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1 Reflection from a dielectric
medium

1.1 Maxwell’s equations

1.1.1 The 4 Maxwell’s equations

The laws of electricity and magnetism were established in 1876 by James Clerk Maxwell
(1831-1879). In three-dimensional vector notation, the Maxwell equations are

−→
rot
−→
H =

∂
−→
D

∂t
+
−→
J (1.1)

−→
rot
−→
E = −∂

−→
B

∂t
(1.2)

div
−→
B = 0 (1.3)

div
−→
D = ρ (1.4)

It is important to note that the four Maxwell equations depend both on the time t and the
position vector −→r = x−→x + y−→y + z−→z .

Eq. (1.1) is Ampere’s law or the generalized Ampère circuit law. Eq. (1.2) is Faraday’s law
or Faraday’s magnetic induction law. Eq. (1.3) is Coulomb’s law or Gauss’ law for electric fields.
Eq. (1.4) is Coulomb’s law or Gauss’ law for magnetic fields. Maxwell’s contribution to the laws

of electricity and magnetism is the addition of the displacement term ∂
−→
D/∂t in Ampère’s law

(1.1).

For more clarity, the notations are reported in table 1.1.1. The couple (
−→
E ,
−→
H ) are named

the electromagnetic field.

In Cartesian coordinates (−→x ,−→y ,−→z ), the operator nabla
−→
∇ is defined as

−→
∇ =

∂

∂x
−→x +

∂

∂y
−→y +

∂

∂x
−→z (1.5)

Then, in Cartesian coordinates, the scalar operator div
−→
A =

−→
∇ ·
−→
A (dot product), where

−→
A =

Ax
−→x +Ay

−→y +Az
−→z = (Ax, Ay, Az), is expressed as

div
−→
A =

∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(1.6)

1



2 CHAPITRE 1. REFLECTION FROM A DIELECTRIC MEDIUM

Variable Name Unity
−→
E Electric field V/m
−→
H Magnetic field A/m
−→
D Electric displacement C/m2

−→
B Magnetic flux density Wb/m2

−→
J Electric current density A/m2

ρ Electric charge density C/m3

Table 1.1 – Variables involved in the Maxwell equations.

Moreover, the vectorial operator
−→
rot
−→
A =

−→
∇ ∧

−→
A (cross product) is expressed as

−→
rot
−→
A =

∣∣∣∣∣∣∣∣
−→x −→y −→z
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣ = −→x
(
∂Az
∂y
− ∂Ay

∂z

)
+−→y

(
∂Ax
∂z
− ∂Az

∂x

)
+−→z

(
∂Ay
∂x
− ∂Ax

∂y

)
(1.7)

From the Maxwell equations, Eqs. (1.3) and (1.4) are scalar, whereas Eqs. (1.1) and (1.2)
are vectorial, thus 8 scalar equations. In fact, these 8 equations are not independent. Indeed,

taking the div of Eq. (1.1) and since div(
−→
rot
−→
A ) = 0 for any vector

−→
A , then

div
−→
J = −∂ρ

∂t
(1.8)

1.1.2 Constitutive relations in free space

The Maxwell’s equations are fundamental laws governing the behavior of electromagnetic
fields in free space and in media. Free space 1 is characterized by the constitutive relations :

−→
D = ε0

−→
E (1.9a)

−→
B = µ0

−→
H (1.9b)

where {
ε0 = 1/(36π × 109) ≈ 8.85× 10−12 F/m
µ0 = 4π × 10−7 H/m

(1.10)

are, respectively, the permittivity and the permeability in free space. Giving the velocity of light
in free space being c = 3 × 108 m/s, the permittivity ε0 = 1/(µ0c

2), which follows from the
dispersion relation as derived below.

1.1.3 Wave equation

The Maxwell equations in differential form are valid at all times for every point in space.
First we shall investigate solutions to the Maxwell equations in regions devoid of source, namely

1. Free space is a medium assumed to be linear, homogeneous and isotropic.
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in regions where
−→
J =

−→
0 and ρ = 0. This of course does not mean that there is no source

anywhere in all space. Sources must exist outside the regions of interest in order to produce
fields in these regions. Thus in source-free regions in free space, The Maxwell equations become

−→
∇ ∧

−→
H = ε0

∂
−→
E

∂t
(1.11)

−→
∇ ∧

−→
E = −µ0

∂
−→
H

∂t
(1.12)

−→
∇ ·
−→
H = 0 (1.13)

−→
∇ ·
−→
E = 0 (1.14)

In the form of scalar partial differential equations, we have from Eqs. (1.6) and (1.7)
∂Hz
∂y −

∂Hy

∂z = ε0
∂Ex
∂t (a)

∂Hx
∂z −

∂Hz
∂x = ε0

∂Ey

∂t (b)
∂Hy

∂x −
∂Hx
∂y = ε0

∂Ez
∂t (c)

(1.15)


∂Ez
∂y −

∂Ey

∂z = −µ0 ∂Hx
∂t (a)

∂Ex
∂z −

∂Ez
∂x = −µ0 ∂Hy

∂t (b)
∂Ey

∂x −
∂Ex
∂y = −µ0 ∂Hz

∂t (c)

(1.16)

∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z
= 0 (1.17)

∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

= 0 (1.18)

A wave equation for
−→
E can be derived by eliminating

−→
H from Eqs. (1.15) and (1.16). Taking

time derivatives of Eq. (1.15a) and substituting Eqs. (1.16c) and (1.16b), we have

µ0ε0
∂2Ex
∂t2

= − ∂

∂y

(
∂Ey
∂x
− ∂Ex

∂y

)
+

∂

∂z

(
∂Ex
∂z
− ∂Ez

∂x

)
=

∂2Ex
∂y2

+
∂2Ex
∂z2

− ∂2Ey
∂y∂x

− ∂2Ez
∂z∂x

=
∂2Ex
∂y2

+
∂2Ex
∂z2

+
∂2Ex
∂x2

from
[∂Eq. (1.18)]

∂x
(1.19)

Thus, we obtain the following equations for the three components of
−→
E :

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− µ0ε0

∂2

∂t2

)
Ex = 0(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− µ0ε0

∂2

∂t2

)
Ey = 0(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− µ0ε0

∂2

∂t2

)
Ez = 0

(1.20)

Introducing the scalar Laplacian operator ∇2 =
−→
∇ ·
−→
∇ in Cartesian coordinates

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.21)
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we have

∇2−→E − µ0ε0
∂2
−→
E

∂t2
=
−→
0 (1.22)

This is known as the Helmholtz wave equation.

1.1.4 Wave solution

Solutions of the wave (1.22) that satisfy all Maxwell equations are electromagnetic waves.
We shall now study a solution to Eq. (1.19) assuming Ex = Ey = 0. Let Ex be a function only
of z and t and independent of x and y. The electric field vector can be written as

−→
E = Ex(z, t)−→x (1.23)

The wave equation it satisfied follows from Eq. (1.22), which becomes

∂2Ex
∂z2

− µ0ε0
∂2Ex
∂t2

= 0 (1.24)

The simplest solution to Eq. (1.24) takes the form

−→
E = Ex(z, t)−→x = E0 cos (kz − ωt)−→x (1.25)

Substituting Eq. (1.25) into Eq. (1.24), we find that the following equation, called the dis-
persion relation, must be satisfied :

k2 = ω2µ0ε0 (1.26)

The dispersion relation provides an important connection between the spatial frequency k
and the temporal frequency ω.

