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Communication
Acceleration of the Computation of the Method of Moments EFIE Impedance

Matrix From an Updated Fraunhofer Criterion
Christophe Bourlier

Abstract— This communication deals with the acceleration of the com-
putation of the impedance matrix obtained from the electric field integral
equation (EFIE) discretized by the Galerkin method of moments (MoM)
with Rao–Wilton–Glisson basis functions. The elements of the impedance
matrix need to calculate a double integral (quadruple integral) over
two planar triangles, which is typically done from two numerical
Gauss–Legendre integrations. For far-field interactions, this integration
can be done analytically by introducing a criterion for which the resulting
closed-form expression is valid. This approximation is tested on a sphere
and a concave cavity-shaped object, for which the results show that the
time saving factor is about 20, with a mean difference of 0.1–0.5 dB
on the radar cross section (RCS) compared to that obtained from two
numerical integrations.

Index Terms— Electric field integral equation (EFIE), fast algorithm,
method of moments (MoM), radar cross section (RCS).

I. INTRODUCTION

The method of moments (MoM) [1] has been commonly used
to solve electromagnetic scattering problems. It transforms integral
equations into a matrix equation. For small problems, the resulting
linear system can be solved from the lower-upper (LU) decomposi-
tion. For larger problems, iterative solvers like the conjugate gradient
and their improved versions [2], [3] can be employed, in which
accelerations are accounted for [4], [5]. Another family of fast
iterative solvers has also been developed. The problem geometry is
subdivided into subdomains (blocks) and the problem solution is then
reduced in order to successively solve a set of impedance submatrix
equations [6], [7], in which accelerations are included [8], [9].

Whatever the solver, some elements of the impedance matrix
must be calculated. This step requires the evaluation of a double
integration (quadruple 1-D integral) over the source and observation
facets (of triangular shapes in our case, since the Rao–Wilton–
Glisson basis functions are used to discretize the electric field
integral equation (EFIE) from the Garlerkin MoM). Usually, two
Gauss–Legendre integrations with nGauss points are applied, both
on the source and observation triangles. For large nGauss, this step
can be time consuming. The purpose of this communication is to
accelerate this stage when the observation facet is in the far-field with
regard to the source facet. Then, a criterion is derived by updating
the conventional Fraunhofer criterion to our problem. When this
criterion is valid, it is shown that the two integrations can be done
analytically, which reduces the computing time. In addition, it is
important to underline that the closed-form expression is only valid
for planar facets and that the complexity of assembling the matrix is
not changed.
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The communication is organized as follows. Section II presents
the MoM, whereas Section III derives the criterion and gives the
closed-form expression of an element of the impedance matrix.
Section IV presents numerical results, and Section V gives concluding
remarks.

II. METHOD OF MOMENTS

In this communication, to compute the field scattered by a perfectly
conducting object, the EFIE is solved from the MoM. In addition,
the Galerkin method is applied with the Rao–Wilton–Glisson basis
functions. This leads to solving the linear system Z̄X = b, where
Z̄ is the impedance matrix, b a vector related to the incident wave,
and X is the unknown vector. The time convention e− jωt is used
throughout this communication.

The element Zm,n of the impedance matrix Z̄, corresponding to
the interaction between two edges m (observation) and n (source) of
a facet couple (p, q) is expressed as [2]

Zm,n = cm,n
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where cm,n = Lm Lnsm,n/(4π), in which {Lm,n} are the edge lengths
and sm,n = ±1, {A p,q} are the triangle areas, ρ

p,q
m,n = V p,q

m,n − Rp,q ,
in which V p,q

m,n is the position vector of the vertex unshared by the
edge (m, n) and belonging to the facet (p, q). In addition, Dp,q =
�R p − Rq� and k is the wavenumber which equals 2π/λ, where λ
is the wavelength.

Assuming a plane incident wave, a component bn of the vector b
associated with the source edge n and facet q is [2]

bn = − j

ωμ

Lnsn

2Aq
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ρ
q
n · p̂ince−kinc·Rq d Rq (2)

where ω is the wave pulsation and μ is the permeability of the
surrounding medium. In addition, p̂inc (either vertical, v̂inc (θ),
or horizontal, ĥinc (φ)) and kinc are the polarization and incident
wave vectors, respectively, both defined in spherical coordinates
from the angles (θinc, φinc). Solving the linear system X = Z̄−1b,
the components {an} of the vector X are found. The scattered far-field
is then expressed as

