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Characteristic Basic Function Method Accelerated by a New Physical
Optics Approximation for the Scattering from a Dielectric Object

Christophe Bourlier*

Abstract—This paper presents an efficient algorithm to calculate the primary basis functions (PBFs)
of the characteristic basis function method (CBFM) for the scattering from a dielectric object. The use
of the Poggio-Miller-Chang-Harrington-Wu (PMCHW) integral equation discretized by the Galerkin
method of moments (MoM) with Rao-Wilton-Glisson basis functions leads to solving a linear system.
For a collection of incident waves and for a given block, the CBFM needs to invert the whole PMCHW
self-impedance matrix to calculate the PBFs. By decomposing the PMCHW impedance matrix into four
sub-matrices of halved sizes, related to the electric and magnetic surface currents and their coupling,
the computation of the PBFs is accelerated by using the impedance matrix derived from the electric
field integral equation (EFIE) combined with the physical optics (named POZ) approximation. In
addition, the PO developed by Jakobus and Landstorfer [35], named POJ and valid for a perfectly-
conducting scatterer, is extended to a dielectric surface. Recently, the MECA (modified equivalent
current approximation) Li and Mittra [29]) based on the tangent plane or Kirchhoff approximation has
also been applied to expedite the PBF calculation. The presented method, HCBFM-POZ (H means
halved), accelerated by the adaptive cross approximation (ACA), is tested and compared with CBFM-
MECA and HCBFM-POJ on a cube and on a sphere. The numerical results show that HCBFM-POZ
is valid for both the shapes, whereas the CBFM-MECA and HCBFM-POJ are not valid on a sphere.

1. INTRODUCTION

The method of moments (MoM) [1] has been widely used to analyze the electromagnetic scattering
from dielectric objects. It converts the integral equation into a matrix equation with N unknowns (or
degrees of freedom). Limited by the computational complexity and memory requirement, which scale
with O(N3) and O(N2), respectively, the conventional MoM hardly handles the matrix equation with
rapidly increasing unknowns. Many fast methods have been developed to alleviate this issue.

One kind of methods is to accelerate the MoM by combining iterative solvers with approximate
compressed algorithms. For instance, based-conjugate gradient algorithms [2, 3], steepest descent fast
multipole method [4–6], adaptive integral method [7–11], sparse-matrix canonical grid [12–16], and
domain decomposition methods [17–20]. These techniques enable us to deal with electrically large
objects. Nevertheless, the iterative solver is inefficient on solving the multiple excitations problems,
because for each new excitation the iterative process needs to be resumed.

Another kind of methods is the direct solver based on the domain decomposition. It follows a
similar strategy that utilizes the macro basis functions defined on the sub-domains to reduce the number
of unknowns, such as the sub-domain multilevel approach [21], synthetic functions expansion [22], and
characteristic basis function method (CBFM) [23]. The CBFM has been successfully applied to radiation
and scattering problems.
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For radiation problems, CBFM [20, 23–26] has been firstly developed to solve the electric field
integral equation (EFIE) for the scattering analysis of objects that are perfect electric conductors
(PECs) and more recently, in the case of dielectric bodies (for 2D and 3D problems) [27–33].

For a PEC, Bourlier [34] published a new physical optics approximation, named POZ, derived

from the EFIE integral equation. The resulting impedance matrix Z̄(EFIE-POZ) is then sparse (nearly
4N non-zeros values) since only self-facet interactions are accounted for. This allowed us to expedite
the computation of the PBFs with a good accuracy. Another means to efficiently calculate the PBFs,
without inverting the EFIE self-impedance sub-matrix of a block, is to apply the PO-surface current
published by Jakobus and Landstorfer [35], named POJ. For different object shapes, comparing this

method with the one based on Z̄(EFIE-POZ), the simulations showed that CBFM-EFIE-POZ predicts very
good results, and it is more accurate than CBFM-EFIE-POJ, which can be failed for some geometries,
specially with curvature. The purpose of this paper is to extend these two formulations to a dielectric
scatterer.

The use of the Poggio-Miller-Chang-Harrington-Wu (PMCHW) integral equation discretized by
the Galerkin MoM with Rao-Wilton-Glisson (RWG) basis functions leads to solving a linear system
Z̄X = b, where the PMCHW impedance matrix Z̄ is expressed as

Z̄ =

[
Z̄(JJ) Z̄(JM)

−Z̄(JM) Z̄(MM)

]
, (1)

where Z̄(JJ) and Z̄(MM) are related to the electric and magnetic surface currents, respectively, and Z̄(JM)

to their coupling. In addition, from the EFIE impedance matrix Z̄(EFIE-k0) of a PEC, Z̄(JJ) and Z̄(MM)

are decomposed as 
Z̄(JJ) = Z̄(EFIE-k1) + Z̄(EFIE-k2)

Z̄(MM) =
Z̄(EFIE-k1)

η21
+

Z̄(EFIE-k2)

η22

, (2)

where ηi = η0/
√
ϵri, ϵri, and ki = k0

√
ϵri are the wave impedance, relative permittivity, and wavenumber

of the medium i, respectively. Moreover, k0 and η0 = 120π are the wavenumber and wave impedance
in vacuum, respectively. i = 1 corresponds to the outer medium, in which the source illuminates the
object, whereas i = 2, corresponds to the inner medium.

