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Rough layer scattering filled by elliptical cylinders
from the method of moments combined with the
characteristic basis function method and the
Kirchoff approximation
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In this paper, the electromagnetic field scattered by several 2D scatterers of any shape is calculated rigorously from
the boundary integral equations discretized by the method of moments with the point matching method and
pulse basis functions. In addition, the resulting linear system is efficiently solved from the domain decomposition
method named the characteristic basis function method. To accelerate the computation of the primary basis func-
tions, which requires solving sublinear systems, the Kirchoff approximation is applied for metallic and dielectric
objects. The efficiency of the method is tested on several applications met in practice: stack of rough interfaces sepa-
rating homogeneous media, collection of metallic and dielectric elliptical cylinders, collection of coated elliptical
cylinders, and a combination of the previous scenarios. ©2021Optical Society of America
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1. INTRODUCTION21

The study of the wave scattering from several scatterers of any22
shape is a subject of great interest. The applications of such23
research concern many areas such as remote sensing, radar24
surveillance, optics, and ocean acoustics.25

For a collection of objects of canonical shape, like circular26
cylinders (of infinite length) and spheres, the scattered field27
can be computed analytically by introducing special functions,28
e.g., Bessel’s and spherical Bessel’s [1,2]. For elliptical cylinders29
[3–5], Mathieu’s functions [6] are introduced, but they are diffi-30
cult to program, unlike well-known Bessel’s functions. Adding31
a boundary, like a smooth plate of infinite area (space divided32
into two media), the previous formulations can be extended33
[7–17], and the difficulty of programming increases. For a stack34
of rough interfaces separating homogeneous media, asymptotic35
approaches, in which simplifying assumptions are introduced,36
have been developed. For small roughness, we can cite the small37
perturbation method [18–24] and, for high roughness, the geo-38
metric optics approximation [25–27]. For a complex scenario,39
like inhomogeneous (dielectric objects are present in the layer)40
layered rough interfaces, it is difficult to derive a closed-form41
expression of the scattered field.42

The well-known method of moments (MoM) [28–31] is43
a way of rigorously solving this type of scattering problem by44
converting the boundary integral equations into a linear system,45
in which the impedance matrix must be inverted to determine46

the surface currents. However, the direct solution of the linear 47
system through a direct lower upper (LU) decomposition is 48
usually limited by O(N3) and O(N2) complexities in CPU 49
time and memory requirements, respectively, where N is the 50
number of unknowns. This is computationally expensive for an 51
electrically large multiscale object or a collection of dielectric 52
objects (i.e., many unknowns) and has led to develop iterative 53
methods and/or domain decomposition methods that signifi- 54
cantly reduce the storage and computation cost. Among the 55
numerous publications addressing this issue, references [32–43] 56
have shown the efficiency of these methods for the scattering 57
from a stack of two or three rough interfaces and for an object 58
near a rough interface. 59

The characteristic basis function method (CBFM), a domain 60
decomposition method, has shown efficiency for scattering 61
from a 3D metallic or dielectric object [40,43–45]. In this paper, 62
this method is applied for the scattering from P 2D metallic and 63
dielectric scatterers of any shape. The propagation inside layer 64
expansion (PILE) method [46] and its updated versions [39,42] 65
can be extended for this type of problem; however, the difficulty 66
of programming significantly increases. Thus, this method is 67
not chosen. In addition, the subdomain decomposition iterative 68
method (SDIM) [45,47] applied on the scenarios presented in 69
this paper does not converge. 70

The CBFM principle splits up the problem into subprob- 71
lems of smaller size, each of them being solved separately by 72
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calculating the primary basis functions (PBFs). Next, the cou-73
pling between them is accounted for via the computation of74
the characteristic matrix, which involves the coupling matri-75
ces between the subproblems. To accelerate the calculation76
of PBFs, which requires one to solve sublinear systems, the77
Kirchoff approximation (KA) is applied for metallic and dielec-78
tric objects. The efficiency of the method is tested on several79
applications met in practice: stack of rough interfaces separat-80
ing homogeneous media, collection of metallic and dielectric81
elliptical cylinders, collection of coated elliptical cylinders, and a82
combination of the previous scenarios.83

The paper is organized as follows. Section 2 extends the84
MoM to P scatterers of any shape. Section 3 briefly summarizes85
the CBFM. Section 4 addresses the KA approximation for the86
derivation of the PBFs. Section 5 presents numerical results on87
four scenarios. The last section gives concluding remarks.88

2. METHOD OF MOMENTS FOR SEVERAL89
SCATTERERS90

This section presents the MoM for solving the electromagnetic91
wave scattering from several scatterers. For one and two scatter-92
ers, this approach is thoroughly explained in the textbook [30].93
To sum, the boundary integral equations are applied on each94
scatterer and are discretized from the MoM by using the point-95
matching method and the pulse basis function. This leads to96

the linear system Z̄X = b, in which Z̄ is the impedance matrix97
of the two scatterers, b is a vector related to the incident field98
on the scatterers, and X the surface currents on the scatterers,99
i.e., the unknowns of the problem. In this section, this approach100
is generalized to several scatterers.101

A. Case of a Single Illuminated Scatterer102

For a single scatterer as shown in Fig. 1, the impedance matrix is103
expressed from four submatrices as104

Z̄11 =

[
Ā11 B̄11

C̄11 D̄11

]
. (1)

The matrix Ā11 is the matrix obtained from the Neumann105
boundary condition, i.e., when the scatterer is assumed to be106
perfectly conducting (metallic), and the transverse electric107
(TE) polarization is considered. It is calculated in the inci-108

dent medium �0. The matrix B̄11 is the matrix obtained from109
the Dirichlet boundary condition, i.e., when the scatterer is110
assumed to be perfectly conducting (metallic), and the trans-111
verse magnetic (TM) polarization is considered. It is calculated112

in the incident medium �0. The matrices {C̄11, D̄11} are sim-113
ilar to the matrices { Ā11, B̄11}, but they are computed in the114

Fig. 1. Scattering from a single scatterer.

medium�1. The elements of these four submatrices are given in 115
Appendix A. 116

The vector b1 is defined as 117

b1 =

[
b′1
0

]
=

ψinc(r1) . . . ψinc(r N1) 0 . . . 0︸ ︷︷ ︸
N1times︸ ︷︷ ︸

bT
1 ,r∈S1


T

, (2)

where ψinc is the incident wave illuminating the scatterer. The 118
symbol T stands for the transpose operator, and N1 is the num- 119
ber of discretization points on the surface S1 of the object. This 120
means that the size of the matrix is 2N1 × 2N1. 121

The unknown vector X 1 of length 2N1 is expressed as 122

X 1 =

[
ψ1(r1) . . . ψ1(r N1)

∂ψ1(r1)

∂n . . .
∂ψ1(r N1 )

