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This paper focuses on the two domain decomposition methods, the subdomain decomposition iterative method
(SDIM) and the characteristics basis function method (CBFM), combined with adaptive cross approximation
(ACA) to compute the normalized radar cross section (NRCS) from a perfectly conducting two-dimensional
(2D) randomly rough surface. The 3D electromagnetic problem is solved from the electric field integral equation
discretized by the Galerkin method of moments with the Rao—Wilton—Glisson basis functions. In addition, a para-
metric study versus the number of blocks, the number of overlapping edges, the thresholds of recompressed ACA
(RACA; ACA combined with two QR decompositions and truncated by a SVD procedure, also named ACA-SVD or
ACA-TSVD), and the parameters inherent to the CBFM is investigated. The complexity of the two methods is also

addressed. © 2020 Optical Society of America

https://doi.org/10.1364/JOSAA.397764

1. INTRODUCTION

The study of wave scattering from randomly rough surfaces
is a subject of great interest. The applications of such research
concern many areas that include remote sensing, radar surveil-
lance, optics, and ocean acoustics. Classically, two families of
approaches have been developed to solve this issue. The first one
is based on asymptotic methods [1-4], in which simplifying
assumptions are introduced to obtain a closed-form expression
of the scattered field. The second family is based on rigorous
approaches, such as the method of moments (MoM) [5-8].

In this paper, to calculate the scattered field by a perfectly con-
ducting two-dimensional (2D) rough surface, the electric field
integral equation (EFIE) is discretized by the Galerkin method
MoM with the Rao—Wilton—Glisson (RWG) basis functions.
To solve the resulting linear system, direct solvers like the LU
decomposition can be employed, but it is limited by the size of
the problem. Then, iterative solvers like the conjugate gradient
and their improved versions [8,9] have been developed to solve
larger size problems and to decrease the computing time. In
addition, to expedite the matrix-vector products, accelerations
are hybridized, like the fast multipole method (FMM) [10] and
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the far-field approximation [11]. Since the 2000s, the team of
Tsang et al. [12], has also extended the original version of the
sparse matrix canonical-grid method with the pulse basis func-
tion and point matching method [13,14] to the RWG MoM
[15-17].

Another family [18-21] to rigorously solve problems involv-
ing a large number of unknowns can be applied and is based on
domain decomposition methods. These methods also provide
a fast iterative solution of the problem based on the subdivision
of the entire geometry into several subdomains (blocks). In
this way, the MoM impedance matrix is partitioned and the
solution is then obtained from an iterative scheme involving the
local impedance submatrices. The characteristics basis function
method (CBFM) [18] and the subdomain decomposition
iterative method (SDIM) [20] are two domain decomposition
methods that are well adapted to the problem addressed in this
paper: rough surface scattering.

In recent years, rank-based methods have attracted consid-
erable attention because they are kernel independent and can
be easily integrated into a variety of MoM codes (see [22] for a
brief review). The adaptive cross approximation (ACA) algo-
rithm, published by Bebendorf in 2000 [23] and next applied
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by Zhao ez al. [24] for electromagnetic problems, is an efficient
technique to generate a compressed approximate representation
of the low rank of off-diagonal blocks. They represent inter-
actions between spatially separated groups of basis functions
that are usually rank deficient. In [25,26], this compression is
generalized to the whole impedance matrix.

This paper focuses on SDIM and CBFM combined with
ACA to compute the normalized radar cross section (NRCS)
from a perfectly conducting randomly rough 2D surface. For a
1D rough surface, [20,27] showed that SDIM is efficient when
the geometry is a rough surface. CBFM, on the other hand, is
efficient for scattering and radiation 3D problems, for which
few papers have been published [28,29] to date to the best of our
knowledge for a rough surface.

Preliminary comparisons between CBFM and SDIM are
presented in [30], for which a square rough surface of area
(10A¢)? is considered. In addition, for the CBFM, the primary
and secondary basis functions (PBFs and SBFs, respectively) are
computed from a single incident plane wave, which implies that
the results do not match with those computed from a direct LU
inversion of the impedance matrix. In this paper, the PBFs are
computed from a collection of Mpw bipolarized plane waves
[31], for which the integer Mpw is well chosen. In addition,
a parametric study versus the number of blocks, the number
of overlapping edges, the thresholds of recompressed ACA
(RACA) and the parameters inherent to the CBFM (Npyy,. . .)
is addressed. RACA combines ACA with two QR decomposi-
tions truncated by a SVD procedure, also named ACA-SVD or
ACA-TSVD [22,26,32].

The paper has four sections. Section 2 briefly presents the
SDIM, the CBFM, and the RACA algorithms. Section 3
compares the NRCS computed from the SDIM-RACA and
CBFM-RACA to the parameters of each method and Section 4
gives concluding remarks.

2. SDIM, CBFM, AND RACA ALGORITHMS
A. MoM

In this paper, to compute the field scattered by a perfectly con-
ducting object, the EFIE is solved from the MoM. In addition,
the Galerkin method is applied with the RWG basis func-
tions. This approach leads to a solution for the linear system
ZX = b, where Zis the impedance matrix, & is a vector related
to the incident wave, and X is the unknown vector. The time
convention e/ is used throughout this paper.

The element Z,,, of the impedance matrix Z, corresponding
to the interaction between two edges 7 (observation) and »
(source) of a facet couple (p, ¢) is expressed as [8]

o= I 1,

177 e 7*0Prag
[4,,,» pq_kz}WdRPdRq, 1)

where ¢,.,=L,,L,sp.,/(4m), in which {L, ,} are the
edge lengths and s,,, ==+1, {4, ,} are the triangle areas;
phh=V01 — R, ,, in which V27 is the position vector of
the vertex unshared by the edge (7, n) and belonging to the

facet (p, g). In addition, D, , =R, — R,|| and ko is the
wave number that equals 277/, where A is the wavelength in
free space. The two numerical integrations over the triangles
{T,.4} are done from the Gauss-Legendre method, in which
one or three points are used. The singularity, which occurs for
D, , =0, is computed from the work published by [33] by
using six points for the Gauss-Legendre integrations.