E∞
sca(R0) = − jωμe− j k R0

8π R0

PFacet�
p=1

MEdge�
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Lmamsm
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×
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where PFacet is the number of facets and MEdge the number of edges
associated with the facet p. In addition, R0 is the distance from the
receiver to the phase origin of the object. The scattering coefficient
is then expressed as

SCpinc psca = lim
R0→∞ 2

√
π R0

E∞
sca · p̂sca

Einc · p̂inc
(4)
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Fig. 1. Interaction of a facet source q with an observation facet p. The point
G p,q is the gravity center of the triangle (p, q) and the point Mp,q is the
integration point which spans the triangle (p, q).

where pinc = {θ, φ} and psca = {θ, φ}. The subscripts “inc” and
“sca” stand for incident and scattered (waves), respectively. The
receiver polarization basis (k̂sca, v̂sca, ĥsca) can be defined in a
similar way as that of the incident field (k̂inc, v̂inc, ĥinc), in which
θsca and φsca are the receiver (scattering) angles. The radar cross
section RCSpinc psca is obtained by taking the squared modulus of
SCpinc psca .

Equation (1) shows that Zm,n requires the calculation of two
numerical integrations over the surfaces of the triangles Tp and Tq .
This is done from two-fold Gauss–Legendre integrations. In this
communication, we propose to derive them from a closed-form
expression. The singularity, which occurs for Dp,q = 0, is computed
from the work published by Sheng et al. [10].

III. APPROXIMATION OF Zm,n

As shown in Fig. 1, the distance Dp,q = �D p,q� = �−−−−→
Mq Mp�,

where
−−−−→
Mq Mp = −−−−→

Mq Gq + −−−→
Gq G p + −−−−→

G p Mp = R p,q + δ, where
R p,q = −−−→

Gq G p and δ = −−−−→
Mq Gq + −−−−→

G p Mp = δ p − δq . If �−−−→
Gq G p� =

Rp,q � �δ� = δ, the distance D can be expanded over Rp,q up to
the second order as

Dp,q =
�

R2
p,q + δ2 + 2Rp,qδ cos φ

≈ Rp,q + δ cos(φ) + sin2(φ)δ2

2Rp,q
(5)

where φ = ( ̂R p,q , δ). The term in δ is related to the local behavior
of a plane wave, whereas δ2 is related to the local behavior of a
spherical wave. The Fraunhofer criterion is obtained from (5) by
neglecting the term in δ2. In Green’s function, this approximation is
satisfied if δ2 sin2 φ/(2Rp,q ) does not exceed λ/n0 (typically n0 is
an integer ranging from 10 to 20). This leads for k Dp,q , to

δ2

2

sin2 φ

Rp,q
≤ λ

n0
. (6)

The maximum value of δ, named �, equals

� = max �δ p − δq� = max �δ p� + max �δq�
≈
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2]1/2. (7)

If the criterion (7) is satisfied, then

D ≈ Rp,q + δ cos(φ) = Rp,q + R p,q

Rp,q
· (δ p − δq ). (8)

In (1), the double integral can be simplified as
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where R̂ p,q = R p,q/Rp,q . Using the variable transformation δ p =−−−−→
G p Mp = −−−→

G p O + −−−→
O Mp = −−−→

O Mp − −−−→
OG p = −−−→

O Mp − RG p ⇒−−−→
O Mp = R p = δ p + RG p , where the point O stands for the phase
origin, the above integral can be simplified as
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where
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where
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It is important to underline that the integration domain T�
i of

the facet i = (p, q) is now defined from the gravity center RGi .
In addition, the integrals Ki (scalar) and Li (vector) do not depend
on the edge and only depend on the distance Rp,q and on the triangle
i defined from its three vertices. Owing to the presence of the term
V i

m , the integral J i,m depends on the edge m. As shown in Appendix,
the integrals Ki and Li can be derived analytically. In conclusion,
an element of the impedance matrix can be computed analytically
from (10) if

�2

2

sin2 φ

Rp,q
≈ �2

2Rp,q
≤ λ

n0
. (14)

In practice, the angle φ cannot be determined numerically since
it depends on the integration variables. Then, φ = π/2 is chosen
as an upper limit of the criterion. For two given triangles p and q,
the coordinates of their gravity centers {RG p , RGq } are known and
then the distance Rp,q = �RG p − RGq � is computed. Moreover, �

is computed from (7). Typically, � = ap +aq , where ai is the circle
radius circumscribed to the triangle i (i = {p, q}).

