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This paper focuses on the two domain decomposition methods, the subdomain decomposition iterative method
(SDIM) and the characteristics basis function method (CBFM), combined with adaptive cross approximation
(ACA) to compute the normalized radar cross section (NRCS) from a perfectly conducting two-dimensional
(2D) randomly rough surface. The 3D electromagnetic problem is solved from the electric field integral equation
discretized by the Galerkin method of moments with the Rao–Wilton–Glisson basis functions. In addition, a para-
metric study versus the number of blocks, the number of overlapping edges, the thresholds of recompressed ACA
(RACA; ACA combined with two QR decompositions and truncated by a SVD procedure, also named ACA-SVD or
ACA-TSVD), and the parameters inherent to the CBFM is investigated. The complexity of the two methods is also
addressed. ©2020Optical Society of America

https://doi.org/10.1364/JOSAA.397764

1. INTRODUCTION

The study of wave scattering from randomly rough surfaces
is a subject of great interest. The applications of such research
concern many areas that include remote sensing, radar surveil-
lance, optics, and ocean acoustics. Classically, two families of
approaches have been developed to solve this issue. The first one
is based on asymptotic methods [1–4], in which simplifying
assumptions are introduced to obtain a closed-form expression
of the scattered field. The second family is based on rigorous
approaches, such as the method of moments (MoM) [5–8].

In this paper, to calculate the scattered field by a perfectly con-
ducting two-dimensional (2D) rough surface, the electric field
integral equation (EFIE) is discretized by the Galerkin method
MoM with the Rao–Wilton–Glisson (RWG) basis functions.
To solve the resulting linear system, direct solvers like the LU
decomposition can be employed, but it is limited by the size of
the problem. Then, iterative solvers like the conjugate gradient
and their improved versions [8,9] have been developed to solve
larger size problems and to decrease the computing time. In
addition, to expedite the matrix-vector products, accelerations
are hybridized, like the fast multipole method (FMM) [10] and

the far-field approximation [11]. Since the 2000s, the team of
Tsang et al. [12], has also extended the original version of the
sparse matrix canonical-grid method with the pulse basis func-
tion and point matching method [13,14] to the RWG MoM
[15–17].

Another family [18–21] to rigorously solve problems involv-
ing a large number of unknowns can be applied and is based on
domain decomposition methods. These methods also provide
a fast iterative solution of the problem based on the subdivision
of the entire geometry into several subdomains (blocks). In
this way, the MoM impedance matrix is partitioned and the
solution is then obtained from an iterative scheme involving the
local impedance submatrices. The characteristics basis function
method (CBFM) [18] and the subdomain decomposition
iterative method (SDIM) [20] are two domain decomposition
methods that are well adapted to the problem addressed in this
paper: rough surface scattering.

In recent years, rank-based methods have attracted consid-
erable attention because they are kernel independent and can
be easily integrated into a variety of MoM codes (see [22] for a
brief review). The adaptive cross approximation (ACA) algo-
rithm, published by Bebendorf in 2000 [23] and next applied
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by Zhao et al . [24] for electromagnetic problems, is an efficient
technique to generate a compressed approximate representation
of the low rank of off-diagonal blocks. They represent inter-
actions between spatially separated groups of basis functions
that are usually rank deficient. In [25,26], this compression is
generalized to the whole impedance matrix.

This paper focuses on SDIM and CBFM combined with
ACA to compute the normalized radar cross section (NRCS)
from a perfectly conducting randomly rough 2D surface. For a
1D rough surface, [20,27] showed that SDIM is efficient when
the geometry is a rough surface. CBFM, on the other hand, is
efficient for scattering and radiation 3D problems, for which
few papers have been published [28,29] to date to the best of our
knowledge for a rough surface.

Preliminary comparisons between CBFM and SDIM are
presented in [30], for which a square rough surface of area
(10λ0)

2 is considered. In addition, for the CBFM, the primary
and secondary basis functions (PBFs and SBFs, respectively) are
computed from a single incident plane wave, which implies that
the results do not match with those computed from a direct LU
inversion of the impedance matrix. In this paper, the PBFs are
computed from a collection of NIPW bipolarized plane waves
[31], for which the integer NIPW is well chosen. In addition,
a parametric study versus the number of blocks, the number
of overlapping edges, the thresholds of recompressed ACA
(RACA) and the parameters inherent to the CBFM (NIPW,. . . )
is addressed. RACA combines ACA with two QR decomposi-
tions truncated by a SVD procedure, also named ACA-SVD or
ACA-TSVD [22,26,32].

The paper has four sections. Section 2 briefly presents the
SDIM, the CBFM, and the RACA algorithms. Section 3
compares the NRCS computed from the SDIM-RACA and
CBFM-RACA to the parameters of each method and Section 4
gives concluding remarks.

2. SDIM, CBFM, AND RACA ALGORITHMS

A. MoM

In this paper, to compute the field scattered by a perfectly con-
ducting object, the EFIE is solved from the MoM. In addition,
the Galerkin method is applied with the RWG basis func-
tions. This approach leads to a solution for the linear system
Z̄X = b, where Z̄ is the impedance matrix, b is a vector related
to the incident wave, and X is the unknown vector. The time
convention e− jωt is used throughout this paper.

The element Zm,n of the impedance matrix Z̄, corresponding
to the interaction between two edges m (observation) and n
(source) of a facet couple (p, q) is expressed as [8]

Zm,n =
cm,n

A p Aq

∫∫
Tp

∫∫
Tq

×

[
1

4
ρ p

m · ρ
q
n −

1

k2

]
e− j k0 Dp,q

Dp,q
dR p dRq , (1)

where cm,n = Lm Ln sm,n/(4π), in which {Lm,n} are the
edge lengths and s m,n =±1, {A p,q } are the triangle areas;
ρ

p,q
m,n = V p,q

m,n − R p,q , in which V p,q
m,n is the position vector of

the vertex unshared by the edge (m, n) and belonging to the

facet (p, q). In addition, Dp,q = ‖R p − Rq‖ and k0 is the
wave number that equals 2π/λ0, where λ0 is the wavelength in
free space. The two numerical integrations over the triangles
{Tp,q } are done from the Gauss-Legendre method, in which
one or three points are used. The singularity, which occurs for
Dp,q = 0, is computed from the work published by [33] by
using six points for the Gauss-Legendre integrations.