The purpose of this paper is to expedite the computation of the PBFs, related to Z̄
(JJ)
p,p and Z̄

(MM)
p,p of

a block p, by applying the sparse impedance matrix Z̄(EFIE-POZ) derived from EFIE-POZ. It is important
to underline that Z̄(JM) is considered as a coupling matrix, whereas the conventional CBFM computes
the PBFs from the whole matrix (1). Due to the properties of Z̄(JJ) and Z̄(MM) (2), this new numerical

scheme is easy to implement since Z̄(EFIE-ki) is substituted for Z̄(EFIE-POZ-ki). This also allows us to
reduce, by a factor two, the size of the original matrix Z̄ (N becomes N/2) and to accelerate the PBF
calculation as scaled NIWO(2N3) (LU plus SVD decompositions). N is the size of the matrix and NIW

the number of incident waves. To avoid inverting the PMCHW matrix for the computation of the PBFs,
Chao Li and Mittra [29] applied the tangent plane or Kirchhoff approximation [36, 37], named MECA
(modified equivalent current approximation). However, it is important to underline that the MECA
can maintain a good accuracy only for objects with large radii of curvatures.

Following the generation of the CBFs, a new matrix with a much reduced size, namely the reduced
matrix, is obtained. The resultant-reduced linear system enables the direct solution by using the LU
decomposition algorithm. Moreover, the ACA algorithm [38–40] is incorporated for rapid calculation
of the interaction matrices associated with the far-interaction blocks in the process of generating the
reduced matrix. It is important to emphasize that the PO-based CBFs only serve as the macrobasis
functions for an efficient representation of the final solution of the original problem. The mutual
interaction between the sub-domains is taken into account rigorously when generating the combined
reduced system.

The paper is organized as follows. Section 2 addresses a brief review of CBFM combined with three
different PO formulations:

• POZ: Generalization of EFIE-PO [34] to the PMCHW, named POZ.
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• POJ: Generalization of the Jakobus and Landstorfer [35] PO formulation, valid for a PEC surface,
to a dielectric surface.

• MECA: Modified equivalent current approximation [29] valid for a dielectric surface.

Section 3 presents numerical results of the radar cross section (RCS) obtained from spheres and cubes.
The last section gives concluding remarks.

The time convention e−jωt is used throughout this paper.

2. CBFM COMBINED WITH PO

2.1. PMCHW Integral Equation

From the PMCHW integral equations [28, 29, 37], the impedance matrix Z̄ is expressed from Eqs. (1)
and (2), where an element is {

Z̄
(EFIE-ki)
m,n = ⟨fm,Li (fn)⟩

Z̄
(JM)
m,n = ⟨fm,K (fn)⟩

. (3)

The vectors fn and fm are the basis and test (Galerkin method) RWG [41] functions, respectively,
and the operator ⟨ ⟩ stands for the symmetric product between two vectorial functions defined as

⟨f ,g⟩ =
∫
S
f(r) · g(r)dS. (4)

Moreover, the vectorial integro-differential operators Li and K, which depend on the position vector r,
are defined as 

Li(X) = −jkiηi
∫
S′

[
X+

1

k2i
∇ (∇′ ·X)

]
Gi (r, r

′) dS′

K(X) = −
∫
S′
X ∧

[
∇G1

(
r, r′

)
+∇′G2

(
r, r′

)]
dS′

, (5)

where the vectorial function X depends on r′ (source point); ∇ denotes the nabla operator acting either
on the position vector r or r′ (∇′); and Gi is the Green function defined as

Gi

(
r, r′

)
=

e−jki∥r−r′∥

4π ∥r− r′∥
. (6)

Symbol −
∫
S′ is the Cauchy principal value defined for r′ ̸= r.

The elements (b
(J)
m , b

(M)
m ) of the excitation vector b = [b(J); b(M)] (MatLab notation) of the resulting

linear system Z̄X = b are expressed as{
b
(J)
m = −⟨fm,Einc⟩
b
(M)
m = −⟨fm,Hinc⟩

, (7)

where (Einc(r),Hinc(r)) are the electric and magnetic incident fields, respectively.
To solve the linear system Z̄X = b efficiently, the impedance matrix Z̄ must be inverted. The

conventional LU decomposition can be applied, but for an huge problem, this method is time consuming.
The CBFM can be a good candidate to solve this issue. The CBFM parameters are listed in Table 1.

2.2. CBFM for a Dielectric Surface

The CBFM [20, 24, 28] begins by dividing the geometry of the object into P blocks. The impedance
matrix Z̄ is then 

Z̄1,1 Z̄1,2 . . . Z̄1,P

Z̄2,1 Z̄2,2 . . . Z̄2,P

...
...

. . .
...

Z̄P,1 Z̄P,2 . . . Z̄P,P




a1
a2
...

aP

 =


b1

b2

...

bP

 , (8)
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Table 1. Definition of the notations introduced for CBFM and ACA. {P, nOL, ϵSVD, NIPW,p} are the
inputs of CBFM. ϵACA is the input of ACA. The remained values are numerically obtained from these
inputs (outputs).

Name Definition Typical values

NEdge Total number of edges Table 2

P Number of blocks Table 2

nOL Exceed edges due to the overlapping 1

ϵSVD CBFM threshold of the SVD truncation Table 2

NIPW,p CBFM plane wave number of block p Eq. (10)

ϵACA ACA threshold Table 2

NIPW,SVD,p Reduced value of NIPW,p after a SVD truncation

NEdge,p Number of edges of a block p

NEdge,OL,p Number of edges of a block with overlapping

N̄Edge =
∑P

p=1NEdge,p Mean value of NEdge,p over p ∈ [1;P ] Table 2

N̄IPW =
∑P

p=1NIPW,p Mean value of NIPW,p over p ∈ [1;P ] Table 3

N̄IPW,SVD =
∑P

p=1NIPW,SVD,p Mean value of NIPW,SVD,p over p ∈ [1;P ] Table 3

ϵRACA RACA threshold 10ϵACA

where Z̄p,p is the self-impedance matrix of the block number p and Z̄p1,p2 the coupling-impedance matrix
between the blocks p1 and p2. In addition, the vectors ap and bp are the vectors a and b of the block
number p, respectively.

