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Scattering From Quasi-Planar and Moderate Rough
Surfaces: Efficient Method to Fill the

EFIE-Galerkin MoM Impedance Matrix
and to Solve the Linear System

Christophe Bourlier

Abstract— First, an acceleration to compute the impedance
matrix obtained from the electric field integral equation (EFIE)
discretized by the Galerkin method of moments (MoM) with
Rao–Wilton–Glisson basis functions is addressed. It is based on
a far-field approximation and makes it possible to avoid looping
on the source and observation triangles. Next, the impedance
matrix is split into strong and weak interactions; the latter is
compressed by expressing it from Toeplitz submatrices. Then,
the linear system is efficiently solved by a bi-iterative scheme.
For a given order, the least-squares QR (LSQR) algorithm is
applied to solve the sparse linear system related to the strong
interactions, while the matrix–vector products, related to the
weak interactions, are accelerated by using FFTs. Numerical
results of the field scattered by perfectly conducting paraboloid-
shape object and Gaussian rough surface are shown.

Index Terms— Electric field integral equation (EFIE), fast
algorithm, method of moments (MoM), radar cross section, rough
surface scattering.

I. INTRODUCTION

THE calculation of full vector wave scattering from a
large perfectly conducting surface is a very challenging

issue; the main difficulty lies in the problem size. Solving a
problem of this kind, from the electric field integral equation
(EFIE) discretized by the Galerkin method of moments (MoM)
with Rao–Wilton–Glisson basis functions [1], requires a great
number of unknowns NEdge in order to obtain accurate and
meaningful results. Thus, reduction of both computation time
and data storage requirement is continuously in progress.

Direct solvers, such as the lower upper (LU) decomposition,
require O(N3

Edge) operations while iterative solvers [2], such as
conjugate gradient or generalized minimal residual (GMRES)
techniques [3], need O(N2

Edge) operations for the matrix–vector
multiplication at each iteration. The memory requirement for
these two solvers is usually O(N2

Edge). Such computational
complexity and memory requirements are too restrictive to be
able to solve a large-scale scattering problem.
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These two disadvantages can be alleviated by using the
sparse matrix canonical grid method (SMCG) [4]–[7], the
adaptive integral method (AIM) [8]–[12], the stabilized
extended boundary condition method (SEBCM) [13], and the
fast multipole method (FMM) [14], [15]. For far-field interac-
tions, the principle of AIM and SMCG is similar and consists
of expressing the Green function on a uniform grid by using an
interpolation scheme. From SMCG, a Taylor series expansion
is also applied on the surface elevations. It is related to the
concept of the short interaction range [16]. This implies that
the matrix is Toeptliz, making it possible to reduce the memory
requirement and to accelerate the matrix–vector product by
using FFTs. The first novelty of this article is to accelerate the
calculation of the weak impedance matrix elements by deriving
a closed-form expression, resulting from the sum over the four
facets common to the source and observation edges. In addi-
tion, since with a triangular discretization the basis functions
are not uniformly distributed, the weak impedance matrix is
expressed from three Toeplitz submatrices by defining two uni-
form subgrids. This avoids applying interpolations. Next, for
quasi-planar surfaces and similar to [7], the surface elevation
�z is accounted for by expanding the Toeplitz submatrices
over �z.

For an iterative solver, the convergence of iterations is not
very good for ill-posed matrix equations. This often occurs
when the EFIE is used to solve 3-D complex scattering
problems. For instance, Hu and Nie [17] added the MFIE
contribution to decrease the condition number of the resulting
matrix, and the linear system is solved from a bi-iterative
procedure. The present method distinguishes the strong near-
field interactions and the weak ones between the observa-
tion point and the source point. This has the advantage
that only the near interaction matrix is stored, and the far
interaction matrix is Toeplitz by blocks and requires to store
only O(NEdge) elements. The second novelty of this article
is to take advantage of this decomposition for solving effi-
ciently the linear system from a bi-iterative algorithm. Then,
for a given order, the least-squares QR (LSQR) algorithm
[18] is applied to efficiently solve the sparse linear system
related to the strong interactions, while the matrix–vector
products, related to the weak interactions, are accelerated by
using FFTs. Numerical tests showed that LSQR converges
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more rapidly than GMRES or biconjugate gradient stabilized
method.

This article is organized as follows. Section II presents the
EFIE impedance matrix and the scattered field. Section III
addresses the derivation of the weak interaction impedance
matrix. Section IV deals with how this matrix can be par-
titioned into Toeplitz submatrices. Section V presents the
bi-iterative scheme to efficiently solve the linear system.
Section VI shows numerical results for a paraboloid-shaped
object and a Gaussian rough surface. Section VII gives con-
cluding remarks.

II. EFIE IMPEDANCE MATRIX AND SCATTERED FIELD

In this article, to compute the field scattered by a per-
fectly conducting object, the EFIE is solved from the MoM.
In addition, the Galerkin method is applied by using the
Rao–Wilton–Glisson basis functions. This leads to solving the
linear system Z̄X = b, where Z̄ is the impedance matrix and
X a vector related to the incident wave. The time convention
e− jωt is used throughout this article.