∂n

]T
r p∈[1;N1] ∈ S1,

(3)
where ∂ψ1/∂n =∇ψ1 · n̂1 is the normal derivative, in which 123
n̂1 is the unitary vector normal to S1. The unknown X 1 on S1 is 124

computed from X 1 = Z̄
−1
11 b1. The scattered field ψ̄ sca(r) in the 125

medium r ∈�0 is then obtained from the Huygens principle 126
expressed as 127

ψ̄ sca(r)=− P̄(r, r1)X 1, (4)

where 128

P̄(r, r1)=

[
Ā ij

B̄ ij

]
r j=r1,ri=r

, (5)

and r1 ∈ S1 (r 6= r1). If r ∈�1 (r 6= r1); then, Eq. (4) is 129
applied by taking the plus sign (instead of minus). The matrices 130

{ Ā ij, B̄ ij} are expressed in Appendix A. 131

The matrix P̄(r, r1) propagates the surface currents 132
{ψ1, ∂ψ1/∂n} from r1 to r. Its size is Nsca × (2N1), where 133
Nsca is the number of observation points and ψ̄ sca is a vector of 134
length Nsca. 135

In the far field (kr � 1, where k is the wavenumber of the 136
medium), the propagation matrix can be simplified as [30] 137

P̄
∞

(r, r1)=
j
4

√
2

πkr

e− j (π/4+kr )
[

jv1ksca · n̂1e− j ksca·r1
√

1+ γ 2
111

e− j ksca·r1
√

1+ γ 2
111

]
,

(6)

where ksca = k(x̂ sin θsca + ẑ cos θsca) (see Fig. 1) stands for the 138
direction of observation, γ1 the slope of S1 at the point r1, 11 139
its sampling step, and v1 = sgn(n̂1 · ẑ) (sgn stands for the sign 140
function). 141

The radar cross section (RCS) is written as [30] 142

¯RCS= lim
r→∞

2πr
∣∣∣ψ̄ sca(r)

∣∣∣2
=

1

4k

∣∣∣∣[ jv1ksca · n̂1e− j ksca·r1
√

1+ γ 2
111

e− j ksca·r1
√

1+ γ 2
111

]
X 1

∣∣∣∣2 , (7)

where ¯RCS is a vector of the same length as ψ̄ sca(r). 143
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The normalized radar cross section (NRCS, dimensionless) is144
written as [29,30]145

¯NRCS= lim
r→∞

r
2η0

|ψ̄ sca(r)|
2

pinc
, (8)

whereη0 is the wave impedance of medium�0 and pinc the inci-146
dent power. For an incident plane wave of unitary amplitude,147
pinc = L cos θinc/(2η0), so that ¯NRCS= ¯RCS cos θinc/(2πL).148

B. Case of P Illuminated Scatterers149

For the case of two illuminated scatterers (Fig. 2, with P = 2),150

the impedance matrix Z̄ is expressed as [30]151

Z̄=

[
Z̄11 Z̄

(1)
12

Z̄
(1)
21 Z̄22

]
, (9)

where Z̄11 [Eq. (1)] and Z̄22 are the self-impedance matrices of152

scatterers 1 and 2, respectively. The matrix Z̄22 is obtained from153

Z̄11 by changing (S1, k1) to (S2, k2), where ki = k0
√
εr ,i is the154

wavenumber of the medium �i of relative permittivity εr ,i . In155
addition, k0 = 2π/λ0 is the wavenumber in vacuum and λ0 the156
wavelength in vacuum.157

The coupling (interaction between two different scatterers)158

matrices Z̄
(1)
12 (of size 2N1 × 2N2) and Z̄

(1)
21 (of size 2N2 × 2N1)159

are written as160

Z̄
(1)
12 =

[
Ā12 B̄12

0̄N1×N2 0̄N1×N2

]
, Z̄

(1)
21 =

[
Ā21 B̄21

0̄N2×N1 0̄N2×N1

]
,

(10)
where 0̄ is a null matrix. The size of the matrix Z̄ is161
2(N1 + N2)× 2(N1 + N2), where Ni (i = {1, 2}) is the162
number of discretization points on the surface Si of the object.163

The elements of the submatrices { Ā12, B̄12} can be found in164
Appendix A.165

If scatterer 2 is perfectly conducting (metallic), then166

Z̄22 = P̄22, Z̄
(1)
12 = [ P̄12 0̄]T and Z̄

(1)
21 = [ Ā21 B̄21], where167

P̄ ij = { Ā ij, B̄ ij} for the TM (∂ψ2/∂n = 0) and TE (ψ2 = 0)168
polarizations, respectively. In addition, if the scatterer 1 is per-169

fectly conducting, then Z̄
(1)
12,21 = P̄12,21 and Z̄11,22 = P̄11,22.170

The size of Z̄ is reduced to (N1 + N2)× (N1 + N2).171
The excitation vector b of length 2(N1 + N2) is written as172

b=
[

b1 b2
]T
, (11)

Fig. 2. Scattering from P illuminated scatterers.

where the vector bi is defined from Eq. (2). 173
The unknown vector X of length 2(N1 + N2) is expressed as 174

X =
[

X 1 X 2
]T
, (12)

where X i is expressed from Eq. (3). The unknown X on S1 ∪ S2 175

is computed from X = Z̄
−1

b. 176

The scattered field ψ̄ sca(r) in the medium r ∈�0 (r /∈ Si ) is 177
then obtained from the Huygens principle expressed as 178

ψ̄ sca(r)=−
[

P̄(r, r1)

P̄(r, r2)

]
X . (13)

If r ∈�1 (r /∈ S1), then the above equation is applied by 179

taking the plus sign on the matrix P̄(r, r1) (instead of minus). 180
If r ∈�2 (r /∈ S2), then the above equation is applied by taking 181

the plus sign on the matrix P̄(r, r2). 182
In this paper, the formulation is generalized to P scatterers. 183

The impedance matrix is then expressed as 184

Z̄=


Z̄11 Z̄

(1)
12 . . . Z̄

(1)
1P

Z̄
(1)
21 Z̄22 . . . Z̄

(1)
2P

...
...

. . .
...

Z̄
(1)
P 1 Z̄

(1)
P 2 . . . Z̄PP

 , (14)

where Z̄ii is the self-impedance matrix of the scatterer i , whereas 185

Z̄
(1)
ij is the coupling matrix between the objects i and j (propa- 186

gation of the scattered field from j to i ) expressed from Eq. (10). 187

The size of the matrix Z̄ is N × N where N = 2
∑i=P

i=1 Ni . 188
The excitation vector b of length N is written as 189

b=
[

b1 b2 . . . bP
]T
, (15)

where the vector bi is defined by Eq. (2). The unknown vector X 190
of length N is 191

X =
[

X 1 X 2 . . . X P
]T
, (16)

where X i is expressed from Eq. (3) and computed by solving the 192

linear system Z̄X = b. 193

The scattered field ψ̄ sca(r) in the medium r ∈�0 (r /∈ Si ) is 194
then obtained from the Huygens principle expressed as 195

ψ̄ sca(r)=−


P̄(r, r1)

P̄(r, r2)
...