Next, the primary basis functions (PBFs) are computed for a block p by solving the linear
system [24, 28]

Z̄p′,p′Yp′,kIPW
= Bp′,kIPW

. (9)

It is important to underline that the symbol prime in the subscript of Eq. (9) indicates that the block
is enlarged of some nOL adjacent edges. This overlapping improves the accuracy of CBFM. The linear
system (9) is solved from a collection of 2NIPW,p bi-polarized incident plane waves {Bp′,kIPW

} (kIPW ∈
[1; 2NIPW,p]), and the resulting vectors {Yp′,kIPW

} are stored in a matrix F̄p of size 2NEdge,p × 2NIPW,p,
where NEdge,p is the number of edges of a block p without overlapping. It means that the overlapped
edges of Yp′,kIPW

are removed.
The redundant information due to the overestimation of NIPW,p is eliminated via the use of a

truncated singular value decomposition (SVD). It means that from a given threshold ϵSVD, the values,
for which the moduli of the normalized eigenvalues are smaller than ϵSVD, are removed. The size of F̄p

becomes 2NEdge,p ×NIPW,SVD,p with NIPW,SVD,p < 2NIPW,p.
It is important to underline that unlike a PEC scatterer, for a dielectric object [28], NIPW,p is the

number of plane waves obtained for both the wavenumbers k1 (outer medium) and k2 (inner medium).
The choice of NIPW,p must be relevant to avoid that the size of the matrix is too big because two
decompositions, LU and SVD of complexities O(N3

Edge,OL,p), are required to calculate F̄p. This point
is crucial and addressed very little in the literature.

For a dielectric surface, extending the criterion proposed in [20, 42, 43] for a PEC, for a given wave
number ki, the number of plane waves NIPW is defined as

NIPW = min

[⌊
2 (Re(ki)r0 + 2π)2

nIPW
, NEdge,OL

]
(10)

where Re stands for the real part; symbol ⌊ stands for the lower integer part; and r0 is the sphere radius
circumscribed to the block p. In addition, the number nIPW is introduced because the simulations will
show that NIPW is either overestimated (nIPW > 1) or underestimated (nIPW < 1). Criterion (10)
is related to the Nyquist sampling to ensure that there is no loss of information by decomposing any
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source into a sum of plane waves. The “min” criterion on NEdge,OL is added because the size of F̄p does
not have to exceed the original matrix size Z̄p′,p′ since the purpose is to reduce the number of freedom
degrees.

For a PEC object, Huang and Sun [30] applied the adaptive cross approximation (ACA) [39, 40] to
reduce, in advance, the number of incident plane waves NIPW. For all the simulations presented in this
paper, the number NIPW calculated from (10) remains unchanged after ACA compression. It means
that criterion (10) is a good choice.

The last stage of CBFM solves a reduced linear system Z̄RaR = bR defined as
Z̄R
1,1 Z̄R

1,2 . . . Z̄R
1,P

Z̄R
2,1 Z̄R

2,2 . . . Z̄R
2,P

...
...

. . .
...

Z̄R
P,1 Z̄R

P,2 . . . Z̄R
P,P




aR1
aR2
...

aRP

 =


bR
1

bR
2

...

bR
P

 , (11)

where the submatrix Z̄R
i,j and subvector bR

i are defined as{
Z̄R
i,j = F̄H

i Z̄i,jF̄j [NIPW,SVD,i ×NIPW,SVD,j ]

bR
j = F̄H

j bj [NIPW,SVD,i × 1]
. (12)

Moreover, the symbol H stands for the conjugate transpose operator, and the indexes i and j go from
1 to P . The vector ai of Eq. (8) is equal to ai = J̄ia

R
i .

The problem is then represented by the characteristic square matrix of size (PN̄IPW,SVD)
2 instead

of a square matrix of size (2NEdge)
2 = (2PN̄Edge)

2, where N̄IPW,SVD = (1/P )
∑P

p=1NIPW,SVD,p. If

multiple excitations {b} (for instance, monostatic case) are calculated, then Z̄R (or the two matrices
of the LU decomposition) and {Ji} (required to calculate bi) must be stored. The problem is then
reduced by a factor β2 ≈ (2N̄Edge/N̄IPW,SVD)

2 in comparison to a LU inversion of the whole matrix.
In Eq. (12), to accelerate the matrix-vector product, the coupling matrices {Z̄i,j} are compressed

by using ACA. In addition, to further reduce the matrix rank, a second compression based on two QR
decompositions, named RACA, is applied. This principle is summarized in [20], and two thresholds
{ϵACA, ϵRACA} are then introduced. Typically ϵRACA = 10ϵACA.

2.3. EFIE-CBFM Combined with POZ

From a conventional LU decomposition and for a given block p, Eq. (9) implies that the complexity
to calculate the 2NIPW PBFs is 2NIPWO(N3

Edge,OL,p). In order to reduce this complexity, the PO

approximation can be applied. Bourlier [26] derived the PO impedance matrix by injecting the PO

current J = 2n̂ ∧ Hinc in EFIE. He showed that an element Z
(EFIE-POZ)
m,n of the resulting impedance

matrix (in [26], its definition differs) is expressed as

− 1

η1
Z(EFIE-POZ)
m,n = PV(MFIE)

=
cm,n

12

(
3∑

i=1

∥Vi∥2 +V1 ·V2 +V1 ·V3 +V2 ·V3

)
+

cm,n

2
[Vm ·Vn −VG · (Vm +Vn)] , (13)

where PV(MFIE) is the MFIE (magnetic field integral equation) principal value; {Vi} is the coordinates
of the three vertices of the triangular facet of gravity center VG; {Vm,n} is the unshared vertices.
Moreover, cm,n = smsnLmLn/(4A), where sm = ±1, sn = ±1, Lm,n is the edge length, and A is the
facet area. Eq. (13) shows that the POZ impedance matrix is sparse since a facet interacts only with
itself (no multiple reflections). This involves that only 4NEdge,p elements of the sub-impedance matrix
are calculated (instead of N2