A component b, of the vector b associated to the source edge

nand facet g is defined as [8]

J Lusu

bnz___ 7. p; incR dR, 2

where w is the wave pulsation and ¢ the permeability of the
surrounding medium assumed to be a vacuum. In addition, ¥/;,c
is the incident wave of polarization p;,_ [either vertical, ¥;, (V),
or horizontal, i)inc (H)]. Solving the linear system X = z! b,
the components {,} of the vector X are found. The far-field
scattered field is then expressed as

Pracet

B (Ry) = F2t0e
sca 87T RO

Edge

p=1 m=1

* T // phelkafrdr,,  (3)
? T,

where Py is the number of facets (or triangles) and Mgg,. the
number of edges associated to the facet p. In addition, Ry is
the distance from the receiver to the phase origin of the object.

The normalized scattering cross section (or dimensionless

scattering coefficient) is then expressed as

RJEX - p..I
PSCZ.

lim sca
Ro—>00 2770140 Pinc

NRCS , (4)

PincPsca ™

where Ag = L, x L, is the surface area, 19 = 1207 is the wave
impedance in free space, and Py, is the incident power density,
pmc ={V, H} and p,, ={V, H}. The subscripts “inc” and

“sca” stand for incident and scattered (Waves) respectively. The
receiver polarization basis (ksca, Vecas Sca) can be deﬁned in
a similar way as that of the incident field (kmc, Vine, mc), in
which (Binc, @inc) and (Oca, @sca) are the incidence and receiver
(scattering) angles. To strongly attenuate the edge diffraction by
the surface, the well-known incident tapered wave published by
Braunish ez al. [34] will be applied (at the order two) with taper-
ing parameter ¢ = L, /4 (surface of area Ay = L?). The length
g controls the extent of the incident beam that illuminates the
surface.

B. SDIM

Table 1 gives the definition of the notations introduced for the
decomposition by blocks, SDIM, CBFM, and ACA, respec-
tively. In addition, Fig. 1 shows an example of decomposition by
blocks.

The SDIM begins by dividing the geometry of the object to

analyze into P blocks. The impedance matrix Z is then
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Table 1. Definition of the Notations Introduced for the

Decomposition by Blocks, SDIM, CBFM and ACA,

Respectively

Name Definition
DNedge Total number of edges
Mertex Total number of vertices
P = Nyjock Number of blocks
DNedge,0L Total number of edges with overlapping
noL Exceed edges due to the overlapping
N, Number of edges of block p
No,, Number of edges of block p with overlapping
NEdgC Mean value of N, over p € [1; P]
Nedge,0L Mean value of Ny, , over p € [1; P]
Kspiv SDIM convergence order
€sDIM SDIM threshold
TSDIM SDIM ACA mean compression rate
TSDIM.RACA SDIM RACA mean compression rate
Nirw, CBFM plane wave number of block p
Npw Mean value of Mpy, , over p € [1; P]
€CBFM.SVD CBFM threshold of the SVD truncation
Nirw svp, CBFM plane wave number of block p after SVD
truncation

IVIPW.SVD Mean value Oflvlpw_SVD,P over p € [1; P]
npyw > 1 Integer defined in Eq. (25)
TCBEM CBFM ACA mean compression rate
€aca ACA threshold
€ACALL ACA threshold for the adjacent blocks
€ACA2 ACA threshold for the non-adjacent blocks
€ACA.SVD RACA threshold

(Nops Nyjoeis)=(1:9)

X [m]

Fig. 1.  Edges of the overlapped blocks numbers 1 (red), 4 (green),
and 9 (blue) NBlock =P = 9 (NB[()ck,x = NBlock,_y = 3)1 NEdge = 96)
number of vertices Mynes =49, number of triangles (or facets)
Neacee =72, Ag = (0.612) (L, = L, =0.61),nop=1and Ly =1m.
The blocks are numbered from top to bottom going from left to right.

?1.1 ?1,2 ?1,17 a) b,
Z2,1 Zz,z Zz'p a) b,

: Do A I ©®)
ZP,I Zp’z Zpyp ap bp

where Z ».p are the self-impedance matrix of the block number
p and Z,, ,, are the coupling impedance matrix between the
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blocks p1 and ps. In addition, the vectors @, and b, are the
vectors @ and b of the block number p, respectively.
From SDIM [20], the unknown 4 is expressed as

k=Kspim
aKsp) ~ Z Y%, (6)
k=0
where
0) &1
Yf, =Z; 1 bi
[)
k &1 - — ) (7)
YW=-Z' Y Zi,Y¢Vk>0
p=1.p#i

and the vector Y® = [ng) ng) ... Ygf )T is built from the char-
acteristic functions associated to the blocks and computed from
Eq. (7). The convergence order Kspim is obtained when the rel-
ative residual error RREgpyy satisfies

JaD — a®)

RREspm = ||ll(/") ”

< €SDIM > (8)

where €spr is the SDIM threshold. Typically, espiv = 1072
Itis important to underline that the symbol prime in the sub-
script of Eq. (7) indicates that the block is enlarged. The vector
Yfk) is obtained from Yf,k) by removing the overlapping edges.
The matrix Z;, ; is the coupling matrix between the source
block j and the enlarged block i. For the vector Y% the
overlapped edges are removed to avoid propagation ofp the non-
physical edge currents produced by the finitude of the block.
Unlike a 1D surface [20], for a 2D surface if the blocks are not
enlarged, then the SDIM does not converge. The simulations
will show that an enlargement of two or three edges (it depends
on the size of the block) is enough so that SDIM converges.
From Eq. (7), the complexity of SDIM is

Cspivm = P(Kspim + 1)[0 (N;:Sdge,OL) +0 (Nédge,OLﬂ

+ Kspiu P(P — 1)O(Nigge Midge,01)- (9)

The mean values, indicated by the notation —, are defined as

1 AL 1 AL
NEdge,OL = F ; NOL,P’ NEdge = ; 1; Ny, (10)

where N, and Nor,, (subscript OL like overlapping) are the
number of edges of the block and enlarged block p, respectively.
In Eq. (9), the exponent 3 corresponds to the complexity
of LU decompositions made on the blocks and the term
O(MVidge Vedge,0L) is related to the calculation of the matrix-
vector products. If the two matrices of the LU decomposition
of the submatrix Zy ; can be stored, the complexity in Eq. (9)
becomes

Cspv ~ PO (Nygee o) + [(KSDIM +1) PO (Nédge,OL)

+ Ko P(P = DO (N, )] (11)

where NEdgeNEdge,OL% Né Compared to a LU direct

dge*
inversion of the whole impedance matrix of complexity
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Fig.2. Foragiven block, positions of the corner (green), top (blue
> > >

left (blue), bottom (red), and right (red) blocks of the overlapped
blocks. Edges also are shown and overlapping is the same with respect
to the x and y directions.

