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Upwind–Downwind Asymmetry of the Sea
Backscattering Normalized Radar Cross
Section Versus the Skewness Function

Christophe Bourlier

Abstract— From the first-order small slope approximation, this
paper presents a closed-form expression of the sea backscattering
normalized radar cross section (NRCS) versus the skewness
function to predict the upwind–downwind asymmetry. This effect
is produced by the fact that the surface height distribution
slightly deviates from a Gaussian one. Introducing the azimuthal
property of the sea height autocorrelation and skewness (spatial)
functions, the integration over the azimuthal direction can be
done analytically, whereas the integration over the radial distance
can be done using the property that the skewness correlation
distance is much smaller than that of the gravity waves. Then,
the backscattering NRCS is expressed from the sea skewness
spectrum at a wavenumber different of the Bragg wavenumber.
In addition, a simple inversion algorithm is proposed to perform
the parameters of the skewness function from experimental data
in C and Ku bands.

Index Terms— Radar scattering remove, remote sensing, sea
surface electromagnetic scattering.

I. INTRODUCTION

TODAY, satellite remote sensing opens the possibility of
characterizing the ocean surface both at global scale

and at fine resolution, using active or passive instruments.
Following the recent improvements in techniques and theories,
links have been established between the normalized Radar
cross section (NRCS) of the sea surface associated with the
respective backscattered or emitted microwave signals and a
large number of oceanic parameters, such as wind speed and
direction, wave heights and slopes, wave spectrum, surface
current, temperature, and salinity. However, the success of
the inversion procedure relies crucially on an accurate phase
resolving statistical description of the sea surface topography.
In this respect, non-Gaussian characteristics of short wind
waves are of primary importance, as they have a strong influ-
ence on the microwave radar return. For instance, to predict the
asymmetry of the backscattering NRCS between the upwind
and downwind directions, the assumption of a sea Gaussian
height distribution is no longer valid and the higher order
statistics must be accounted for. The departure from Gaussian
statistics can be limited to the skewness and kurtosis of wave
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heights and slopes, involving the third (related to the skewness
effect) and fourth (related to the peakedness effect) moments
of the distributions. This is consistent with the well-known
Cox and Munk slope distribution [1].

On the other hand, any simulation or interpretation of
backscattering NRCS is bound to a scattering model, which
should be able to cover a large variety of sea state conditions
and account for the relevant geophysical parameters. In the last
decade, many progresses have been made in scattering models
from the sea surface with the construction of so-called unified
models, such as first-order small slope approximation (SSA1)
[2]–[4], SSA (first- and second-order SSA) [5]–[11], weighted
curvature approximation [4], [12]–[15], and resonant curva-
ture approximation [16], [17]. These models can operate a
dynamical transition between the different asymptotic regimes
like geometrical optics, derived from the Kirchhoff approx-
imation and valid near the nadir, and small perturbation
method (SPM)—valid for backscattering angles larger than
approximatively 45°—without the introduction of a scale
dividing wavenumber, which occurs in the well-known two-
scale model [18], [19].

The statistical properties (sea height spectrum, height
and slope distributions, and so on) of the sea surface can
be determined from direct measurements of surface eleva-
tions [20], [21] or from optical [1], [22] or/and microwave
measurements [23]–[25] if the inversion procedure is not
too complex, which requires simple forward backscattering
models.

For f = 14.6 GHz and u10 = {5, 15} (wind speed
at 10 meters above the sea mean level), Voronovich and
Zavorotny [6] have compared the SSA1 with the full SSA
(the second-order SSA is accounted for via the phase per-
turbation technique). For incidence angles θ ∈ [0; 60]°, they
observed that the SSA1 and SSA NRCSs are close for the
vertical-vertical (VV) polarization, whereas for the horizontal-
horizontal (HH) polarization, the difference between the SSA
and SSA1 is positive and increases with the wind speed, but
remains within about 2 dB. For f = {5.3, 14} GHz and u10 =
{5, 10}, McDaniel [7, Figs. 4 and 5] and Bourlier and Pinel
[9, Fig. 1] predict a maximum deviation between the partial
SSA (only the ladder term is accounted for, i.e., the correlation
between the first- and second-order backscattered fields) and
SSA1 of the order of 0.6 and 1.1 dB for the VV and HH polar-
izations, respectively. Therefore, the SSA1 model can predict
the backscattering NRCS with a precision of 1 and 2 dB for
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the VV and HH polarizations, respectively. As shown in [17],
for the calculation of the copolarizations ratio, the surface cur-
vature effect must be included in the scattering model to better
predict the backscattering NRCS for the HH polarization.