Edge,p). For different object shapes, comparing this method, named POZ,

with the one based on Jakobus [35] (see Section 2.6), the simulations showed [26] that EFIE-CBFM-
POZ predicts very good results, and it is more accurate than EFIE-CBFM-POJ, which can be failed
for some geometries.
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2.4. PMCHW-CBFM Combined with MECA: CBFM-MECA

To accelerate the PBF computation, Li and Mittra [29] developed a current-based PO method called
the modified equivalent current approximation (MECA) and based on the tangent plane or Kirchhoff
approximation [36, 37]. The electric and magnetic surface currents are{

J = − (1−RH) cos θ1 (Hinc · p̂inc) q̂inc + (1 +RV ) (Hinc · q̂inc) (n ∧ q̂inc)

M = (1−RV ) cos θ1 (Einc · p̂inc) q̂inc − (1 +RH) (Einc · q̂inc) (n ∧ q̂inc)
, (14)

where cos θ1 = −k̂inc · n̂, q̂inc = n̂ ∧ k̂inc/
∥∥∥n̂ ∧ k̂inc

∥∥∥, p̂inc = q̂inc ∧ k̂inc and k̂inc is the incident wave

direction. In addition, the Fresnel coefficients are defined as
RV (θ1) =

√
ϵr2 cos θ1 −

√
ϵr1 cos θ2√

ϵr2 cos θ1 +
√
ϵr1 cos θ2

RH(θ1) =

√
ϵr1 cos θ1 −

√
ϵr2 cos θ2√

ϵr1 cos θ1 +
√
ϵr2 cos θ2

, (15)

where cos θ2 =
√
1− (ϵr1/ϵr2)(1− cos2 θ1).

Like for a PEC, the solution of the linear system (9) for given extended block p and incident wave

B is Y(MECA) = [Y(J-MECA); Y(M-MECA)], where their elements (Y
(J-MECA)
n , Y

(M-MECA)
n ) are expressed

as {
Y

(J-MECA)
n = t̂(rn) · J(rn)

Y
(M-MECA)
n = t̂(rn) ·M(rn)

. (16)

As shown in Fig. 1, t̂ is the mean normal vector to the nth edge in its middle rn, and n̂ is the mean
normal vector to the adjacent triangles.

Figure 1. MECA and POJ approximations. n̂± is the normal to the adjacent triangles of the nth edge,
û its direction and t̂± its normals in the middle rn, on the left and right. t̂± = û∧ n̂±, t̂ = (t̂++ t̂−)/2
and n̂ = (n̂+ + n̂−)/2.

2.5. PMCHW-CBFM Combined with EFIE-POZ: HCBFM-POZ

In order to extend the based-EFIE POZ impedance approach to a dielectric object, the properties of
the sub-matrices (Z̄(JJ), Z̄(MM)) (2) depending on Z̄(EFIE-ki) = −ηiPV(MFIE) (13) are used. This leads
to 

Z̄JJ-POZ = −PV (MFIE) (η1 + η2)

Z̄MM-POZ = −PV (MFIE)

(
1

η1
+

1

η2

)
, (17)

where the MFIE principal value PV(MFIE) only depends on the geometry from Eq. (13).
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In comparison to the CBFM-MECA, from HCBFM-POZ, the computation of the PBFs

(F̄
(JJ-POZ)
p , F̄

(MM-POZ)
p ) of size NEdge,OL,p × 2NIPW is done twice on a halved size matrix. In Eq. (12),

F̄p = [F̄
(JJ-POZ)
p ; F̄

(MM-POZ)
p ]. Unlike MECA, with POZ an inversion is needed on a sparse matrix to

calculate the PBFs.
It is important to underline that for the conventional CBFM, the PBFs are computed from the

whole impedance matrix (1). For HCBFM (H means halved), the PBFs are computed from the sub-

matrices {Z̄(JJ), Z̄(MM)} of halved size. It means that Z̄(JM) is considered as a coupling sub-matrix for
the reduced matrix calculation.

2.6. PMCHW-CBFM Combined with the Jakobus Formulation (POJ): HCBFM-POJ

Like in the previous paragraph, the Jakobus formulation, valid for a PEC surface, is extended to a
dielectric surface by benefiting the structure of the PMCHW impedance matrix (2). This leads to

Z̄(JJ-POJ) = Z̄(EFIE-k1-POJ) + Z̄(EFIE-k2-POJ)

Z̄(MM-POJ) =
Z̄(EFIE-k1-POJ)

η21
+

Z̄(EFIE-k2-POJ)

η22

, (18)

where the subscript “POJ” refers to the Jakobus formulation. In addition, from Eq. (13), one has

Z(EFIE-ki-POJ)
n,n = −ηiZ

(MFIE-ki-POJ)
n,n , (19)

where Z(MFIE-ki-POJ) is an element of the MFIE PV impedance matrix. Since only the self-edge
interactions are accounted for with POJ, this matrix is diagonal. From the MFIE, the resulting

linear system writes Z̄(MFIE)X(MFIE) = b(MFIE), where an element of b(MFIE) equals b
(MFIE)
m =

−⟨fm, n̂ ∧Hinc⟩ [2], and an element of X(MFIE) is X
(MFIE)
n = t̂ · J(rn) = t̂ · [2n̂ ∧Hinc(rn)]. From

Eq. (19) (Fig. 1), this yields

Z(EFIE-ki-POJ)
n,n =

ηi ⟨fn, n̂ ∧Hinc⟩
t̂ · [2n̂ ∧Hinc(rn)]

. (20)

The substitution of the above equation into Eq. (18) allows us to calculate Z̄(JJ-POJ) and Z̄(MM-POJ).
Moreover, the left hand side of linear system (18) is expressed by Eq. (7). Thus, for given incident

wave B and block p, a PBF takes the form YPOJ = [Y(J-POJ); Y(M-POJ)], where their elements

(Y
(J-POJ)
n , Y

(M-POJ)
n ) are expressed as

Y (J-POJ)
n = −⟨fn,Einc⟩

Z
(JJ-POJ)
n,n

and Y (M-POJ)
n = − ⟨fn,Hinc⟩

Z
(MM-POJ)
n,n

. (21)

Like MECA approximation (16), no matrix inversion is required to compute the PBFs.