P̄(r, r P )

 X . (17)

For r ∈�i (i 6= 0 and r /∈ Si ), the above equation is applied 196

by taking the plus sign on the matrix P̄(r, r i ) (instead of 197
minus). 198

C. Case of P Illuminated Scatterers Where Only One 199
Is Illuminated 200

For the case of two illuminated scatterers where only one is 201

illuminated (Fig. 3 with P = 2), the impedance matrix Z̄ is 202
expressed as [30] 203
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Fig. 3. P illuminated scatterers where only one is illuminated (the
scatterer 1).

Z̄=

[
Z̄11 Z̄

(2)
12

Z̄
(2)
21 Z̄22

]
, (18)

where the coupling matrices Z̄
(2)
12 and Z̄

(2)
21 are written as204

Z̄
(2)
12 =

[
0̄N1×N2 0̄N1×N2

Ā12 B̄12

]
, Z̄

(2)
21 =

[
Ā21 D̄21

0̄N2×N1 0̄N2×N1

]
,

(19)
where 0̄ is a null matrix. The size of the matrix Z̄ is205
2(N1 + N2)× 2(N1 + N2). The elements of the submatrix206
D̄21 can be found in Appendix A. It is important to note that the207

matrices Z̄
(2)
12 and Z̄

(2)
21 differ from those given by Eq. (10).208

If scatterer 2 is perfectly conducting (metallic), then209

Z̄22 = P̄22, Z̄
(2)
12 = [0̄ P̄12]

T and Z̄
(2)
21 = [ Ā21 D̄21], where210

P̄ ij = { Ā ij, B̄ ij} for the TM (∂ψ2/∂n = 0) and TE (ψ2 = 0)211

polarizations, respectively. The size of Z̄ is reduced to212
(2N1 + N2)× (2N1 + N2).213

The excitation vector b of length 2(N1 + N2) is written as214

b=
[

b1 01×2N2

]T
, (20)

where the vector b1 is defined by Eq. (2). In comparison with215
Eq. (11), the vector b2 = 0 because, as shown in Fig. 1, the216
scatterer 2 is not illuminated.217

The unknown vector X of length 2(N1 + N2) is expressed as218

X =
[

X 1 X 2
]T
, (21)

where X i is expressed from Eq. (3). The unknown X on S1 ∪ S2219

is computed from X = Z̄
−1

b.220

The scattered field ψ̄ sca(r) in the medium r ∈�0 (r /∈ S1) is221
then obtained from the Huygens principle expressed as222

ψ̄ sca(r)=− P̄(r, r1)X 1. (22)

If r ∈�1 (r /∈ S1), then the scattered field ψ̄ sca(r) is223

ψ̄ sca(r)=
[
+ P̄(r, r1)

− P̄(r, r2)

]
X . (23)

If r ∈�2 (r /∈ S2), then the scattered field ψ̄ sca(r) is224

ψ̄ sca(r)= P̄(r, r2)X 2. (24)

In this paper, the formulation is generalized to P scatterers. 225
The impedance matrix is then expressed as 226

Z̄=



Z̄11 Z̄
(2)
12 0̄ 0̄ . . . 0̄

Z̄
(2)
21 Z̄22 Z̄

(2)
23 0̄ . . . 0̄

0̄ Z̄
(2)
32 Z̄33 Z̄

(2)
34 . . . 0̄

0̄ 0̄ Z̄
(2)
43 Z̄44 . . . 0̄

...
...

. . .
. . . Z̄P−1,P−1 Z̄

(2)
P−1,P

0̄ 0̄ . . . 0̄ Z̄
(2)
P ,P−1 Z̄PP


, (25)

where Z̄ii (or Z̄i,i ) is the self-impedance matrix of the scatterer i , 227

whereas Z̄
(2)
ij (or Z̄

(2)
i, j ) is the coupling matrix between the objects 228

i and j (propagation of the scattered field from j to i ) expressed 229
from Eq. (19). Unlike the matrix expressed in Eq. (18), Eq. (25) 230
shows that only two adjacent scatterers i and min(|i + 1|, P ) 231
interact, which explains why null matrices appear. 232

The excitation vector b is given by 233

b=
[

b1 0[
1×2

∑i=P
i=2 Ni

] ]T
. (26)

It differs from Eq. (15) because bi = 0 for i ∈ [2; P ] (these 234
scatterers are not illuminated). 235

The unknown vector X of length N = 2
∑i=P

i=1 Ni is 236
expressed from Eq. (16) and computed by solving the linear 237

system Z̄X = b. 238

The scattered field ψ̄ sca(r) in the medium r ∈�0 (r /∈ S1) is 239
obtained from the Huygens principle given by Eq. (24). For r ∈ 240
�i (i ∈ [1; P − 1], r /∈ (Si ∪ Si+1)), the scattered field is 241

ψ̄ sca(r)=
[
+ P̄(r, r i )

− P̄(r, r i+1)

] [
X i

X i+1

]
. (27)

For r ∈�P (r /∈ SP ), the scattered field is ψ̄ sca(r)= 242
P̄(r, r P )X P . 243

D. Combination of Cases 244

As an example, in this paragraph, the impedance matrix of the 245
scenario presented in Fig. 4 is determined. It is expressed as 246

Z̄=


Z̄11 Z̄

(1)
12 Z̄

(1)
13 0̄ 0̄

Z̄
(1)
21 Z̄22 Z̄

(1)
23 0̄ 0̄

Z̄
(1)
31 Z̄

(1)
32 Z̄33 Z̄

(2)
34 Z̄

(2)
35

0̄ 0̄ Z̄
(2)
43 Z̄44 Z̄

(1)
45

0̄ 0̄ Z̄
(2)
53 Z̄

(1)
54 Z̄55

 . (28)

247
The impedance matrix of scatterers 1, 2, and 3 is expressed 248

from Eq. (14), with P = 3. This explains the first three rows and 249

columns of Z̄ with the superscript (1) (Case 1). The impedance 250
matrix of scatterers 4 and 5 is expressed from Eq. (9), in which 251
the subscripts {1, 2} are replaced by {4, 5}, and the incident 252

medium is�3. This explains the last two rows and columns of Z̄ 253
with the superscript (1) (Case 1). The impedance matrix of scat- 254
terers 3 and 4 union 5 is expressed from Eq. (18). This explains 255

the rows (4,5) and columns (4,5) of Z̄ with the superscript (2) 256
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Fig. 4. Combination of cases.