(’)((ZZ{) N;)?), the time savings is significant. The integer
Nov, , equals the number of edges of the original block p, IV,,
plus the overlapped edges 7o1. Without loss of generality, this
number is assumed to be the same with respect to the directions
x and y of the surface. The same assumption is done on the
number of blocks Mjock = Malock,x MBlock,y = -

The exceed edges owing to overlapping is determined
from Fig. 2. First, the number of blocks that interact with
the adjacent blocks are counted according to their relative
position. From Fig. 2, the total number of corner blocks is
Ncorner = 4(MNplock,x — 1) (Mlock,y — 1), the total number of
top and bottom blocks is Nrp = 2(Mslock,y — 1) Mblock,x>
and the total number of left and right blocks is M r=
2(MBlock,x — 1) MBlock,y- In addition, Fig. 2 shows that the
number of edges associated to one corner is 3néL (in green
dashed line), the number of edges (in blue dashed line) asso-
ciated either to the top or left position is 3 Vedge, 3720L — 70Ls
and that (in red dashed line) associated to either the bottom or
right position is 3 NVegge, 87201 — 720L — MNdge, 8- For subsurfaces
of the same area (Nplock,x = Mplock,y = V' P) and no > 0, the
excess of edges is then

]VEdge,OL - NEdge = 12(\/7 - 1)271(2)L + 2(\/? — 1)
X ﬁ(6NEdge,BnOL — 2noL — MNedge, B)-
(12)

In addition, NEdge,B = (V Mertex — 1)/\/F ~ NEdge/S/
‘/F (NEdge ~ 3Mertex)- In PraCtice) noL K NEdge,B> which

implies that

NEdge,OL - NEdge ~ (\/F - 1)

x[lz(ﬁ—l)néﬁz NE;ge(wOL—l)] (13)
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This  exceed is
6.9‘/ PNEdge”OL-

The SDIM storage complexity, Mspym;, is similar to that of
the brute force MoM and equals N} dge.0L 10 corresponds to

the storage of the P submatrices {Z-/,,-/} and P(P — 1) sub-
matrices { Z; ir} (With 71 7 75). We will show that ACA allows
us to reduce this complexity, thanks to the compression of the
P (P — 1) coupling submatrices.

proportional to  12Pn%;  and

C. CBFM

Like SDIM, the CBEM begins by dividing the geometry of the
object to analyze into P blocks. Next, a PBF is computed for
each block by solving the linear system,

Zi/,i/ Y(O)

i kypwy

= Bi/,/elpwv (14)

where the subscript prime indicates that the block 7 is enlarged
and kjpw stands for the ipywth plane wave (ranging from 1 to 2
Nipw,i). The original version of CBFM [18] used B 4y, = by
(single incident plane wave, kipw = 1) and SBFs are calculated.
In 2008 [31], another way is proposed to calculate the PBFs
and the computation of SBFs is not required. In [30], for a 2D
rough surface, it is shown that the original CBFM method lacks
precision.

Lucente ez al. [31] solved the linear system in Eq. (14)
from a collection of 2 Mpw,; bipolarized incident plane waves
{ B typy }> and the resulting vectors {Yf?)/elpw} are stored in a

matrix j ; of size Nedge.i X 2Mpw,i» where Ndge, i is the number
of edges of the block 7 without overlapping. The results show
that the overlapped edges of Yff)s)/?IPW are removed.

The choice of Mpw,; must be relevant to avoid making the
matrix too big. The redundant information due to the over-
estimation of MVpy,; is eliminated via the use of a truncated
singular value decomposition (SVD). It means that from a
given threshold €cppm,svp, the values, for which the modulii
of the normalized eigenvalues are smaller than ecpppm svp, are
removed. The size of j i becomes Negge.i X Mpw,svp,; with
Npw,svD,i < 2Mpw,;-

The last stage of CBFM solves a reduced linear system

VA RaR = b defined as

=R =R =R
jil Zy - Zip al A
=R =R =R R R
2,y Z,, ... Z,p “ b,
= | (15)
R =R =R a% JA
Zy . Zyy .. Zy, »

. R
where the submatrix Z; ; and the subvector bY are defined as

{ Z,,=7],2Z;]; [ Mpw.svp,i X Nipw.svp.,; | (16)
_H .

bf =7J;b [ Mpw.svp,i X 1]
Moreover, the symbol H stands for the conjugate transpose
operator and the indexes 7 and ; go from 1 to P. The vector a; of

Eq.(5)isequaltoa; = ]_iaf.
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The problem is then represented by the characteristic
square matrix of size (P MNpw.svp)® instead of a square

Nigge = (P Negge)?,
(1/P) Z;[::1 Nipw,svp,,- If multiple excitations {b} (for

matrix of size where  Npw.svp =

instance, a monostatic case) are calculated, then ZR (or the
two matrices of the LU decomposition) and {J;} (required
to calculate &;) must be stored, corresponding to store
(PJVIPWYSVD)Z + PNEdge]vIpW,SVD complex numbers. The
problem is then reduced by a factor 81 > 1 and equals

1 P NPW SVD + PNEdge IVIPW SVD

/31 PZNEGlge

1 1 1
- o), 17
Bcerm (.BCBFM * P ) a7

where  Beprm = Medge/Mpw,svp > 1. I Bepev > 1 and
P > 1, the CBEM is very efficient for multiple excitations.
The complexity of the CBFM is expressed as

Ceppm & P [2(’)(1?/; 4ee.01) T NiwO (Nédge,OL)]

+ 2P Nipw.svp O(NEy,) + O(Nz) + O(NR),

(18)

dge

where Nz = P Nipwsvp and Nipw = (1/P)Y"_ Nipw, 2

The first line corresponds to the calculation of tﬁe PBFs, in
which the factor 2 comes from the LU decomposition and the
truncated SVD.

D. RACA

An ACA algorithm [23,24] is implemented to take advantage
of the low-rank property of the off-diagonal submatrices Z;. j
(7 # j) representing two well-separated blocks. The ACA
method approximates a dense matrix Z of size N x M by a
matrix—matrix productas

Z~ UV, (19)

where U is a matrix of size N x » and V is a matrix of size
r x M, with 7 as the effective rank of Z. Clearly, the method
requires the storage of only » x (N + M) complex numbers
and its computational complexity scales as O(r*(N + M)).
The ACA compression is applied in Eq. (7) for the calcula-

tion of Y(k) (k> 0), and in Eq. (16) for the computations of

{Z } in which the coupling matrices (Z: .7} (with and without
overlappmg) are compressed.