From microwave measurements [26]–[29] and for the copo-
larizations (VV and HH), the backscattering NRCS is modeled
as σ(u, θ, φ) = σ0(u, θ)+σ1(u, θ) cos(φ)+σ2(u, θ) cos(2φ),
where θ is the radar incidence angle, φ is the wind direction
relative to the radar azimuth look direction, and u is the
near-surface wind speed. By introducing the skewness and
peakedness spatial functions, Bourlier [3] showed that this
decomposition is consistent with the SSA1 scattering model
and that the first-order coefficient σ1 is related to the skewness
function. If the skewness effect is neglected, then σ1 = 0.
In this paper, using the property that the skewness correlation
distance is much smaller than that of the gravity waves,
a forward simple model of σ1 is derived versus the skewness
function, and then, a simple inversion algorithm is proposed
to perform the parameters of the skewness function from
experimental data in C [27], [28] and Ku [26], [29] bands.

This paper is organized as follows. Section II presents the
SSA1 backscattering NRCS. Section III defines the skew-
ness spatial function and its spectrum. Section III derives a
closed-form expression of the backscattering NRCS. Section V
presents numerical comparisons with experimental data.

II. SSA1 BACKSCATTERING NRCS

From SSA1, for a non-Gaussian height distribution and for
the copolarizations (VV and HH), Bourlier [3] showed that
the coefficients {σ0, σ1, σ2} are expressed as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ0 = 2|B1|2e−Q2

zσ
2
z

Q2
z

∫ ∞

0
[eα0�0(α1, α2)− 1]J0(QH r)rdr

σ1,2 = 4|B1|2e−Q2
zσ

2
z

Q2
z

∫ ∞

0
eα0�1,2(α1, α2)J1,2(QHr)rdr

(1)

where⎧⎪⎨
⎪⎩
�0(α1, α2) = J0(α1)I0(α2)

�1(α1, α2) = −J1(α1)I0(α2)+ I1(α2) [J1(α1)− J3(α1)]

�2(α1, α2) = +J2(α1)I0(α2)+ I1(α2) [J0(α1)+ J4(α1)]
(2)

and ⎧⎪⎪⎨
⎪⎪⎩
α0(r) = Q2

z Cz0(r)+ Q4
z Cp0(r)

2
α1(r) = Q3

z Cs0(r)

α2(r) = Q2
z Cz2(r).

(3)

Moreover, Qz = 2K sin θ , B1 is the polarization term of the
first-order SPM, Jn is the Bessel function of first kind and nth
order, whereas In is the Bessel function of second kind and
nth order.

The functions Cs(r, ψ) = Cs0(r) cosψ and Cp(r, ψ) =
Cp0(r) are the spatial skewness and peakedness functions,

respectively, defined as⎧⎪⎨
⎪⎩

Cs(r, φ) = Cs0(r) cosφ = 1

6

〈
z1z2

2 − z2
1z2
〉

Cp(r, φ) = Cp0(r) = 1

12
〈(z1 − z2)

4〉 − [σ 2
z − Cz(r, φ)

]2
.

(4)

The functions Cs0 and Cp0 stand for the isotropic part of
Cs and Cp , respectively. Moreover, to be consistent with the
measurements of the slope distributions in [1] (see the next
section), the peakedness function is assumed to be isotropic,
whereas the skewness function depends on cosφ, where φ is
the azimuthal direction along the wind direction. The surface
elevation zi = z(r i ) = z(xi , yi ) and the ensemble average
operator 〈· · · 〉 depend only on r = r2 − r1 = (x, y) as the
sea surface is assumed to be homogeneous.