The element Zm,n of the impedance matrix Z̄, corresponding
to the interaction between two edges m (observation) and n
(source) of a facet couple (p, q), is expressed as [2]

Zm,n = spsq

4π A p Aq Lm Ln

��
Tp

��
Tq

�
ρ

p
m · ρq

n − 1

k2

�

×e− jkDp,q

Dp,q
d Rpd Rq (1)

where sp,q = ±1 and {A p,q} are the triangle areas, {Lm,n}
the edge lengths, and ρ

p,q
m,n = �

V p,q
m,n − Rp,q

�
/2, in which

V p,q
m,n is the position vector of the vertex unshared by the

edge (m, n) and belonging to the facet (p, q). In addition,
Dp,q = ��R p − Rq

�� and k is the wavenumber that equals
2π/λ, where λ is the wavelength in free space.

Assuming a plane incident wave, a component bm of the
vector b associated with the source edge m and facet p is
given by [2]

bm = − j

ωμ

Lmsm

2A p

��
Tp

ρ p
m · p̂ince−kinc·R p d Rp (2)

where ω is the wave pulsation and μ the permeability of the
surrounding medium. In addition, p̂inc [either vertical, v̂inc

(θ ), or horizontal, ĥinc (φ)] and kinc are the polarization and
incident wave vectors, respectively, both defined in spherical
coordinates from the angles (θinc, φinc). By solving the linear
system X = Z̄−1b, the components {an} of the vector X are
found. The scattered far-field is then expressed as

E∞
sca(R0) = − jωμe− jkR0

8π R0

PFacet�
p=1

MEdge�
m=1

Lmamsm

A p

×
��

Tp

ρ p
me j ksca·R p d Rp (3)

where PFacet is the number of facets and MEdge the number
of edges associated with the facet p. In addition, R0 is the

distance from the receiver to the phase origin of the object.
The scattering coefficient is then expressed as

SCpinc psca = lim
R0→∞

2
√

π R0
E∞

sca · p̂sca

Einc · p̂inc
(4)

where pinc = {θ, φ} and psca = {θ, φ}. The subscripts
“inc” and “sca” stand for incident and scattered (waves),
respectively. The receiver polarization basis (k̂sca, v̂sca, ĥsca)
can be defined in a similar way as that of the incident field
(k̂inc, v̂inc, ĥinc), in which θsca and φsca are the receiver (scat-
tering) angles. The radar cross section RCSpinc psca is obtained
by taking the squared modulus of SCpinc psca .

III. DERIVATION OF THE WEAK INTERACTION

IMPEDANCE MATRIX

The impedance matrix is split into near Z̄Strong (or strong)
and far Z̄Weak (or weak) interactions as

Z̄ = Z̄Strong + Z̄Weak (5)

where the elements of the strong interactions are calculated
from (1) (without approximation) and those of the weak inter-
actions from the equation derived in Appendix A. Equation (1)
shows that Zm,n requires the calculation of two twofold
numerical integrations over the surfaces of the triangles Tp and
Tq . This is done from twofold Gauss–Legendre integrations. In
this article, the weak interactions are derived from a closed-
form expression addressed in Appendix A. The singularity,
which occurs for Dp,q = 0, is computed from the work
published by [19].

Then, calculating the sum over the four facets of edges
(m, n), Appendix A shows that an element of the weak
interaction is

Z̃m,n ≈
p=3�
p=1

G(p)(Rm − Rn)W (p)(Rm, Rn)

=
p=3�
p=1

G(p),(0)
�
rm,n

� q=Q�
q=0

W (p)(Rm, Rn)

× (zm − zn)
2q A(p),(q)

�
rm,n

�
(6)

where Rm,n = rm,n + (zm − zn)ẑ and G(p),(0)
m,n = G(p)

m,n|zn−zm=0.
The above equation shows that the matrix ˜̄Zm,n is expressed
as the sum over three matrices {Ḡ(p)} that depend only on
Rm−Rn weighted by polynomial functions {W (p)} that depend
on the source edge Rn (its middle) and observation edge Rm

(its middle). In addition, the element G(p)
m,n can be expanded

over z = zm − zn near 0, where z is the elevation difference
between the edge middles m and n. It is important to under-
line that G(p),(0)

m,n and A(p),(q)
m,n (weighting of the Taylor series

expansion) depend only on rm,n = 	
(xm − xn)2 + (ym − yn)2.

The functions W (p)
m,n , G(p),(0)

m,n , and A(p),(q)
m,n are expressed from

(A15), (A17), (A20) (Q = 1) and (A21) (Q = 2).
The appendix also shows that (6) is valid if the strong

interaction distance ((A6) and (A22)) satisfies

rStrong > max

�
max(Lm,�z)2n0

2λ
, max(�z)



n0

2

�
(7)
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where n0 = 20, �z = max(z)− min(z) on the distance rStrong,
and Lm is the m edge length.

