, Q3} of refractive indexes ny (assumed to be the air), ny and ng.
The polarisation of the incident plane wave is TE with an incidence angle 6; = 0 (ﬁ = qpieik1? 7)
The Fresnel coefficients in reflection and transmission from the medium i = {1,2,3} to the
medium j # i = {1,2,3} are denoted as r;; and t;;, respectively (figure 1.19).

z

Q, (ny=1)

1
I e
/// \Z 5 > b
Q, (n,) X h

v <l
-
-

()
-—-->
it
" 4
W
o
o
Y
. ©

123 (n3)

FIGURE 1.19 — Description of the geometry.

1. From a figure, explain qualitatively that the magnitude of the reflected field 9" can be
written as follows :

p=00
Y= 4. (E3)
p=0



24

CHAPITRE 1. REFLECTION FROM A DIELECTRIC MEDIUM

2. Give the expressions of 719, 721, t12 and t9; and show that t19to; =1 — ’I“%2.
3. Give the expression of the field 1) reflected by only the upper interface ¥ 4.

4. Give the expression of the field 9] for p = 1. It results from the transmission through the

upper interface X 4, the reflection from the lower interface X g, and then the transmission
through ¥ 4 back into the incident medium 2.

. Show that the reflected field at the order p = 2 is

Py = (7“217“23€j¢) Y1 (E4)

where ¢ = 2kgnah, in which kg is the wavenumber in the air (vaccum) and h the thickness
of the intermediate medium (25.

. Show that the reflected field at the order p > 1, is then

Yp = (7"217“2363"75)%1 V1. (E5)

. From equation (E3), and the relations t1at9; = 1 — 1%, and r9; = —712, show that the total

reflected field is expressed as ‘
i 12 + Taged?
1+ 7”127’236j¢ '

Yr=1 (E6)

We recall for |z| < 1 that Zﬁ:{o Pl = 1

1—x°

. We assume now that the medium (23 is perfectly conducting. Give the value of r23 and

simplify equation (E6).

. Moreover, we assume that the modulus of the refractive index nsy is of the order of n;

(In2| = |n1|). Give the consequence on |r12| and show that
NS |:7"12 (1 — ej2¢’> + ej‘z’} Y. (E7)

We recall for z — 0 that 1/(1+2) =1 — z + 22 + O(2?).

.5.2 Exercices on the polarization
1.5.2.1 Excercise 1

From Eq. (1.45), show Eq. (1.46).

1.5.2.2 Excercise 2

In this exercise, we want to retreive Egs. (1.47).

In the basis (r = E,,y = Ey) (top of figure 1.8), the equation of the ellipse is given from

Eq. (1.42). When the ellipse undergone a rotation of a (bottom of figure 1.8), its equation is
expressed from Eq. (1.46). In addition, in the basis (2, %), the equation of the same ellipse is

AN S (E8)
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The couple (z,y) is expressed from (z’,9’) by a rotation of an angle —«. Then
P Yy p

x cosa —sina x’ x’' cosa — y sina
= : 2N /o / (EQ)
y sina cosa y x'sina + 9 cosa
1. Reporting Eq. (E9) into Eq. (1.46) and equaling Eq. (1.46) with Eq. (E8), show that the
term with respect to x’y/ vanishes if

2ab cos §
tan(2a) = ;720; (E10)

2 2

Note that sin(2a) = 2 cos asina and cos(2a) = cos” a — sin” a.
2. Reporting Eq. (E9) into Eq. (1.46) and equaling Eq. (1.46) with Eq. (E8), show that (terms
with respect to 2’2 and y'?)
a't! = absin§ (E11)

3. From Eq. (E9) show that
a® 4+ b? = a? + b (E12)

4. Writting that sin(2y) = 2tan x/(1 + tan? x) with tan y = b’/a’, show that

2absin

a + b2 (E13)

sin(2x) =

1.5.2.3 Excercice 3

Fill the following table and locate the state polarization on the Poincaré Sphere.