In polar coordinates, (x, y) = (r cosφ, r sin φ),
the isotropic Cz0 and anisotropic Cz2 parts of the surface
height autocorrelation function Cz(r, φ) = 〈z1z2〉 =
Cz0(r) − cos(2φ)Cz2(r) (second-order statistical moment)
are expressed from the isotropic Ĉz0 and anisotropic
Ĉz2 = Ĉz0�̂(k) parts of the surface height spectrum
[(kx, kx ) = (k cosψ, k sinψ)] as⎧⎪⎨

⎪⎩
Cz0(r) =

∫ ∞

0
Ĉz0(k)J0(kr)dk

Cz2(r) =
∫ ∞

0
Ĉz0(k)�̂(k)J2(kr)dk.

(5)

If α1 = 0, then from (2), �1(α1, α2) = 0, which leads to
σ1 = 0. This shows that the skewness effect is responsible
of the asymmetry between the up- (φ = 0) and down-
wind (φ = 180°) directions. Equations (1) and (3) also show
that the peakedness effect is linked to Cz0. From SSA1, this
means that the isotropic part of the sea height spectrum cannot
be retrieved, but only from the sum Cz0(r)+ Q2

z Cp0(r)/2.
From numerical simulations, Bourlier [3] showed that the

skewness effect is minor on the NRCS coefficients {σ0,2},
which leads from (2) to⎧⎪⎨
⎪⎩
�0(α1, α2) ≈ �0(0, α2) = I0(α2)

�1(α1, α2) = −J1(α1)I0(α2)+ I1(α2) [J1(α1)− J3(α1)]

�2(α1, α2) ≈ �2(0, α2) = I1(α2).

(6)

In what follows, the peakedness effect is neglected, which
means that α0(r) ≈ Q2

z Cz0(r).

III. SKEWNESS FUNCTION

A. Skewness Spectrum

As the surface height (spatial) autocorrelation function,
the surface skewness spatial function Cs(r) can be expressed
in the Fourier domain, giving the surface skewness spectrum
Ĉs(k). It is defined as

Ĉs(k) =
∫

Cs(r)e− j k·rd r

=
∫ ∞

0

∫ 2π

0
rCs(r, φ)e

− j kr cos(ψ−φ)drdφ

=
∫ ∞

0

∫ 2π

0
cos(φ)rCs0(r)e

− j kr cos(ψ−φ)drdφ (7)
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where Cs(r, φ) = cos(φ)Cs0(r). From (A3), the integration
over φ gives

Ĉs(k) = −2π j cos(ψ)
∫ ∞

0
rCs0(r)J1(kr)dr (8)

where J1(−a) = −J1(a).
In polar coordinates, to be consistent with the definition

of the sea surface height spectrum, we have Ĉs(k)dk =
(2π)2kĈs(kx , ky)dkdψ = (2π)2Ĉs(k, ψ)dkdψ , leading to
Ĉs(k) = Ĉs(kx , ky)/k and

Ĉs(k, ψ) = − j cos(ψ)

2π
Ĉs0(k) (9)

where

Ĉs0(k)=k
∫ ∞

0
rCs0(r)J1(kr)dr =−k

∂

∂k

∫ ∞

0
Cs0(r)J0(kr)dr

(10)

because ∂J0(kr)/∂k = −rJ1(kr). Since
∫∞

0 kJ1(kr)dk = 1/r2,
the above also shows that∫ ∞

0
Ĉs0(k)dk =

∫ ∞

0

Cs0(r)

r
dr = Ps0. (11)

The number Ps0 (in cube meter) can be interpreted as the
total power of the skewness surface heights. Equation (9)
shows that the isotopric part of the skewness spectrum is
imaginary since Ĉs0(k) is a real function.

We can show from (10) that the skewness spatial function
is expressed from its spectrum as

Cs0(r) =
∫ ∞

0
Ĉs0(k)J1(kr)dk. (12)

B. Spatial Skewness Function Near the Origin

Near the origin (r close to zeros), the spatial function Cs0
can be expressed from the statistics moments of the Cox
and Munk slope distribution by calculating the characteristic
function of the surface slopes (γx , γy) (with respect to the
upwind and downwind directions) defined as 〈e j Qz(xγx+yγy)〉
(Qz ∈ R). Then, for statistics up to third order [no peakedness
and (c04, c40, c22) = (0, 0, 0)], from [3], we have

〈e j Qz(xγx+yγy)〉
=
∫

ps2(γx , γy)e
j Qz(xγx+yγy)dγxdγy

= e− Q2
z

2

(
σ 2

sx x2+σ 2
sy y2
) [

1 + j Q3
z

6
xσsx

(
x2σ 2

sxc03+3y2σ 2
syc21

)]
.