A component bn of the vector b associated to the source edge
n and facet q is defined as [8]

bn =−
j

ωµ0

Ln sn
2Aq

∫∫
Tq

ρq
n · p̂incψinc(Rq )dRq , (2)

where ω is the wave pulsation and µ0 the permeability of the
surrounding medium assumed to be a vacuum. In addition,ψinc

is the incident wave of polarization p̂inc [either vertical, v̂inc (V ),

or horizontal, ĥ inc (H)]. Solving the linear system X = Z̄
−1

b,
the components {an} of the vector X are found. The far-field
scattered field is then expressed as

E∞sca(R0)=−
jωµ0e− j k R0

8π R0

PFacet∑
p=1

MEdge∑
m=1

×
Lmam sm

A p

∫∫
Tp

ρ p
me j ksca·R p dR p , (3)

where PFacet is the number of facets (or triangles) and MEdge the
number of edges associated to the facet p . In addition, R0 is
the distance from the receiver to the phase origin of the object.
The normalized scattering cross section (or dimensionless
scattering coefficient) is then expressed as

NRCSpinc psca = lim
R0→∞

R2
0 |E

∞

sca · p̂sca|
2

2η0 A0 Pinc
, (4)

where A0 = L x × L y is the surface area, η0 = 120π is the wave
impedance in free space, and Pinc is the incident power density,
pinc = {V , H} and psca = {V , H}. The subscripts “inc” and
“sca” stand for incident and scattered (waves), respectively. The
receiver polarization basis (k̂sca, v̂sca, ĥsca) can be defined in
a similar way as that of the incident field (k̂inc, v̂inc, ĥ inc), in
which (θinc, φinc) and (θsca, φsca) are the incidence and receiver
(scattering) angles. To strongly attenuate the edge diffraction by
the surface, the well-known incident tapered wave published by
Braunish et al . [34] will be applied (at the order two) with taper-
ing parameter g = L x/4 (surface of area A0 = L2

x ). The length
g controls the extent of the incident beam that illuminates the
surface.

B. SDIM

Table 1 gives the definition of the notations introduced for the
decomposition by blocks, SDIM, CBFM, and ACA, respec-
tively. In addition, Fig. 1 shows an example of decomposition by
blocks.

The SDIM begins by dividing the geometry of the object to
analyze into P blocks. The impedance matrix Z̄ is then
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Table 1. Definition of the Notations Introduced for the
Decomposition by Blocks, SDIM, CBFM and ACA,
Respectively

Name Definition

NEdge Total number of edges
NVertex Total number of vertices
P = NBlock Number of blocks
NEdge,OL Total number of edges with overlapping
nOL Exceed edges due to the overlapping
Np Number of edges of block p
NOL,p Number of edges of block p with overlapping
N̄Edge Mean value of Np over p ∈ [1; P ]
N̄Edge,OL Mean value of NOL,p over p ∈ [1; P ]
K SDIM SDIM convergence order
εSDIM SDIM threshold
τ̄SDIM SDIM ACA mean compression rate
τ̄SDIM,RACA SDIM RACA mean compression rate
NIPW,p CBFM plane wave number of block p
N̄IPW Mean value of NIPW,p over p ∈ [1; P ]
εCBFM,SVD CBFM threshold of the SVD truncation
NIPW,SVD,p CBFM plane wave number of block p after SVD

truncation
N̄IPW,SVD Mean value of NIPW,SVD,p over p ∈ [1; P ]
nIPW ≥ 1 Integer defined in Eq. (25)
τ̄CBFM CBFM ACA mean compression rate
εACA ACA threshold
εACA,1 ACA threshold for the adjacent blocks
εACA,2 ACA threshold for the non-adjacent blocks
εACA,SVD RACA threshold

Fig. 1. Edges of the overlapped blocks numbers 1 (red), 4 (green),
and 9 (blue). NBlock = P = 9 (NBlock,x = NBlock,y = 3), NEdge = 96,
number of vertices NVertex = 49, number of triangles (or facets)
NFacet = 72, A0 = (0.6λ2) (L x = L y = 0.6λ), nOL = 1 and λ0 = 1 m.
The blocks are numbered from top to bottom going from left to right.


Z̄1,1 Z̄1,2 . . . Z̄1,P

Z̄2,1 Z̄2,2 . . . Z̄2,P
...

...
. . .

...
Z̄P ,1 Z̄P ,2 . . . Z̄P ,P




a1

a2
...

aP

=


b1

b2
...

bP

 , (5)

where Z̄p,p are the self-impedance matrix of the block number
p and Z̄p1,p2 are the coupling impedance matrix between the

blocks p1 and p2. In addition, the vectors a p and bp are the
vectors a and b of the block number p , respectively.

From SDIM [20], the unknown a is expressed as

a(KSDIM) ≈

k=KSDIM∑
k=0

Y (k), (6)

where 
Y (0)

i ′ = Z̄
−1
i ′, i ′bi ′

Y (k)
i ′ =−Z̄

−1
i ′, i ′

P∑
p=1,p 6=i

Z̄i ′, p Y (k−1)
p k > 0

, (7)

and the vector Y (k)
= [Y (k)

1 Y (k)
2 . . . Y (k)

P ]
T is built from the char-

acteristic functions associated to the blocks and computed from
Eq. (7). The convergence order KSDIM is obtained when the rel-
ative residual error RRESDIM satisfies

RRESDIM =
‖a(k−1)

− a(k)‖
‖a(k)‖

≤ εSDIM, (8)

where εSDIM is the SDIM threshold. Typically, εSDIM = 10−2.
It is important to underline that the symbol prime in the sub-

script of Eq. (7) indicates that the block is enlarged. The vector
Y (k)

i is obtained from Y (k)
i ′ by removing the overlapping edges.

The matrix Z̄i ′, j is the coupling matrix between the source
block j and the enlarged block i . For the vector Y (k−1)

p , the
overlapped edges are removed to avoid propagation of the non-
physical edge currents produced by the finitude of the block.

Unlike a 1D surface [20], for a 2D surface if the blocks are not
enlarged, then the SDIM does not converge. The simulations
will show that an enlargement of two or three edges (it depends
on the size of the block) is enough so that SDIM converges.

From Eq. (7), the complexity of SDIM is

CSDIM ≈ P (KSDIM + 1)
[
O
(

N̄3
Edge,OL

)
+O

(
N̄2

Edge,OL

)]
+ KSDIM P (P − 1)O(N̄Edge N̄Edge,OL). (9)

The mean values, indicated by the notation−, are defined as

N̄Edge,OL =
1

P

p=P∑
p=1

NOL,p , N̄Edge =
1

P

p=P∑
p=1

Np , (10)

where Np and NOL,p (subscript OL like overlapping) are the
number of edges of the block and enlarged block p , respectively.
In Eq. (9), the exponent 3 corresponds to the complexity
of LU decompositions made on the blocks and the term
O(N̄Edge N̄Edge,OL) is related to the calculation of the matrix-
vector products. If the two matrices of the LU decomposition
of the submatrix Z̄i ′,i ′ can be stored, the complexity in Eq. (9)
becomes

CSDIM ≈ PO(N̄3
Edge,OL)+

[
(KSDIM + 1)PO

(
N̄2

Edge,OL

)
+ KSDIM P (P − 1)O

(
N̄2

Edge

)]
, (11)

where N̄Edge N̄Edge,OL ≈ N̄2
Edge. Compared to a LU direct

inversion of the whole impedance matrix of complexity
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Fig. 2. For a given block, positions of the corner (green), top (blue),
left (blue), bottom (red), and right (red) blocks of the overlapped
blocks. Edges also are shown and overlapping is the same with respect
to the x and y directions.