If the (xm, ym) (or (xn, yn)) Cartesian grid is uniform, then
the matrix associated with the element G(p),(0)

m,n × A(p),(q)
m,n =

B(p),(q)
m,n is Toeplitz. In addition, since W (p)

m,n = �s=S
s=1 f (s)

m g(s)
n

is a polynomial function of Rn and Rm , (6) can be written as

Z̃m,n ≈
p=3�
p=1

q=Q�
q=0

R=2q�
r=0

W (p)
m,n B(p),(q)

m,n (zm)2q−r (−zn)
r Cr

2q

=
p=3�
p=1

s=S�
s=1

q=Q�
q=0

R=2q�
r=0

Cr
2q

�
(zm)2q−r f (s)

m



B(p),(q)

m,n

× �
(−zn)

r g(s)
n



(8)

where B(p),(q)
m,n = G(p),(0)

�
rm,n

�
A(p),(q)

�
rm,n

�
and Cr

2q =
(2q)!/[r !(2q − r)!] (binomial coefficient). The above equation
is in a form such that the source point n is on the right-
hand side of B(p),(q)

m,n , while the observation point m is located
on the left-hand side of B(p),(q)

m,n . Appendix A shows that
S = 3 + 6 + 36 = 45 and gives the expression of {g(s)

n , f (s)
m }

for s = {1, 2, 3}, corresponding to p = 1. The terms defined
for s > 3 are obtained in a similar way.

The integer S corresponds to the expansion order that
decomposes any function as a sum of S terms that depend
only on the (m, n) product. For example, the dot product
ρm · ρn = ρm,xρn,x + ρm,yρn,y + ρm,zρn,z, where the subscripts
(x, y, z) denote the vector components. Then S = 3. This way
is applied in (A15).

Then, the matrix product O ˜̄ZS can be computed from
3 × 45 × [Q(Q + 2) + 1] FFTs, where O and S are any
observation and source vectors, respectively.

IV. TOEPLITz SUBMATRICES

As shown in Fig. 1, the (xm, ym) (or (xn, yn)) Cartesian grid
over the center of the edges is not uniform, but the grid can be
uniform by blocks. To this end, as shown in Fig. 1, the edges
are sorted in ascending order going from left to right and from
bottom to top. In what follows, the edges of y values equal to
{−0.15,−0.5, 0.5, 0.15}λ are named odd rows, whereas those
of y values equal to {−0.1, 0, 0.1}λ are named even rows.

Let f be any function of rm,n = 	
(xn − xm) + (yn − ym)2

(planar surface) and Zm,n an element of the matrix Z̄ associ-
ated with the function f (rm,n). Then, as shown in Fig. 2, Z̄
is Toeplitz by blocks by considering four cases.

1) The purple color represents the Toeplitz submatrices
between the edges of odd rows.

2) The blue color represents the Toeplitz submatrices
between the edges of even rows.

3) The green color represents the Toeplitz submatrices
between the edges of odd rows and even rows, for which
the edge numbers are odd.

4) The yellow color represents the Toeplitz submatrices
between the edges of odd rows and even rows, for which
the edge numbers are even.

In addition, for two rows separated by the same y distance,
the matrix is the same. For example, in Fig. 2, the subma-
trix of edges m = n = {1, 2, 3, 4, 5, 6, 7} is the same as

Fig. 1. Sort of the edges. A square plate of area Lx × L y = (0.4λ)2 is
considered, and the sampling steps with respect to the x- and y-directions are
�x = �y = 0.1λ. The label m ⇒ m� (or n ⇒ n�) means that the first number
m indicates the original edge number and the second number m� gives the
new edge number. The integer m� sorts the edges in ascending order going
from left to right and from bottom to top.

Fig. 2. Structure of the impedance matrix represented by Toeplitz submatri-
ces. The four cases are represented by four colors, and the geometry is shown
in Fig. 1.

that obtained for m = n = {12, 13, 14, 15, 16, 17, 18}. For
cases 1, 2, and 3, the submatrices are also symmetric, which
implies that only the first row is calculated, whereas, for
case 4, the first row and column are computed.

For each case, Table I lists the length of the rows or columns
of the submatrices and their number. Nx,y is the number of
vertices on a uniform grid of step �x and �y , respectively.
For instance, in Fig. 1, �x = �y = 0.1λ, Nx = Ny = 5.

The total number of elements is then NToep = 6Nx

Ny − 10Nx − 8Ny + 13, while the number of edges is
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TABLE I

FOR EACH CASE, NUMBER AND LENGTH OF THE ROWS OR COLUMNS
OF THE SUBMATRICES. FOR CASE 4, THE LAST

LINE CORRESPONDS TO THE COLUMNS

NEdge = 3Nx Ny − 4(Nx + Ny) + 5. For Nx � 1 and Ny � 1,
NToep ≈ 2NEdge. For the weak interactions and a planar
surface, this means that, instead of calculating N2

Edge − NStrong

elements, only 2NEdge elements are computed, where NStrong

is the number of edge pairs in near field. In other words,
for N2

Edge � NStrong, the compression rate is of the order of
1 − 2/NEdge.