3. NUMERICAL RESULTS

The wavelength in free space λ0 is 1m, and the outer medium is vacuum (ϵr1 = 1). The azimuthal
incident and scattering angles are ϕinc = ϕsca = 0. Table 2 lists the simulation parameters and CBFM
inputs like the threshold ϵSVD and the number nIPW introduced in Eq. (10).

3.1. Sphere of Radius a = 1λ0 (Cases 1–3)

The sphere of radius 1λ0 is plotted in Fig. 2. For all simulations, the number of blocks P = 8, incidence
angle θinc = 0 (−ẑ direction), the polarization is V V , and the edge mean length l̄Edge is 0.05λ0 to satisfy
the condition l̄Edge ≤ λ0/[10 × Re(

√
ϵr2)], where ϵr2 is the inner medium permittivity, and Re stands

for the real part.
For ϵr2 = 2, Fig. 3 plots the RCS (radar cross section) in dBm2 versus the scattering angle θsca.

To better exhibit the difference, Fig. 4 plots the ratio 10| log10(RCS/RCSREF)| (dB) versus θsca, where
RCSREF is the reference RCS given by the Mie solution ([44], Section 6.1). In the legend, the labels
mean:
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Figure 2. Sphere of radius equals 1λ0 (NEdge =
16, 983). A block is represented by a color and
the edge mean length is 0.05λ0. The CBFM
simulation parameters are listed in Table 2.

Figure 3. RCS in dBm2 versus θsca. a = 1λ0

(Fig. 2), θinc = 0, V V polarization and ϵr2 = 2.

• LU: PMCHW linear system solved from a direct solver using the LU decomposition.

• CBFM: PMCHW linear system solved from the conventional CBFM [28, 29]. The PBFs are
computed from the whole matrix (1).

• HCBFM: PMCHW linear system solved from the CBFM presented in this paper. The PBFs are
computed from the two sub-matrices (Z̄(JJ), Z̄(MM)) (2).

• MIE: Analytical solution of Mie.

In addition, one defines “CBFMi− ϵSVD − [2N̄IPW − N̄IPW,SVD]−Dif”, where the mean value Dif
is defined as

Dif =
1

Nθsca

∑
θsca

10

∣∣∣∣log10( RCS

RCSREF

)∣∣∣∣ . (22)

Table 3 (case 1) gives the values of N̄IPW,SVD and Dif for CBFM and HCBFM combined with
different formulations of PO. In comparison to the whole matrix of size 2NEdge × 2NEdge (NEdge =

Table 2. CBFM simulation parameters. nOL = 1 for all cases. Cases 1–3: NEdge = 16, 983 and P = 8.
Cases 4–6: NEdge = 16, 983 and P = 8. Case 7: NEdge = 24, 321 and P = 24. Case 8: NEdge = 41, 472
and P = 26. The number nIPW is introduced in Eq. (10). The threshold ϵSVD is given for CBFM and
HCBFM, respectively.

Case-Geometry ϵr2 N̄Edge N̄Edge,OL nIPW ϵSVD

1-Sphere 2 2,123 2,330 1 10−7, 10−5

2-Sphere 2-0.2i 2,123 2,330 1 10−7, 10−5

3-Sphere 4 2,123 2,330 1 10−7, 10−5

4-Cube 2 1,764 1,980 0.5 10−7, 10−5

5-Cube 2-0.2i 1,764 1,980 0.5 10−7, 10−5

6-Cube 4 1,764 1,980 0.5 10−7, 10−5

7-Sphere 4-0.2i 1,013 1,216 1 -, 10−4

8-Cube 4-0.2i 1,595 1,824 1 -, 10−6
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Table 3. CBFM is the conventional CBFM and HCBFM, that presented in this paper. Cases 1–3,
the object is a sphere of radius a = 1λ0. Cases 4–6, the object is a cube of length L = 1.4λ0. Case 7,
a = 1.2λ0. Case 8, L = 2.4λ0.

Case CBFM +MECA HCBFM +POJ +POZ1

1: 2N̄IPW 814 - 740 - 740

1: N̄IPW,SVD 376 - 361 - 349

1: Dif [dB] 0.07 - 0.13 - 0.06

2: 2N̄IPW 814 - 740 - 740

2: N̄IPW,SVD 378 - 362 - 349

2: Dif [dB] 0.09 - 0.11 - 0.07

3: 2N̄IPW 962 - 916 - 916

3: N̄IPW,SVD 473 - 480 - 466

3: Dif [dB] 0.15 - 0.18 - 0.05

4: 2N̄IPW 1,314 1,314 1,252 1,252 1,252

4: N̄IPW,SVD 332 339 365 372 375

4: Dif [dB] 0.23 0.51 0.20 0.92 0.76

5: 2N̄IPW 1,334 1,334 1,252 1,252 1252

5: N̄IPW,SVD 395 340 378 369 375

5: Dif [dB] 0.06 0.11 0.05 0.57 0.16

6: 2N̄IPW 1,518 1,518 1,480 1,480 1,480

6: N̄IPW,SVD 466 409 497 501 499

6: Dif [dB] 0.19 2.02 0.16 2.66 0.63

7: 2N̄IPW - - 923 - 923

7: N̄IPW,SVD - - 268 - 263

7: Dif [dB] - - 0.06 - 0.06

8: 2N̄IPW - - 777 777 777

8: N̄IPW,SVD - - 398 368 394

8: Dif [dB] - - 0.11 064 0.24

PN̄Edge), the size of the CBFM characteristic matrix is NR×NR, whereNR = PN̄IPW,SVD and N̄IPW,SVD