There are two points of view useful in the study of a space-time varying quantity such as
Ex(z, t). The temporal view point is to examine the time variations at fixed points in space.
The spatial view point is to examine spatial variations at fixed times, a process that amounts
to taking a series of pictures.

1.1.5 Time representation

From the temporal view point, we first fix our attention on particular point in space, say
z = 0. We then have the electric field Ex(z = 0, t) = E0 cos(ωt). Plotted as a function of time in
Fig. 1.1, we find that the waveform repeats itself in time as ωt = 2mπ for any integer m. The
period is defined as the time T , for which ωT = 2π. The number of periods in a time of one
second is the frequency f defined as f = 1/T , which gives

f =
ω

2π
(1.27)

The unity for the frequency f is Hertz (Hz) with 1Hz = 1 s−1, which is equal to the number
of cycles per second. Since, ω = 2πf , ω is the angular frequency of the wave.
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Figure 1.1 – Electric field strength as a function of ωt at z = 0.

The temporal frequency ω characterizes the wave in time. We plot in Fig. 1.2a Ex(z = 0, t)
as a function of t instead of ωt. Let there be one period within the time interval of 1 second.
Thus, f = f0 = 1 Hz, and we let ω = ω0 = 2π rad/s. In Fig. 1.2b, we plot ω = 2ω0 ; there are
two periods in a time interval of one second and the period in time is 0.5 second. In Fig. 1.2c,
ω = 3ω0 and there are three periods in one second.

Figure 1.2 – Electric field strength as a function of t for different angular frequencies ω.

1.1.6 Space representation

To examine behavior from spatial view point, we let ωt = 0 and plot Ex(z, t = 0) in Fig.
1.3. The waveform repeats itself in space when kz = 2mπ for integer values of m. The spatial
frequency k characterizes the variation of the wave in space. The wavelength is defined as the
distance for which kλ = 2π. Thus, λ = 2π/k, or

k =
2π

λ
(1.28)

We call k the spatial frequency of the wavenumber which is equal to the number of wave-
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lengths in a distance of 2π and has the dimension of inverse length.

Figure 1.3 – Electric field strength as a function of kz for t = 0.

To further understand the meaning of k as a spatial frequency, we plot in Fig. 1.4a Ex(z, t =
0) as a function of z instead of kz. Let there be one period within the wavelength of 1 meter.
We defined K0 = 2π rad/m. Thus k = 1K0 = 2π rad/m. In Fig 1.4b, we plot k = 2K0 ; there
are two periods in a spatial distance of one meter and the wavelength is 2π/k = 2π/(2K0) = 0.5
meter. In Fig 1.4c, k = 3K0 ; there are three periods in one meter.

Figure 1.4 – Electric field strength as a function of z for with different spatial frequency.

Similar to the unit in Hz which is cycles per second in temporal variation, K0 is cycles per
meter in spatial variation. For a wave that has a spatial frequency of one period in one meter
distance, k = 1K0. An electromagnetic wave in free space with k = 5K0 has five spatial periods
in a distance of one meter. From the dispersion relation for electromagnetic waves, the spatial
frequency k and and the temporal angular frequency ω are related by the velocity of light as
k = ω/c. In free space, the conversion factor is c = 1/

√
µ0ε0 = 3× 108 m/s. Thus, for a spatial

frequency of 1K0, the corresponding temporal frequency is f = cK0/(2π) = c = 300 MHz.
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1.1.7 Phase velocity

In Fig. 1.5, we plot Ex(z, t) at two progressive times ωt = π/2 and ωt = π. We observe that
the electric field vector at A appears to be propagating along the −→z direction as time progresses.
The velocity of propagation vp is determined from kz − ωt = constant, which gives

vp =
dz

dt
=
ω

k
(1.29)

Figure 1.5 – Electric field strength as a function of kz at different times.

We call vp the phase velocity. By virtue of the dispersion relation (1.26), we see that vp =
1/
√
µ0ε0, which is equal to the velocity of light in free space.

The spatial frequency k, is according to the dispersion relation, directly related to the tem-
poral frequency ω by the phase delay

φp =
k

ω
=
√
µ0ε0 (1.30)

which determines how much time it takes for the wave to propagate on a unit distance. In free
space, φp = 10−8/3 s/m or it takes 3.3 ns for an electromagnetic wave to travel the distance of
one meter.

1.1.8 Electric and magnetic field vectors

For the wave solution in Eq. (1.25) for electric field vector

−→
E = Ex(z, t)−→x = E0 cos (kz − ωt)−→x (1.31)

the vector magnetic field
−→
H can be determined from Eq. (1.12). We find
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µ0
∂
−→
H

∂t
= −

−→
∇ ∧

−→
E = −

∣∣∣∣∣∣∣∣
−→x −→y −→z
∂

∂x

∂

∂y

∂

∂z
Ex 0 0

∣∣∣∣∣∣∣∣ = −−→y ∂Ex
∂z
−−→z ∂Ex

∂y︸︷︷︸
=0 why ?

= −−→y ∂Ex
∂z

= E0k sin (kz − ωt)−→y (1.32)

The magnetic field vector
−→
H is then

−→
H =

k−→y
µ0

E0

∫
sin (kz − ωt) dt =

k

ωµ0
E0 cos (kz − ωt)−→y (1.33)

Eqs. (1.31) and (1.32) satisfy all the Maxwell equations (1.11), (1.12), (1.13) and (1.14).

Write the amplitude of the magnetic field vector
−→
H as H0

−→
H = Hy(z, t)

−→y = H0 cos (kz − ωt)−→y (1.34)

where H0 = E0/η and η =
√
µ0/ε0 = 120π is called the free-space impedance. The electro-

magnetic wave is propagating in the positive −→z direction because as time t increases, z must
increase in order to maintain a constant phase kz − ωt. The field vectors of the electromagnetic
wave are transversal to the direction of propagation an lie in the xy−plane, on which the phase
kz − ωt of the wave is a constant. Since the phase front of the wave is the xy-plane, we call the
electromagnetic wave as represented by Eqs. (1.31) and (1.34) a plane wave. See Fig. 1.6.

Figure 1.6 – Electric and magnetic field vectors of an electromagnetic wave.
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1.2 Polarization

1.2.1 Introduction

The polarization of a wave is conventionally defined by the time variation of the tip of the

electric field
−→
E at a fixed point in space. For example :

– If the tip moves along a straight line, the wave is then linearly polarized.
– If the tip moves along a circle, the wave is then circularly polarized.
– If the tip moves along an ellipse, the wave is then elliptically polarized.

Considering the following wave solution
−→
E = Ex

−→x + Ey
−→y

= cos(kz − ωt)−→x + E0y cos(kz − ωt+ δ)−→y (1.35)

Note that Ez = 0 because the wave propagates in the +−→z direction.

From the temporal point of view (z = 0), we have
−→
E = cos(ωt)︸ ︷︷ ︸

Ex

−→x + E0y cos(ωt− δ)︸ ︷︷ ︸
Ey

−→y (1.36)

We now study the polarization of the following special cases :

1. δ = 2nπ, where n is an integer, we have
−→
E = cos(ωt)−→x + E0y cos(ωt)−→y ⇒ Ey = E0yEx (1.37)

The tip of the electric field vector moves along a line as shown in figure 1.7(a). The wave
is linearly polarized.

2. δ = (2n+ 1)π, we have
−→
E = cos(ωt)−→x − E0y cos(ωt)−→x ⇒ Ey = −E0yEx (1.38)

The tip of the electric field vector moves along a line as shown in figure 1.7(b). The wave
is linearly polarized.