(13)

For r → 0, we have z2 − z1 ≈ γx x + γy y and
σ 2

z − Cz(r) ≈ (x2σ 2
sx + y2σ 2

sy)/2 [since Cz(r) is an even
function, for r = 0, ∂1,0Cz = 0, ∂0,1Cz = 0, ∂2,0Cz = −σ 2

sx ,
and ∂0,2Cz = −σ 2

sy , where ∂n,m = ∂n+m/∂xn∂yn] where
(σ 2

sx , σ
2
sy) are the surface slope variances along the upwind

and downwind directions, respectively. In addition, from [3],
we have

lim
r→0

〈exp[ j Qz(z2 − z1)]〉
≈ 〈exp[ j Qz(γx x + γy y)]〉
≈ e− Q2

z
2

(
σ 2

sx x2+σ 2
sy y2
)

× [1 + j Q3
z Cs(r)

]
. (14)

The comparison of (14) with (13) leads for r → 0 to

Cs(r) = 1

6
xσsx

(
x2σ 2

sx c03 + 3y2σ 2
syc21

)
. (15)

In polar coordinates (x = r cosφ, y = r sin φ), the above
equation becomes

Cs(r, φ) = r3σsx

6
cos(φ)σsx

(
σ 2

sxc03 cos2 φ + 3σ 2
syc21 sin2 φ

)
= r3σsx

24
[(3a + b) cosφ + (a − b) cos(3φ)] (16)

where a = σ 2
sxc03 and b = 3σ 2

syc21.
From [8], [30], and [31], a ≈ b and the above equation is

simplified as

Cs(r, φ) = r3

6
σ 3

sxc03 cosφ. (17)

To sum up, the behavior along the angle φ is obtained
from the symmetry properties of the Cox and Munk slope
distribution and explained the general expressions expressed
from (4), assumed to be valid for any r ≡ (r, φ).

Since Cs(r) is an odd function, we have

∂n,mCs |r=0 = 0 for

{
n and m even

n and m odd
(18)

where ∂n,m = ∂n+m/∂xn∂yn . In addition, we can note
from (17) that

∂n,mCs |r=0 = 0 for 0 ≤ n + m ≤ 2 (19)

and ⎧⎪⎨
⎪⎩
∂3,0Cs |r=0 = σ 3

sxc03

∂1,2Cs |r=0 = σ 3
sxc03/3

∂0,3Cs |r=0 = ∂2,1Cs |r=0 = 0.

(20)

C. Skewness and Peakedness Functions for Any r and k

To have a full description of Cs , (16) must be both
extrapolated for any r and must satisfy the properties
given in (18), (19), and (20). Fung and Chen [32] selected
the following form of the skewness function Cs(r, φ) =
αs(r cosφ)3 exp(−[r/r0]p), where p = 1 in [32] and [33],
whereas p = 2 in [34] and [35]. A dependence of cos3 φ is
chosen. Guissard [36] pointed out that the determination of r0
is not based on direct measurements of the skewness. It has
seemingly been selected in such a way that the backscattering
NRCS agrees with measurements. McDaniel [8] assumed that
the skewness spectrum Ĉs(k) is expressed in polar coordinates
from the isotropic part of the sea height spectrum Ĉz0(k, ψ) as
Ĉs(k, ψ) = Ĉz0(k)F̂s(k, ψ)/(2π). The spectrum F̂s is deter-
mined from the properties given in the previous section. With
the help of stereo photographic technique [20], the skewness
function is modeled as Cs(r, φ) = αsr3 exp(−[r/r0]p) cosφ,
where r0 ∈ [15; 20] cm, αs = σ 3

sxc30/3 [to satisfy equation
(20)], and p = 1, whereas in [3] and [31], p = 2.