In addition, from the Section III and Table I, for
Nx,y � 1, the complexity of the matrix–vector product
Z̄X = (Z̄Strong + Z̄Weak)X is

CMVP = 135 × [Q(Q + 2) + 1] × 4 × Ny log2 Nx + NStrong

= 540[Q(Q + 2) + 1]Ny log2 Nx + NStrong

≈ α
	

NEdge log2 NEdge + NStrong (9)

where α = 270[Q(Q + 2) + 1]/
√

3, NEdge ≈ 3Nx Ny = 3N2
x

with Ny = Nx . For rStrong = 0, NStrong = N2
Edge (Z̄Weak = 0̄).

Then, in comparison to a conventional matrix–vector product
of complexity N2

Edge, the use of FFTs is efficient if

ηMVP = α log2 NEdge

N3/2
Edge

+ NStrong

N2
Edge

	 1. (10)

V. RESOLUTION OF THE LINEAR SYSTEM

The final step is to efficiently solve the linear system
Z̄X = b. For large problems, the conventional LU decom-
position cannot be used, and iterative schemes are preferred.
Usually, the conjugate gradient algorithm and their improved
versions can be good candidates, but, for the EFIE, their
convergence order is very large (for the scenarios presented in
Section VI, the order exceeds 300). In this article, we propose
to use Z̄Strong as a preconditioning matrix M̄c = Z̄−1

Strong Z̄Weak,
and next, a Taylor series expansion is applied on the resulting
characteristics matrix to account for the weak interactions
through Z̄Weak. Then

X = �
Z̄Strong + Z̄Weak

�−1
b

=
�

Z̄Strong

�
Ī + Z̄−1

Strong Z̄Weak

��−1
b

= �
Ī + M̄c

�−1
Z̄−1

Strongb

≈
K�

k=0

�−M̄c
�k

Z̄−1
Strongb =

K�
k=0

Ȳ (k) (11)

in which�
Ȳ (0) = Z̄−1

Strongb k = 0

Ȳ (k+1) = −M̄cȲ (k) = −Z̄−1
Strong

�
Z̄WeakȲ (k)

�
k > 0

. (12)

Fig. 3. Paraboloid surface with Lx = L y = 12λ. NEdge = 42, 960, �x =
�y = 0.1λ, and a = λ/2.

This algorithm converges if the spectral radius (largest mod-
ulus of its eigenvalues) of M̄c is strictly smaller than one.
This implies that the strong distance must be not too small.
For large problems, this value is not calculated because it
is very time-consuming. Since Z̄Strong is a sparse matrix, its
LU decomposition matrices are also sparse, but this operation
can be time-consuming. To overcome this issue, the LSQR
[18] (least-squares QR) algorithm is applied because it is
efficient for a sparse matrix and more efficient than a gradient
conjugate-based method.

From (12), the complexity of the I-LSQR (I as iterative)
algorithm is

CI-LSQR = CLSQR + KI-LSQR
�
CLSQR + CMVP

�
(13)

where CLSQR is the complexity of the LSQR algorithm and
CMVP is expressed from (9). The convergence order KI-LSQR =
k is obtained when the relative residual error (RRE) satisfies

RRE = norm
�
X (k+1) − X (k)

�
norm

�
X (k+1)

� < �I-LSQR (14)

where X (K ) = �k=K
k=0 Y (k) and �I-LSQR is the threshold of I-

LSQR. Typically, �I-LSQR = 10−2 and �LSQR = 5 × 10−4 equal
the LSQR threshold.

VI. NUMERICAL RESULTS

The wavelength in free space λ is 1 m, and the polarization
is θθ .

A. Paraboloid Surface

First, a paraboloid surface of equation z(x, y) = 2a
(x2 + y2)/L2

x is considered, and it is shown in Fig. 3. In the
(Ox, Oy) plane, the surface area is Lx L y , where {Lx,y} are
the surface lengths with respect to the x- and y-directions. In
addition, the center of the surface is the point O of coordinates
(0, 0). For x = Lx/2 and y = L y/2 = Lx/2, z = a = max(z).
In Fig. 3, the number of edges is NEdge = 42, 960, and the
sampling steps with respect to the x- and y-directions are
�x = �y = 0.1λ and a = λ/2.

Fig 4 shows the plots of the bistatic RCS in dBm2 versus
the scattering angle θsca. To better highlight the differences,
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Fig. 4. Top: bistatic RCS in dBm2 versus the scattering angle θsca. Bottom:
ratio RCSI-LSQR/RCSLU in dB scale. Q = 0, rStrong = {1.2, 1.4, 1.6}λ, θinc =
π/6, φinc = 0, and φsca = 0. The illuminated object is a paraboloid surface,
as shown in Fig. 3.

in the lower subfigure, the ratio RCSI-LSQR/RCSLU is plotted
in dB scale, where RCSLU is the RCS computed from a
LU decomposition of the impedance matrix. The incidence
angles are θinc = π/6 and φinc = 0, and φsca = 0 is
the azimuthal scattering angle. The illuminated object is a
paraboloid surface, as shown in Fig. 3. In the legend, “LU:
(tLU,1, tLU,2) s” and “uStrong, I-LSQR − (Q, KI-LSQR, NLSQR) :
(tI-LSQR,1, tI-LSQR,2, tI-LSQR,3) s, RRE” mean the following.