3. δ = π/2 and E0y = 1, we have
−→
E = cos(ωt)−→x + sin(ωt)−→y ⇒ E2

x + E2
y = 1 (1.39)

In addition, as t increases, Ex decreases whereas Ey increases. As shown in figure 1.7(c),
the wave is right-hand circularly polarized.

4. δ = −π/2 and E0y = 1, we have
−→
E = cos(ωt)−→x − sin(ωt)−→y ⇒ E2

x + E2
y = 1 (1.40)

In addition, as t increases, Ex decreases whereas Ey decreases. As shown in figure 1.7(d),
the wave is left-hand circularly polarized.

5. δ = ±π/2 and E0y 6= 1, we have

−→
E = −→x cos(ωt)−→x ± E0y sin(ωt)−→y ⇒ E2

x +
E2
y

E2
0y

= 1 (1.41)

As shown in figure 1.7(e)-(f), The wave is right-hand elliptically polarized for δ = π/2
and left-hand elliptically polarized for δ = −π/2, respectively.
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Figure 1.7 – Different states of polarization.

1.2.2 More general cases

1.2.2.1 Elliptical polarization with a rotation

In general, a polarized wave has en elliptical polarization. The electric field is then

−→
E = E0x cos(ωt− δ0)−→x ± E0y sin(ωt− δ0)−→y ⇒

E2
x

E2
0x

+
E2
y

E2
0y

= 1 (1.42)

As shown at the top of figure 1.8, we see that E0x is the major axis of the ellipse and E0y the
minor axis. With the plus sign, the wave is right-hand elliptically polarized, whereas with the
minus sign, the wave is left-hand elliptically polarized. The shape of the ellipse can be specified
by an ellipticity angle χ defined as

tanχ = ±E0y

E0x
= ± b

a
(1.43)

In addition, as shown at the bottom of figure 1.8, the ellipse can be undergone a rotation of
an angle α. In this case, the ellipticity angle is

tanχ = ± b
′

a′
(1.44)

This case corresponds, with τ = ωt, to{
Ex = E0x cos(τ + δx)
Ey = E0y cos(τ + δy)

(1.45)
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Figure 1.8 – General case of an elliptical polarization.

We then show (see exercise 1.5.2.1) that

E2
x

E2
0x

+
E2
y

E2
0y

− 2
Ex
E0x

Ey
E0y

cos δ = sin2 δ (1.46)

with δ = δy − δx. Comparing Eq. (1.46) with Eq. (1.42), an additional term is added related to
the angle of rotation α, as shown in the next subsection.

1.2.2.2 Relations between the angles

We can show (see exercise 1.5.2.2) that the angle of rotation α and of ellipticity χ (Eq.
(1.44)) are related to a = E0x, b = E0y and δ = δy − δx by

tan(2α) =
2ab cos δ

a2 − b2

sin(2χ) =
2ab sin δ

a2 + b2

and

{
α ∈ [0;π[
χ ∈ [−π/4;π/4]

(1.47)

Eq. (1.47) shows that the polarization of a wave can be defined either from a = E0x, b = E0y

and δ = δy − δx or from the angles α and χ.

For example, for a linearly polarized wave, a = E0x = ±E0y and δ = 0. Thus χ = 0 and
tan(2α)→ 2(b/a)/[1− (b/a)2] = 2 tanα/(1− tan2 α). Thus tanα = b/a = ±1. Then α = ±π/4.

For example, for a circularly polarized wave, a = E0x = E0y and δ = ±π/2. Then tan(2α) =
0, implying that α = 0 or α = π/2. In addition, sin(2χ) = ±1, implying that χ = ±π/4. By
convention, the right-hand circularly polarization is obtained for α positive.
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1.3 Wave propagation in a conductor medium

A conductor medium, like copper, sea, and so on, can be characterized by a LHI medium
(like in free space) of permeability µ = µ0 (no magnetic medium), permittivity ε = ε0εr with εr
a real number larger than one, without charge ρ = 0 but

−→
J = σ

−→
E 6= −→0 . σ is the conductiity

in S/m and εr the relative permittivity (dimensionless). In free space (or vacuum), σ = 0 and
εr = 1.

From Eqs. (1.1), (1.2), (1.3) and (1.4 ), the Maxwell equations become

−→
∇ ∧

−→
H = ε0

∂
−→
E

∂t
+ σ
−→
E (1.48)

−→
∇ ∧

−→
E = −µ0

∂
−→
H

∂t
(1.49)

−→
∇ ·
−→
H = 0 (1.50)

−→
∇ ·
−→
E = 0 (1.51)

We can show that the wave propagation is

−→
∇2−→E − µ0σ

∂
−→
E

∂t
− εµ0

∂2
−→
E

∂t2
=
−→
0 (1.52)

It is a generalization of the wave Helmholtz equation obtained in free space (1.22). As in

free space, a simple solution, but realistic, of this equation is
−→
E (−→r , t) =

−→
E 0e

−j(ωt−
−→
k ·−→r ), where

−→
E 0 is a constant vector, which gives the wave polarization and

−→
k denotes the wave vector of

norm the wavenumber k =
∥∥∥−→k ∥∥∥ (or spatial frequency). The term ωt −

−→
k · −→r is the phase

and
−→
k · −→r = kxx + kyy + kzz, where

−→
k = (kx, ky, kz) the components of the vector

−→
k and,

−→r = (x, y, z) the components of the vector −→r , which stands for the Cartesian coordinates of a
point in space.

Since
−→
E =

−→
E 0e

−j(ωt−kxx−kyy−kzz), we have
∂
−→
E
∂x = jkx

−→
E

∂
−→
E
∂y = jky

−→
E

∂
−→
E
∂z = jkz

−→
E

⇒
−→
∇
−→
E = jk

−→
E ⇒

−→
∇ → jk (1.53)

and then, the operator
−→
∇ = ∂/∂x−→x + ∂/∂y−→y + ∂/∂z−→z is then equivalent to +j

−→
k . In other

words,
−→
E = j

−→
k ∧

−→
E and div

−→
E = j

−→
k ·
−→
E , and the same equations are satisfied for

−→
H . In

addition,

∂
−→
E

∂t
= −jω

−→
E ⇒ ∂

∂t
→ −jω (1.54)

Thus, From Eqs. (1.51) and (1.50)

j
−→
k ·
−→
E = 0⇒

−→
k ⊥
−→
E (1.55)

j
−→
k ·
−→
H = 0⇒

−→
k ⊥
−→
B (1.56)
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These both equations show that the fields
−→
E and

−→
H are transverse to the propagation direc-

tion defined along the vector
−→
k . Since

−→
E (
−→
R, t) =

−→
E 0e

−j(ωt−
−→
k ·−→r ) is solution of the Helmholtz

equation, from Eq. (1.52), the wave number k verified the dispersion equation

−k2 + (εµ0ω
2 + jµ0σω) = 0⇒ k =

√
εµ0ω2 + jµ0σω (1.57)

Introducing the refraction index n, the wave number k can be expressed as

k =
√
εµ0ω2 + jµ0σω = ω

√
ε0µ0

√
εr + j

σ

ωε0
= k0 × n (1.58)

where k0 = ω
√
ε0µ0 is the wave number in free space, for which εr = 1 and σ = 0. In addition,

the refraction index n is defined as

n =

√
εr + j

σ

ωε0
=
√
εr

√
1 + j

σ

ωε
(1.59)

We can notice that the refraction index n is a complex number and depends on the frequency.
The medium is then called dispersive. By analogy, a complex relative permittivity can be
defined as

εr1 = n2 = εr + j
σ

ωε0
= εr + j

18σ

f
with

{
σ in S/m
f in GHz

(1.60)

From Eqs. (1.48), we have

j
−→
k ∧
−→
H = −jωε

−→
E + σ

−→
E ⇒

−→
H ∧

−→
k = (ωε+ jσ)

−→
E (1.61)

which shows that (
−→
E ,
−→
H,
−→
k ) are mutually transverse. In addition, from Eq. (1.61), we have

∥∥∥−→H∥∥∥∥∥∥−→k ∥∥∥ sin

(
ˆ−→

H,
−→
k

)
︸ ︷︷ ︸

=1 why ?