O((
∑i=P

i=1 Ni )
3), the time savings is significant. The integer

NOL,p equals the number of edges of the original block p , Np ,
plus the overlapped edges nOL. Without loss of generality, this
number is assumed to be the same with respect to the directions
x and y of the surface. The same assumption is done on the
number of blocks NBlock = NBlock,x NBlock,y = P .

The exceed edges owing to overlapping is determined
from Fig. 2. First, the number of blocks that interact with
the adjacent blocks are counted according to their relative
position. From Fig. 2, the total number of corner blocks is
NCorner = 4(NBlock,x − 1)(NBlock,y − 1), the total number of
top and bottom blocks is NT,B = 2(NBlock,y − 1)NBlock,x ,
and the total number of left and right blocks is NL,R =

2(NBlock,x − 1)NBlock,y . In addition, Fig. 2 shows that the
number of edges associated to one corner is 3n2

OL (in green
dashed line), the number of edges (in blue dashed line) asso-
ciated either to the top or left position is 3NEdge,B nOL − nOL,
and that (in red dashed line) associated to either the bottom or
right position is 3NEdge,B nOL − nOL − NEdge,B . For subsurfaces
of the same area (NBlock,x = NBlock,y =

√
P ) and nOL > 0, the

excess of edges is then

NEdge,OL − NEdge = 12
(√

P − 1
)2

n2
OL + 2

(√
P − 1

)
×
√

P (6NEdge,B nOL − 2nOL − NEdge,B ).
(12)

In addition, NEdge,B = (
√

NVertex − 1)/
√

P ≈
√

NEdge/3/
√

P (NEdge ≈ 3NVertex). In practice, nOL� NEdge,B , which
implies that

NEdge,OL − NEdge ≈
(√

P − 1
)

×

[
12
(√

P − 1
)
n2

OL + 2

√
NEdge

3
(6nOL − 1)

]
. (13)

This exceed is proportional to 12P n2
OL and

6.9
√

P NEdgenOL.
The SDIM storage complexity, MSDIM, is similar to that of

the brute force MoM and equals N2
Edge,OL. It corresponds to

the storage of the P submatrices {Z̄i ′,i ′} and P (P − 1) sub-
matrices {Z̄i1′ ,i2} (with i1 6= i2). We will show that ACA allows
us to reduce this complexity, thanks to the compression of the
P (P − 1) coupling submatrices.

C. CBFM

Like SDIM, the CBFM begins by dividing the geometry of the
object to analyze into P blocks. Next, a PBF is computed for
each block by solving the linear system,

Z̄i ′,i ′Y
(0)
i ′,kIPW

= B i ′,kIPW , (14)

where the subscript prime indicates that the block i is enlarged
and kIPW stands for the kIPWth plane wave (ranging from 1 to 2
NIPW,i ). The original version of CBFM [18] used B i ′,kIPW = bi ′

(single incident plane wave, kIPW = 1) and SBFs are calculated.
In 2008 [31], another way is proposed to calculate the PBFs
and the computation of SBFs is not required. In [30], for a 2D
rough surface, it is shown that the original CBFM method lacks
precision.

Lucente et al . [31] solved the linear system in Eq. (14)
from a collection of 2NIPW,i bipolarized incident plane waves
{B i ′,kIPW}, and the resulting vectors {Y (0)

i ′,kIPW
} are stored in a

matrix J̄ i of size NEdge,i × 2NIPW,i , where NEdge,i is the number
of edges of the block i without overlapping. The results show
that the overlapped edges of Y (0)

i ′,kIPW
are removed.

The choice of NIPW,i must be relevant to avoid making the
matrix too big. The redundant information due to the over-
estimation of NIPW,i is eliminated via the use of a truncated
singular value decomposition (SVD). It means that from a
given threshold εCBFM,SVD, the values, for which the modulii
of the normalized eigenvalues are smaller than εCBFM,SVD, are
removed. The size of J̄ i becomes NEdge,i × NIPW,SVD,i with
NIPW,SVD,i < 2NIPW,i .

The last stage of CBFM solves a reduced linear system

Z̄
R

aR
= bR defined as

Z̄
R
1,1 Z̄

R
1,2 . . . Z̄

R
1,P

Z̄
R
2,1 Z̄

R
2,2 . . . Z̄

R
2,P

...
...

. . .
...

Z̄
R
P ,1 Z̄

R
P ,2 . . . Z̄

R
P ,P




aR

1
aR

2

...

aR
P

=


bR
1

bR
2

...

bR
P

 , (15)

where the submatrix Z̄
R
i, j and the subvector bR

i are defined as{
Z̄

R
i, j = J̄

H
i Z̄i, j J̄ j

[
NIPW,SVD,i × NIPW,SVD, j

]
bR

j = J̄
H
j b j

[
NIPW,SVD,i × 1

] . (16)

Moreover, the symbol H stands for the conjugate transpose
operator and the indexes i and j go from 1 to P . The vector ai of
Eq. (5) is equal to ai = J̄ i aR

i .
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The problem is then represented by the characteristic
square matrix of size (P N̄IPW,SVD)

2 instead of a square
matrix of size N2

Edge = (P N̄Edge)
2, where N̄IPW,SVD =

(1/P )
∑P

p=1 NIPW,SVD,p . If multiple excitations {b} (for

instance, a monostatic case) are calculated, then Z̄
R

(or the
two matrices of the LU decomposition) and { J i } (required
to calculate bi ) must be stored, corresponding to store
(P N̄IPW,SVD)

2
+ P N̄Edge N̄IPW,SVD complex numbers. The

problem is then reduced by a factorβ1 > 1 and equals

1

β1
=

P 2 N̄2
IPW,SVD + P N̄Edge N̄IPW,SVD

P 2 N̄2
Edge

=
1

βCBFM

(
1

βCBFM
+

1

P

)
, (17)

where βCBFM = N̄Edge/N̄IPW,SVD > 1. If βCBFM� 1 and
P � 1, the CBFM is very efficient for multiple excitations.

The complexity of the CBFM is expressed as

CCBFM ≈ P
[
2O(N̄3

Edge,OL)+ N̄IPWO(N̄2
Edge,OL)

]
+ 2P 2 N̄IPW,SVDO(N̄2

Edge)+O(N2
R)+O(N 3

R ),

(18)

where NR = P N̄IPW,SVD and N̄IPW = (1/P )
∑P

p=1 NIPW,p .
The first line corresponds to the calculation of the PBFs, in
which the factor 2 comes from the LU decomposition and the
truncated SVD.