It is important to underline that integrals (2) and (3) can also be
computed analytically, since

1

A p

��
Ti

ρi
mes·Ri d Ri = V i

m Ki − Li . (15)

For (2), s = −kinc and for (3), s = ksca. In addition, the variable
transformation over δi is not applied (the three vertices of the
triangle i are defined from the phase origin O).
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Fig. 2. Bistatic RCS in dBm2 versus the scattering angle θsca. θinc = 0,
φinc = 0 and φsca = 0. The illuminated object is a sphere of radius a = 0.6λ0 .

Fig. 3. Ratio RCS/RCS|Mie in decibel scale versus the scattering angle θsca.
The parameters are the same as in Fig. 2.

IV. NUMERICAL RESULTS

The wavelength in free space λ is 1 m and the polarization is θθ .
First, to test the accuracy of the proposed method, a sphere is

considered, for which the field scattered by a plane wave is known
exactly from the Mie series [11].

Fig. 2 plots the bistatic RCS in dBm2 versus the scattering
angle θsca. The incidence angles are θinc = 0, φinc = 0 and
φsca = 0 is the scattering azimuthal angle. To better highlight the
differences, Fig. 3 plots the corresponding ratio RCS/RCS|Mie in
decibel scale (becomes a difference) versus the scattering angle θsca,
where RCS|Mie is the reference Mie solution. The sphere has a radius
a = 0.6λ0 and the number of edges is NEdge = 6279, corresponding
to an edge mean length of 0.05λ0. As shown in Figs. 2 and 3, this
value ensures a very good agreement between the results obtained
from two Gauss–Legendre integrations, for which the number of
points is nGauss = 6.

In Fig. 3, in the legend, the first number gives the mean value of
10| log10(RCS/RCS|Mie)| over θsca ∈ [0; π]. The acronym “UFC”
means updated Fraunhofer criterion. The second number p gives the
percentage of facet pairs which are in far-field and for which the
approximation is applied. The integer n0 is the number of points per
wavelength, corresponding to a phase error of λ0/n0 to estimate

Fig. 4. Top: Time saving factor versus a/λ0. Bottom: Mean difference on
the RCS ratio versus a/λ0.

Fig. 5. Example of a concave cavity-shaped object with Lx = L y = 4λ0.
The number of edges is NEdge = 9633 and the edge mean length is 0.08λ0.

Green’s function. As expected, as n0 increases, the results better
match with those of Mie and are very similar to those computed
from two numerical integrations.

In Fig. 2, in the legend, the first number t gives the computing time
to calculate the impedance matrix. In comparison to two numerical
integrations, the time saving factor is of the order of 25. As n0
decreases, the number of the facet pairs p in far-field increases
and then, all the elements of the impedance matrix are computed
from the approximation. The time saving factor is approximatively
proportional to ηt = n2

Gauss/CApp, where n2
Gauss is the complexity

of two numerical integrations and CApp, that of the approximation.
Theoretically, this value is equal to one, but it differs from one in
practice because the calculation of the analytical expression needs
some multiplications. This explains why in Fig. 2, ηt is smaller than
n2

Gauss = 62 = 36. Fig. 2 also shows that ηt is little sensitive to n0.
Fig. 4 plots the time saving factor ηt versus a/λ0 (NEdge

ranging from 669 to 24 321) and at the bottom, the mean ratio
10| log10(RCS/RCS|Mie)| over θ ∈ [0; π] is plotted versus a/λ0.
As the radius a increases, the gain in time saving is nearly con-
stant, equal to approximately 25, and the mean difference does
not exceed 0.08 dB. The percentage of facet pairs in far-field
over a/λ0 ∈ [0.2, 1.2] ranges from {0.9836, 0.9919, 0.9978} to
{0.9995, 0.9998, 0.9999} for n0 = {30, 20, 10}, respectively.

To produce strong interactions between the facets, a concave
cavity-shaped object is considered to produce multiple reflec-
tions. The geometry is shown in Fig. 5. It is defined as
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Fig. 6. RCS in dBm2 versus the scattering angle θsca. θinc = 0, φinc = 0
and φsca = 0. A concave cavity-shaped object is considered (Fig. 5).

Fig. 7. Ratio RCS/RCS|0 in decibel scale versus the scattering angle θsca.
The parameters are the same as in Fig. 6.

z(x, y) = −A exp(−x2/a2
1 − y2/b2

1) where a1 = Lx/4, b1 = L y/4,
A = a1e1/2/

√
2 and Lx and L y are the lengths of the object (defined

for z = 0 corresponding to the top of Fig. 5) with respect to the
x- and y-directions, respectively. In addition, the number A is chosen
such that the absolute values of the maximum slopes with respect to
the x- and y-directions are equal to one in order to produce a dihedral
effect (at least two reflections).