To satisfy the properties given by (18), (19), and (20),
Cs(r, φ) = Cs0(r) cosφ, in which Cs0(r) is assumed to be

Cs0(r) = αs,ir
3 exp

(
−
[

r

ls,i

]i
){

i = 1 Exponential

i = 2 Gaussian.
(21)
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Then

Ps0,i = αs,i l
3
s,i ×

{
2

3
√
π/4

(22)

rmax = ls,i ×
{

3√
6/2 ≈ 1.225

(23)

and

Cs0(rmax) = αs,i l
3
s,i ×

{
27e−3 ≈ 1.344

3
√

3e−3/2/(2
√

2) ≈ 0.410
(24)

where {αs,i} (i = {1, 2}) satisfies from (20)

αs,i ≈ σ 3
sxc30

6
. (25)

In addition, rmax is the distance, for which the function is
maximum.

In the spectral domain, the associated spectrum is expressed
from (9) and (10) as Ĉs(k, ψ) = − j cos(ψ)Ĉs0(k)/(2π),
in which Ĉs0(k) is given, from (21), by

Ĉs0(k) = αs,i l
4
s,i ×

⎧⎪⎪⎨
⎪⎪⎩

15u2
(
4 − 3u2

)
(
1 + u2

)9/2 i = 1

u2

16
e− u2

4
(
u2 − 8

)
i = 2

(26)

where u = kls,i .
From the Cox and Munk slope distribution, the coefficient

αs,i can be determined, whereas the length ls,i remains to
determine. From the definition of ls,i , it might be considered
as the equivalent of the surface height correlation distance,
for the surface height correlation function. We shall call it the
skewness distance.

IV. CLOSED-FORM EXPRESSIONS OF THE NRCS

The determination of the skewness distance ls is required to
calculate Cs0. With the help of stereo photographic technique,
Mironov et al. [20] found ls ∈ [15; 20] cm. Using both the
data of the Cox and Munk slope distribution for clean and oil
slick (the capillary waves are strongly damped) sea surfaces,
Elfouhaily [31] found ls ≈ 1 cm, whereas Bourlier [3]
found ls ≈ 10 cm. From measurements of the backscattering
NRCS, the Fung’s group conducted studies (summarized by
Guissard [36]) to determine ls . It is found that ls ∈ [1; 2] cm
and ls depend on the wind speed. This brief review reveals
that the values of ls are spread and they are of the order of
the centimeter, which is related to the choice of Cs0(r) given
by (21).

To obtain a closed-form expression of σ1, we assume that
�1(α1, α2) ≈ −J1(α1) (α2 ≈ 0) ≈ −α1/2 since |α1| � 1
from (24) and (25) (ls,i ranges from 0.01 to 0.001 m and
αs,i is of the order of 10−4). In addition, since rmax (distance
for which the skewness function Cs0 is maximum) is close
to zero and since above this distance, Cs0 decreases rapidly,
−(Q2

zσ
2
z − α0) can be expanded as −Q2

z [σ 2
z − Cz0(0) −

C ′′
z0(0)r

2/2] = −Q2
zσ

2
s0r2/2, where σ 2

s0 = −C ′′
z0(0) = (σ 2

sx +

σ 2
sy)/2 and C ′

z0(0) = 0, since Cz0 is an even function. With
these two approximations, (1) becomes

σ1 ≈ −2Qz |B1|2
∫ ∞

0
e−Q2

z

[
σ 2

z −Cz0(r)
]
Cs0(r)J1(QHr)rdr

≈ −2Qz |B1|2
∫ ∞

0
e− Q2

z σ
2
s0r2

2 Cs0(r)J1(QHr)rdr. (27)

From Appendix C, the above equation can also expressed in
the spectral domain.

For a Gaussian-like Skewness function, introducing the
equivalent distance Leq,2 as 1/L2

eq,2 = 1/ l2
s,2 + 1/L2

g , where
Lg = √

2/(Qzσs0), from (10), the substitution of (21) into
(27) leads to

σ1 = −2Qz |B1|2 Ĉs0(u)

QH
(28)

where Ĉs0 is expressed from (26) (i = 2), u = QH Leq,2 =
QH,sls,2, where QH,s = QH Lg/(L2

g + l2
s,2)

1/2. Like the first-
order SPM for the coefficients {σ0,2}, σ1 is proportional to
the skewness spectrum, but at a modified Bragg wavenumber
QH,s , which depends on the intrinsic parameters of the sea sur-
face {σs0, Ls,2}, unlike QH . If Lg → ∞, then QH,s → QH .