(Case 2). The eight null matrices appear because scatterers 1 and257
2 do not directly interact with objects 4 and 5.258

The excitation vector b is given by259

b=
[

b1 b2 b3 01×2(N4+N5)

]T
, (29)

for which the scatterers 4 and 5 are not illuminated. It is impor-260
tant to note that, if a source exists in the medium �3, then b4261
and b5 differ from 0. By inverting the matrix Z, the surface262
currents on the surfaces {Si∈[1;P ]} are computed.263

The scattered field ψ̄ sca(r) in the medium r ∈�0264
(r /∈ (S1 ∪ S2 ∪ S3)) is then obtained from the Huygens265
principle expressed as266

ψ̄ sca(r)=−

 P̄(r, r1)

P̄(r, r2)

P̄(r, r3)

 X 1

X 2

X 3

 . (30)

For r ∈�3 (r /∈ (S3 ∪ S4 ∪ S5)), the scattered field is267

ψ̄ sca(r)=

+ P̄(r, r1)

− P̄(r, r4)

− P̄(r, r5)

 X 1

X 4

X 5

 . (31)

For r ∈�4 (r /∈ S4), ψ̄ sca(r)= P̄(r, r4)X 4. For r ∈�5 (r /∈268

S5), ψ̄ sca(r)= P̄(r, r5)X 5.269
In conclusion, the two cases presented in the previous sections270

allow us to generalize to any configuration made up of P scatter-271
ers. To construct the impedance matrix, the following method is272
proposed.273

For a given scenario, first a boolean interaction matrix M̄ of274
size P × P is built. If the scatterer j shares a medium � j with275
the scatterer i , then Mij = 1, 0 otherwise. For the case presented276

in Fig. 4, M̄ is written as277

M̄ =


1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 1 1 1
0 0 1 1 1

 . (32)

If Mij = 0, then the corresponding matrix Z̄ij = 0̄. The278

matrix M̄ is symmetric, owing to the reciprocity principle, and279
Mii = 1 ∀ i ∈ [1; P ].280

Second, to distinguish cases of Figs. 2 and 3, for Mij = 1, if281
the scatterer j has its surrounding medium�i 6= j ,i 6=0 belonging282

to the medium�i of the scatterer i , then Mij = 2 [case of Fig. 3, 283
coupling matrix with the superscript (2)], 1 otherwise [case of 284
Fig. 2, coupling matrix with the superscript (1)]. Equation (33) 285
becomes 286

M̄ =


1 1 1 0 0
1 1 1 0 0
1 1 1 2 2
0 0 2 1 1
0 0 2 1 1

 . (33)

In conclusion, if Mij = 0 then Z̄ij = 0̄, Z̄ij = Z̄
(mij)

ij (i 6= j ) 287

otherwise. For the excitation vector b, if the source belongs to 288
the medium�i∈[0;P ], then the scatterer set J = { j } that shares 289
this medium is illuminated. This means that b′J =ψinc(r ∈ S J ), 290

b′J̄ = 0̄1×
∑

NJ̄
otherwise, where J̄ = J /∈ [1; P ]. The scat- 291

tered field in medium �i∈[0;P ] is computed by using the same 292
methods as those previously addressed. 293

3. CHARACTERISTIC BASIS FUNCTION 294
METHOD 295

For P dielectric scatterers, the size of the matrix to be inverted 296
is N × N, where N = 2

∑i=P
i=1 Ni . The direct solution of 297

the linear system Z̄X = b through a direct lower upper (LU) 298
decomposition is usually limited by O(N3) and O(N2) com- 299
plexities in CPU time and memory requirement, respectively. 300
This is computationally expensive for an electrically large mul- 301
tiscale object or a collection of dielectric objects (i.e., N huge). 302
To tackle this issue, the domain decomposition method, named 303
the characteristic basis function method (CBFM), is applied. A 304
summary of this method can be found in [44,45]. 305

It is important to note that, originally, the CBFM was devel- 306
oped for radiation and 3D scattering problems [44] and on a 307
single geometry. Next, it was extended to a single and two 3D 308
dielectric scatterers [40,43]. 309

For a 2D problem, some minor changes are needed. 310

A. Case of Metallic Scatterers 311

First, the scatterers are assumed to be metallic. The CBFM 312
begins by dividing the geometry of the problem to be ana- 313

lyzed into B blocks, where Z̄i,i is the self-impedance matrix of 314
the block i . Next, a primary basis function (PBF), Y i ′,kIPW , is 315
computed for each block by solving the linear system 316

Z̄i ′,i ′Y i ′,kIPW = B i ′,kIPW , (34)

where the subscript prime indicates that the block i is enlarged 317
and kIPW stands for the kIPWth plane wave (ranging from 1 to 318
NIPW,i ). The original version of CBFM [44] used B i ′,kIPW = bi ′ 319
(single incident plane wave, kIPW = 1), and the secondary basis 320
functions (SBFs) are calculated. In 2008 [48], a more efficient 321
way is proposed to calculate the PBFs, and the computation of 322
SBFs is not required. 323

Lucente et al. [48] solved the linear system in Eq. (34) from 324
a collection of NIPW,i incident plane waves {B i ′,kIPW}, and 325

the resulting vectors {Y i ′,kIPW} are stored in a matrix J̄ i of 326
size Ni × NIPW,i , where Ni is the number of unknowns of the 327
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block i without overlapping. This means that the overlapped328
unknowns of Y i ′,kIPW are removed.329

The choice of NIPW,i must be relevant to avoid the size of the330
matrix being too big. The redundant information due to the331
overestimation of NIPW,i is eliminated via the use of a truncated332
singular value decomposition (SVD). This means that, from333
a given threshold εCBFM,SVD, the values for which the mod-334
ulii of the normalized eigenvalues are smaller than εCBFM,SVD335

are removed. The size of J̄ i becomes Ni × NIPW,SVD,i , with336
NIPW,SVD,i < NIPW,i .337

The last stage of CBFM consists in solving a reduced linear338

system Z̄
R

aR
= bR defined as339 

Z̄
R
1,1 Z̄

R
1,2 . . . Z̄

R
1,B

Z̄
R
2,1 Z̄

R
2,2 . . . Z̄

R
2,B

...
...

. . .
...

Z̄
R
B,1 Z̄

R
B,2 . . . Z̄

R
B,B




aR
1

aR
2
...

aR
B

=


bR
1

bR
2
...

bR
B

 , (35)

where the submatrix Z̄
R
i, j and the subvector bR

i are defined as340 {
Z̄

R
i, j = J̄

H
i Z̄i, j J̄ j

[
NIPW,SVD,i × NIPW,SVD, j

]
bR

j = J̄
H
j b j

[
NIPW,SVD,i × 1

] . (36)

Moreover, the symbol H stands for the conjugate trans-341
pose operator, and the indexes i and j range from 1 to B . The342

unknown vector X i of the block i equals X i = J̄ i aR
i .343

The problem is then represented by the characteris-344
tic square matrix of size (B N̄IPW,SVD)

2 instead of a square345

matrix of size N2
= (B N̄)2, where N̄ = (1/B)

∑B
p=1 Ni346

and N̄IPW,SVD = (1/B)
∑B

p=1 NIPW,SVD,p (mean values347
over the number of blocks B). Then, the reduction factor is348
(N̄/N̄IPW,SVD)