is given in the legend of the figures as [2N̄IPW − N̄IPW,SVD].
Figure 3 shows a good agreement with the Mie solution, especially for CBFM-ϵSVD = 10−7

and HCBFM-ϵSVD = 10−5, for which N̄IPW,SVD = (376, 361) and the reduced factor β =
2N̄Edge/N̄IPW,SVD = (5.65, 5.88), respectively. The CBFM needs a larger SVD threshold ϵSVD than
HCBFM to obtain a similar number N̄IPW,SVD of PBFs (or accuracy) because the size of the matrix is
twice. Fig. 3 and Table 2 also show that the number N̄IPW, computed from Eq. (10), is smaller than
N̄Edge,OL.

Figure 5 plots the ratio 10| log10(RCS/RCSMIE)| (dB) versus θsca, where the RCSs are computed
from:

• HCBFM-POZ: PMCHW linear system solved from HCBFM, where the PBFs are computed from
POZ (EFIE impedance matrix) (17).

• HCBFM-POZ1: Same as CBFM2-POZ, but the PBFs of the impedance matrix Z̄(MM) are assumed
to be equal to those of Z̄(JJ).

As we can see, HCBFM-POZ based on the PO impedance matrix predicts better results than those
calculated from HCBFM with a smaller number of PBFs (349 instead of 361). Moreover, the results of
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Figure 4. Ratio 10| log10(RCS/RCSMIE)| [dB]
versus θsca. The simulation parameters are the
same as in Fig. 3.

Figure 5. Ratio 10| log10(RCS/RCSMIE)| versus
θsca. The simulation parameters are the same as
in Fig. 3.

Figure 6. RCS in dBm2 versus θsca. a = 1λ0

(Fig. 2), θinc = 0, V V polarization and ϵr2 =
2− 0.2i.

Figure 7. RCS in dBm2 versus θsca. a = 1λ0

(Fig. 2), θinc = 0, V V polarization and ϵr2 = 4.

HCBFM-POZ1 are the same as those obtained by HCBFM-POZ. From Eq. (17), one has

Z̄MM-PO

Z̄JJ-PO
=

√
ϵr1ϵr2

η20
, (23)

which explains that the PBFs calculated from Z̄JJ-PO and Z̄MM-PO are equal. In comparison to CBFM,
this property expedites the computation because the impedance matrix size is divided by a factor two.
It is important to underline that the results obtained from CBFM-MECA [29] and HCBFM-POJ, not
depicted here, failed. This explains, in Table 3, why the symbol “-” (undefined) occurs.

Figures 6 and 7 plot the RCS in dBm2 versus θsca for ϵr2 = 2− 0.2i (case 2) and ϵr2 = 4 (case 3),
respectively. Table 3 lists (2NIPW, NIPW,SVD,Dif) versus the methods (CBFM, HCBFM, HCBFM-
POZ1).

In comparison to ϵr2 = 2 (case 1), as |Im(ϵr2)| increases, NIPW,SVD does not change significantly
for a similar deviation from the Mie solution (Dif remains nearly constant). As Re(ϵr2) increases (from
2 to 4), more PBFs are required. This is a coherent result because as Re(ϵr2) grows, the wavelength
decreases in the inner medium; therefore, a higher number of degrees of freedom is expected to model
the surface currents.
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In Table 3, for cases 1, 2 and 3, the number Dif shows that HCBFM-POZ1 is as accurate as
HCBFM.

3.2. Cube of Length L = 1.4λ0 (Cases 4–6)

The cube of length L = 1.4λ0 is plotted in Fig. 8. For all simulations, the number of blocks P = 8,
incidence angle θinc = 0 (−ẑ direction), the polarization is V V , and the edge mean length l̄Edge is 0.05λ0

to satisfy the condition l̄Edge ≤ λ0/[10× Re(
√
ϵr2)], where ϵr2 is the inner medium permittivity.

Figure 8. Cube of length L = 1.4λ0 (NEdge =
14, 112). A block is represented by a color and
the edge mean length is 0.06λ0. The CBFM
simulation parameters are listed in Table 2.

Figure 9. RCS in dBm2 versus the scattering
angle θsca. L = 1.4λ0 (Fig. 8), θinc = 0, V V
polarization and ϵr2 = 2.

Figure 10. Ratio 10| log10(RCS/RCSLU)| [dB] versus the scattering angle θsca. The simulation
parameters are the same as in Fig. 9.

For ϵr2 = 2, Fig. 9 plots the RCS in dBm2 versus the scattering angle θsca. Fig. 10 plots the
corresponding ratio 10| log10(RCS/RCSLU)| (dB) versus θsca. As we can see, the CBFM and HCBFM
predict good results, except for low values of the RCS, and HCBFM is more accurate than CBFM
because the number of PBFs is larger. Unlike the sphere, CBFM-MECA and HCBFM-POJ give
satisfactory results, and their precisions are comparable. Moreover, HCBFM-POZ1 is less accurate
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than HCBFM. In comparison to the sphere, the number of plane waves NIPW is larger for a cube. In
Table 2, nIPW = 0.5 (from Eq. (10), NIPW is twice) for the cube, whereas for the sphere nIPW = 1.