To improve the compresswn [22,26,32], a QR decomposi-
tion is done both on matrices U and V and a truncated SVD
is then applied by introducing a threshold €aca svp. Typically,
€aca,svD = 10€aca, where €xca is the ACA threshold ranging
from 107> to 1072. In addition, the norm introduced to stop
the ACA algorithm and modified in [26] is used. Chen ez al.
[22] proposed another method to calculate this norm by using
both the QR decomposition of U and V in the loop over 7. For
our problem, numerical tests showed that this algorithm is less
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efficient compared to what was used in [26]. Therefore, it is not
applied in this paper.

As shown in Eq. (7) for the SDIM, the coupling matrices
(Z, »} must be compressed. For a given coupling submatrix
Z»r, P the source and observation edges can be identical. Even
if the size of the coupling submatrix is large, if some elements
interact on the same edge (self-interaction), then the ACA com-
pression is not efficient. It occurs for adjacent blocks. To solve
this issue, these edges are removed, which has no impact on the
SDIM precision.

To quantify the compression efficiency, the following SDIM

mean compression rate is defined as

- 2 i= J#i
- NEdge OL LS i, (”1 +m )
=1 ) / J ,
TSDIM ( ]VEdge P(P -1 Z Z min;

i=1 j=1
(20)

where the matrix Z-/,j has a size 7; x m; and a rank 7; ;. The
factor (Medge,0L /NEdge)2 comes from the additional edges
required due to overlapping. With the CBEM, the overlapping
is not required for the coupling matrices, which implies that
Nidge,0L /Nidge = 1 and Tspiv < TcprM-

IfRACA isapplied, then the SDIM in Eq. (11) complexity is

Cspiv ~ PO(NEdgCVOL) + [(KSDIM + I)PO(Nédge,OL)

+ KsonuP(P = DO(N) (1 = Tsoraca) |
(21)

and that of CBFM remains nearly unchanged; thatis,

Ccrrm,racA ~ Ccprm = Equation (18). (22)

3. NUMERICAL RESULTS

The SDIM convergence order Kspiy is determined for a
threshold espiv = 1072, The surface has a Gaussian height dis-
tribution and its autocorrelation function is also Gaussian. The
surface area is defined as Ag=L, x L, = L? (Ly=1L,),
o, stands for the surface height standard deviation and
{Lcx, Ly =L} are the correlation lengths with respect
to the x and y directions, respectively.

This section compares the NRCS computed from SDIM,
CBFM, SDIM + RACA, and CFBM + RACA by considering
a randomly rough surface. First, the surface area is (12A¢)? to
compare with results obtained from a direct LU decomposi-
tion of the whole matrix (reference solution), where X is the
wavelength in free space. A parametric study is also addressed
versus the incidence angle 6;, the ratios 0,/A¢ and L, /1o
(Lc,y =L.,), and the polarizations. Next, the surface area
is (24)10)* to compare the efficiency of the two methods. In
addition, the last subsection addresses the complexity of the two
methods. The extent of the Braunish ez 4/. [34] tapered wave is
g = L, /4 (surface ofarea L?2).

A. Surface Area of (121,)2 and without RACA

The incidence angles are 6;,c = 7/6, ¢inc =0, the azimuthal
scattering angle is ¢, = 0, and the polarizations are VV (same
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.
~, 8%
= 8:%
S -0
2 2
..0:?
-6 ’
x [A\g) R yIAg)
Fig.3. Surface height versus the coordinates x and y. Surface area is

L, x L, =(1240)* 0, =03hg,and L, , = L., = 1.549. The num-
ber of edges is NVegge = 42,960, and the edge mean length is 0.12A,.

as the reception and emission); in addition, o,/A¢=0.3
and L., /Mo =L.,/ho=0.3. These parameters are chosen
to have a moderate surface slope standard deviations with
respect to the x and y directions slopes defined as o, , =
0,,=~20,/L..=~20,/L.,=1/4/2~0.283. Figure 3
plots the corresponding surface height versus the coordinates
x and y. The purpose is to produce reflections on the surface,
which involves interactions between the blocks. The sampling
with respect to the x and y directions are Ax = Ay = 0.1,
which gives MNggge =42,960 and the edge mean length is
0.1220.

Figure 4 plots the NRCSspyy in dB scale, computed from
SDIM, versus the scattering angles and for different values of the
number of blocks P with nop, = 2. To highlight the difference,
Fig. 5 plots the corresponding ratio NRCSspv /NRCS; i in dB
scale versus the scattering angles, where NRCS  is the reference
solution obtained from a direct LU decomposition of the whole
matrix.

The legend indicates “SDIM (Kspim), P, t, RRE, DIF”,
where Kspim is the convergence order, P the number of blocks,
¢ the computing time (submatrices filling not included), and the
relative residual error (RRE) defined as

(K )
” EscaSDIM - ESC&LU"GSQE[fn/Z;n/Z]

RRE = (23)

” Esca,LU”(yscae[—n/Z;n/Z]

where E, is the scattered far field versus 6;. In addition, DIF
stands for the mean absolute value of the ratio in dB scale

defined as

(Kspim)
sca

sca, LU

: (24)

1
DIF = — 20 [log,,

gsca 1\,05(33

where Ny, is the number of scattering angles.

As we can see, the results are in perfect agreement with those
computed from LU, except for scattering angles 6, near /2,
over which the NRCS strengths are very low. As P increases,
Kspim increases because more iterations are required to account
for all the interactions between the blocks and to vanish the
fictitious currents produced by the block edges. In addition,

o
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)
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LU: t=259 s
-40 [ |- -o - SDIM(7), P=16, t=86 s, 0.0011, 0.15 dB
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50 | ! |
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Fig. 4. NRCSsppv in dB scale computed from SDIM versus the

scattering angles and for different values of the number of blocks P
with noL = 2.
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Fig. 5. Ratio NRCSspim/NRCS,y in dB scale computed from

SDIM versus the scattering angles. Same parameters as in Fig. 4.

the time ¢ increases and it is smaller than that obtained from
LU. The difference is not significant because the size problem
is rather small and, in MATLAB, the LU decomposition is
parallelized.