2. If multiple excitations {b} (for instance,349

monostatic case) are considered, then the storing of Z̄
R

avoids350
to repeat the procedure, and the surface currents are calculated351
rapidly. The complexity of CBFM is detailed in [45].352

Originally, the CBFM splits up the single geometry into B353
blocks, since for a 3D problem the number of unknowns can be354
huge. In this paper, since the number of unknowns Ni of a single355
scatterer is moderate, it is not required to decompose it into356
blocks, but it is not a limitation. This means that the number357
of blocks equals the number of scatterers, B = P , and that the358
overlapping between the scatterers is not necessary.359

B. Case of Dielectric Scatterers360

As shown by Eq. (1), for a dielectric scatterer, the self-impedance361
matrix of size 2Ni × 2Ni is expressed from four submatrices of362
size Ni × Ni . Thus, the PFBs are calculated by repeating the363
procedure four times used for a metallic object and illustrated by364
Eq. (34). This leads to the matrix365

J̄ i =

[
J̄ i,11 J̄ i,12

J̄ i,21 J̄ i,22

]
, (37)

where the submatrices { J̄ i,pq } (p = {1, 2}, q = {1, 2})366

are obtained from the four submatices of Z̄i ′,i ′ ,367

i.e., { Āi ′,i ′ , B̄ i ′,i ′ , C̄ i ′,i ′ , D̄i ′,i ′}. This representation implies368

Table 1. Notations Introduced in This Paper

Name Definition

P Number of scatterers
B Number of blocks (= P )
N Total number of unknowns
Ni Number of unknowns of scatterer i
NIPW,p CBFM plane wavenumber of block i
NIPW,SVD,p CBFM plane wavenumber of block i after SVD truncation
εCBFM,SVD CBFM threshold of the SVD truncation
N̄ Mean value of Ni over p ∈ [1; B]
N̄IPW Mean value of NIPW,i over i ∈ [1; B]
N̄IPW,SVD Mean value of NIPW,SVD,i over i ∈ [1; B]

that the numbers of plane waves {NIPW,i,pq } of { J̄ i,pq } sat- 369
isfy NIPW,i,11 = NIPW,i,21 and NIPW,i,12 = NIPW,i,22. This 370

means that the size of J̄ i is 2Ni × (NIPW,i,11 + NIPW,i,12). 371
Like a metallic scatterer, the redundant information is elimi- 372
nated via the use of a truncated singular value decomposition 373

(SVD). This yields that the new size of J̄ i is 2Ni × Ni,IPW, with 374
Ni,IPW < NIPW,i,11 + NIPW,i,12. Equations (35) and (36) are 375
unchanged. 376

The SVD decomposition can be applied on each submatrices 377

J̄ i,pq , and the resulting compressed matrix J̄ i is obtained from 378
Eq. (37). Numerical tests revealed that this procedure has a lower 379

precision than when the SVD is applied on the whole matrix J̄ i . 380
For convenience, Table 1 lists the notations introduced in this 381

paper. 382

4. CBFM COMBINED WITH THE KIRCHOFF 383
APPROXIMATION 384

For a given plane wave B i ′,kIPW , the calculation of a PBF, 385

Y i ′,kIPW , requires solving the linear system Z̄i ′,i ′Y i ′,kIPW = 386

B i ′,kIPW , leading to a complexity of O(N3
i ′), where Ni ′ is the 387

number of unknowns with overlapping. To reduce the complex- 388
ity of this operation toO(Ni ), the Kirchoff approximation (KA) 389
is applied. 390

For a dielectric scatterer of surface S separating two homo- 391
geneous media (�1, �2), the surface current and its normal 392
derivative on r ∈ S are expressed as [49,50] 393{

ψ(r)= [1+R(θ)]ψinc(r)I(r)
∂ψ(r)
∂n = [1−R(θ)] ∂ψinc(r)

∂n I(r) , (38)

whereR is the Fresnel reflection coefficient defined as 394

R=
{ n2 cos θ−n1 cos θt

n2 cos θ+n1 cos θt
TM polarization

n1 cos θ−n2 cos θt
n1 cos θ+n2 cos θt

TE polarization
. (39)

In addition, cos θ =−k̂inc · n̂, cos θt = 395√
1− n2

1(1− cos2 θ)/n2
2, and ni =

√
εr ,i (i = {1, 2}) the 396

refraction index of the medium �i . The unitary vector k̂inc 397
stands for the incident direction, and n̂ is the unitary vector 398
normal to the surface at the point r. In Eq. (38), I(r) denotes a 399
boolean illumination function. If a point on the surface r ∈ S is 400
viewed (that is, cos θ ≥ 0) by the transmitter, then I(r)= 1; 0 401
otherwise. 402
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For a metallic surface, R= {+1,−1} for the TM403
and TE polarizations, respectively. This leads to {ψ =404
2Iψinc, ∂ψ/∂n = 0} for TM and to {ψ = 0, ∂ψ/∂n =405
2I∂ψinc/∂n} for TE.406

Assuming a plane incident wave ψinc = e j kinc·r , Eq. (38)407
becomes408 {

ψ(r)= [1+R(θ)] e j kinc·rI(r)
∂ψ(r)
∂n = [1−R(θ)] e j kinc·rI(r) j kinc · n̂

. (40)

In Eq. (37), the PBFs { J̄ i,11, J̄ i,12} are obtained from409
Eq. (40) by taking R= {+1,−1} (metallic case), respectively,410

whereas { J̄ i,21, J̄ i,22} are obtained from Eq. (40).411

In other words, it is equivalent to write that Z̄i,i is a diagonal412
matrix (because only local interactions are accounted for, that is,413
the multiple reflections are neglected) by blocks. The two upper414
blocks have Ni elements equal to 2I(rm) and 2I(rm)kinc · n̂m ,415
respectively, whereas the two lower blocks have Ni elements416
equal to I(rm)[1+R(θm)] (θm depends on rm discretized on417
S) andI(rm)[1−R(θm)] j kinc · n̂m , respectively.418

To calculate the PBFs with KA, the resulting complexity419
is O(Ni ) instead of O(N3

i ′) from a conventional LU decom-420
position. For the numerical results, keep in mind that there is421
no overlapping between the P = B scatterers, meaning that422
Ni ′ = Ni .423

5. NUMERICAL RESULTS424

In this section, numerical examples are exhibited to demonstrate425
the efficiency of CBFM combined with either LU or KA for426
the calculation of the PBFs. Table 2 lists parameters of the four427
scenarios.428

A. Scenario 1: Stack of Rough Interfaces429

First, the scattering from a stack of P = 6 random rough inter-430
faces separating homogeneous media is considered. Table 3 lists431
the simulation parameters; Fig. 5 shows the scenario.432

To attenuate the edge diffraction by the upper surface,433
Thorsos’s [51] Gaussian-tapered incident wave is applied with434
g = L1/6= 10λ0, and the incident angle is θinc = 0. The435
parameter g controls the extend of the incident wave.436

To calculate the PBFs, the incident waves [vectors {B i ′,kIPW}437
in Eq. (34)] are assumed to be plane, and their incidence angles438
range from 0 to 2π . In addition, they are spaced equally and439
their number, NIPW, is assumed to be440

NIPW =

⌊
k0 D+ 1

nIPW
, (41)

Table 2. Parameters of the Four Scenarios
a

Scenario εCBFM,SVD N NR NR,SVD tLU tCBFM−LU tCBFM−KA

1 10−4 14,400 4,392 2,925 98 20 16
2 10−5 4,074 1096 1036 15 0.6 0.5
3 10−4 11,436 3,336 2,168 48 5 4
4 10−5 11,056 3,326 2,690 81 13 11

aSee Table 1 for the notations. In addition, computing times of LU (applied
on the entire matrix) tLU, CBFM-LU, tCBFM−LU, and CBFM-KA, tCBFM−KA in sec-
onds. The matrix filling time is included.