1) tLU,1: Computing time to fill the impedance matrix, in
seconds.

2) tLU,2: Computing time to solve the linear system from
LU, in seconds.

3) uStrong = rStrong/λ: Distance of the strong interactions
normalized by λ.

4) KI-LSQR: Convergence order of I-LSQR.
5) NLSQR: Mean convergence order of LSQR (�LSQR =

5 × 10−4).
6) Q: Order of the Taylor series expansion over z.
7) tI-LSQR,1: Computing time to fill the impedance matrix

of the strong interactions, in seconds.
8) tI-LSQR,2: Computing time to compute the matrix–vector

product Z̄WeakȲ (k) = v, in seconds.
9) tI-LSQR,3: Computing time to solve the linear system

Z̄−1
Strongv from LSQR (�LSQR = 5 × 10−4), in seconds.

10) RRE: RRE obtained at the convergence order KI-LSQR

(�I-LSQR = 10−2).

The total computing time is then tLU,1 + tLU,2 for LU and
tI-LSQR,1 + tI-LSQR,2 + tI-LSQR,3 for I-LSQR.

As we can see in Fig. 4, the results match well with those
obtained from LU. As rStrong increases, the results better match,
the order of convergence, KI-LSQR, decreases from 5 to 3,
and the filling time tI-LSQR,1 increases slightly. By calculating
only Z̄Strong, the memory requirement is divided by 20 in
comparison to LU, which needs to calculate all the elements of
Z̄. Compared to the filling computation time of LU, the gain is

Fig. 5. Same variations as in Fig. 4, but a = 1.5λ, rStrong = 1.6λ, and
Q = {0, 1, 2}.

of the order of 9. On the other hand, the time tI-LSQR,2+tI-LSQR,3

to solve the linear system by I-LSQR is slightly smaller than
that of LU, tLU,2.

From (10), ηMVP ≈ 0.05, with rStrong = 1.6λ. This means
that the matrix–vector product computed from NFFT FFTs
should be 1/ηMVP ≈ 20 faster than the one computed in a con-
ventional manner. In practice, it is not the case. The FFTs [and
inverse fast Fourier transforms (IFFTs)] are computed from the
fft and ifft MATLAB functions in a matrix manner to acceler-
ate their calculation. Nevertheless, loops are required, and the
reshape MATLAB function is also applied, which increases the
computing time. If this step was programed in C, the comput-
ing time would be smaller. We can also note that this time
tI-LSQR,2 is larger than tI-LSQR,3, allocated to solve the linear
system by LSQR, also computed in MATLAB but by calling C
functions.

However, both computing times (tI-LSQR,2, tI-LSQR,3) are not
comparable, and tI-LSQR,2 would be much smaller if the
matrix–vector product was made in C. In addition, a paral-
lelization would make it possible to significantly to decrease
this computation time. With MATLAB, the LU inversion is
optimized and parallelized.

Fig. 5 shows the plots of the same variations as in Fig. 4,
but a = 1.5λ, rStrong = 1.6λ, and Q = {0, 1, 2}. As expected,
as Q increases, the results better match with those obtained
from LU, and the results computed for Q = 1 and Q = 2 are
nearly the same.

Equation (7) gives the lowest value of the strong interaction
distance, for which the derivation of the weak interaction
matrix is valid at order zero (Q = 0). In polar coordinates,
z(x, y) = h(r) = 2ar2/L2

x and dh/dr = 4ar/L2
x . Then,

max(�z) ≈ 4a max(r)rStrong/L2
x = 2arStrong/Lx = 0.4λ in

Fig. 5. From (7), rStrong > max(0.22, 1.60, 126)λ = 1.6λ =
rStrong,min with n0 = 20. This explains in Fig. 5 why the results
for Q = 0 deviate from those obtained from LU for low
values of the RCS since rStrong = rStrong,min. The order Q = 1
makes it possible to significantly decrease this deviation, and
the contribution of the second order is negligible.
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Fig. 6. Surface height versus the coordinates x and y. Lx × L y = 144λ2,
σz = 0.3λ, and Lc,x = Lc,y = 1.5λ. The number of edges is NEdge = 42 960.

Fig. 7. Top: bistatic RCS in dBm2 versus the scattering angle θsca. Bottom:
ratio RCSI-LSQR/RCSLU in dB scale. Q = 0, rStrong = {1.2, 1.4, 1.6}λ, θinc =
π/6, φinc = 0, and φsca = 0. The illuminated object is a rough surface, which
is plotted in Fig. 6.

B. Rough Surface
To strongly attenuate the edge diffractions by the sur-

face, the well-known incident tapered wave published by
Braunish et al. [20] is applied (at the order two) with tapering
parameter g = Lx/4 (surface of area A0 = L2

x ). The length
g controls the extent of the incident beam that illuminates the
surface.