Figure 6 plots the ratio NRCSspim/NRCSy in dB scale
versus the scattering angles and for different values of the over-
lapping nop, with P =25. As we can see, as nqp, increases,
the SDIM convergence order decreases because less iterations
are needed to vanish the fictitious currents produced by the
block edges. The RRE value also decreases. Nevertheless, as
shown by Eq. (13), a trade-off must be found between 70y,
and Kspiv because the number of total edges with overlap-
ping increases with zop. For instance, for noL = {0, 1, 2, 3},
Nedge,0L = {42,960; 47,872; 54,128; 60,768}.

For CBEM, the number of plane waves Mpw is chosen as
[35,36]



Research Article

P=25
1.5
— -0~ - SDIM(28), n_, =1,t=189 s, 0.0012, 0.17 dB
1:2 %
: SDIM(9), ng, =2, =86 s, 0.0008, 0.07 dB
0.9 | | -> - SDIM®). ny,=3,1=1005, 00008, 0.10 0B
0.6 -

Ratio VV [dB]
o
o w

©
w

>

B

-0.6 g
4

0.9 F o
12t = °
o

15 ’ ' ‘ : ’ u
-90 -60 -30 0 30 60 90

Angle 6 [°]
Fig. 6. Ratio NRCSspp/NRCSy in dB scale computed from

SDIM versus the scattering angles. Same parameters as in Fig. 4 but the
integer 7oy, changes and P = 25.

2(krg + 2m)?
Nipw = LO—» (25)
nIPW
where the symbol | stands for the lower integer part and 7,
the sphere radius circumscribed to the block 7 of area L, ; L, ;,

equals /Liyi + Lji/Z. In addition, the integer zpw > 1 is

introduced because the simulations will show that Npw is
overestimated. Equation (25) is related to the Nyquist sampling
to ensure that there is no loss of information by decomposing
any source into a sum of plane waves. The Mpw plane waves are
built from angles 6 € [0; /2] and ¢ € [0; 27 ] with a constant
sampling step AG = A¢.

Figure 7 plots the ratio NRCScppp/NRCSpy in dB scale
computed from CBFM versus the scattering angles and for
different values of the number of blocks P with noL =2,
ecprm.svp = 1072 and nppw =2 (a figure to compare with

n_ =2
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Fig. 7. Ratio NRCScprm/NRCSy in dB scale computed from

CBEFM versus the scattering angles and for different values of the
number of blocks P with 7zor =2, €capm.svp = 1073, and npyw =2
(figure to compare with Fig. 5).
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Fig. 8. Ratio NRCScpry/NRCSyy in dB scale computed from

CBFM versus the scattering angles and for different values of the
overlapping nop. P =25, €cppm.svp = 1072, and nypy = 2 (figure to
compare with Fig. 6).

Fig. 5). The legend indicates “CBFM 2 Npw — NIPW,SVD),
P, t, RRE, DIF”, where ¢ is the computing time (submatrix
filling not included), 2 Nipw is the mean value of the number
of incidence bipolarized plane waves (Mpw computed from
Eq. (25) for a given block and multiplied by 2), and NIPW’SVD
is that obtained after the truncated SVD. In addition, RRE
and DIF are given by Eqgs. (23) and (24), in which EigSDIM) is
replaced by E ., crm.

As we can see, as P increases, the RRE and DIF remain nearly

constant. The square characteristic matrix Z" has a size of
P Nipw,svp = {3, 885; 4, 739; 5, 577} for P ={16, 25, 36}.
In Fig. 7, the time ¢ should increase as P grows. In fact, the
most expensive operation is the calculation of the PBFs;
since P increases, the sizes of the submatrices decrease.
It implies that the time spent to calculate their LU inver-
sions decrgases. For P ={16, 25, 36}, the reduction factor
Bceem = NEdge/ANvIPW,SVD ~{11.6,9.6, 8.1}. For multiple
excitations, It means that P should not be too large because the

matrix A must be stored.

Figure 8 plots the ratio NRCScppm/NRCS1y in dB scale
computed from the CBFM versus the scattering angles
and for different values of the overlapping noL (P =25,
ecprm.svp = 1072, and npw = 2) (a figure to compare with
Fig. 6). As we can see, as nqy, increases, RRE and DIF decrease,
but the number Nlpw, svD grows since the size of the overlapped
blocks increases. It implies that the time # also increases.

Figure 9 plots the ratio NRCScppnv/NRCSpy in dB scale
computed from CBFM versus the scattering angles and
for different values of €cppm.syp and zpw (noL =2 and
P =36). The legend indicates, “CBFM(ecprm,svp, 72ipw:
2 Nipw — MPW,SVD): t, RRE, DIF”. As we can see, as 7w
increases or/and €cppm, svp decreases, the RRE does not change
significantly. In addition, we can note that the truncated SVD
allows a good value of NIPW,SVD to be obtained, even if the initial
value of Mpy is chosen too large. The values ecprap. svp = 1072
and njpw = 2 are a good choice and the use of the truncated
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Fig. 9. Ratio NRCScpry/NRCSpy in dB scale computed from

CBFM versus the scattering angles and for different values of €cprm,svp
and npw (noL = 2and P = 36).

SVD allows us to decrease the value of 2 Mpw to ]lew, svD by a
factor of the order of 3.3.

B. Surface Area of (12),)2 with RACA

Figure 10 plots the ratio NRCSspiv/NRCS1y in dB scale
computed from SDIM + RACA versus the scattering angles
and for different values of the RACA thresholds (nop =2
and P = 36). For a given block, the adjacent blocks interacts
strongly, which means that the compression must be made
with precision. Then, two RACA thresholds are defined: one
for the near interactions (adjacent blocks), €aca,1, and the
second one, for the far interactions €xca 2. In Fig. 10, the legend
means, “SDIM(Kspim)+RACA(€aca,1, €aca.2, €aca,svD =
10€aca.2), Tspim, ¢, RRE, DIF”, where Tspy is the mean com-
pression ratio (20), ¢ is the computing time (filling matrices not
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Fig. 10. Ratio NRCSspim/NRCS;y in dB scale computed from

SDIM + RACA versus the scattering angles and for different values of
the RACA thresholds (zo;, = 2 and P = 36).
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Fig. 11. Ratio NRCScpem/NRCS y in dB scale computed

from CBFM + RACA versus the scattering angles and for different
values of the RACA thresholds (nop =2, P =36, npw =2, and

—10-3
€cprm,svp = 1077).

included), and RRE and DIF are defined by Egs. (23) and (24).
Thevalue€aca,1 = —1 means that ACA is not applied.