Table 3. Parameters of the First Scenario: A Stack of
P= 6 Random Rough Interfaces Separating
Homogeneous Media �i of Permittivity εr,i

a

Medium�i εr,i Scatterer i σz,i[λ0] L c,i[λ0] h i[λ0]

0 1
1 2+ 0.01 j 1 0.1 1 0
2 2.5+ 0.02 j 2 0.15 1.5 −2
3 3+ 0.03 j 3 0.2 2 −4
4 2+ 0.01 j 4 0.1 1 −6
5 2.5+ 0.02 j 5 0.15 1.5 −8
6 3+ 0.03 j 6 0.2 2 −10

aThe rough surface number i obeys a Gaussian height distribution with a
height autocorrelation function (ACF) assumed to be Gaussian, with a standard
deviation σz,i and a correlation length L c ,i . Its height mean value (or depth) is
h i , the surface lengths are equal to 60λ0, where λ0 is the wavelength in vacuum
(medium�0), and the sampling step per wavelength λ0 is equal to 20.

Fig. 5. Scenario 1: A stack of P = 6 rough interfaces separating
homogeneous media. The simulation parameters are listed in Table 3.

where the symbol b stands for the upper integer part, D the larg- 441
est dimension of the scatterer, and k0 = 2π/λ0 the wavenumber 442
in vacuum. For nIPW = 1, the above equation gives the number 443
of eigen modes that contribute to the scattering from a circular 444
cylinder of diameter D. Since for a rough surface, NIPW is over- 445
estimated, the number nIPW > 1 is introduced. 446

Figure 6 plots the modulus of the surface currents {ψ1, ψ6} 447
(upper and lower interfaces) in dB scale versus the surface 448
abscissa. In the legend, the labels mean “CBFM(εCBFM,SVD- 449
nIPW)-LU: N̄IPW − N̄IPW,SVD, RRE” (Table 1), where the 450
relative residual error (RRE) is defined as 451

RRE=
norm (X LU − X CBFM)

norm (X LU)
. (42)

The norm is the norm 2, which is calculated over the surface 452
abscissa xi . CBFM-LU means that the PBFs are computed from 453
a LU decomposition. In addition, the legend “LU” means that 454
the strengths are computed from the brute force MoM (LU 455
decomposition of the entire matrix of the problem, that is, the 456
reference solution). 457

As we can see, for nIPW = 3, the results match well with 458
those obtained from LU, and the comparison is better for 459
εCBFM,SVD= 10−4, as expected, but the number N̄IPW,SVD is 460
larger. Table 2 shows that the size of the reduced matrix is 4.9 461
times smaller than that of the entire problem and the gain in 462
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Fig. 6. Modulus of the surface current currents {ψ1, ψ6} (upper
and lower interfaces) in dB scale versus the surface abscissa (scenario
depicted in Fig. 5). The polarization is TM.

Fig. 7. NRCS in dB scale versus the scattering angle θsca (scenario
depicted in Fig. 5). The polarization is TM.

saving time is of the order of 5. Figure 6 also shows that, for463
nIPW = 4, the results do not coincide with those of LU.464

Figure 7 plots the NRCS in dB scale versus the scattering465
angle θsca (scenario depicted in Fig. 5). The polarization is TM.466
RRE is calculated over the scattering angles θsca of the field467
scattered by the upper surface (scatterer 1). As we can see, for468
nIPW = 3, a good agreement is obtained between CBFM and469
LU, and, for nIPW = 4, the disagreement is strong.470

Figure 8 plots the same variations as in Fig. 7, but the PBFs471
are computed from LU and KA with nIPW = 3. As we can see,472
for εCBFM,SVD= 10−5, CBFM-KA predicts satisfactory results,473
whereas those obtained from CBFM-LU are very good for474
εCBFM,SVD= 10−4. However, for εCBFM,SVD= 10−6, the differ-475
ence between LU and CBFM-KA is small. This means that, for476
a given threshold εCBFM,SVD, N̄IPW,SVD of KA is smaller than477
that of LU, and, to obtain a similar value between KA and LU,478
εCBFM,SVD of KA has to decrease. In other words, the eigenvalue479
spectrum of PBFs of KA is broader than that of LU. It is impor-480
tant to point out that KA allows us to accelerate the computation481
of the PBFs because no inversion is needed, unlike LU.482

The Kirchoff approximation is valid if the mean surface483
curvature radius Rc is greater than the electromagnetic484
wavelength [49] (the term cos3θ is omitted). For a Gaussian485
ACF [52,53], Rc ≈ L2

c (1+ 1.5σz/L c )/(2.76σz)≈486
{4.16, 6.25, 8.33, 4.16, 6.25, 8.33}λ0 for the surfaces depicted487

Fig. 8. NRCS in dB scale versus the scattering angle θsca (scenario
depicted in Fig. 5). The PBFs are computed from LU and KA, with
nIPW = 3.

in Fig. 5. Numerical results, not depicted in the paper, demon- 488
strate that, when Rc <λ0, the precision of CBFM-KA is lower. 489
In addition, it is important to underline that the multiple reflec- 490
tions are neglected with KA, which implies that the surface RMS 491
slope must be moderate (typically, smaller than 0.3–0.35). 492

Figure 9 plots the same variations as in Fig. 7, but the polari- 493
zation is TE. For LU, εCBFM,SVD= 10−4, whereas for KA, 494
εCBFM,SVD= 10−6. As we can see, a good agreement is obtained 495
with LU, which implies that the input parameters are well 496
chosen. 497

This first study showed that, for a stack of rough interfaces, 498
the CBFM combined with either LU or KA gives very good 499
results. To calculate the PBFs, Eq. (41) with nIPW = 3 slightly 500
overestimates the number of incident plane waves. The use of 501
a SVD truncation allows us to reduce this number by a factor 502
ranging from 1.5 to 1.6 (see Table 2 or legends of Figs. 7–9), 503
which implies that the size of the reduced matrix also decreases. 504
It is also important to underline that the threshold εCBFM,SVD 505
must be divided by 100 for KA in comparison with LU (with 506
εCBFM,SVD= 10−4) to obtain a similar value of N̄IPW,SVD. 507