D. RACA

An ACA algorithm [23,24] is implemented to take advantage
of the low-rank property of the off-diagonal submatrices Z̄i, j

(i 6= j ) representing two well-separated blocks. The ACA
method approximates a dense matrix Z̄ of size N ×M by a
matrix–matrix product as

Z̄ ≈ ŪV̄ , (19)

where Ū is a matrix of size N × r and V̄ is a matrix of size
r ×M, with r as the effective rank of Z̄. Clearly, the method
requires the storage of only r × (N +M) complex numbers
and its computational complexity scales as O(r 2(N +M)).
The ACA compression is applied in Eq. (7) for the calcula-
tion of Y (k)

i ′ (k > 0), and in Eq. (16) for the computations of

{Z̄
R
i, j }, in which the coupling matrices {Z̄i, j } (with and without

overlapping) are compressed.
To improve the compression [22,26,32], a QR decomposi-

tion is done both on matrices Ū and V̄ and a truncated SVD
is then applied by introducing a threshold εACA,SVD. Typically,
εACA,SVD = 10εACA, where εACA is the ACA threshold ranging
from 10−5 to 10−3. In addition, the norm introduced to stop
the ACA algorithm and modified in [26] is used. Chen et al .
[22] proposed another method to calculate this norm by using
both the QR decomposition of Ū and V̄ in the loop over r . For
our problem, numerical tests showed that this algorithm is less

efficient compared to what was used in [26]. Therefore, it is not
applied in this paper.

As shown in Eq. (7) for the SDIM, the coupling matrices
{Z̄i ′,p} must be compressed. For a given coupling submatrix
Z̄i ′,p , the source and observation edges can be identical. Even
if the size of the coupling submatrix is large, if some elements
interact on the same edge (self-interaction), then the ACA com-
pression is not efficient. It occurs for adjacent blocks. To solve
this issue, these edges are removed, which has no impact on the
SDIM precision.

To quantify the compression efficiency, the following SDIM
mean compression rate is defined as

τ̄SDIM = 1−

(
N̄Edge,OL

N̄Edge

)2
1

P (P − 1)

i=P∑
i=1

j=P , j 6=i∑
j=1

r i, j (ni +m j )

mi n j
,

(20)

where the matrix Z̄i ′, j has a size ni ×m j and a rank r i, j . The
factor (NEdge,OL/NEdge)

2 comes from the additional edges
required due to overlapping. With the CBFM, the overlapping
is not required for the coupling matrices, which implies that
NEdge,OL/NEdge = 1 and τ̄SDIM < τ̄CBFM.

If RACA is applied, then the SDIM in Eq. (11) complexity is

CSDIM ≈ PO(N̄3
Edge,OL)+

[
(KSDIM + 1)PO(N̄2

Edge,OL)

+ KSDIM P (P − 1)O(N̄2
Edge)(1− τ̄SDIM,RACA)

]
,

(21)

and that of CBFM remains nearly unchanged; that is,

CCBFM,RACA ≈CCBFM = Equation (18). (22)

3. NUMERICAL RESULTS

The SDIM convergence order KSDIM is determined for a
threshold εSDIM = 10−2. The surface has a Gaussian height dis-
tribution and its autocorrelation function is also Gaussian. The
surface area is defined as A0 = L x × L y = L2

x (L y = L x ),
σz stands for the surface height standard deviation and
{L c ,x , L c ,y = L c ,x } are the correlation lengths with respect
to the x and y directions, respectively.

This section compares the NRCS computed from SDIM,
CBFM, SDIM+ RACA, and CFBM+ RACA by considering
a randomly rough surface. First, the surface area is (12λ0)

2 to
compare with results obtained from a direct LU decomposi-
tion of the whole matrix (reference solution), where λ0 is the
wavelength in free space. A parametric study is also addressed
versus the incidence angle θi , the ratios σz/λ0 and L c ,x/λ0

(L c ,y = L c ,x ), and the polarizations. Next, the surface area
is (24λ0)

2 to compare the efficiency of the two methods. In
addition, the last subsection addresses the complexity of the two
methods. The extent of the Braunish et al . [34] tapered wave is
g = L x/4 (surface of area L2

x ).

A. Surface Area of (12λ0)2 and without RACA

The incidence angles are θinc = π/6, φinc = 0, the azimuthal
scattering angle is φsca = 0, and the polarizations are VV (same
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Fig. 3. Surface height versus the coordinates x and y . Surface area is
L x × L y = (12λ0)

2, σz = 0.3λ0, and L c ,x = L c ,y = 1.5λ0. The num-
ber of edges is NEdge = 42,960, and the edge mean length is 0.12λ0.

as the reception and emission); in addition, σz/λ0 = 0.3
and L c ,x/λ0 = L c ,y /λ0 = 0.3. These parameters are chosen
to have a moderate surface slope standard deviations with
respect to the x and y directions slopes defined as σs ,x =

σs ,y =
√

2σz/L c ,x =
√

2σz/L c ,y = 1/
√

2≈ 0.283. Figure 3
plots the corresponding surface height versus the coordinates
x and y . The purpose is to produce reflections on the surface,
which involves interactions between the blocks. The sampling
with respect to the x and y directions are 1x =1y = 0.1λ0,
which gives NEdge = 42,960 and the edge mean length is
0.12λ0.

Figure 4 plots the NRCSSDIM in dB scale, computed from
SDIM, versus the scattering angles and for different values of the
number of blocks P with nOL = 2. To highlight the difference,
Fig. 5 plots the corresponding ratio NRCSSDIM/NRCSLU in dB
scale versus the scattering angles, where NRCSLU is the reference
solution obtained from a direct LU decomposition of the whole
matrix.

The legend indicates “SDIM (KSDIM), P , t , RRE, DIF”,
where KSDIM is the convergence order, P the number of blocks,
t the computing time (submatrices filling not included), and the
relative residual error (RRE) defined as

RRE=
‖E (KSDIM)

sca − E sca,LU‖θsca∈[−π/2;π/2]

‖E sca,LU‖θsca∈[−π/2;π/2]

, (23)

where E sca is the scattered far field versus θs . In addition, DIF
stands for the mean absolute value of the ratio in dB scale
defined as

DIF=
1

Nθsca

∑
Nθsca

20

∣∣∣∣log10

∣∣∣∣ E (KSDIM)
sca

E sca,LU

∣∣∣∣∣∣∣∣ , (24)

where Nθsca is the number of scattering angles.
As we can see, the results are in perfect agreement with those

computed from LU, except for scattering angles θsca near π/2,
over which the NRCS strengths are very low. As P increases,
KSDIM increases because more iterations are required to account
for all the interactions between the blocks and to vanish the
fictitious currents produced by the block edges. In addition,

Fig. 4. NRCSSDIM in dB scale computed from SDIM versus the
scattering angles and for different values of the number of blocks P
with nOL = 2.