As we can see, the difference between SDIM + RACA and
SDIM is small. As expected, if €aca,1 decreases, then the differ-
ence decreases and the computing time slightly grows, whereas
the mean compression weakly decreases. Compared to SDIM,
the time # decreases when RACA is applied, because the matrix-
vector products are accelerated. For €aca1 = —1, the results
are nearly the same as those obtained for €xca.; = 107>, which
shows that it is relevant to apply RACA on the adjacent blocks
since the mean compression is closer to 1.

Figure 11 plots the ratio NRCScprnvi/NRCS1y in dB scale
computed from CBFM + RACA versus the scattering angles
and for different values of the RACA thresholds. #op =2,
P =36, npy=2 and €CBFM,SVD = 1073, Compared to
Fig. 10, the conclusions are the same on the RACA impact.
Nevertheless, the mean compression is larger than that obtained
with SDIM because there is no overlapping over the blocks.
Then, ACA is more efficient. In addition, CBFM + RACA runs
faster than SDIM + RACA like in Figs. 5—7 and Figs. 6-8.

Figure 12 plots the histogram of the SDIM coupling-
submatrix ranks calculated from ACA and RACA, where
{€aca1> €aca2s €acasvp} = {107, 1074, 107%}. Figure 13
plots the same variations as in Fig. 12 but by considering the
CBFM. In the legend, the label “Max” means that the rank
equals 7o =n;m;/(n; + mj), corresponding to the maxi-
mum value, for which ACA is not efficient for memory storage.
The numbers (7;, ;) are the size of the submatrix to compress.
In addition, in the legends of Figs. 12 and 13, the integer equals
the mean value.

In Figs. 12 and 13, all the ranks are smaller than {7, }, which
means that all the submatrices are compressed. The ranks rang-
ing from 100 to 200 corresponds to the submatrices adjacent
to the current block. We can show that this number equals
PacaNear = 4—6(Vk Block + V) Block) + 8Vx Block V), Block-  For
Ne Block = N, Block = v/ P = 6, Paca Near = 220. Although the



Research Article

1260 1

1200 B ACA: 63
W RACA: 25

1000 f R Vax: 677

Occurrence
o
=1
=]

200 | I
1 U l'.l.' ! | ! -

4 100 200 300 400 500 600 700
Rank

Fig. 12. Histogram  of  the SDIM  coupling-
submatrix ranks calculated from ACA and RACA, where
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Fig. 13. Histogram of the CBFM coupling-submatrix
ranks calculated from ACA and RACA, where {eaca 1, €acans
€acasvp} = {107, 1074, 1073}

blocks are adjacent, the application of ACA is relevant. It is well
known that ACA is efficient for far-field interactions, which
explains why many ranks occur around the mean value, which
is smaller than NEdge = 1193 (mean value of edge numbers per
block). The results also show that RACA is very efficient since
the resulting rank is approximately divided by 3. The values
are also more concentrated around the mean value. Note that
€aca,svD = 10€aca 2 improves the compression without loss of
precision.

The comparison of Fig. 12 to Fig. 13 also shows that ACA
is more efficient for the CBFM, because there is no overlap-
ping. Nevertheless, the final RCA mean rank is nearly the same
between CBFM and SDIM.

Figures 14 and 15 plot the VH cross-polarized NRCSs in dB
scale computed from SDIM + RACA and CBFM + RACA,
respectively, versus the scattering angles and for different values
of the RACA thresholds. 7o}, = 2 and P = 36 (same simulation
parameters as in Figs. 10 and 11). In addition, 20 dB is added
to the NRCS to have comparable values to those of Fig. 4 (co-
polarization VV). It explains why the cross polarization needs
more precision than the VV ones. As we can see, the results
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Fig. 15. NRCScgpm in dB scale computed from CBFM + RACA

versus the scattering angles and for different values of the RACA
thresholds (no]_ =2, P= 36, nipw = 2, and €CBFM,SVD = 1073).

match well with those obtained from LU except for low values of
the NRCS, below 40 4 20 = 60 dB of the maximum of the VV
NRCS.

C. Surface Area of (121,)2 with RACA: Parametric
Study

For SDIM + RACA and CBFM + RACA, Table 2 lists
the values of DIF [dB] versus i, [°] and o,/ for a given
Lcx= L., =1.5A. The polarizations are VV. As we can see,
the precision of the two methods has few sensitivities to 6,
and slightly increases as o, grows. In Table 2, the values 2.33 dB
and 1.02 dB can appear large but, the plots (not depicted here)
show that this corresponds to values 60 dB below the maximum.
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Table 2. DIF [dB] of SDIM + RACA-CBFM + RACA
versus i [°] and o,/Ao (Polarizations Are VV)°

0 15 30 45
0.1 0.41-0.11 0.42-0.08 2.33-0.17 0.25-0.05
0.2 0.06-0.02 0.08-0.02 1.02-0.16 0.18-0.03
0.3 0.04-0.01 0.04-0.01 0.05-0.03 0.07-0.02

‘Le.= Lc.}/ =15Ap; nor=2; P =36; {€rcais €rcazs €xcasvn} = {107,
1074, 1073}

Table 3. DIF [dB] of SDIM + RACA-CBFM + RACA
versus 60, [°] and o,/Ao (Polarizations Are VH)a

0 15 30 45
0.1 3.98-2.42 3.72-1.23 2.70-0.97 1.63-1.11
0.2 1.22-0.51 3.33-0.41 1.39-0.26 1.61-0.39
0.3 0.52-0.18 1.14-0.16 1.42-0.30 0.98-0.24

“Lo.=L.,=15); noL.=2; P=36; {€xca1, €rcaz> €acaswn}=1{10",
1074, 1073}

The SDIM convergence order ranges from 8 to 11, has few
sensitivities to 6;, and slightly increases as o, grows.

Table 3 lists the same values as in Table 2, but the polarizations
are VH. Like the VV polarization, as o, grows, the methods are
more accurate and CBFM gives better results.

Table 4 lists the same values as in Table 2 but the polarizations
are HH. Compared to Table 2, the values are slightly larger for
SDIM and the SDIM convergence order ranges from 8 to 13. It
weakly increases with 9; and 0.