For ϵr2 = 2 − 0.2i and ϵr2 = 4, Figs. 11 and 12 plot the RCS in dBm2 versus θsca. As |Im(ϵr2)|
increases, Fig. 11 reveals that CBFM and HCBFM predict better results as for Im(ϵr2) = 0, and the
number of PBFs NIPW,SVD slightly increases. When PO is applied, NIPW,SVD remains nearly the same
as that obtained for Im(ϵr2) = 0. In addition, the use of the different formulations of PO do not affect
the accuracy. For HCBFM and for a threshold of ϵSVD = 10−6 (instead of ϵSVD = 10−5), results not
depicted here show that the accuracy is better, but the number NIPW,SVD increases by 20%.

Figure 11. RCS in dBm2 versus θsca. L = 1.4λ0

(Fig. 8), θinc = 0, V V polarization and ϵr2 =
2− 0.2i.

Figure 12. RCS in dBm2 versus θsca. L = 1.4λ0

(Fig. 8), θinc = 0, V V polarization and ϵr2 = 4.

As |Re(ϵr2)| increases, Fig. 12 reveals that the accuracies of CBFM and HCBFM do not change
significantly in comparison to Fig. 9. Like for the sphere, the number NIPW,SVD grows in comparison
to that obtained for ϵr2 = 2. In addition, Fig. 12 shows that HCBFM-POJ and CBFM-MECA deviate
from LU, whereas HCBFM-POZ1 gives satisfactory results.

3.3. Hybridization with ACA (Cases 7–8)

In this section, HCBFM is combined with ACA.
Figure 13 plots the RCS in dBm2 versus θsca. The sphere radius is a = 1.2λ0 (NEdge = 24, 321); the

number of blocks is P = 24; θinc = 0; the polarization is V V ; and ϵr2 = 4− 0.2i. In the legend, within
brackets, the numerical values are the two numbers [ϵACA, τ̄ACA] (ϵRACA = 10ϵACA) defined in Table 1.

It is well known that the ACA compression is efficient for two distant blocks. Thus, ACA is not
applied to connected blocks. For P = 24, the number of unconnected block pairs equals 398. For
ϵACA = 10−4, the number of compressed blocks pairs is 372, whereas for ϵACA = 10−3, it is equal to 396.
As expected, in Fig. 13, as ϵACA increases, the ACA mean compression rate on the compressed block
pairs increases and tends to 1. Typically, if τACA ≈ 1, then a coupling matrix is approximated equal to
the product of a column vector by a row vector. The mean rank of the compressed coupling matrices
is then r̄ACA ≈ (1− τ̄ACA)N̄Edge/2.

For a matrix Z̄ of size M ×N , the ACA complexity scales O(r2(N +M)) due to the calculation of
a norm between two matrices to stop the algorithm and determine the rank r. For a dielectric surface,
the impedance matrix (1) is computed from three sub-matrices (Z̄(JJ), Z̄(MM), Z̄(JM)), which has to be

compressed. To avoid calculating r for the three matrices, the rank r is only computed on Z̄(JJ), and it is
assumed to be the same for the two other matrices. This avoids calculating the norm and expedites the
two next ACA compressions on Z̄(MM) and Z̄(JM). In addition, the two matrices (Ū, V̄) (Z̄ ≈ ŪV̄) are

stored, which allows us to benefit the symmetrical properties of (Z̄(JJ), Z̄(MM), Z̄(JM)). Fig. 13 exhibits
a very good agreement between the results with and without compression, which shows that ACA does
not deteriorate the accuracy.
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Figure 13. RCS in dBm2 versus θsca. a = 1.2λ0

(NEdge = 24, 321 and P = 24), θinc = 0, V V
polarization and ϵr2 = 4− 0.2i.

Figure 14. RCS in dBm2 versus θsca. L = 2.4λ0

(NEdge = 41, 472 and P = 26), θinc = 0, V V
polarization and ϵr2 = 4− 0.2i.

Figure 14 plots the RCS in dBm2 versus θsca. The cube length is L = 2.4λ0 (NEdge = 41, 472);
the number of blocks is P = 26, θinc = 0; the polarization is V V ; and ϵr2 = 4 − 0.2i. The number of
unconnected block pairs equals 482 (on a total of 262 = 676), and the number of compressed blocks
is the same. As we can see, the results with compression match well with the HCBFM ones. The
hybridization of POZ1 in HCBFM produces a slight difference from LU, which does not come from
ACA.

3.4. Complexity and Comments on the Software MatLab

Figure 15 plots the computing time (in hours) in full and dashed lines versus the number of edges NEdge.
The filling time of the impedance matrix(es) is not included. The complexity is modelled as C = aNn

Edge,

in which (a, n) are obtained from a linear regression, and their values are given in the legend. The last

Figure 15. Computing time (in hours) versus the number of edges NEdge, ranging from 24,321 to
60,795. The filling time of the impedance matrix(ces) is not included. The target is a sphere having a
radius a ranging from 1.2λ0 to 1.9λ0 (mean edge length equals 0.05λ0) and its relative permittivity is
3 − 0.1j. The number of blocks P ranges 21 to 45 and the edge mean number per block N̄Edge ranges
from 1,158 to 1,578. The CBFM threshold is ϵCBFM = 10−5 and the ACA threshold is ϵACA = 10−3.
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number r is the regression coefficient (if r = 1 the regression is perfect). In Fig. 15, the symbols plots
C = aNn

Edge. As expected, the numerical complexity of LU is nearly O(N2.9
Edge) instead of O(N3

Edge) for
the theoretical one. In Matlab, the function linsolve is applied to solve the linear system, and it is well
optimized since it is parallelized. The use of HCBFM (without parallelization) allows us to reduce the
complexity as O(N1.8