Fig. 5. Ratio NRCSSDIM/NRCSLU in dB scale computed from
SDIM versus the scattering angles. Same parameters as in Fig. 4.

the time t increases and it is smaller than that obtained from
LU. The difference is not significant because the size problem
is rather small and, in MATLAB, the LU decomposition is
parallelized.

Figure 6 plots the ratio NRCSSDIM/NRCSLU in dB scale
versus the scattering angles and for different values of the over-
lapping nOL with P = 25. As we can see, as nOL increases,
the SDIM convergence order decreases because less iterations
are needed to vanish the fictitious currents produced by the
block edges. The RRE value also decreases. Nevertheless, as
shown by Eq. (13), a trade-off must be found between nOL

and KSDIM because the number of total edges with overlap-
ping increases with nOL. For instance, for nOL = {0, 1, 2, 3},
NEdge,OL = {42,960; 47,872; 54,128; 60,768}.

For CBFM, the number of plane waves NIPW is chosen as
[35,36]
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Fig. 6. Ratio NRCSSDIM/NRCSLU in dB scale computed from
SDIM versus the scattering angles. Same parameters as in Fig. 4 but the
integer nOL changes and P = 25.

NIPW =

⌊
2(kr0 + 2π)2

nIPW
, (25)

where the symbol b stands for the lower integer part and r0,
the sphere radius circumscribed to the block i of area L x ,i L y ,i ,

equals
√

L2
x ,i + L2

y ,i/2. In addition, the integer nIPW ≥ 1 is

introduced because the simulations will show that NIPW is
overestimated. Equation (25) is related to the Nyquist sampling
to ensure that there is no loss of information by decomposing
any source into a sum of plane waves. The NIPW plane waves are
built from angles θ ∈ [0; π/2] and φ ∈ [0; 2π ] with a constant
sampling step1θ =1φ.

Figure 7 plots the ratio NRCSCBFM/NRCSLU in dB scale
computed from CBFM versus the scattering angles and for
different values of the number of blocks P with nOL = 2,
εCBFM,SVD = 10−3 and nIPW = 2 (a figure to compare with

Fig. 7. Ratio NRCSCBFM/NRCSLU in dB scale computed from
CBFM versus the scattering angles and for different values of the
number of blocks P with nOL = 2, εCBFM,SVD = 10−3, and nIPW = 2
(figure to compare with Fig. 5).

Fig. 8. Ratio NRCSCBFM/NRCSLU in dB scale computed from
CBFM versus the scattering angles and for different values of the
overlapping nOL. P = 25, εCBFM,SVD = 10−3, and nIPW = 2 (figure to
compare with Fig. 6).

Fig. 5). The legend indicates “CBFM (2N̄IPW − N̄IPW,SVD),
P , t , RRE, DIF”, where t is the computing time (submatrix
filling not included), 2N̄IPW is the mean value of the number
of incidence bipolarized plane waves (NIPW computed from
Eq. (25) for a given block and multiplied by 2), and N̄IPW,SVD

is that obtained after the truncated SVD. In addition, RRE
and DIF are given by Eqs. (23) and (24), in which E (KSDIM)

sca is
replaced by E sca,CBFM.

As we can see, as P increases, the RRE and DIF remain nearly

constant. The square characteristic matrix Z̄
R

has a size of
P N̄IPW,SVD = {3, 885; 4, 739; 5, 577} for P = {16, 25, 36}.
In Fig. 7, the time t should increase as P grows. In fact, the
most expensive operation is the calculation of the PBFs;
since P increases, the sizes of the submatrices decrease.
It implies that the time spent to calculate their LU inver-
sions decreases. For P = {16, 25, 36}, the reduction factor
βCBFM = N̄Edge/N̄IPW,SVD ≈ {11.6, 9.6, 8.1}. For multiple
excitations, It means that P should not be too large because the

matrix Z̄
R

must be stored.
Figure 8 plots the ratio NRCSCBFM/NRCSLU in dB scale

computed from the CBFM versus the scattering angles
and for different values of the overlapping nOL (P = 25,
εCBFM,SVD = 10−3, and nIPW = 2) (a figure to compare with
Fig. 6). As we can see, as nOL increases, RRE and DIF decrease,
but the number N̄IPW,SVD grows since the size of the overlapped
blocks increases. It implies that the time t also increases.

Figure 9 plots the ratio NRCSCBFM/NRCSLU in dB scale
computed from CBFM versus the scattering angles and
for different values of εCBFM,SVD and nIPW (nOL = 2 and
P = 36). The legend indicates, “CBFM(εCBFM,SVD, nIPW:
2N̄IPW − N̄IPW,SVD), t , RRE, DIF”. As we can see, as nIPW

increases or/and εCBFM,SVD decreases, the RRE does not change
significantly. In addition, we can note that the truncated SVD
allows a good value of N̄IPW,SVD to be obtained, even if the initial
value of N̄IPW is chosen too large. The values εCBFM,SVD = 10−3

and nIPW = 2 are a good choice and the use of the truncated
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Fig. 9. Ratio NRCSCBFM/NRCSLU in dB scale computed from
CBFM versus the scattering angles and for different values of εCBFM,SVD

and nIPW (nOL = 2 and P = 36).

SVD allows us to decrease the value of 2N̄IPW to N̄IPW,SVD by a
factor of the order of 3.3.

B. Surface Area of (12λ0)2 with RACA

Figure 10 plots the ratio NRCSSDIM/NRCSLU in dB scale
computed from SDIM+ RACA versus the scattering angles
and for different values of the RACA thresholds (nOL = 2
and P = 36). For a given block, the adjacent blocks interacts
strongly, which means that the compression must be made
with precision. Then, two RACA thresholds are defined: one
for the near interactions (adjacent blocks), εACA,1, and the
second one, for the far interactions εACA,2. In Fig. 10, the legend
means, “SDIM(KSDIM)+RACA(εACA,1, εACA,2, εACA,SVD =

10εACA,2), τ̄SDIM, t , RRE, DIF”, where τ̄SDIM is the mean com-
pression ratio (20), t is the computing time (filling matrices not

Fig. 10. Ratio NRCSSDIM/NRCSLU in dB scale computed from
SDIM+ RACA versus the scattering angles and for different values of
the RACA thresholds (nOL = 2 and P = 36).