For SDIM + RACA and CBFM + RACA, Table 5 reports
the same values as in Table 2, but 0, = 0.3 and L, , changes.
As we can see, the two methods have few sensitivities to 0;,. and
L, ..Inaddition, the SDIM converges order ranges from 9 to 12
and decreases as L, , increases. For the VH polarizations (values
not reported here), the value DIF increases as L, , increases and
it has few sensitivities to 6;.

This section shows that CBFM is more accurate than SDIM,
that the SDIM convergence order increases as L., or o,

Table 4. DIF [dB] of SDIM + RACA-CBFM + RACA
versus 6inc [°] and o,/Ao (Polarizations Are HH)’

0 15 30 45
0.1 0.92-0.05 0.49-0.06 0.67-0.12 0.76-0.09
0.2 0.13-0.04 0.22-0.08 0.56-0.14 0.63-0.13
0.3 0.13-0.02 0.14-0.03 0.31-0.04 0.51-0.06

‘Lo.=L., =15k noo=2; P= 36; {€aca1s €acazs €acasvn} = {107,
1074, 1073}

Table 5. DIF [dB] of SDIM + RACA-CBFM + RACA
versus 6inc [°] and o /1o (0 =0.3%¢ and L. « Changes)a
0 15 30 45
0.0 0.02-0.01 0.03-0.01 0.02-0.01 0.03-0.03
0.5 0.04-0.01 0.04-0.01 0.05-0.03 0.07-0.02
0.0 0.14-0.04 0.24-0.04 0.34-0.06 0.23-0.03

Loo=1L., =153 no.=2; P= 36; {€aca1s €acazs €acasvp} = {107,
1074, 1073}
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increases, and that it is larger for the HH polarization. In addi-
tion, the accuracy of SDIM increases as o, increases and L,
decreases. Itis also important to underline that the stop criterion
in Eq. (8) is defined over the surface currents and the precision of
SDIM can be improved by decreasing the value of the threshold
€spiM- The stop criterion could be defined over the scattered

field, which would require radiation of the surface current at
each order of SDIM.

D. Surface Area of (24)¢)2

In this subsection, the statistical parameters of the rough surface
are L. . = L., = 1.5h0and o, = 0.3, its area is (24X)?, the
number of edges is 172,320 with an edge length mean value of
0.118A,.

Figure 16 plots the NRCS in dB scale versus the scattering
angles and for different values of {EACA,I » €ACA,25 GACA,SVD}
(P =64 and nop, = 3). To highlight the difference, Fig. 17 plots
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Fig. 16. NRCS in dB scale versus the scattering angles and for

different values of {€aca 1, €aca.2, €acasvp} (P = 64 and nop, = 3).
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Fig. 17. NRCSspin/NRCSggr in dB scale versus the scattering

angles with the same parameters as in Fig. 16.
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Fig. 18. NRCScprv/NRCSger in dB scale versus the scattering

angles and for different values of {€xca 1, €aca.2, €acasvp} (P = 64,
noL = 3, npw = 2, and €cppm,syp = 1077).
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Fig. 19. NRCScppv/NRCSger in dB scale versus the scatter-

ing angles and for different values of npw and €cppm svp (P = 64,
noL = 3,and {€aca,1. €aca2, €acasvp} = {107, 1074, 1073}).

the corresponding NRCS ratio, NRCSspv/NRCSggr, in dB
scale versus the scattering angles. NRCSggp is obtained from
CBFM with {eaca 1, €aca 2, €acasvp} ={—1, 1074, 1073},
nipw = 2,and ecppm,svp = 107°.

As we can see, the curves match well, which is in agreement
with the results obtained for L, =L, =12Xy. When the
RACA thresholds change, the computing time does not change
significantly and the SDIM convergence order Ksppv weakly
increases. It means that the last orders of SDIM give a small con-
tribution and are very sensitive to the precision of the coupling
submatrices governed by the RACA thresholds. The SDIM
threshold is 1072. If this value increases, then the order Ksppm
decreases.

Figure 18 plots the ratio NRCScppv/NRCSger in dB
scale versus the scattering angles and for different values
of {eACA,I » €ACA,25 EACA,SVD}- Like SDIM, the comput-
ing time has few sensitivities to the ACA thresholds and
for eaca.1 = 1074, there are small differences that occur for
scattering angles near 77/2.

Figure 19 plots the ratio NRCScppm/NRCSggr in dB scale
versus the scattering angles, and for different values of 7py
and €cppm svp. As we can see, the curves match well, except
for low values of the NRCS. As the couple (2 Nipw, Nsvp.ow)
decreases (n1pw grows or/and €cppm, svp increases), the comput-
ing time 7 (filling matrices not included) decreases. Like the case
L,= Ly = 12X, the values znpw = 2 and €CBFM,SVD = 1073
are a good choice. It implies that the length of the reduced
square matrix is ]YSVD,IPWP = 16,512, giving a reduction factor
Bcprm = Nedge/Nsvp 1pw ~ 10.45.

Figure 20 plots the histogram of the CBFM coupling-
submatrix ranks calculated from ACA and RACA.
{€aca,1, €aca2, €acasyp} ={107°, 1074, 1073}. As we can
see, the RACA improves the compression and the rank values
are more concentrated around the mean value. Ranks ranging
from 200 to 320 correspond to the adjacent blocks of num-
ber PACA,Near=420- In Fig. 13, the ratio ;Max/;RACA (rank
mean value given in the legend) is 597/22 & 27.1; whereas in

4032 1
W ACA: 61
3500 MNRACA: 23
R Viax: 1346
3000 =
® 2500
c
g
£ 2000
5}
o
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1000
500
1 ‘—k‘—L'_ L L L L 1 J
8 200 400 600 800 1000 1200 1400
Rank
Fig. 20. Histogram  of the = CBFM  coupling-

submatrix ranks calculated from ACA and RACA, where
{€aca.1» €acas €acasvp} ={107°,107%,1073}.

Fig. 20, it is equal to 1346/23 & 58.5, which shows that ACA
is more efficient for a larger object. Indeed, the SDIM mean
compression rate expressed by Eq. (20) can be approximated as

— 2
NedgeoL \ 7
- ~ ge, RACA
TSDIM ~ 1—| — — y (26)
NEdgc "Max

in which NEdge,OL/NEdge =1 for the CBEM (no overlapping
over the coupling submatrices).