= (ωε+ jσ)
∥∥∥−→E∥∥∥⇒ η =

E

H
=

∥∥∥−→k ∥∥∥
ωε+ jσ

(1.62)

=
k0n

ωε+ jσ
=

ω
√
ε0µ0n

ωε
(

1 + jσ
εω

) =
εr
√
ε0µ0n

n2ε

=

√
µ0
ε0

1

n
=
η0
n

where η is the wave impedance in ohm. The modulus of η gives the ratio modulus of E/H and
the phase of η gives the phase difference between E and H. Unlike the vacuum, η is a complex
number.

For example, for a plane wave propagating with respect to the direction −→z and polarized with

respect to −→x ,
−→
E (z, t) = E0

−→x e−j(ωt−kz) where
−→
k = k−→z . The magnetic field is then

−→
H (z, t) =

E0
−→y e−j(ωt−kz)/η or

−→
H (z, t) = (E0/|η|)−→y e−j(ωt−kz−φ) where φ = arg(η).

1.4 Plane wave reflection and transmission from a

plane surface

This section is devoted to the calculation of the reflected and transmitted waves by a plane
surface (of infinite area, which means that no diffraction phenomenon) illuminated by a plane
wave.
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As shown in figure 1.9, the upper medium 1 is defined for z ≥ 0 of permittivity ε1 and
permeability µ1 = µ0, and the lower medium 2, is defined for z < 0 of permittivity ε2 and
permeability µ2 = µ0.

Figure 1.9 – The Snell-Descartes laws.

In general, for an infinite medium (no interface), an incident plane wave is expressed as
−→
E i =

−→
E 0ie

−j(ωit−
−→
k i·−→r ), where the vector

−→
E 0i is related to the polarization and the amplitude

of the wave. In addition, ωi is the pulsation,
−→
k i the wave vector, which gives the direction of

the electric field, and −→r the vector position. All the variables (
−→
E 0i, ωi,

−→
k i) are known.

When we consider the problem shown in figure 1.9, the incident wave is reflected into the
medium 1 and transmitted into the medium 2. For each medium, the Maxwell equations can be
applied leading to that the reflected and transmitted fields can be written in a similar manner

as the incident field. They are given by
−→
E r =

−→
E 0re

−j(ωrt−
−→
k r·−→r ) and

−→
E t =

−→
E 0te

−j(ωtt−
−→
k t·−→r ),

respectively.

The problem to solve is to determine (
−→
E 0r, ωr,

−→
k r,
−→
E 0t, ωt,

−→
k t). This problem is solved by

applying the boundary conditions on the interface defined at z = 0.

1.4.1 Boundary conditions

Let S be a surface separating a medium 1 from a medium 2 and −→n the normal to the
surface arbitrary oriented from 1 to 2. The boundary conditions at the interface (z = 0) are
then expressed as

−→n ∧ (
−→
E 1 −

−→
E 2) =

−→
0 Tangential component (1.63a)

−→n ∧ (
−→
H 1 −

−→
H 2) =

−→
J S Tangential component (1.63b)

−→n · (µ1
−→
H 1 − µ2

−→
H 2) = 0 Normal component (1.63c)

−→n · (ε1
−→
E 1 − ε2

−→
E 2) = ρS Normal component (1.63d)
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−→
J S is the current electric surface density and ρS is the charge electric surface density. We

have then :
– Continuity of the tangential component of the electric field

−→
E and of the normal

component of the magnetic field
−→
H .

– Discontinuity of the normal component of the electric field
−→
E (due to the presence of

ρS) and of the tangential component of the magnetic field
−→
H (due to the presence of

−→
J S).

If the media 2 is a perfect conductor 2, then Eq. (1.63) becomes

−→n ∧
−→
E 1 =

−→
0 Tangential component (1.64a)

−→n ∧
−→
H 1 =

−→
J S Tangential component (1.64b)

−→n ·
−→
H 1 = 0 Normal component (1.64c)

−→n ·
−→
E 1 = ρS/ε1 Normal component (1.64d)

If the media 1 and 2 are perfect dielectric, then
−→
J S =

−→
0 and ρS = 0, leading from Eq.

(1.63) to

−→n ∧ (
−→
E 1 −

−→
E 2) =

−→
0 Tangential component (1.65a)

−→n ∧ (
−→
H 1 −

−→
H 2) =

−→
0 Tangential component (1.65b)

−→n · (µ1
−→
H 1 − µ2

−→
H 2) = 0 Normal component (1.65c)

−→n · (ε1
−→
E 1 − ε2

−→
E 2) = 0 Normal component (1.65d)

1.4.2 Snell-Descartes laws

By applying the boundary conditions (continuity of the tangential component of the electric
field), a relation between the amplitudes of the three waves (incident, reflected and transmitted)
exist if for z = 0, the phase term of each exponential is equal. From

−→
E i =

−→
E 0ie

−j(ωit−
−→
k i·−→r )

−→
E r =

−→
E 0re

−j(ωrt−
−→
k r·−→r )

−→
E t =

−→
E 0te

−j(ωtt−
−→
k t·−→r )

(1.66)

this leads to
ωit−

−→
k i · −→r = ωrt−

−→
k r · −→r = ωtt−

−→
k t · −→r ∀ (−→r ∈ S, t) (1.67)

Thus
ωit− kixx+ kiyy = ωrt− krxx+ kryy = ωtt− ktxx+ ktyy (1.68)

with −→r = (x, y, z) and
−→
k i,r,t = (kix,rx,tx, kiy,ry,ty, kiz,rz,tz) since for −→r ∈ S, z = 0. Noticing that

the vector
−→
k i lies in the (yOz) (kix = 0) plane, ∀ (x, y, t), the above equation becomes

ωi = ωr = ωt = ω
kix = 0 = krx = ktx
kiy = kry = kty

(1.69)

2. A perfect conductor has a conductivity σ → j∞
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Then

1. The first equation shows that the pulsations are equal.

2. The second equation shows that the incident, reflection and transmission planes, defined

by the vectors (−→z ,
−→
k i) , (−→z ,

−→
k r) and (−→z ,

−→
k t), respectively, are the same.

3. From figure 1.9, the last equation shows that

ki sin θi = kr sin θr = kt sin θt (1.70)

Moreover, ki = kr because the propagation medium is the same and ki,t = k0n1,2. Thus{
θr = +θi
n1 sin θi = n2 sin θt

(1.71)

They are the famous Snell-Descartes laws. The third one is the more famous but do not
forget the others.

1.4.3 Fresnel coefficients

1.4.3.1 Case of a PC surface at a normal incidence for the TE polarization

For a perfectly conducting (PC) surface there is no transmitted field. In addition, we assume
that the incidence angle is θi = 0.

