Book: Method of moments for 2D scattering problems. Basic concepts ans applications
Electromagnetic wave scattering from randomly rough surfaces in the presence of scatterers is an active, interdisciplinary area of research with myriad practical applications in fields such as optics, acoustics, geoscience and remote sensing. In this book, the Method of Moments (MoM) is applied to compute the field scattered by scatterers such as canonical objects (cylinder or plate) or a randomly rough surface, and also by an object above or below a random rough surface. Since the problem is considered to be 2D, the integral equations (IEs) are scalar and only the TE (transverse electric) and TM (transverse magnetic) polarizations are addressed (no cross-polarizations occur). In Chapter 1, the MoM is applied to convert the IEs into a linear system, while Chapter 2 compares the MoM with the exact solution of the field scattered by a cylinder in free space, and with the Physical Optics (PO) approximation for the scattering from a plate in free space. Chapter 3 presents numerical results, obtained from the MoM combined with the efficient E-PILE method, of the scattering from two illuminated scatterers and how the E-PILE algorithm can be hybridized with asymptotic or rigorous methods valid for the scattering from a single scatterer. The final chapter presents the same results as in Chapter 3, but for an object above a random rough surface. In these last two chapters, the coupling between the two scatterers is also studied in detail by inverting the impedance matrix by blocks. All the MatLab codes used to make the figures are provided.
C. Bourlier, N. Pinel and G. Kubické, Method of moments for 2D scattering problems. Basic concepts ans applications, FOCUS SERIES in WAVES, Ed. WILEY-ISTE, 2013, ISBN 978-1-84821-472-9, 148 pages.