E. Complexity

Figure 21 plots the filling times of the submatrices in min-
utes. The surface length L, =L, ranges from 124 to
27k (INegge ranges from 42,960 to 218,160). For LU,
only the first three points are considered. The length of
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Fig. 21. Filling times of the submatrices in minutes. Top,
total time versus th‘dge- Middle, time filling of the P imped-

ance submatrices { Z,,} versus P Né dge.OL" Bottom, filling time
of the P(P—1) coupling submatrices {Z-,]-}(i # j) versus
PP — I)Nédge(l — Taca,cerm). In addition, the last two subfig-
ures plot the curves fitted by the equation y =ax + &, in which the
values of 2, 6 and the correlation coefficient 7 are given in the legends.

the blocks is a constant that equals 31y, meaning that P
ranges from 42=16 to 9>=81. For CBFM, npy =2
and ecppmsyp = 1072, and the RACA thresholds are
{€aca.1, €aca 2, €acasyp} = {107, 1074, 1073}

The top of Fig. 21 plots the total time versus N; dge” As we
can see, the time of CBFM + RACA is approximately twice as
small than that of SDIM + RACA because the mean compres-
sion rate is larger for CBFM + RACA. Compared to LU, the
difference must be theoretically greater, but it depends on how
the calling functions calculating the elements of submatrices
are done. MATLAB software is used for the simulations, and
the submatrices are computed in C language by using the mex
library, which allows us to call the C function from MATLAB.
When the impedance matrix of whole surface is calculated, the
function is only called once; however, for the calculations of the
submatrices, the same function is called P? times. In addition,
the RACA algorithm is written in MATLAB (call functions
in C) and it can be significantly more time-consuming if the
rank 7 is too large owing its complexity in O(»*(M + N)). The
time needed can be significantly reduced if the submatrices are
computed simultaneously by paralleling the code.

The middle of Fig. 21 plots the total time spent to calculate
the P impedances submatrices { Z; ;} versus P N? dge,0L- 1D addi-
tion, the curves are fitted by the equation y = ax + b4, in which
the values of , 4 and the correlation coefficient » are given in
the legends. As we can see, the results perfectly match with its
regression (r A~ 1), meaning that the time is proportional to
PNl%dge,OL'

The bottom of Fig. 21 plots the total time spent to calcu-
late the P(P — 1) coupling submatrices {Zv,j}(i # j) versus
P(P - I)Nédge(l — Taca,ceem) and its linear regression. We
assume that Toca spiM A TaCA.CBEM- As we can see, the results
match well with its regression (r & 0.999), meaning that the
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LU decompositions of {Zi i}

SDIM+RACA
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Fig. 22. Computing times in minute. Top, for the LU decompo-

sitions of {Z; ;} versus PNSdge,OL’ Bottom, to solve the linear system
Za = b versus (Kspiv + 1)1>J§/§dge_oL + Kspim P(P — 1)N§dge(1 -
Tspim,racA)- In addition, their regression is plotted.

time is proportional to P(P — 1) N? 4e (1 — Taca.caev)- In
addition, the time is larger for the SDIM 4+ RACA (its ACA
mean compression rate is smaller than that of CBEM).

Figure 22 plots the computing time in minutes. At the top,
there is the time for the LU decompositions of {Zl} ver-

sus P Nigoo o1 At the bottom, you can see the time to solve
the linear system Za = b versus (Kspiv + I)PNédge,OL +
KSDIMP(P — I)N]%dge(l — fSDIM,RACA)' In addition, their
regression is plotted. As we can see, the results match well with
their regression, which is in agreement with the complexity
predicted by Eq. (11), in which the term PO(N? dge,0L) COITE-
sponds to the complexity of the LU decompositions of the P
self-impedance submatrices.

Figure 23 plots the computing time in minutes related to the
three stages of the CBFM algorithm. In addition, their regres-
sion is plotted. At the top, the time corresponds to the time spent

to calculate the PBFs and it is plotted versus 2 P V; dge,OL- 1N the

3 CBFM+RACA PEFs
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Fig. 23. Computing times in minutes related to three stages of the

CBFM algorithm. In addition, their regression is plotted.
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middle, the time corresponds to the time spent to calculate the

. R .. =
reduced matrix Z~ and it is plotted versus 2 P? Nipw. svp Né dger

At the bottom, the time corresponds to the time spent to solve
the linear system Z FaR = bR and itis plotted versus V3, where
Np = PNH)W’ svD- As we can see, the results match well with
their regression, which is consistent with the theoretical com-
plexity expressed by Eq. (18), in which only the higher-order
terms are kept on for each step. In addition, as Mggge increases,
the most expensive operations are the calculations of the PBFs,

. =R
next the reduced matrix Z .

4. CONCLUSION

Two domain decomposition methods, SDIM and CBFM, have
been investigated to calculate the scattered field from a 2D ran-
domly rough surface.

For CBEM, numerical tests showed that in Eq. (25), the
number of bipolarized plane waves 2MVpw, can be chosen
with 7pw = 2 and the truncated SVD can be applied with a
threshold of €cppm, svp = 1072, The resulting reduction factor,
Bcem = Nedge/Nipw,svp ~ 10, where Mpw,svp is approxi-
mately 3.5 times smaller than 2 Mpy, which shows it is relevant
to apply a truncated SVD. The number of overlapped edges by
block, 701, must be two or three.

Numerical tests showed that SDIM is twice as slow as CBEM
and is not able to efficiently treat several excitations, unlike
CBFM. In addition, as the number of blocks increases, the
SDIM convergence order Kspiy increases. To remedy this
issue, 701 must increase, which grows the total number of edges.
Typically, 7oy, can be setas 10% of the size of the block.

The use of RACA makes the two methods more effi-
cient in terms of complexity and memory storage, since
the coupling-submatrices are compressed. Compared to a
conventional ACA, the RACA allows the reduction of the
mean rank by a factor 3, leading to a mean compression rate
near 0.96-0.98 that increases as the problem size grows.
Typically, the values of RACA thresholds can be chosen as
{eaca1, €acans €acasyp} ={107°, 1074, 10€xca 2},  Where
€aca,1 is the threshold for the compression of the adjacent
blocks. For a precision of =1 dB, these values can be multiplied
by 10.

It is also shown that the theoretical complexities of the two
methods in Eqs. (11) and (18), are in very good agreement
with those obtained numerically. It is important to underline
that the time spent to calculate the P? submatrices is approxi-
mately 90% of the total time, in which 80% is allocated for the
computation of the P(P — 1) coupling submatrices. A way
to overcome this drawback would be to parallelize the code,
which also would allow the acceleration of the calculations of

Z" (CBEM) and ¥ (SDIM).
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