Fig. 6 plots the RCS in dBm2 versus the scattering angle θsca.
θinc = 0, φinc = 0 and φsca = 0. Fig. 7 plots the ratio RCS/RCS|0
in decibel scale versus the scattering angle θsca. The parameters are
the same as in Fig. 6 and the number RCS|0 is the RCS calculated
without approximation.

Fig. 6 shows a very good agreement between the RCS computed
without approximation and those obtained from the approximation.
Like for the sphere, the time saving factor is of the order of 21.
In Fig. 7, the difference decreases as n0 increases, and it increases
when the RCS level in Fig. 6 takes low values. For these particular
values, a better precision is required.

Fig. 8 plots the time saving factor versus Lx/λ0 (L y = Lx and
NEdge ranging from 5208 to 29 800). At the bottom, the RCS ratio
between the proposed method and that without approximation is
plotted in decibel scale (becomes a difference) versus Lx/λ0. As we
can see, the gain in time saving is little sensitive to the length Lx

Fig. 8. Top: Time saving factor versus Lx/λ0 (L y = Lx ). Bottom: Mean
difference on the RCS ratio versus a/λ0.

and the mean difference does not exceed 0.5 dB. As n0 increases,
this value slightly decreases.

V. CONCLUSION

In this communication, from the derivation of a far-field criterion,
the elements of the EFIE impedance matrix are computed from
a closed-form expression. This approximation avoids to calculate
these elements from two numerical integrations, which can be time
consuming. The numerical results showed that the proposed method
offers a time saving factor of the order of 25 for nGauss = 6, whereas
for nGauss = 3 it equals 6 (not shown in the communication).
This number is directly related to n2

Gauss, which corresponds to
the complexity of the two numerical integrations. The choice of
nGauss depends on the expected accuracy (related to the surface
curvature, calculation in near or far-field,. . .). In addition, for the φφ

polarization, results (not depicted here) show that the approximation
gives better results in comparison to the θθ polarization.

APPENDIX

DERIVATION OF THE INTEGRAL FOR A TRIANGULAR SHAPE

This appendix presents the derivation of the double integral (9).
In simplex coordinates, any 2-D integral on a triangular domain T

can be converted as ([2, eq. (9.29])

��
T

f (R)d R = 2A
� 1

0

� 1−α

0
f (α, β)dαdβ (A1)

where R = (1 − α − β)V 1 + αV 2 + βV 3 and (V 1, V 2, V 3) are the
coordinates of the three vertices of the triangle T of area A. Then

K (s) = 1

A

��
T

e j s·Rd R = 2e j s·V 1

×
� 1

0

� 1−α

0
e j s·(V 2−V 1)αe j s·(V3−V 1)βdαdβ (A2)

where s is a constant vector (independent of R). After some tedious
but straightforward algebra, we obtain ([2, eq. (9.44)])

K (s) = 2Ae js1

s3 − s2

	
1 − e js3

s3
− 1 − e js2

s2



(A3)
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where s1 = s · V 1, s2 = s · (V 2 − V 1) and s3 = s · (V 3 − V 1).
In addition, since e js ≈ 1 + j s for |s| 
 1, we can show that

K (s) = 2e js1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + j s2 − e js2)/s2
2 , if s3 = 0

(1 + j s3 − e js3)/s2
3 , if s2 = 0

e js3 [(1 − j s3) − 1]/s2
3 , if s2 = s3

1/2, if s2 = s3 = 0.

(A4)

The above equation is useful to avoid numerical problems.
Applying the same way for L(s), we show that
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��
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0
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From (A3), the partial derivatives are expressed as⎧⎪⎪⎪⎨
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In addition,

∂K

∂s2
= 2e js1
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[−2 − j s2 + e js2(2 − j s2)]
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3 , if s2 = 0

[2 + e js3(s2
3 + 2 j s3 − 2)]��

2s3
3

�
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(A7)

In conclusion, Ki expressed from (11) is obtained from (A3) by
setting s = k R̂ p,q , for which the triangle i is defined from its three
vertices. In addition, Li [see (13)] is obtained from (A5) by setting

s = k R̂p,q and δi = R, for which the three vertices of the facet i
are defined from their gravity center RGi .
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