B. Scenario 2: Collection of Elliptical Cylinders 508

In this subsection, the scattering from a collection of 21 ellip- 509
tical dielectric cylinders is considered. Figure 10 shows the 510
scenario, in which the cylinders are identical but with a differ- 511
ent rotation angle. Their permittivities are εr ,i = 3+ 0.05 j , 512
semimajor axis a = λ0, and semiminor axis b = 2λ0. They 513
are numbered from the left to the right going from bot- 514
tom to top (see Fig. 10). Their rotation angles are spaced 515
equally as {−180,−162,−144, . . . , 144, 162, 180} 516
degrees, and the center coordinates are equal to 517
{(−6,−2), (−4,−2), (−2,−2), . . . , (2, 2), (4, 2), (6, 2)}λ0. 518
The sampling step per wavelength λ0 is 20, and the inci- 519
dent wave is assumed to be plane ψinc(r)= e j kinc·r = 520
e j k0(x sin θinc−z cos θinc), with an incidence angle θinc = 0. 521

Figure 11 plots the RCS in dBm scale versus the scattering 522
angle θsca (scenario depicted in Fig. 10). The polarization is 523
TM. In the legend, the labels mean “CBFM(εCBFM,SVD-nIPW)- 524
Method: N̄IPW − N̄IPW,SVD, RRE” (Table 1), where the relative 525
residual error (RRE) is defined by Eq. (42), in which X is the 526
scattered field in far field versus θsca. “Method” is the method 527
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Fig. 9. Same variations as in Fig. 7, but the polarization is TE.

Fig. 10. Scenario 2: Collection of P = 21 elliptical dielectric
cylinders.

(LU or KA) applied to compute the PBFs. Figure 11 shows that528
CBFM matches well with LU; further, in comparison with a529
rough surface, the threshold εCBFM,SVD must be lower (divided530
by 10). The label LU1 means that the self-impedance submatri-531

ces {Z̄i,i } and their associated PBFs are calculated only for the532
scatterer 1, since these functions are invariant by rotation and533
translation (the elliptical cylinders are identical). This property534
significantly accelerates the first stage of CBFM since the matri-535

ces {Z̄i,i } and their associated PBFs of the scatterers i ∈ [2; P ]536
are not performed.537

In Fig. 11, nIPW = 1, and the legend (see also Table 2) indi-538
cates that N̄IPW does not significantly change in comparison539
with N̄IPW,SVD. This means that the value N̄IPW calculated from540
Eq. (41) is well chosen and that the SVD truncation could be541
omitted.542

Figure 12 plots the same variation as in Fig. 11, but the polari-543
zation is TE. The results of the different methods match well544
with those of LU. The number of unknowns and the size of the545
reduced matrix for CBFM-LU are reported in Table 2.546

For a collection of elliptical cylinders, this second study547
showed again that the CBFM is efficient and that the value of548
NIPW expressed by Eq. (41) is well suited. In addition, like for549
a rough interface (comparison of Fig. 7 with Fig. 9), the TE550
polarization needs a smaller threshold εCBFM,SVD than for the551
TM one to reach a similar RRE.552

Fig. 11. RCS in dBm scale versus the scattering angle θsca (scenario
depicted in Fig. 10). The polarization is TM.

Fig. 12. Same variation as in Fig. 11, but the polarization is TE.

C. Scenario 3: Collection of Elliptical Coated 553
Cylinders 554

In this subsection, the scattering from six elliptical coated 555
dielectric cylinders is considered. Figure 13 shows the sce- 556
nario. A coated cylinder is composed of three nested cylinders 557
separating four homogeneous media. The scatterers num- 558
bered 1, 2, and 3 have semimajor axis a = {4, 3, 2}λ0, 559
semiminor axis b = {3, 2, 1}λ0, rotation angles {0, 30, 60} 560
degrees, and equal centers of coordinates (−4.5, 7)λ0. 561
The permittivities of the four media {�i } (i ∈ (1; 4)) are 562
εr = {1, 2+ 0.05 j , 2.5+ 0.06 j , 3+ 0.07 j }. The scatterers 563
{7, 8, 9} and {13, 14, 15} are obtained from scatterers {1, 2, 3} 564
by making a vertical translation of −7λ0 and −14λ0, respec- 565
tively. The remaining scatterers defined for x > 0 are obtained 566
from those defined for x < 0 by symmetry. The sampling step 567
per wavelength λ0 is 20, and the incident wave is assumed to 568
be plane ψinc(r)= e j kinc·r = e j k0(x sin θinc−z cos θinc), with an 569
incidence angle θinc = 0. 570

Figure 14 plots the RCS in dBm scale versus the scattering 571
angle θsca (scenario depicted in Fig. 13). The polarization is 572
TM. As we can see, a good agreement is obtained between LU 573
and CBFM-LU and CBFM-KA. Like previously, for KA, the 574
threshold εCBFM,SVD = 10−6 is divided by 100 in comparison 575
with that of LU to select enough PBFs. In Fig. 14, the legend 576
(see also Table 2) indicates that N̄IPW moderately changes in 577
comparison with N̄IPW,SVD. This means that the value N̄IPW 578
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Fig. 13. Scenario 3: Six elliptical dielectric coated cylinders
(P = 18 scatterers).

Fig. 14. RCS in dBm scale versus the scattering angle θsca (scenario
depicted in Fig. 13). The polarization is TM.

Fig. 15. Same variation as in Fig. 14, but the polarization is TE.

calculated from Eq. (41) is slightly overestimated and that the579
SVD truncation allows us to decrease the size of the reduced580
matrix. In the legend, “CBFM-LU3” means that the PBFs and581

the self-impedance submatrices {Z̄i,i } are only computed for the582
scatterers i = {1, 2, 3} (first coated cylinder); the other coated583
cylinders are identical by translation and rotation (same as the584
second scenario).585

Figure 15 plots the same variation as in Fig. 14, but the polari-586
zation is TE. In addition, for CBFM-LU, εCBFM,SVD = 10−5587
is divided by 10 in comparison with the TM polarization. The588
results perfectly match with those obtained from LU.589

Fig. 16. Scenario 4: Inhomogeneous rough layer composed of two
rough interfaces separated by a collection of 24 elliptical cylinders
(P = 26).

Fig. 17. NRCS in dB scale versus the scattering angle θsca (scenario
depicted in Fig. 16). The polarization is TM.