Fig. 11. Ratio NRCSCBFM/NRCSLU in dB scale computed
from CBFM+ RACA versus the scattering angles and for different
values of the RACA thresholds (nOL = 2, P = 36, nIPW = 2, and
εCBFM,SVD = 10−3).

included), and RRE and DIF are defined by Eqs. (23) and (24).
The value εACA,1 =−1 means that ACA is not applied.

As we can see, the difference between SDIM+ RACA and
SDIM is small. As expected, if εACA,1 decreases, then the differ-
ence decreases and the computing time slightly grows, whereas
the mean compression weakly decreases. Compared to SDIM,
the time t decreases when RACA is applied, because the matrix-
vector products are accelerated. For εACA,1 =−1, the results
are nearly the same as those obtained for εACA,1 = 10−5, which
shows that it is relevant to apply RACA on the adjacent blocks
since the mean compression is closer to 1.

Figure 11 plots the ratio NRCSCBFM/NRCSLU in dB scale
computed from CBFM+ RACA versus the scattering angles
and for different values of the RACA thresholds. nOL = 2,
P = 36, nIPW = 2 and εCBFM,SVD = 10−3. Compared to
Fig. 10, the conclusions are the same on the RACA impact.
Nevertheless, the mean compression is larger than that obtained
with SDIM because there is no overlapping over the blocks.
Then, ACA is more efficient. In addition, CBFM+ RACA runs
faster than SDIM+ RACA like in Figs. 5–7 and Figs. 6–8.

Figure 12 plots the histogram of the SDIM coupling-
submatrix ranks calculated from ACA and RACA, where
{εACA,1, εACA,2, εACA,SVD} = {10−5, 10−4, 10−3

}. Figure 13
plots the same variations as in Fig. 12 but by considering the
CBFM. In the legend, the label “Max” means that the rank
equals rmax = ni m j/(ni +m j ), corresponding to the maxi-
mum value, for which ACA is not efficient for memory storage.
The numbers (ni ,m j ) are the size of the submatrix to compress.
In addition, in the legends of Figs. 12 and 13, the integer equals
the mean value.

In Figs. 12 and 13, all the ranks are smaller than {rmax}, which
means that all the submatrices are compressed. The ranks rang-
ing from 100 to 200 corresponds to the submatrices adjacent
to the current block. We can show that this number equals
PACA,Near = 4−6(Nx ,Block + Ny ,Block)+ 8Nx ,Block Ny ,Block. For
Nx ,Block = Ny ,Block =

√
P = 6, PACA,Near = 220. Although the
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Fig. 12. Histogram of the SDIM coupling-
submatrix ranks calculated from ACA and RACA, where
{εACA,1, εACA,2, εACA,SVD} = {10−5, 10−4, 10−3

}.

Fig. 13. Histogram of the CBFM coupling-submatrix
ranks calculated from ACA and RACA, where {εACA,1, εACA,2,

εACA,SVD} = {10−5, 10−4, 10−3
}.

blocks are adjacent, the application of ACA is relevant. It is well
known that ACA is efficient for far-field interactions, which
explains why many ranks occur around the mean value, which
is smaller than N̄Edge = 1193 (mean value of edge numbers per
block). The results also show that RACA is very efficient since
the resulting rank is approximately divided by 3. The values
are also more concentrated around the mean value. Note that
εACA,SVD = 10εACA,2 improves the compression without loss of
precision.

The comparison of Fig. 12 to Fig. 13 also shows that ACA
is more efficient for the CBFM, because there is no overlap-
ping. Nevertheless, the final RCA mean rank is nearly the same
between CBFM and SDIM.

Figures 14 and 15 plot the VH cross-polarized NRCSs in dB
scale computed from SDIM+ RACA and CBFM+ RACA,
respectively, versus the scattering angles and for different values
of the RACA thresholds. nOL = 2 and P = 36 (same simulation
parameters as in Figs. 10 and 11). In addition, 20 dB is added
to the NRCS to have comparable values to those of Fig. 4 (co-
polarization VV). It explains why the cross polarization needs
more precision than the VV ones. As we can see, the results

Fig. 14. NRCSSDIM in dB scale computed from SDIM+ RACA
versus the scattering angles and for different values of the RACA
thresholds (nOL = 2 and P = 36).

Fig. 15. NRCSCBFM in dB scale computed from CBFM+ RACA
versus the scattering angles and for different values of the RACA
thresholds (nOL = 2, P = 36, nIPW = 2, and εCBFM,SVD = 10−3).

match well with those obtained from LU except for low values of
the NRCS, below 40+ 20= 60 dB of the maximum of the VV
NRCS.

C. Surface Area of (12λ0)2 with RACA: Parametric
Study

For SDIM+ RACA and CBFM+ RACA, Table 2 lists
the values of DIF [dB] versus θinc [

◦
] and σz/λ0 for a given

L c ,x = L c ,y = 1.5λ0. The polarizations are VV. As we can see,
the precision of the two methods has few sensitivities to θinc

and slightly increases as σz grows. In Table 2, the values 2.33 dB
and 1.02 dB can appear large but, the plots (not depicted here)
show that this corresponds to values 60 dB below the maximum.
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Table 2. DIF [dB] of SDIM+RACA-CBFM+RACA
versus θinc [◦] and σz/λ0 (Polarizations Are VV)

a

0 15 30 45

0.1 0.41–0.11 0.42–0.08 2.33–0.17 0.25–0.05
0.2 0.06–0.02 0.08–0.02 1.02–0.16 0.18–0.03
0.3 0.04–0.01 0.04–0.01 0.05–0.03 0.07–0.02

aL c ,x = L c ,y = 1.5λ0; nOL = 2; P = 36; {εACA,1, εACA,2, εACA,SVD} = {10−5,

10−4, 10−3
}.

Table 3. DIF [dB] of SDIM+RACA-CBFM+RACA
versus θinc [◦] and σz/λ0 (Polarizations Are VH)

a

0 15 30 45

0.1 3.98–2.42 3.72–1.23 2.70–0.97 1.63–1.11
0.2 1.22–0.51 3.33–0.41 1.39–0.26 1.61–0.39
0.3 0.52–0.18 1.14–0.16 1.42–0.30 0.98–0.24

aL c ,x = L c ,y = 1.5λ0; nOL = 2; P = 36; {εACA,1, εACA,2, εACA,SVD} = {10−5,

10−4, 10−3
}.

The SDIM convergence order ranges from 8 to 11, has few
sensitivities to θi , and slightly increases asσz grows.

Table 3 lists the same values as in Table 2, but the polarizations
are VH. Like the VV polarization, as σz grows, the methods are
more accurate and CBFM gives better results.

Table 4 lists the same values as in Table 2 but the polarizations
are HH. Compared to Table 2, the values are slightly larger for
SDIM and the SDIM convergence order ranges from 8 to 13. It
weakly increases with θi andσz.