For the TE polarization, the incident electric field
−→
E i is transverse, i.e., orthogonal to the

incident plane or collinear to the vector −→x .

By applying that (
−→
Ei,
−→
Hi,
−→
ki ) (TEM structure of a plane wave) is an orthogonal direct basis,

the direction of
−→
Hi is obtained (rule of the right hand).

Figure 1.10 – Reflected elecromagnetic fields for a PC surface, the TE case and θi = 0.

For z = 0, the boundary conditions (Eq. (1.64)) state that the tangential components of the

total electric field vanishes on the interface S. Thus, since by construction, the vectors
−→
Ei and−→

Er are tangential to the surface, we have
−→
Ei +

−→
Er =

−→
0 ⇒

−→
Er = −

−→
Ei. Thus, the direction of

−→
Er
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(−−→x ) is opposite to that of
−→
Ei (+−→x ). In addition, since (

−→
Er,
−→
Hr,
−→
kr) (TEM structure of a plane

wave) is an orthogonal direct basis, the vectors
−→
Hi and

−→
Hr are in the same direction.

Thus, the reflection and transmission coefficients are

RH =
E0r

E0i
= −1 TH =

E0t

E0i
= 0 (1.72)

For the TE polarization, the subscript H is used as horizontal.

The total electric and magnetic fields in the medium 1 are then{ −→
E t =

−→
E i +

−→
E r = −→x E0ie

−jωt (e−jk1z − ejk1z) = −2j−→x E0ie
−jωt sin (k1z)−→

H t =
−→
H i +

−→
H r = −−→y H0ie

−jωt (e−jk1z + ejk1z
)

= −2−→y H0ie
−jωt cos (k1z)

(1.73)

In addition, H0i = E0i/η1, where η1 is the wave impedance of the medium 1. We can also
note that k1 = k0n1, where n1 is the refraction index of the medium 1.

1.4.3.2 Case of a dielectric surface at a normal incidence for the TE pola-
rization

Now, we consider that the medium 2 is a perfect dielectric. Thus, a transmitted field can be
propagated in the medium 2.

From figure 1.10 (by convention, we use the picture on the right) and applying the boundary
conditions at z = 0 (Eqs. (1.65) on the tangential components), we have{

E0i + E0r = E0t

−H0i +H0r = −H0t
(1.74)

In addition, H0i = E0i/η1 = n1E0i/η0, H0r = E0r/η1 = n1E0r/η0 and H0t = E0t/η2 =
n2E0t/η0. Thus {

E0r + E0i = E0t

E0i − E0r = n2
n1
E0t

(1.75)

In conclusion 
RH =

E0r

E0i
=
n1 − n2
n1 + n2

TH =
E0t

E0i
=

2n1
n1 + n2

(1.76)

For a PC surface, |n2| → ∞, then RH = −1 and Eq. (1.72) is retrieved.

1.4.3.3 Case of a dielectric surface for the TE polarization

In this subsection, the general case of a perfect dielectric surface is considered for the TE
polarization.
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Figure 1.11 – Fresnel coefficients for the TE polarisation and a perfect dielectric medium.

By applying that (
−→
Ei,
−→
Hi,
−→
ki ) is an orthogonal direct basis, the direction of

−→
Hi is obtained

(rule of the right hand). As shown in figure 1.11, the same way is used for (
−→
Er,
−→
Hr,
−→
kr) and

(
−→
Et,
−→
Ht,
−→
kt ).

From Eqs. (1.65), the tangential components of the electric and magnetic fields are continuous
on the interface S defined at z = 0. From figure 1.11, this leads for ∀ (x, y) to{

E0i + E0r = E0t

−H0i cos θi +H0r cos θr = −H0t cos θt
(1.77)

Moreover, from Eq. (1.62), H0i = n1E0i/η0, H0r = n1E0r/η0 and H0t = n2E0t/η0, leading
with θi = θr to  E0i + E0r = E0t

E0i − E0r =
n2
n1

cos θt
cos θi

E0t
(1.78)

Letting RH = E0r/E0i (reflection coefficient) and TH = E0t/E0i (transmission coefficient),
we obtain 

RH =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

=
n1 cos θi −

√
n22 − n21 sin2 θi

n1 cos θi +
√
n22 − n21 sin2 θi

TH = 1 +RH =
2n1 cos θi

n1 cos θi + n2 cos θt

(1.79)

where the third Snell-Descartes law n1 sin θi = n2 sin θt is used. For θi = 0, Eq. (1.76) is
retrieved.

1.4.3.4 Case of a dielectric surface for the TM polarization

In this subsection, the general case of a perfect dielectric surface is considered for the TM
polarization (figure 1.12).
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Figure 1.12 – Fresnel coefficients for the TM polarization and a perfect-dielectric medium.

From Eqs. (1.65), the tangential components of the electric and magnetic fields are continuous
on the interface S defined at z = 0. From figure 1.11, this leads for ∀ (x, y) to{

H0i +H0r = H0t

E0i cos θi − E0r cos θr = E0t cos θt
(1.80)

Thus 
E0i + E0r =

sin θi
sin θt

E0t

E0i − E0r =
cos θt
cos θi

E0t

(1.81)

Letting RV = E0r/E0i (reflection coefficient) and TV = E0t/E0i (transmission coefficient),
we obtain 

RV =
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

=
n22 cos θi − n1

√
n22 − n21 sin2 θi

n22 cos θi + n1

√
n22 − n21 sin2 θi

TV =
n1
n2

(1 +RV ) =
2n1 cos θi

n2 cos θi + n1 cos θt

(1.82)

where the third Snell-Descartes law n1 sin θi = n2 sin θt is used.

For the TM polarization, the subscript V is used as vertical.

1.4.3.5 Discussion on the Fresnel formula

For θi close to zero, sin θi ≈ θi and sin θt ≈ n1θi/n2 ≈ θt. Thus, from Eqs. (1.79) and (1.82),
the Fresnel coefficients can be simplified as RH =

θt − θi
θt + θi

≈ n1 − n2
n1 + n2

RV ≈ −RH
(1.83)
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In the air-(n1 = 1)-glass (n2 = 1.5), RH = −0.2 et RV = 0.2. This means that for the TE
polarization, the reflected electric field is in opposite sense because RH < 0.

For grazing incidences, θi = π/2, this leads from Eqs. (1.79) and (1.82) to

RH ≈ RV ≈ −1 (1.84)

Figures 1.13 and 1.14 plot the Fresnel coefficients in reflexion and transmission with respect
to the polarizations TM (RV ,TV ) and TE (RH , TH) and for an air-glass interface.
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Figure 1.13 – Reflexion coefficients for TE
and TM polarizations, n1 = 1 and n2 = 1.5.
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Figure 1.14 – Transmission coefficients for
TE and TM polarizations, n1 = 1 and n2 =
1.5

For the TM polarization, we observe that RV reaches zero. From Eq. (1.79), this angle
satisfied θiB + θtB = π/2 (numerator equal zero and n1 sin θi = n2 sin θt), implying that θtB =
π/2− θiB. Moreover, n1 sin θiB = n2 sin(π/2− θiB) = n2 cos θiB. Thus

tan θiB = n2/n1 (1.85)

θiB is called the Brewster angle. For an air-glass interface, θiB = 56.3 degrees. For this
particular value, TV (θiB) 6= 0, TH(θiB) 6= 0 and RH(θiB) 6= 0, whereas RV (θiB) = 0. This
property is then used for optics sensors to generate particular polarization states.