D. Scenario 4: Inhomogeneous Rough Layer 590

In this subsection, the field scattered by an inhomogeneous 591
rough layer composed of two rough interfaces separated by 592
a collection of 24 elliptical cylinders is presented (P = 26 593
scatterers). 594

As shown in Fig. 16, scatterers 1 and 26 are two inde- 595
pendent rough interfaces of length 80λ0 with standard 596
deviations σz = {0.2, 0.1}λ0, height correlation lengths 597
L c = {1, 1.5}λ0, Gaussian ACFs, and a Gaussian height 598
distribution. They separate three homogeneous media of per- 599
mittivities εr = {2+ 0.01 j , 3+ 0.02 j , 4+ 0.05 j }. The 24 600
cylinders are identical but with different rotation angles. Their 601
permittivities are εr ,i = 4+ 0.05 j and have a semimajor axis 602
a = λ0 and a semiminor axis b = 0.5λ0. They are numbered 603
from left to right going from bottom to top (see Fig. 16). Their 604
rotation angles are spaced equally and range from−180 to 180 605
with a step of 15.65 deg. The sampling step per wavelength λ0 606
is 20. As in scenario 1, to attenuate the edge diffraction by the 607
upper surface, Thorsos’s [51] tapered incident wave is applied, 608
with g = L1/6, and the incident angle is θinc = 0. 609

Figure 17 plots the NRCS in dB scale versus the scattering 610
angle θsca (scenario depicted in Fig. 16). The polarization is 611
TM. Figure 18 plots the same variation as in Fig. 17, but the 612
polarization is TE. From Eq. (41), to calculate NIPW,i , nIPW = 1 613
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Fig. 18. Same variation as in Fig. 17, but the polarization is TE.

for the cylinders and nIPW = 3, for both rough surfaces. As we614
can see, a good agreement is obtained between LU and CBFM615
combined with either LU or KA.616

6. CONCLUSION617

In this paper, the MoM is generalized to several 2D scatterers of
any shape; further, the CBFM combined with LU and KA is

618
619

A pq ,mn =


−

j k0vq ,n |1q ,n |

4
H(1)1 (k0‖rq ,n−r p,m‖)
‖rq ,n−r p,m‖

[
γq ,n(xq ,n − x p,m)− (zq ,n − z p,m)

]
for m 6= n

+
1
2 −

vq ,n |1q ,n |

4π

γ ′q ,n

1+γ 2
q ,n

for m = n
, (A1)

620
addressed for efficiently solving the resulting linear system.621
Considering four different complex scenarios depicted in622
Figs. 5, 10, 13 and 16, for both the TM and TE polarizations,623
the numerical results showed that CBFM-LU and CBFM-624
KA are efficient in terms of computing time and memory625
requirements in comparison with the brute force MoM (LU626
decomposition of the entire matrix of the problem). Table 2627
summarizes the performances of CBFM-LU. For a large num-628
ber of unknowns, N, the efficiency is even better since only629
the self-impedance submatrices are stored for CBFM and the630
complexity of LU isO(N3).631

The calculation of the number of PBFs, NIPW,i given by632
Eq. (41), is well suited. For a rough surface, nIPW = 3 and for an633
elliptical cylinder, nIPW = 1. To reduce the size of the reduced634
matrix, a SVD truncation can be applied; for elliptical cylinders,635
however, it is not useful because NIPW,i,SVD is of the same order636
of NIPW,i . For a collection of objects invariant by translation637
and rotation, another advantage of CBFM is that the PBFs638
and the self-impedance submatrices of the scatterers are equal.639
Therefore, the first stage of CBFM is applied only on a single640
scatterer.641

To accelerate the computation of the PBFs, that is, to avoid642
an LU decomposition on the self-impedance submatrices, KA is643
applied. The numerical results showed that CBFM-KA matches644
well with LU, but in comparison with CBFM-LU, the threshold645
εCBFM,SVD must be divided by 100 to obtain a comparable value646
of NIPW,i . It is important to point out that CBFM-KA predicts647
good results, even on geometries for which KA is not valid, like648
the elliptical cylinders. In addition, in Eq. (38), the boolean649
illumination function I(r) can be omitted. This statement is650

surprising and allows us to simplify the calculation of PBFs. 651
Table 2 shows that the time difference between CBFM-LU and 652
CBFM-KA is small and increases as the number of unknowns 653
grows. As expected, the time is smaller for CBFM-KA. For 654
CBFM-LU, the PBFs are calculated from a LU inversion of 655
complexity O(N3

i ), whereas for CBFM-KA, the complexity is 656
O(Ni ). Thus, for large Ni (3D problem), CBFM-KA should 657
be competitive. In addition, with CBFM, the allocation time 658
to calculate the reduced characteristic matrix (second stage 659
common to CBFM-LU and CBFM-KA) is about 80%–90% 660
of the total time. In Table 2, this explains the small differences 661
between tCBFM,LU and tCBFM,KA. 662

The advantage of the domain decomposition method is that 663
it is highly parallelizable, which further reduces the computing 664
time. The proposed method is then a powerful electromagnetic 665
computation tool to solve any 2D problem, especially when 666
some scatterers are identical. 667

APPENDIX A: ELEMENTS OF THE MATRICES 668

In Eq. (1), the elements (m, n) (indexes of the row and column, 669

respectively) of the submatrices { Ā11, B̄11, C̄11, D̄11} are 670
expressed as (p = q = 1) 671

672

B pq ,mn =

j |1q ,n|

√
1+ γ 2

q ,n

4H(1)
0 (k0

∥∥rq ,n − r p,m

∥∥) for m 6= n[
1+ 2 j

π
ln
(

0.164k0

√
1+ γ 2

q ,n|1q ,n|

)]
for m = n

,

(A2)
673

C pq ,mn =

{
A pq ,mn

∣∣
k0=k1 for m 6= n

−
1
2 −

vq ,n |1n |

4π

γ ′q ,n

1+γ 2
q ,n

for m = n
, (A3)

674

Dpq ,mn =
B pq ,mn

∣∣
k0=k1

ρ01
. (A4)

where rq ,n = (xq ,n, zq ,n) ∈ Sq (coordinates of the point on 675
the surface Sq ), r p,m = (x p,m, z p,m) ∈ S p , γ = dz/d x , γ ′ = 676
dγ /d x , 1q ,n the sampling step on Sq , vq ,n = sgn(n̂q ,n · ẑ) 677
(n̂q ,n is the unitary vector normal to the surface Sq at the point 678

rq ,n), H(1)
0 the zeroth order Hankel function of the first kind and 679

H(1)
1 its derivative. 680
For the TE polarization, the variable ρ01 = 1, whereas for 681

the TM polarization, ρ01 = εr ,0/εr ,1, where εr ,i is the relative 682
permittivity of medium�i . 683

It is important to underline that, for a self (interaction of the 684
same surface) impedance submatrix, p = q and a singularity 685
occurs for m = n, whereas for a coupling matrix p 6= q , there 686

is no singularity because r p 6= rq . In addition, any matrix Z̄pq 687
propagates the field from the source points {rq ,n} toward the 688
observation points {r p,m}. 689
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For the calculation of the scattered field in the far field690
(u→∞), the following expansions [6] of the Hankel functions691
can be applied:692 {

H(1)
0 (u)≈

√
2
πu exp

[
j
(
u − π

4

)]
H(1)

1 (u)=− jH(1)
0 (u)

. (A5)
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