For SDIM+ RACA and CBFM+ RACA, Table 5 reports
the same values as in Table 2, but σz = 0.3λ0 and L c ,x changes.
As we can see, the two methods have few sensitivities to θinc and
L c ,x . In addition, the SDIM converges order ranges from 9 to 12
and decreases as L c ,x increases. For the VH polarizations (values
not reported here), the value DIF increases as L c ,x increases and
it has few sensitivities to θi .

This section shows that CBFM is more accurate than SDIM,
that the SDIM convergence order increases as L c ,x or σz

Table 4. DIF [dB] of SDIM+RACA-CBFM+RACA
versus θinc [◦] and σz/λ0 (Polarizations Are HH)

a

0 15 30 45

0.1 0.92–0.05 0.49–0.06 0.67–0.12 0.76–0.09
0.2 0.13–0.04 0.22–0.08 0.56–0.14 0.63–0.13
0.3 0.13–0.02 0.14–0.03 0.31–0.04 0.51–0.06

aL c ,x = L c ,y = 1.5λ0; nOL = 2; P = 36; {εACA,1, εACA,2, εACA,SVD} = {10−5,

10−4, 10−3
}.

Table 5. DIF [dB] of SDIM+RACA-CBFM+RACA
versus θinc [◦] and σz/λ0 (σz = 0.3λ0 and Lc,x Changes)

a

0 15 30 45

0.0 0.02–0.01 0.03–0.01 0.02–0.01 0.03–0.03
0.5 0.04–0.01 0.04–0.01 0.05–0.03 0.07–0.02
0.0 0.14–0.04 0.24–0.04 0.34–0.06 0.23–0.03

aL c ,x = L c ,y = 1.5λ0; nOL = 2; P = 36; {εACA,1, εACA,2, εACA,SVD} = {10−5,

10−4, 10−3
}.

increases, and that it is larger for the HH polarization. In addi-
tion, the accuracy of SDIM increases as σz increases and L c ,x

decreases. It is also important to underline that the stop criterion
in Eq. (8) is defined over the surface currents and the precision of
SDIM can be improved by decreasing the value of the threshold
εSDIM. The stop criterion could be defined over the scattered
field, which would require radiation of the surface current at
each order of SDIM.

D. Surface Area of (24λ0)2

In this subsection, the statistical parameters of the rough surface
are L c ,x = L c ,y = 1.5λ0 and σz = 0.3λ0, its area is (24λ0)

2, the
number of edges is 172,320 with an edge length mean value of
0.118λ0.

Figure 16 plots the NRCS in dB scale versus the scattering
angles and for different values of {εACA,1, εACA,2, εACA,SVD}

(P = 64 and nOL = 3). To highlight the difference, Fig. 17 plots

Fig. 16. NRCS in dB scale versus the scattering angles and for
different values of {εACA,1, εACA,2, εACA,SVD} (P = 64 and nOL = 3).

Fig. 17. NRCSSDIM/NRCSREF in dB scale versus the scattering
angles with the same parameters as in Fig. 16.
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Fig. 18. NRCSCBFM/NRCSREF in dB scale versus the scattering
angles and for different values of {εACA,1, εACA,2, εACA,SVD} (P = 64,
nOL = 3, nIPW = 2, and εCBFM,SVD = 10−3).

the corresponding NRCS ratio, NRCSSDIM/NRCSREF, in dB
scale versus the scattering angles. NRCSREF is obtained from
CBFM with {εACA,1, εACA,2, εACA,SVD} = {−1, 10−4, 10−3

},
nIPW = 2, and εCBFM,SVD = 10−3.

As we can see, the curves match well, which is in agreement
with the results obtained for L x = L y = 12λ0. When the
RACA thresholds change, the computing time does not change
significantly and the SDIM convergence order KSDIM weakly
increases. It means that the last orders of SDIM give a small con-
tribution and are very sensitive to the precision of the coupling
submatrices governed by the RACA thresholds. The SDIM
threshold is 10−2. If this value increases, then the order KSDIM

decreases.
Figure 18 plots the ratio NRCSCBFM/NRCSREF in dB

scale versus the scattering angles and for different values
of {εACA,1, εACA,2, εACA,SVD}. Like SDIM, the comput-
ing time has few sensitivities to the ACA thresholds and
for εACA,1 = 10−4, there are small differences that occur for
scattering angles nearπ/2.

Figure 19 plots the ratio NRCSCBFM/NRCSREF in dB scale
versus the scattering angles, and for different values of nIPW

and εCBFM,SVD. As we can see, the curves match well, except
for low values of the NRCS. As the couple (2N̄IPW, N̄SVD,IPW)

decreases (nIPW grows or/and εCBFM,SVD increases), the comput-
ing time t (filling matrices not included) decreases. Like the case
L x = L y = 12λ0, the values nIPW = 2 and εCBFM,SVD = 10−3

are a good choice. It implies that the length of the reduced
square matrix is N̄SVD,IPW P = 16,512, giving a reduction factor
βCBFM = N̄Edge/N̄SVD,IPW ≈ 10.45.

Figure 20 plots the histogram of the CBFM coupling-
submatrix ranks calculated from ACA and RACA.
{εACA,1, εACA,2, εACA,SVD} = {10−5, 10−4, 10−3

}. As we can
see, the RACA improves the compression and the rank values
are more concentrated around the mean value. Ranks ranging
from 200 to 320 correspond to the adjacent blocks of num-
ber PACA,Near = 420. In Fig. 13, the ratio r̄Max/r̄RACA (rank
mean value given in the legend) is 597/22≈ 27.1; whereas in

Fig. 19. NRCSCBFM/NRCSREF in dB scale versus the scatter-
ing angles and for different values of nIPW and εCBFM,SVD (P = 64,
nOL = 3, and {εACA,1, εACA,2, εACA,SVD} = {10−5, 10−4, 10−3

}).

Fig. 20. Histogram of the CBFM coupling-
submatrix ranks calculated from ACA and RACA, where
{εACA,1, εACA,2, εACA,SVD} = {10−5, 10−4, 10−3

}.

Fig. 20, it is equal to 1346/23≈ 58.5, which shows that ACA
is more efficient for a larger object. Indeed, the SDIM mean
compression rate expressed by Eq. (20) can be approximated as

τ̄SDIM ≈ 1−

(
N̄Edge,OL

N̄Edge

)2
r̄RACA

r̄Max
, (26)

in which N̄Edge,OL/N̄Edge = 1 for the CBFM (no overlapping
over the coupling submatrices).