For an exponential profile of the skewness function, the inte-
gration over r cannot make analytically. But, as the integrand
contributes for small values of r because ls,1 � Lg , in (27),

the exponential term can be expanded as e−r2/L2
g ≈ 1 −

r2/L2
g + r4/(2L4

g). From (27), this leads to

σ1 ≈ −2Qz |B1|2
∫ ∞

0

(
1 − r2

L2
g

+ r4

2L4
g

)
Cs0(r)J1(QHr)rdr.

(29)

The integration over r is reported in Appendix B. For any
spatial skewness function, the substitution of (B1) into (29)
leads to

σ1 ≈ −2Qz |B1|2
(

Ĉs0(QH )

QH
− F1(QH )

L2
g

+ F2(QH )

2L4
g

)
(30)

where F1 and F2 are defined from (B2) and (B3), which
depend on the derivatives of the skewness spectrum Ĉs0.

For an exponential profile defined by (21), the functions
F1 and F2 are⎧⎪⎪⎨

⎪⎪⎩
F1 = 315l7

s,1u(8 − 20u2 + 5u4)

(u2 + 1)13/2

F2 = 2835l9
s,1u(64 − 336u2 + 280u4 − 35u6)

(u2 + 1)17/2

(31)

where u = kls,1.

V. NUMERICAL RESULTS

In this section, first, the closed-form expressions of σ1
expressed from (27) (first line), (28) (Gaussian case), and
(30) (exponential case) are compared with (1), in which the
integration over r is done numerically without approximation
in the integrand. Second, the results computed from (1)
are compared with experimental data in C [27], [28] and
Ku [26], [29] bands.
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Fig. 1. Coefficient σ1 versus the incidence angle θ in dB scale. The
polarization is VV, f = 5.3 GHz and u10 = 5 m/s. (a) Exponential.
(b) Gaussian.

A. Comparison of the NRCSs
Fig. 1 plots the coefficient σ1 versus the incidence angle θ

in dB scale for f = 5.3 GHz and u10 = 5 m/s. The legend in
the figure is as follows.

1) The label “SSA1, Exp” means that σ1 is computed from
(1), in which the spatial skewness function Cs0(r) has
an exponential profile.

2) The label “SSA1, Exp-App” means that σ1 is computed
from (27) (first line), in which the spatial skewness
function Cs0(r) has an exponential profile.

3) The label “SSA1, Exp-Ana” means that σ1 is computed
from (30) (exponential profile).

4) The label “SSA1, Gau” means that σ1 is computed from
(1), in which the spatial skewness function Cs0(r) has
a Gaussian profile.

5) The label “SSA1, Gau-App” means that σ1 is computed
from (27) (first line), in which the spatial skewness
function Cs0(r) has a Gaussian profile.

6) The label “SSA1, Gau-Ana” means that σ1 is computed
from (28) (Gaussian profile).

Fig. 2. Similar variations as in Fig. 1 but the frequency is f = 14.6 GHz.
(a) Exponential. (b) Gaussian.

Fig. 2 plots the same variations as in Fig. 1, but the
frequency is f = 14.6 GHz.

To reduce the surface curvature effect, not well accounted
for in the SSA1 model, the VV polarization is chosen as
this effect is stronger for the HH polarization. To have
the same power Ps0,i given by (11), the coefficient αs,1
of the exponential profile is multiplied by αs,2 Ps,2/Ps,1 =√
παs,2(ls,2/ ls,1)

3/8. In the same way, we choose that the
abscissa of the spatial skewness functions, for which they are
maxima, is equal. Then, from (23), ls,1 = ls,2/

√
6 ≈ 0.408ls,2.

The numerical values (obtained in the subsection by fitting σ1
with experimental data) are listed in the title of each figure.

Figs. 1 and 2 show that for incidence angles near the nadir
σ1 is negative to reach the minimum and next increases to
reach the maximum, which is positive and of level smaller
than the absolute value of the minimum, and converges asymp-
totically to zero as the incidence angle increases. The level
of the maximum is larger for the Gaussian profile and then
σ1 converges to zero more slowly than that of the exponential
profile.
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Fig. 3. Coefficient σ1 versus the incidence angle θ in dB scale. The
polarization is VV, f = 5.3 GHz and u10 = {5, 10} m/s. (a) u10 = 5 m/s.
(b) u10 = 10 m/s.