Eo. | Eoy ) ? Name of the polarization | « | x
1 0 0

0 1 0

1 1 0

1 -1 0

1|1 | x/2

1 1 | —m/2

TABLE 1.2 — Fill the table.
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2 Basic concepts on the
propagation

2.1 Radiation from a point source

2.1.1 Spherical wave

Solving the Maxwell equation, we can show for a two-dimensional problem (2D problem,
i.e. invariant along an arbitrary direction, for example 7) that the wave is cylindrical, which
means that the electric field behaves as 1/ \/E, where R is the distance between the sensor and
the emitter. For a 3D problem (problems meet in the nature), the electric field behaves as 1/R
and the wave is then spherical.

As shown in figure 2.1, if R is great, locally, the amplitude of the electric field measures by
the receiver can be considered as a constant since R; ~ Ry. Then, the wave can be considered
as locally plane.

Source

FIGURE 2.1 — Illustration of a spherical wave.

27
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2.1.2 Radiated power

If Py (in W) is the power radiated by an isotropic source, for a spherical wave, the power
density po (in W/m?) at the distance R is

47 R?’

where 47 R? is the area of a sphere of radius R.

Po (2.1)

For a TEM plane wave, the power density carried by the wave is related from the Poynting

vector ? defined as )
P= 53 NH* (2.2)

>
For a plane wave propagated in free space, we have ﬁ = foeﬁ‘”t*] ko'ﬁ. Thus, from a
Maxwell equation, we have

RE = —aa? = jw,uoﬁ

S H= - FAE =L RnE

Jwiio wito
1 — o — .
:?:200#03/\(%0/\@) :2(,0#0?/\(]{:0/\3)
B 1 2 BT 2.7 B |E]? —
= = < : )]Co— - ko = ko
2wt \ﬂ_fo—" 2wio
_|Eo|?
=~ P e K74 (2.3)

where kg = w/c, U = ?0/

_>
‘ k OH and Zy = /po/€0 = 120m. We note that the wave power is
propagated along the direction k¢ (direction of light rays).

Then

B | Eol?
_ _ 2.4
w=|F| =32 (24)

Then, the elctric field ﬁ is related to the power Py from

7 = YOOI o Ry (2.5)
R
The electric field ﬁ behaves as 1/R which corresponds to a spherical wave.
2.1.3 Electric field calculation in presence of a ground
As shown in figure 2.2, we want to calculate the received field in presence of a ground.
From Eq. (2.5), the norm of the incident field is given by
J60P, .
E, = &eﬂﬂoR (2.6)

R
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Receiver

Emitter

A 4

FIGURE 2.2 — Electric field calculation in presence of a ground.

where the depedence over the time t is omitted.

From the image theory, the norm of the relfected field Fo by the ground can be replaced by
a source located at the height —h; and of amplitute R(6). Thus

V60P, eJko(R1+R2)

By —
2 Ri+ Ry

R(6) (2.7)

Then, the total field is

ejkoR ejko(Rl-i-Rg)
+R
R R1 + Ry
RejkO(R1+R2_R)
Ry + Ro
Rejkg(Rl—l—RQ—R)

R+ Rs

E = FEi+ Ey,=+60P

V 60P1 ejkOR

1+R
R +

From the Pythagore theorem, we have

hy + ho\ 2 1 /hy+hy\?
R1+R2=\/d2+(h1+h2)2=d\/1—|—< ”d' 2> %d[l%—( Lt 2>]

2 d

hi — ho\ 2 1 /hy—hy\?
R:\/d2+(h1h2)2:d\/1+< 1d 2> zd[lJrQ( 1d 2)]

where d > 0 is the horizontal distance between the emitter and the receicer, which is assumed
to be much greater than the heights hy and ho of the emitter and receiver, respectively.