E. Complexity

Figure 21 plots the filling times of the submatrices in min-
utes. The surface length L x = L y ranges from 12λ0 to
27λ0 (NEdge ranges from 42,960 to 218,160). For LU,
only the first three points are considered. The length of
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Fig. 21. Filling times of the submatrices in minutes. Top,
total time versus N2

Edge. Middle, time filling of the P imped-

ance submatrices {Z̄i,i } versus P N̄2
Edge,OL. Bottom, filling time

of the P (P − 1) coupling submatrices {Z̄i, j }(i 6= j ) versus
P (P − 1)N̄2

Edge(1− τ̄ACA,CBFM). In addition, the last two subfig-
ures plot the curves fitted by the equation y = ax + b, in which the
values of a , b and the correlation coefficient r are given in the legends.

the blocks is a constant that equals 3λ0, meaning that P
ranges from 42

= 16 to 92
= 81. For CBFM, nIPW = 2

and εCBFM,SVD = 10−3, and the RACA thresholds are
{εACA,1, εACA,2, εACA,SVD} = {10−5, 10−4, 10−3

}.
The top of Fig. 21 plots the total time versus N2

Edge. As we
can see, the time of CBFM+ RACA is approximately twice as
small than that of SDIM+ RACA because the mean compres-
sion rate is larger for CBFM+ RACA. Compared to LU, the
difference must be theoretically greater, but it depends on how
the calling functions calculating the elements of submatrices
are done. MATLAB software is used for the simulations, and
the submatrices are computed in C language by using the mex
library, which allows us to call the C function from MATLAB.
When the impedance matrix of whole surface is calculated, the
function is only called once; however, for the calculations of the
submatrices, the same function is called P 2 times. In addition,
the RACA algorithm is written in MATLAB (call functions
in C) and it can be significantly more time-consuming if the
rank r is too large owing its complexity inO(r 2(M + N)). The
time needed can be significantly reduced if the submatrices are
computed simultaneously by paralleling the code.

The middle of Fig. 21 plots the total time spent to calculate
the P impedances submatrices {Z̄i,i } versus P N̄2

Edge,OL. In addi-
tion, the curves are fitted by the equation y = ax + b, in which
the values of a , b and the correlation coefficient r are given in
the legends. As we can see, the results perfectly match with its
regression (r ≈ 1), meaning that the time is proportional to
P N̄2

Edge,OL.
The bottom of Fig. 21 plots the total time spent to calcu-

late the P (P − 1) coupling submatrices {Z̄i, j }(i 6= j ) versus
P (P − 1)N̄2

Edge(1− τ̄ACA,CBFM) and its linear regression. We
assume that τ̄ACA,SDIM ≈ τ̄ACA,CBFM. As we can see, the results
match well with its regression (r ≈ 0.999), meaning that the

Fig. 22. Computing times in minute. Top, for the LU decompo-
sitions of {Z̄i,i } versus P N̄3

Edge,OL. Bottom, to solve the linear system

Z̄a = b versus (K SDIM + 1)P N̄2
Edge,OL + K SDIM P (P − 1)N̄2

Edge(1−
τ̄SDIM,RACA). In addition, their regression is plotted.

time is proportional to P (P − 1)N̄2
Edge(1− τ̄ACA,CBFM). In

addition, the time is larger for the SDIM+ RACA (its ACA
mean compression rate is smaller than that of CBFM).

Figure 22 plots the computing time in minutes. At the top,
there is the time for the LU decompositions of {Z̄i,i } ver-
sus P N̄3

Edge,OL. At the bottom, you can see the time to solve

the linear system Z̄a = b versus (KSDIM + 1)P N̄2
Edge,OL +

KSDIM P (P − 1)N̄2
Edge(1− τ̄SDIM,RACA). In addition, their

regression is plotted. As we can see, the results match well with
their regression, which is in agreement with the complexity
predicted by Eq. (11), in which the term PO(N̄3

Edge,OL) corre-
sponds to the complexity of the LU decompositions of the P
self-impedance submatrices.

Figure 23 plots the computing time in minutes related to the
three stages of the CBFM algorithm. In addition, their regres-
sion is plotted. At the top, the time corresponds to the time spent
to calculate the PBFs and it is plotted versus 2P N̄3

Edge,OL. In the

Fig. 23. Computing times in minutes related to three stages of the
CBFM algorithm. In addition, their regression is plotted.
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middle, the time corresponds to the time spent to calculate the

reduced matrix Z̄
R

and it is plotted versus 2P 2 N̄IPW,SVD N̄2
Edge.

At the bottom, the time corresponds to the time spent to solve

the linear system Z̄
R

aR
= bR and it is plotted versus N3

R , where
NR = P N̄IPW,SVD. As we can see, the results match well with
their regression, which is consistent with the theoretical com-
plexity expressed by Eq. (18), in which only the higher-order
terms are kept on for each step. In addition, as NEdge increases,
the most expensive operations are the calculations of the PBFs,

next the reduced matrix Z̄
R

.

4. CONCLUSION

Two domain decomposition methods, SDIM and CBFM, have
been investigated to calculate the scattered field from a 2D ran-
domly rough surface.

For CBFM, numerical tests showed that in Eq. (25), the
number of bipolarized plane waves 2NIPW, can be chosen
with nIPW = 2 and the truncated SVD can be applied with a
threshold of εCBFM,SVD = 10−3. The resulting reduction factor,
βCBFM = N̄Edge/N̄IPW,SVD ≈ 10, where N̄IPW,SVD is approxi-
mately 3.5 times smaller than 2NIPW, which shows it is relevant
to apply a truncated SVD. The number of overlapped edges by
block, nOL, must be two or three.

Numerical tests showed that SDIM is twice as slow as CBFM
and is not able to efficiently treat several excitations, unlike
CBFM. In addition, as the number of blocks increases, the
SDIM convergence order KSDIM increases. To remedy this
issue, nOL must increase, which grows the total number of edges.
Typically, nOL can be set as 10% of the size of the block.

The use of RACA makes the two methods more effi-
cient in terms of complexity and memory storage, since
the coupling-submatrices are compressed. Compared to a
conventional ACA, the RACA allows the reduction of the
mean rank by a factor 3, leading to a mean compression rate
near 0.96–0.98 that increases as the problem size grows.
Typically, the values of RACA thresholds can be chosen as
{εACA,1, εACA,2, εACA,SVD} = {10−5, 10−4, 10εACA,2}, where
εACA,1 is the threshold for the compression of the adjacent
blocks. For a precision of±1 dB, these values can be multiplied
by 10.

It is also shown that the theoretical complexities of the two
methods in Eqs. (11) and (18), are in very good agreement
with those obtained numerically. It is important to underline
that the time spent to calculate the P 2 submatrices is approxi-
mately 90% of the total time, in which 80% is allocated for the
computation of the P (P − 1) coupling submatrices. A way
to overcome this drawback would be to parallelize the code,
which also would allow the acceleration of the calculations of
Z̄

R
(CBFM) and Ȳ

(k)
(SDIM).
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