Figs. 1 and 2 also show that the “SSA1, Exp-
App” or “SSA1, Gau-App” results (−J1(α1) ≈ −α1/2 =
−jQ3

z Cs0(r)/2) match well with those of σ1, for which
no assumption is used. However, as the surface roughness
Qz = 2Kσz cos θ (Rayleigh parameter) increases (frequency f
or/and wind speed u10), the “SSA1, Exp-Ana” or “SSA1, Gau-
Ana” results deviate from those of “SSA1” without approxi-
mation and the difference is larger for the exponential profile
since a Taylor series expansion is applied on e−Q2

z [σ 2
z −Cz0(r)],

unlike the Gaussian case.

B. Comparison With Data

First simulations, not depicted here, showed that the values
of αs,2 computed from the Cox and Munk model [1] [c03 =
(3.3 u12 − 4 ± 6) × 10−2 where u12 ≈ u10] overestimates
σ1 in comparison to the measurements. An inversion simple
scheme is then proposed to perform αs,2 and ls,2 from the
experimental data. First, ls,2 is determined from the value of
QH0 , for which σ1 equals zero. This implies, from (28), that

Fig. 4. Similar variations as in Fig. 3 but the frequency is f = 14.6 GHz.
(a) Exponential. (b) Gaussian.

L2,eq QH0 = u0 = 2
√

2 ⇒ L2,eq = 2
√

2/QH0 and

ls,2 =
(

1

L2
2,eq

− Q2
z0
σ 2

s0

2

)−1/2

(32)

where Qz0 = (1 − Q2
H0
)1/2.

The data showed a maximum of σ1, which occur from (28)
[σ ′

1(u1) = 0] at u1 ≈ 3.570, and the corresponding value
of u(u2 − 8)e−u2/4 is approximately 0.700. Then, from (26)
(i = 2) and (29), we have

αs,2 ≈ 8

0.7Qz|B1|2 L5
eq,2

∣∣∣∣∣
u=u1

. (33)

Figs. 1 and 4 plot the coefficient σ1 versus the incidence
angle θ in dB scale for f = {5.3, 14.6} GHz and u10 =
{5, 10} m/s. The legend in the figure is as follows.

1) The label “Bentamy” means that σ1 is computed from
the data provided in [28] ( f = 5.3 GHz and θ ∈
[18; 58]°).
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2) The label “Quilfen” means that σ1 is computed from the
data provided in [27] ( f = 5.3 GHz and θ ∈ [18; 58]°).

3) The label “Wentz 84” means that σ1 is computed from
the data provided in [26] ( f = 14.6 GHz and θ ∈
[0; 60]°). The negative values are forced to set zeros
by the authors.

4) The label “Wentz 99” means that σ1 is computed from
the data provided in [26] ( f = 14.6 GHz and θ ∈
[15; 60]°).

In the region of negative values, Figs. 3 and 4 show that
the data decrease more rapidly than the simulated results.
In addition, in Fig. 3(a), a local minimum occurs for the data,
which is shifted toward the higher values and of lower level
in comparison to the simulated results.

Near the nadir, it is important to underline that the coeffi-
cient σ0 is much larger than σ1, and then, σ1 can be comparable
to the noise level. The measurement of σ1 near the nadir
requires a very good precision of the measured levels.

For the two frequencies, αs,2 is approximatively multiplied
by 2 from u10 = 5 m/s to u10 = 10 m/s, like ls,2 for only
f = 5.3 GHz, whereas for f = 14.6 GHz, ls,2 is constant.
In comparison to the Cox and Munk measurements [1], αs,2 ∈
[1.4; 4.1]×10−4 and αs,2 ∈ [5.0; 7.7]×10−4 for u10 = {5, 10}
m/s, respectively, which is 10–20 times larger than the values
obtained from fitting the data.

VI. CONCLUSION

In this paper, from the first-order SSA, the first-order
coefficient of the Backscattering NRCS along the harmonic
cosφ is derived by introducing the azimuthal property of the
skewness function. In addition, by introducing the assumption
that the skewness correlation distance is much smaller than
that of the gravity waves, the integration over the radial
distance is performed analytically. The proposed approaches
are compared with experimental data in C and Ku bands.
For moderate incidence angles, the comparisons showed a
satisfactory agreement.