Thus

(2.9)

2h1ho R

Ry +Ry— R~ ~1
L+ d Ri + R

(2.10)
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The total field can then be approximated by

E=E [1 + R(e)ejﬂ (2.11)
where Okohihy  Amhih d
0rL1re2 TR
_ _ tan§ — 9.12
¢ d Nod = T hy (2.12)

The modulus ratio of the electric field is then

E
p= E‘:\/1+2acos¢’+a2 (2.13)
1
where
a=[R| ¢ =¢+phase(R)=¢+¢r (2.14)
The minimum value of p occurs (cos¢’ = —1) for ¢’ = 7 + 2n7 (with n an integer). The

maximum value of p occurs (cos ¢’ = +1) for ¢/ = 2nm. This leads to

Pmax = |1 + a] Pmin = |1 — a| (2.15)

For example, for a perfectly-conducting surface, R = 41, implying that ¢« = 1 and then
Pmin = 0. This means that the total field vanished. In pratice, this phenomenon is constraining
because the communication is broken. In opposite, pmax = 2 and then the total field is equal
twice the emitter field. It is an illustration of the inteference phenomenon : “141” can give
‘(O” '

For hy = cste, d = cste and ho varies, the periodicity Ahs of ho satisfied

47Th1h2 )\Od
=2 Ahy = — 2.16
Nod + ¢r = 21 = Ahs ohy (2.16)

For hi = cste, hy = cste and d varies, the periodicity Ad of d satisfied

47Th1h2 )\Od2
9= Ad—
Nd T ORTIT= 2hiha

(2.17)

For the simulations, we assume that R = +1, coressponding to a perfectly-conducting surface
and the TE polarization. Thus, a = 1 and ¢r = 0. In addition, the frequency is f = 300 MHz.

Figure 2.3 plots p (Eq. (2.13)) versus the receiver height ho for h1 = 50 m and d = 10 km.
For this case, from Eq. (2.16), Ahs = 100 m. As we can see, p is a periodic function of hy of
period Ahg and takes values from 0 to 2, as predicted from Eq. (2.15).

Figure 2.4 plots p (Eq. (2.13)) versus the horizontal distance d for h; = 100 m and hg = 200.
For this case, from Eq. (2.17), Ad is not a constant and varies with d. As we can see, p is not a
periodic function of d and takes values from 0 to 2, as predicted from Eq. (2.15).

2.2 Real source caracterized by a gain

For a real source as an antenna, the emitted field is not isotropic but depends on the angles
(0, ¢) defined in spherical coordinates. The function describing this phenomenon is the gain
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FIGURE 2.3 — p (Eq. (2.13)) versus the receiver height hs for hy = 50 m, d = 10 km and f = 300
MHz.
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FIGURE 2.4 — p (Eq. (2.13)) versus the horizontal distance d for h; = 100 m, he = 200 m and
£ = 300 MHz.

function G(6, ¢) = nD(6, ¢), in which D is known as the directive gain and the number 0 < n < 1
is related to the antenna efficiency. The directive gain signifies the ratio of radiated power in a
given direction relative to that of an isotropic radiator which is radiating the same total power
as the antenna in question but uniformly in all directions. Note that a true isotropic radiator
does not exist in practice.

Now, we consider the problem shown in figure 2.5.

The power density pg (in W/m?) emitted by the antenna is

_ PpGg
47 R2

PE (2.18)

where Pg is the emitted power (in W) and G the emitted antenna gain.
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Emitter: P Receiver: P, = ?

FIGURE 2.5 — Received power from an emitter.

The power (in W) received by the antenna is then

PEGEAR

i (2.19)

Pr =ppAg =

where Ap is the effective aperture in m? of the received antenna. It is well known that Ag is
related to the gain G of the received antenna by

G2
Ap=—— 2.2
p= (2.20)
Then ) )
PrGr GrA; Ao PrGeGRr
Pp = = PrGrG = 2.21
T 4r R An PRERR 4xR Lo (2.21)
where Ly > 1 is called the path loss in free space. It is defined as
4 2
Lo= (”R) (2.22)
Ao
In dB scale, 101og;,(Lo), Lo becomes
AR\ 4
Lo (dB) = 10log,, (;) = 20logy, <:> +201log;o R + 201ogy, f
0

Thus, in dB scale, the path loss increases with the distance R and the frequency f.