Fig. 6 shows the plots of a random rough surface of
Gaussian height distribution and Gaussian height autocorre-
lation function. The surface correlation lengths with respect
to the x- and y-directions are Lc,x = Lc,y = 1.5λ, the surface
height standard deviation is σz = 0.3λ, and the surface area is
Lx × L y = 144λ2.

Fig. 7 shows the plots of the bistatic RCS in dBm2

versus the scattering angle θsca. At the bottom, the ratio
RCSI-LSQR/RCSLU is plotted in dB scale. Q = 0, rStrong =
{1.2, 1.4, 1.6}λ, θinc = π/6, φinc = 0, and φsca = 0. The
illuminated object is a rough surface, which is plotted in
Fig. 6. For high values of RCS, the results match well with
those obtained from LU. From (7) and by taking �z ≈ √

2σz,

Fig. 8. Same variations as in Fig. 7, but the incidence angle is θinc = π/4.

Fig. 9. Same variations as in Fig. 7, but rStrong = 1.6λ and Q = {0, 1, 2}.

rStrong > max(0.34, 1.80, 1.34)λ = 1.8λ. In Fig. 7, this
explains why differences with LU appear for low values of
RCS.

Fig. 8 shows the plots of the same variations as in Fig. 7,
but the incidence angle is θinc = π/4 (instead of θinc = π/6).
Like in Fig. 7, a deviation occurs from incidence angles
larger than 30◦–45◦, and the proposed method gives similar
performances.

Fig. 9 shows the plots of the same variations as in Fig. 7,
but rStrong = 1.6λ and Q = {0, 1, 2}. For Q = 1, the results
match well with those obtained from LU. Fig. 9 also shows
that it is not relevant to calculate the order Q = 2.

Fig. 10 shows the plots of the same variations as in Fig. 9
but in cross polarization [θφ or vertical-horizontal (VH)]. The
VH strengths are 20 dB lower than those obtained in vertical-
vertical (VV), which explains why the deviation with LU is
larger than those shown in Fig. 9. Indeed, the cross polarization
requires better accuracy since the levels are smaller.

Fig. 11 shows the plots of the same variations as in Fig. 9,
but Lc,x = Lc,y = 2λ (instead of Lc,x = Lc,y = 1.5λ).
As we can see, the results obtained for Q = 1 match well
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Fig. 10. Same variations as in Fig. 9 but in cross polarization (θφ or VH).

Fig. 11. Same variations as in Fig. 9, but Lc,x = Lc,y = 2λ (instead of
Lc,x = Lc,y = 1.5λ).

Fig. 12. Same variations as in Fig. 9, but rStrong = 4.4λ and σz = 0.5λ
(instead of σz = 0.3λ).

with those obtained from LU. In comparison to Fig. 9, the
total computing time is slightly smaller because rStrong remains

unchanged and the mean convergence order NI−LSQR ≈ 117
is smaller, whereas the convergence order KLSQR = 4 remains
constant.

Fig. 12 shows the plots of the same variations as in Fig. 9,
but rStrong = 4.4λ and σz = 0.5λ (instead of σz = 0.3λ). The
value rStrong = 4.4λ is chosen so that it satisfies criterion (7).
As we can see, the results obtained for Q = 1 match well
with those computed from LU. In comparison to LU (and
Fig. 9), the computing time is greater because rStrong is larger
than that used for σz = 0.3λ (it is proportional to σ 2

z ) and the
mean convergence order NI−LSQR ≈ 206 increases, whereas
KLSQR = 3 is smaller. As expected, as σz increases, the
proposed method is less efficient.

VII. CONCLUSION

First, an acceleration to compute the impedance matrix,
based on a far-field approximation, is addressed. Next, the
impedance matrix is split into strong and weak interactions,
and this latter is compressed by expressing it from Toeplitz
submatrices. Then, the linear system is efficiently solved from
a bi-iterative scheme. For a given order, the LSQR algorithm is
applied to solve the sparse linear system related to the strong
interactions, while the matrix–vector products, related to the
weak interactions, are accelerated by using FFTs.

For a paraboloid-shaped object, the numerical results show
that the proposed method, named I-LSQR, is very efficient.
The computation of the higher order (related to �z =
max(z) − min(z)) makes it possible to obtain more accurate
results with an increase in the computing time.

For a rough surface, the numerical results also show that
I-LSQR is efficient, but it is more sensitive to �z ∝ σz. In
addition, the method becomes less efficient as σz increases
because the minimum strong interaction distance (7) increases.
It is approximately expressed as (

√
2σz)

2×20/(2λ) = 20σ 2
z /λ.