As the levels of σ1 are small, it requires a very good
precision of the measurements, mostly near the nadir, for
which the backscattering NRCS coefficient σ0 is much larger.

APPENDIX A
INTEGRATION OVER THE AZIMUTHAL DIRECTION

From [37], we have

e jacos(φ−ψ) =
n=+∞∑
n=−∞

j nJn(a)e
jn(φ−ψ) (A1)

where Jn is the Bessel function of nth order and of the first
kind. Then∫ 2π

0
e j pψe ja cos(φ−ψ)dψ

=
n=+∞∑
n=−∞

j nJn(a)e
jnφ ×

∫ 2π

0
ej(p−n)ψdψ

= 2π
n=+∞∑
n=−∞

j nJn(a)e
jnφδn,p

= 2π j pJp(a)e
jpφ (A2)

where δn,p is the Kronecker symbol defined as δn,p = 1 if
n = p, 0 otherwise. In addition, since cosα = (e jα+e− jα)/2,
we have∫ 2π

0
cos(pφ)e ja cos(φ−ψ)dψ = 2π j p cos(pφ)Jp(a) (A3)

since J−p(a) = (−1)pJp(a) and j−p = j p(−1)p.

APPENDIX B
INTEGRATION OVER THE RADIAL DISTANCE

In (29), to perform the integration over r , the following two
integrals are introduced:⎧⎪⎨

⎪⎩
Gn =

∫ ∞

0
r2nCs0(r)J0(kr)dr

Fn =
∫ ∞

0
rr2nCs0(r)J1(kr)dr = −dGn

dk

(B1)

and from (10), F0 = Ĉs0(k)/k. In addition, from (10), we have

dĈs0

dk
= Ĉ ′

s0 = k
∫ ∞

0
r2Cs0(r)J0(kr)dr = kG1

⇒ G1 = Ĉ ′
s0

k
⇒ F1 = − d

dk

(
Ĉ ′

s0

k

)

⇒ F1 = Ĉ ′
s0 − kĈ ′′

s0

k2 (B2)

and

d3Ĉs0

dk3 = Ĉ ′′′
s0 = −

∫ ∞

0
[r3J1(kr)+ kr4J0(kr)]Cs0(r)dr

= −F1 − kG2

⇒ G2 = − Ĉ ′′′
s0 + F1

k
⇒ F2 = d

dk

(
Ĉ ′′′

s0 + F1

k

)

⇒ F2 = k3Ĉ ′′′′
s0 − 2k2Ĉ ′′′

s0 + 3kĈ ′′
s0 − 3Ĉ ′

s0

k4 . (B3)

APPENDIX C
BACKSCATTERING NRCS IN THE SPECTRAL DOMAIN

From (27) (second line) and (12), σ1 is expressed as

σ1 = −2Qz |B1|2
∫ ∞

0

∫ ∞

0
e
− r2

L2
g Ĉs0(k)J1(QH r)J1(kr)rdrdk

(C1)

where 1/L2
g = Q2

zσ
2
s0/2. From [37], the derivation of the

integration over r leads to

σ1 =−Qz |B1|2 L2
g

∫ ∞

0
e− L2

g(k2+Q2
H)

4 I1

(
L2

g QH k

2

)
Ĉs0(k)dk.

(C2)

It is interesting to study the case for which Lg → ∞.
As I1(z) ≈ ez/

√
2πz for z → ∞, the above equation is

simplified as

σ1 = − Qz |B1|2 Lg√
π

∫ ∞

0

1√
QH k

e− L2
g(k−QH )

2

4 Ĉs0(k)dk. (C3)
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The use of the variable transformation u = Lg(k − QH )/2
leads to

σ1 = −2Qz |B1|2 1√
QHπ

∫ ∞

−Lg Q H /2
e−u2 Ĉs0(k)√

k
du (C4)

where k = QH + 2u/Lg . Since Lg → ∞, k ≈ QH

and −Lg QH/2 → −∞. Then, the term Ĉs0(k)/
√

k ≈
Ĉs0(QH )/

√
QH can come out of the integral and the inte-

gration over u gives
√
π . In conclusion, as Lg → ∞, σ1 is

simplified as

σ1 = −2Qz |B1|2 Ĉs0(QH )

QH
. (C5)

This approximation corresponds to the first-order SPM.
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