If the numbers n1 or/and n2 are complex, the Fresnel coefficients are also complex.

If n1 > n2, a limit incidence angle, θiL, can be calculated for which the transmission angle
equals θt = π/2. This implies that sin θiL = n2/n1 ≤ 1. For a glass-air interface, it is equal to
42 degrees. As shown in figures 1.15-1.18, above this angle, the Fresnel coefficients give complex
values.



1.5. EXERCISES 21

0 10 20 30 40 50 60 70 80 90
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
oe

ffi
ci

en
t d

e 
ré

fle
xi

on
 e

n 
T

E

Angle θ
i

Re
Im

Figure 1.15 – Real and imaginary parts of
the reflection coefficient for the TE polari-
zation, n1 = 1.5 and n2 = 1.
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Figure 1.16 – Real and imaginary parts of
the reflection coefficient for the TM pola-
rization, n1 = 1.5 and n2 = 1.
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Figure 1.17 – Real and imaginary parts of
the transmission coefficient for the TE po-
larization, n1 = 1.5 and n2 = 1.

0 10 20 30 40 50 60 70 80 90
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
C

oe
ffi

ci
en

t d
e 

tr
an

sm
is

si
on

 e
n 

T
M

Angle θ
i

Re
Im

Figure 1.18 – Real and imaginary parts of
the transmission coefficient for the TM po-
larization, n1 = 1.5 and n2 = 1.

1.5 Exercises

1.5.1 Exercises on the Fresnel coefficients

1.5.1.1 Exercise 1

We consider an interface of infinite area lied in the plane (−→x ,−→y ) separating two LHI media.
The upper medium, defined for z ≥ 0, is vacuum and the lower medium, defined for z < 0, is a
perfect dielectric medium of complex refraction index n = nr+jni ((nr, ni) ∈ R+). The interface

is illuminated by a TEM plane wave
−→
E i polarized along the direction −→x and propagating along

the −→z direction (
−→
k i = ki

−→z ). Thus,
−→
E i = E0ie

−j(ωit−kiz)−→x .

1. Do a figure of the problem.

2. Give the polarization of the incident wave ?
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3. Express the incident wave number ki from the wavelength λ0 in the vacuum.

4. Simplified then the expression of
−→
E i.

The transmitted electric field is
−→
E t = E0te

−j(ωtt−
−→
k t·−→r )−→p t.

1. Give the polarization −→p t of the transmitted electric field.

2. Give the relation between ωt and ωi.

3. Express
−→
k t from {k0, n,−→x ,−→y ,−→z }.

4. Express E0t from E0i and the transmission coefficient T and next n.

5. Express then
−→
E t(z) from {k0, n, E0i, ωi,

−→x ,−→y ,−→z }.

6. Calculate ρ(z) =
∥∥∥−→E t(z)

∥∥∥ / ∥∥∥−→E t(0)
∥∥∥ and |ρ(z)|.

7. Calculate the skin depth z = δ, for which |ρ(z)| = e−1. Conclude.

1.5.1.2 Exercise 2

In LHI conductor medium, the Maxwell equations are given by

−→
∇ ∧

−→
H =

∂
−→
D

∂t
+
−→
J

−→
∇ ∧

−→
E = −∂

−→
B

∂t
−→
∇ ·
−→
B = 0

−→
∇ ·
−→
D = ρ

where

−→
D = ε

−→
E

−→
B = µ0

−→
H

−→
J = σ

−→
E

1. Give the names of ε, µ0 and σ and their unity.

2. We assume that ρ = 0. Show that the wave propagation is expressed as :

−→
∇2−→E − µ0σ

∂
−→
E

∂t
− ε0µ0

∂2
−→
E

∂t2
=
−→
0

You can use the identity
−→
∇ ∧ (

−→
∇ ∧

−→
A ) = −

−→
∇2−→A +

−→
∇(
−→
∇ ·
−→
A ) for any vector

−→
A .

3. We assume that
−→
E (−→r , t) =

−→
E 0(
−→r )e−jωt. Show then

(
−→
∇2 + k20n

2)
−→
E 0(
−→r ) =

−→
0

where k0 = ω/c, in which c = 1/
√
ε0µ0 is the wave speed in vacuum. Give the expression

of n and its name.
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1.5.1.3 Exercise 3

The power carried by an electric field propagating in a medium with lossy (means that the

refractive index n ∈ C), is defined from the Poynting vector
−→
P as

−→
P =

1

2

−→
E ∧

−→
H ∗ (E1)

where
−→
H is the magnetic field and the symbol ∗ is the conjugate. The refractive index n = nr+jni

with (ni, nr) ∈ R+. We assume that the electric field is expressed as
−→
E = E0

−→x ejn
−→
k 0·−→r , where

−→
k 0 is the wave vector in the vacuum. An e−jωt time dependence is assumed.

1. From a Maxwell equation, calculate
−→
H .

2. Show then that
−→
P = n∗

2η0

∣∣∣−→E ∣∣∣2−→u with −→u =
−→
k 0/k0 (unitary vector). η0 is the wave impe-

dance in the vaccum. For any vectors (
−→
V 1,
−→
V 2,
−→
V 3) we have

−→
V 1 ∧ (

−→
V 2 ∧

−→
V 3) = (

−→
V 1 ·

−→
V 3)
−→
V 2 − (

−→
V 1 ·

−→
V 2)
−→
V 3. (E2)

3. We set
−→
k 0 = k0

−→z . Express then
−→
P (z) versus z.

4. Calculate ρ(z) =
∥∥∥−→P (z)

∥∥∥ /∥∥∥−→P (0)
∥∥∥.

5. Plot ρ(z) versus z and conclude.

1.5.1.4 Exercise 4

We consider an incident TEM plane wave which illuminates two infinite interfaces ΣA and ΣB

separating LHI media {Ω1,Ω2,Ω3} of refractive indexes n1 (assumed to be the air), n2 and n3.

The polarisation of the incident plane wave is TE with an incidence angle θi = 0 (
−→
E = ψiejk1z−→x ).

The Fresnel coefficients in reflection and transmission from the medium i = {1, 2, 3} to the
medium j 6= i = {1, 2, 3} are denoted as rij and tij , respectively (figure 1.19).

Figure 1.19 – Description of the geometry.

1. From a figure, explain qualitatively that the magnitude of the reflected field ψr can be
written as follows :

ψr =

p=∞∑
p=0

ψrp. (E3)
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2. Give the expressions of r12, r21, t12 and t21 and show that t12t21 = 1− r212.
3. Give the expression of the field ψr0 reflected by only the upper interface ΣA.

4. Give the expression of the field ψr1 for p = 1. It results from the transmission through the
upper interface ΣA, the reflection from the lower interface ΣB, and then the transmission
through ΣA back into the incident medium Ω1.

5. Show that the reflected field at the order p = 2 is

ψr2 =
(
r21r23e

jφ
)
ψr1, (E4)

where φ = 2k0n2h, in which k0 is the wavenumber in the air (vaccum) and h the thickness
of the intermediate medium Ω2.

6. Show that the reflected field at the order p ≥ 1, is then

ψrp =
(
r21r23e

jφ
)p−1

ψr1. (E5)

7. From equation (E3), and the relations t12t21 = 1− r212 and r21 = −r12, show that the total
reflected field is expressed as

ψr = ψi
r12 + r23e

jφ

1 + r12r23ejφ
. (E6)

We recall for |x| < 1 that
∑p=∞

p=1 xp−1 = 1
1−x .