Edge), and its hybridization with POZ1 does not significantly change the complexity.
Nevertheless, the computing time is slightly smaller than that obtained without hybridization. Indeed,
as shown by Eq. (23), POZ1 assumes that the PBFs associated with the surface currents J and M
are equal (POZ applied one time). The use of RACA allows us to further reduce the complexity since
the block coupling impedance matrices are compressed, which accelerate the matrix-matrix products
during the calculation of the reduced impedance matrix (stage 2, Eq. (12)). For a given geometry,
NEdge = PN̄Edge is a constant. The complexity (value of n) can slightly change with respect to the
value of P and N̄Edge. In Fig. 15, N̄Edge ranges from 1,158 to 1,578. The block size should not exceed
2000–2500 unknowns in order that the calculation of the PBFs is fast. Its complexity is O(2N̄3

Edge),

corresponding to an LU inversion plus an SVD. Park et al. [45] published a paper on this issue.
For a perfect electric conductor, the theoretical complexity of CBFM and CBFM-POZ is derived

in [34] (Figs. 14 and 15) and it is also compared with the numerical one, where a satisfactory agreement is
obtained. Similar simulations, not depicted here, showed that the theoretical complexity overestimates
the computing time.

To exploit the sparsity of the POZ impedance matrix, a basic iterative technique named “IT” is
derived in [34]. For a dielectric surface, it is easy to generalize this algorithm. The theoretical complexity
to compute the 2NIPW PBFs of a single block is approximately O(4N̄Edge,OLKNIPW), whereas from
LU, it is O(N̄3

Edge,OL). Therefore, the time saving should be N̄2
Edge,OL/(4KNIPW) ≫ 1. With MatLab,

numerical tests (1400 edges; sub-surface of size (2λ)2) show that this ratio is of the order of 1. This
shows that the function linsolve of MatLab, for which no loop is needed for the calculation of the PBFs,
is well optimized (because parallelized) for multiple excitations. When CBFM is hybridized with POZ
and an iterative solver (like IT or gradient conjugate), two loops are needed; the first one on the PBFs
number and the second one, on the iteration k to obtain the convergence order K. This explains why
the complexity (not shown here) is nearly the same between HCBFM-LU and HCBFM-POZ1-IT or
HCBFM-POZ1-CG.

3.5. Memory Requirement

The memory requirement of HCBFM is:

MHCBFM = 2PN̄2
Edge︸ ︷︷ ︸

{Z̄i,i}

+ cPN̄EdgeN̄IPW, SVD︸ ︷︷ ︸
PBFs

+
(
PN̄IPW, SVD

)2︸ ︷︷ ︸
Z̄R

. (24)

The first RHS term corresponds to the storage of the P self-impedance matrices Z̄i,i (related to
J and M). This avoids recalculating them during the computation of Z̄R. The second one is for
the storage of the PBFs of the P blocks, where c = 2 for POZ and c = 1 for POZ1. The last one
corresponds to the storage of the reduce matrix Z̄R. The memory requirement for the brute force MoM
is MLU = (2PN̄Edge)

2.
At the top of Fig. 16, the ratio MLU/MHCBFM (gain in memory requirement) is plotted versus

NEdge. As expected, this ratio increases as NEdge grows, which means that HCBFM is efficient in terms
of memory requirement in comparison to a brute force MoM.

In the middle of Fig. 16, the RACA mean compression ratio on the unconnected pair blocks is
plotted versus NEdge. The number of blocks is chosen such that the edge number per block remains
constant and is of the order of 1400. As NEdge increases, the number of blocks grows, and the number
of unconnected block pairs also increases. In addition, the mean compression increases because the
distance between the blocks grows. So, HCBFM hybridized with RACA is efficient for a large problem.
It is important to underline that the precision of HCBFM is not deteriorated as NEdge increases.

The time filling of the whole impedance matrix (LU solution; complexity of O(N2
Edge)) is

approximately 4–5 times faster than that obtained to calculate the CBFM sub-matrices. The
explanation is that with CBFM, to compute the P 2 sub-matrices, the associated function (written
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Figure 16. Top: Ratio MLU/MHCBFM (gain in memory requirement) versus NEdge. Middle: RACA
mean compression ratio versus NEdge on the unconnected pair blocks. Bottom: Percentage of the
unconnected pair blocks versus NEdge.

in C) is called P 2 times from MatLab, whereas only once for LU. When RACA is applied, the time
filling of the unconnected coupling impedance matrices is strongly reduced.

4. CONCLUSION

In this paper, a new numerical scheme of CBFM is addressed to calculate the field scattered by a
dielectric object. To expedite the calculation of the PBFs, related to the electric and magnetic currents,
PO is applied. This approximation, named POZ, is obtained from the sparse EFIE impedance matrix.
In addition, PO of Jakobus and Landstorfer (valid for a PEC surface) is extended to a dielectric surface,
named POJ. The MECA, based on the tangent-Kirchhoff plane approximation, is also hybridized with
CBFM. The numerical results show that HCBFM-POZ is valid for both a sphere and a cube whereas
CBFM-MECA and HCBFM-POJ are only valid for a cube and are less accurate. We also show that
the POZ PBFs of electric and magnetic currents are equal, which allows us accelerate the computation
of the PBFs step, since the matrix size is to halve in comparison to the conventional CBFM. The use
of the ACA compression accelerates the calculation of the characteristic matrix without altering the
accuracy. POZ (or POZ1) needs a matrix inversion which makes this approximation more robust versus
the surface curvature, unlike POJ and MECA, which do not require a matrix inversion. As shown
in [34], since the POZ matrix is sparse, its inversion is strongly expedited by using a simple iterative
algorithm.
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