APPENDIX A
DERIVATION OF THE WEAK IMPEDANCE

MATRIX ELEMENTS

For a pair of facets in far-field from each other, using
an updated Fraunhofer criterion, Bourlier [21], [22] showed
that (1) can be simplified as

Zm,n ≈ spsqe− jkRp,q

4π A p Aq Rp,q Lm Ln

��
Tp

��
Tq

�
ρ p

m · ρq
n − 1

k2

�

× e− jk R̂ p,q ·(δ p−δq)d Rpd Rq (A1)

where Rp,q = G p−Gq and δ p,q = M p,q−G p,q , in which G p,q

is the gravity center of the facets p and q , respectively, and
M p,q the integration point on the facets p and q , respectively
(D p,q = M p − Mq = R p,q + δ p − δq). In addition, R̂ p,q =
Rp,q/Rp,q , where Rp,q = ��R p,q

��.
For the weak interactions, the integral can be evaluated from

a single point chosen at the middle of the egde m or n, Pm,n .
Equation (A1) becomes

Zm,n ≈ spsqe− jkR�
m,n

4π R�
m,n Lm Ln

�
ρ p

m · ρq
n − 1

k2

�
(A2)
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Fig. 13. For a planar surface, interaction of an edge pair (m, n), and their
two facets. The facets are assumed to be identical.

where

R�
m,n = Rm,n

�
1 + (δm − δn) · Rm,n

R2
m,n

�
(A3)

δ p,q = δm,n = Pm,n − G p,q , and R p,q = Pm − Pn = Rm,n .
In comparison to (A2) at the denominator, Rp,q is changed
by R�

p,q . Since |(δm − δn) · Rm,n|/R2
m,n 	 1, and by using the

approximation 1/(1 + x) ≈ 1 − x ≈ e−x for |x | 	 1, (A2)
can be expressed as

Zm,n ≈ spsq e− jkRm,n

4π Rm,n Lm Ln

�
ρ p

m · ρq
n − 1

k2

�
e j (φ1+φ2) (A4)

where ⎧⎪⎪⎨
⎪⎪⎩

φ1 = −kδm δ̂m · R̂m,n

�
1 − j

k Rm,n

�

φ2 = +kδn δ̂n · R̂m,n

�
1 − j

k Rm,n

� . (A5)

Equation (A4) is valid if �2/2Rm,n < λ/n0 [21], where
n0 is an integer ranging from 10 to 20 and � = max(δn) +
max(δm) ≈ max(Lm). Typically, n0 = 20. In other words, the
distance of the strong interactions must satisfy

RStrong >
n0 max(Lm)2

2λ
. (A6)

Since an edge shares two facets, a pair of edges (m, n)
implies four facets. As shown in Fig. 13, assuming that the
meshed triangles are identical, the sum over the facets of Zm,n

can be made analytically. Since, for a given edge, δ−
m,n =

−δ+
m,n and ρ

p−,q−
m,n = −ρ

p+,q+
m,n , the sum over the four triangles

of spsq e j (φ1+φ2) reduces to

e j (φ1+φ2) − e j (−φ1+φ2) − e j (φ1−φ2) + e− j (φ1+φ2)

= −4 sin φ1 sin φ2. (A7)

In the same way, the sum over the four triangles of
spsqe j (φ1+φ2)ρ

p
m · ρ

q
n/(ρ

p+
m · ρq+

n ) reduces to

e j (φ1+φ2) + e j (−φ1+φ2) + e j (φ1−φ2) + e− j (φ1+φ2)

= 4 cos φ1 cos φ2. (A8)

An element Z̄m,n of the impedance matrix is then

Z̃m,n ≈ e− jkRm,n

π Rm,n Lm Ln

�
ρ p+

m · ρq+
n cos φ1 cos φ2

+ sin φ1 sin φ2

k2

�
. (A9)

Applying the following identities [23]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos(z cos θ) = J0(z) + 2
∞�

p=1

J2p(z) cos(2 pθ)

sin(z cos θ) = 2
∞�

p=1

(−1)pJ2p+1(z) cos[(2 p + 1)θ ]

(A10)

where Jp is the Bessel function of the first kind and order p,
we have�

cos φ1 cos φ2 ≈ J0(qm)J0(qn)

sin φ1 sin φ2 ≈ −4J1(qm)J1(qn) cos φm cos φn
(A11)

where φ1 = −qm cos φm and φ2 = qn cos φn . The use of (A5)
leads to

qm,n = kδm,n

�
1 − j

k Rm,n

�
, cos φm,n = δ̂m,n · R̂m,n .

(A12)

In (A10), only the first term of the sum is kept since
|qm,n| 	 1.

In (A12), it is important to keep in mind that the extra term
j/(k Rm,n) comes from a Taylor series expansion up to the
order one. Then, we can simplify (A11) as

cos φ1 cos φ2 ≈ J0(wm)J0(wn) + j

k Rm,n

× [wmJ1(wm)J0(wn) + wnJ1(wn)J0(wm)]

≈
�

1 − w2
m

4

��
1 − w2

n

4

�
+ j

2k Rm,n

�
w2

m + w2
n

�
(A13)

and

sin φ1 sin φ2

cos φm cos φn
≈ −4J1(wm)J1(wn) + 2 j

k Rm,n

×
�

wmJ1(wn)[J0(wm) − J2(wm)]

+ wnJ1(wm)[J0(wn) − J2(wn)]
�

≈ −4J1(wm)J1(wn) + 2 j

k Rm,n

× [wmJ1(wn)J0(wm) + wnJ1(wm)J0(wn)]

≈ −wmwn

�
1 − 2 j

k Rm,n

�
(A14)
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where wm,n = kδm,n . In addition, since |wm,n| 	 1,
J0(wm,n) ≈ 1 − w2

m,n/4 and J1(wm,n) ≈ wm,n/2. These
approximations make the programming easier.