8. We assume now that the medium Ω3 is perfectly conducting. Give the value of r23 and
simplify equation (E6).

9. Moreover, we assume that the modulus of the refractive index n2 is of the order of n1
(|n2| ≈ |n1|). Give the consequence on |r12| and show that

ψr ≈
[
r12

(
1− ej2φ

)
+ ejφ

]
ψi. (E7)

We recall for x→ 0 that 1/(1 + x) = 1− x+ x2 +O(x2).

1.5.2 Exercices on the polarization

1.5.2.1 Excercise 1

From Eq. (1.45), show Eq. (1.46).

1.5.2.2 Excercise 2

In this exercise, we want to retreive Eqs. (1.47).

In the basis (x = Ex, y = Ey) (top of figure 1.8), the equation of the ellipse is given from
Eq. (1.42). When the ellipse undergone a rotation of α (bottom of figure 1.8), its equation is
expressed from Eq. (1.46). In addition, in the basis (x′, y′), the equation of the same ellipse is

x′2

a′2
+
y′2

b′2
= 1 (E8)
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The couple (x, y) is expressed from (x′, y′) by a rotation of an angle −α. Then[
x
y

]
=

[
cosα − sinα
sinα cosα

] [
x′

y′

]
=

[
x′ cosα− y′ sinα
x′ sinα+ y′ cosα

]
(E9)

1. Reporting Eq. (E9) into Eq. (1.46) and equaling Eq. (1.46) with Eq. (E8), show that the
term with respect to x′y′ vanishes if

tan(2α) =
2ab cos δ

a2 − b2
(E10)

Note that sin(2α) = 2 cosα sinα and cos(2α) = cos2 α− sin2 α.

2. Reporting Eq. (E9) into Eq. (1.46) and equaling Eq. (1.46) with Eq. (E8), show that (terms
with respect to x′2 and y′2)

a′b′ = ab sin δ (E11)

3. From Eq. (E9) show that
a2 + b2 = a′2 + b′2 (E12)

4. Writting that sin(2χ) = 2 tanχ/(1 + tan2 χ) with tanχ = b′/a′, show that

sin(2χ) =
2ab sin δ

a2 + b2
(E13)

1.5.2.3 Excercice 3

Fill the following table and locate the state polarization on the Poincaré Sphere.

E0x E0y δ
−→
S Name of the polarization α χ

1 0 0
0 1 0
1 1 0
1 -1 0
1 1 π/2
1 1 −π/2

Table 1.2 – Fill the table.
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2 Basic concepts on the
propagation

2.1 Radiation from a point source

2.1.1 Spherical wave

Solving the Maxwell equation, we can show for a two-dimensional problem (2D problem,
i.e. invariant along an arbitrary direction, for example −→x ) that the wave is cylindrical, which
means that the electric field behaves as 1/

√
R, where R is the distance between the sensor and

the emitter. For a 3D problem (problems meet in the nature), the electric field behaves as 1/R
and the wave is then spherical.

As shown in figure 2.1, if R is great, locally, the amplitude of the electric field measures by
the receiver can be considered as a constant since R1 ≈ R2. Then, the wave can be considered
as locally plane.

Figure 2.1 – Illustration of a spherical wave.

27
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2.1.2 Radiated power

If P0 (in W) is the power radiated by an isotropic source, for a spherical wave, the power
density p0 (in W/m2) at the distance R is

p0 =
P0

4πR2
, (2.1)

where 4πR2 is the area of a sphere of radius R.

For a TEM plane wave, the power density carried by the wave is related from the Poynting

vector
−→
P defined as

−→
P =

1

2

−→
E ∧

−→
H ∗ (2.2)

For a plane wave propagated in free space, we have
−→
E =

−→
E 0e

−jωt+j
−→
k 0·
−→
R . Thus, from a

Maxwell equation, we have

−→
rot
−→
E = −∂

−→
B

∂t
= jωµ0

−→
H

⇒
−→
H =

1

jωµ0

−→
∇ ∧

−→
E =

1

ωµ0

−→
k0 ∧

−→
E

⇒
−→
P =

1

2ωµ0

−→
E ∧

(−→
k 0 ∧

−→
E
)∗

=
1

2ωµ0

−→
E ∧

(−→
k 0 ∧

−→
E ∗
)

⇒
−→
P =

1

2ωµ0

(−→E · −→E ∗)−→k 0 −

−→E · −→k 0︸ ︷︷ ︸
=0

−→E ∗
 =

|E|2

2ωµ0

−→
k 0

⇒
−→
P =

|E0|2

2Z0

−→u (2.3)

where k0 = ω/c, −→u =
−→
k 0/

∥∥∥−→k 0

∥∥∥ and Z0 =
√
µ0/ε0 = 120π. We note that the wave power is

propagated along the direction
−→
k 0 (direction of light rays).

Then

p0 =
∥∥∥−→P ∥∥∥ =

|E0|2

2Z0
(2.4)

Then, the elctric field
−→
E is related to the power P0 from

−→
E =

√
60P0

R
e−jωt+j

−→
k 0·
−→
R−→u (2.5)

The electric field
−→
E behaves as 1/R which corresponds to a spherical wave.

2.1.3 Electric field calculation in presence of a ground

As shown in figure 2.2, we want to calculate the received field in presence of a ground.

From Eq. (2.5), the norm of the incident field is given by

E1 =

√
60P1

R
ejk0R (2.6)
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Figure 2.2 – Electric field calculation in presence of a ground.

where the depedence over the time t is omitted.

From the image theory, the norm of the relfected field E2 by the ground can be replaced by
a source located at the height −h1 and of amplitute R(θ). Thus

E2 =

√
60P1

R1 +R2
ejk0(R1+R2)R(θ) (2.7)

Then, the total field is

E = E1 + E2 =
√

60P1

[
ejk0R

R
+Re

jk0(R1+R2)

R1 +R2

]

=

√
60P1

R
ejk0R

[
1 +RRe

jk0(R1+R2−R)

R1 +R2

]

= E1

[
1 +RRe

jk0(R1+R2−R)

R1 +R2

]
(2.8)

From the Pythagore theorem, we have
R1 +R2 =

√
d2 + (h1 + h2)2 = d

√
1 +

(
h1 + h2

d

)2

≈ d

[
1 +

1

2

(
h1 + h2

d

)2
]

R =
√
d2 + (h1 − h2)2 = d

√
1 +

(
h1 − h2

d

)2

≈ d

[
1 +

1

2

(
h1 − h2

d

)2
] (2.9)

where d > 0 is the horizontal distance between the emitter and the receicer, which is assumed
to be much greater than the heights h1 and h2 of the emitter and receiver, respectively.

Thus

R1 +R2 −R ≈
2h1h2
d

R

R1 +R2
≈ 1 (2.10)
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The total field can then be approximated by

E = E1

[
1 +R(θ)ejφ

]
(2.11)

where

φ =
2k0h1h2

d
=

4πh1h2
λ0d

tan θ =
d

h1 + h2
(2.12)

The modulus ratio of the electric field is then

p =

∣∣∣∣ EE1

∣∣∣∣ =
√

1 + 2a cosφ′ + a2 (2.13)

where
a = |R| φ′ = φ+ phase(R) = φ+ φR (2.14)

The minimum value of p occurs (cosφ′ = −1) for φ′ = π + 2nπ (with n an integer). The
maximum value of p occurs (cosφ′ = +1) for φ′ = 2nπ. This leads to

pmax = |1 + a| pmin = |1− a| (2.15)

For example, for a perfectly-conducting surface, R = ±1, implying that a = 1 and then
pmin = 0. This means that the total field vanished. In pratice, this phenomenon is constraining
because the communication is broken. In opposite, pmax = 2 and then the total field is equal
twice the emitter field. It is an illustration of the inteference phenomenon : “1+1” can give
“0” !