2.3 Radar equation and Radar Cross section

In this subsection, the Radar cross section is introduced via the Radar equation.

We consider the problem shown in figure 2.6. An antenna illuminates an object. A part of
the power reflected by the object returned toward the receiver. The purpose is to calculate the
received power.

The emitted power density is

_ PuGp(0E, ér)

o (2.24)
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FIGURE 2.6 — Received power from an emitter illuminating an object.

where Pp is the emitted power (in W) and G the emitted antenna gain defined along the
spherical angles (0g, ¢r).

From the distance R, the power (in W) reflected (diffracted) by this object is then

P _ PpGEg(9g, ¢r)
0= Pelaore” =" gimr

(2.25)
where o is the Radar cross section (in m?) of the object. This magnitude caracterized the
capacity of an object to reflect the power in the the specific directions (0, ¢r) knowing the
directions (0, ¢p). In other words, it is a measure of how detectable an object is with a Radar.
It is an intrinsic property of the object. It depends on

The angles (0g, ¢g) and (Or, Pr).

— The radar frequency f.

— The polarization of the incident electric field
— The shape of the object.

The electric properties of the object (e and p).

The density power (in w/m?) from the distance Ry is then

Po

= 2.26
y4e] 47TR%{ ( )
The received power (in W) is then
Po GRr(0r, r)N;
Pr = Ap =
n Pofn 4w R%, uv
_ PEGE(HEa ¢E)GR(9R7 ¢R))‘(2)U (2 27)
(4m) 2, % |

where Gr(0g, ®r) is the gain of the reception antenna in the directions (6g, ¢r).

The above equation is named as the Radar equation and it is then the basic equation used
to calculate the power received by a Radar system.

When the receiver is the same as the emitter, corresponding to a monostatic configuration,
we have Rr = Rp = R, (0gr, ¢r) = (0p,0r) = (6,¢) and Gr = Gg = G. The above equation is
then simplified as
_ PeG*(0,¢)\io

P,
= (4m)3 R4

(2.28)



34 CHAPITRE 2. BASIC CONCEPTS ON THE PROPAGATION

2.4 Exercises

2.4.1 Exercise 1 : Reflexion by a ground

A radio link (A9 = 2 m) is established between a boat, for which its antenna is located at a
height of h; = 10 m, and two receivers. The first one is located on the coast from a distance of
d =10 km and a height of he = 10 m. The second one is located on the montain from a distance
of d =12 km and a height of hy = 10 m.

The reflection coefficient of the sea is assumed to be —1.

1. Show that de modulus of the received field is

. Adwhih
|E| =2 ’EO sin (2) ‘ ¢ = Aold 2 (B1)

where Ej is the incidend field.

2. Calculate p = |E/Ey| for the two cases and give a physical interpretation.

2.4.2 Exercise 2 : Link satellite

The satellite Voyager 2 in 1993 was R = 6° km from the Earth. The power of its emitter was
20 W and its antenna gain was 48 dB. The used frequency is 8.4 GHz.

1. Calculate the power density pg radiated on the Earth.

2. Calculate the power Pgr transmitted to the receiver located on the Earth if the gain Gy of
the parabolic antenna is 70 dB.

3. Calculate in dB the path loss Lyg.
4. Calculate the diameter D of the antenna knowing that G = (7D /\g)?*n with n = 0.6.

2.4.3 Exercise 3 : Radar Cross Section (RCS)

We consider a monostatic configuration (emitter and receiver are the same). The emitter
illuminates an object of RCS o.

1. Then show

|Erl|®

|Eg|?
where R is the distance from the receiver to the object, Er is the emitted field and Er
the received field.

2. Why the rigorous definition of RCS is

o = 47 R* (E2)

. Eg|?
=1 4 2|
i o

(E3)