In conclusion, an element of the impedance can be approx-
imated as

Lm Ln Z̃m,n ≈ G(1)
m,n

�
1 − w2

m

4

��
1 − w2

n

4

�
ρ p+

m · ρq+
n

+ �
w2

m + w2
n

�
G(2)

m,nρ
p+
m · ρq+

n

+ wmwn G(3)
m,n

�
Rm,n · δ̂m

��
Rm,n · δ̂n

�
(A15)

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wm,n = kδm,n = k
��δm,n

��
δm,n = Pm,n − G p+,q+
Rm,n = Pm − Pn

ρ
p+,q+
m,n = �

V p+,q+
m,n − G p+,q+

�
/2

(A16)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(1)
m,n = e− jkRm,n

π Rm,n

G(2)
m,n = G(1)

m,n

j

2k Rm,n

G(3)
m,n = −G(1)

m,n

�
1 − 2 j

k Rm,n

�
1

k2 R2
m,n

. (A17)

Since, for a planar surface, Rm,n = rm,n = (xn − xm)x̂ +
(yn − ym) ŷ on a uniform grid, the matrix Z̄(i)

m,n associated
with the element G(i)

m,n is Toeplitz. Then, the matrix product

Om Z̄(i)
m,n Sn can be computed from FFTs, where Om and Sn are

any observation and source vectors, respectively. For instance,
the first term of (A15) is expanded as

�
fmρ p+

m,x

�
G(1)

m,n

�
ρq+

n,x fn
� + �

fmρ p+
m,y

�
G(1)

m,n

�
ρq+

n,y fn
�

+ �
fmρ p+

m,z

�
G(1)

m,n

�
ρq+

n,z fn
�

(A18)

where fm,n = 1 − w2
m,n/4 and the subscripts (x, y, z) stand

for the components of the vector. The above equation is in a
form such that the source point is on the right-hand side of
Green’s function, while the observation point is located on the
left-hand side of Green’s function. In addition, three matrix–
vector products are required, which are computed from FFTs.
The same way is used for the last two terms of (A15), which
requires six and 36 matrix–vector products, respectively, which
are computed from FFTs. Thus, 45 matrix–vector products are
necessary.

If the surface is not planar, then Rm,n =
�

r2
m,n + (zn − zm)2,

where z(x, y) is the elevation of the surface. A Taylor series
expansion over z = zn − zm up to the fourth order leads
to

G(p)
m,n = G(p),(0)

m,n

�
1 + z2 A(p),(1)

m,n + z4 A(p),(2)
m,n

�
(A19)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(1),(1)
m,n = −1 + ju

2r2
m,n

A(2),(1)
m,n = −2 + ju

2r2
m,n

A(3),(1)
m,n = − j

u2 − 5 ju − 8

2r2
m,n(u − 2 j)

(A20)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A(1),(2)
m,n = 3 + 3 ju − u2

8r4
m,n

A(2),(2)
m,n = 8 + 5 ju − u2

8r4
m,n

A(3),(2)
m,n = 9 ju2 + 33u − 48 j − u3

8r4
m,n(u − 2 j)

(A21)

G(p),(0)
m,n = G(p)

m,n|zn−zm=0 = G(p)
m,n(rm,n), and u = k

��rm,n

�� =
krm,n (rm,n = (xn−xm)x̂+(yn−ym) ŷ). Since {A(p),(1)

m,n , A(p),(2)
m,n }

depends only on rm,n , on a uniform grid, the elements
{G(p),(0)

m,n A(p),(1), G(p),(0)
m,n A(p),(2)} are also Toeplitz.

For the first order, since Rm,n = rm,n[1 + z2/(2r2
m,n)], the

second order is neglected in comparison to the order zero if
kz2/(2rm,n) < 2π/n0 (condition on the phase of e− jkRm,n ) and
if z2/(2r2

m,n) < 1/n0 (condition on the amplitude of 1/Rm,n),
where n0 > 1 is an integer ranging from 10 to 20. Typically,
n0 = 20. This is consistent with (A20) and (A21). In other
words, the strong interaction distance must satisfy

rStrong > max

�
max(�z)2n0

2λ
, max(�z)



n0

2

�
(A22)

where �z = max(z) − min(z).
For a nonplanar surface, the conditions δ−

m,n = −δ+
m,n and

ρ
p−,q−
m,n = −ρ

p+,q+
m,n are not satisfied. Then, the mean value

is taken, that is, δ+
m,n → [δ+

m,n + (−δ−
m,n)]/2 and ρ

p+,q+
m,n →

[ρ p+,q+
m,n + (−ρ

p−,q−
m,n )]/2.
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