For h1 = cste, d = cste and h2 varies, the periodicity ∆h2 of h2 satisfied

4πh1h2
λ0d

+ φR = 2π ⇒ ∆h2 =
λ0d

2h1
(2.16)

For h1 = cste, h2 = cste and d varies, the periodicity ∆d of d satisfied

4πh1h2
λ0d

+ φR = 2π ⇒ ∆d =
λ0d

2

2h1h2
(2.17)

For the simulations, we assume thatR = +1, coressponding to a perfectly-conducting surface
and the TE polarization. Thus, a = 1 and φR = 0. In addition, the frequency is f = 300 MHz.

Figure 2.3 plots p (Eq. (2.13)) versus the receiver height h2 for h1 = 50 m and d = 10 km.
For this case, from Eq. (2.16), ∆h2 = 100 m. As we can see, p is a periodic function of h2 of
period ∆h2 and takes values from 0 to 2, as predicted from Eq. (2.15).

Figure 2.4 plots p (Eq. (2.13)) versus the horizontal distance d for h1 = 100 m and h2 = 200.
For this case, from Eq. (2.17), ∆d is not a constant and varies with d. As we can see, p is not a
periodic function of d and takes values from 0 to 2, as predicted from Eq. (2.15).

2.2 Real source caracterized by a gain

For a real source as an antenna, the emitted field is not isotropic but depends on the angles
(θ, φ) defined in spherical coordinates. The function describing this phenomenon is the gain
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Figure 2.3 – p (Eq. (2.13)) versus the receiver height h2 for h1 = 50 m, d = 10 km and f = 300
MHz.
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Figure 2.4 – p (Eq. (2.13)) versus the horizontal distance d for h1 = 100 m, h2 = 200 m and
f = 300 MHz.

function G(θ, φ) = ηD(θ, φ), in which D is known as the directive gain and the number 0 < η < 1
is related to the antenna efficiency. The directive gain signifies the ratio of radiated power in a
given direction relative to that of an isotropic radiator which is radiating the same total power
as the antenna in question but uniformly in all directions. Note that a true isotropic radiator
does not exist in practice.

Now, we consider the problem shown in figure 2.5.

The power density pE (in W/m2) emitted by the antenna is

pE =
PEGE
4πR2

(2.18)

where PE is the emitted power (in W) and GE the emitted antenna gain.
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Figure 2.5 – Received power from an emitter.

The power (in W) received by the antenna is then

PR = pEAR =
PEGEAR

4πR2
(2.19)

where AR is the effective aperture in m2 of the received antenna. It is well known that AR is
related to the gain GR of the received antenna by

AR =
GRλ

2
0

4π
(2.20)

Then

PR =
PEGE
4πR2

GRλ
2
0

4π
= PEGEGR

(
λ0

4πR

)2

=
PEGEGR

L0
(2.21)

where L0 > 1 is called the path loss in free space. It is defined as

L0 =

(
4πR

λ0

)2

(2.22)

In dB scale, 10 log10(L0), L0 becomes

L0 (dB) = 10 log10

[(
4πR

λ0

)2
]

= 20 log10

(
4π

c

)
+ 20 log10R+ 20 log10 f

= 32.45 + 20 log10Rkm + 20 log10 fMHz (2.23)

Thus, in dB scale, the path loss increases with the distance R and the frequency f .

2.3 Radar equation and Radar Cross section

In this subsection, the Radar cross section is introduced via the Radar equation.

We consider the problem shown in figure 2.6. An antenna illuminates an object. A part of
the power reflected by the object returned toward the receiver. The purpose is to calculate the
received power.

The emitted power density is

pE =
PEGE(θE , φE)

4πR2
(2.24)
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Figure 2.6 – Received power from an emitter illuminating an object.

where PE is the emitted power (in W) and GE the emitted antenna gain defined along the
spherical angles (θE , φE).

From the distance RE , the power (in W) reflected (diffracted) by this object is then

PO = pE |R=RE
σ =

PEGE(θE , φE)

4πR2
E

σ (2.25)

where σ is the Radar cross section (in m2) of the object. This magnitude caracterized the
capacity of an object to reflect the power in the the specific directions (θR, φR) knowing the
directions (θE , φE). In other words, it is a measure of how detectable an object is with a Radar.
It is an intrinsic property of the object. It depends on

– The angles (θE , φE) and (θR, φR).
– The radar frequency f .
– The polarization of the incident electric field
– The shape of the object.
– The electric properties of the object (ε and µ).

The density power (in w/m2) from the distance RR is then

pO =
PO

4πR2
R

(2.26)

The received power (in W) is then

PR = pOAR =
PO

4πR2
R

GR(θR, φR)λ20
4π

=
PEGE(θE , φE)GR(θR, φR)λ20σ

(4π)3R2
ER

2
R

(2.27)

where GR(θR, φR) is the gain of the reception antenna in the directions (θR, φR).

The above equation is named as the Radar equation and it is then the basic equation used
to calculate the power received by a Radar system.

When the receiver is the same as the emitter, corresponding to a monostatic configuration,
we have RR = RE = R, (θR, φR) = (θE , φE) = (θ, φ) and GR = GE = G. The above equation is
then simplified as

PR =
PEG

2(θ, φ)λ20σ

(4π)3R4
(2.28)
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2.4 Exercises

2.4.1 Exercise 1 : Reflexion by a ground

A radio link (λ0 = 2 m) is established between a boat, for which its antenna is located at a
height of h1 = 10 m, and two receivers. The first one is located on the coast from a distance of
d = 10 km and a height of h2 = 10 m. The second one is located on the montain from a distance
of d = 12 km and a height of h2 = 10 m.

The reflection coefficient of the sea is assumed to be −1.

1. Show that de modulus of the received field is

|E| = 2

∣∣∣∣E0 sin

(
φ

2

)∣∣∣∣ φ =
4πh1h2
λ0d

(E1)

where E0 is the incidend field.

2. Calculate p = |E/E0| for the two cases and give a physical interpretation.

2.4.2 Exercise 2 : Link satellite

The satellite Voyager 2 in 1993 was R = 69 km from the Earth. The power of its emitter was
20 W and its antenna gain was 48 dB. The used frequency is 8.4 GHz.

1. Calculate the power density pE radiated on the Earth.

2. Calculate the power PR transmitted to the receiver located on the Earth if the gain GR of
the parabolic antenna is 70 dB.

3. Calculate in dB the path loss L0.

4. Calculate the diameter D of the antenna knowing that GR = (πD/λ0)
2η with η = 0.6.

2.4.3 Exercise 3 : Radar Cross Section (RCS)

We consider a monostatic configuration (emitter and receiver are the same). The emitter
illuminates an object of RCS σ.

1. Then show

σ = 4πR2 |ER|2

|EE |2
(E2)

where R is the distance from the receiver to the object, EE is the emitted field and ER
the received field.

2. Why the rigorous definition of RCS is

σ = lim
R→∞

4πR2 |ER|2

|EE |2
(E3)


