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Natural grounds can exhibit small scale geometric irregularities, compared to the acoustic wavelength,
known as ground roughness. This roughness has a noticeable effect on sound pressure levels and pro-
duces a surface wave. In the context of prediction methods improvement for outdoor sound propagation,
using an effective impedance appears to be an useful approach to model the effects of surface roughness.
Two time-domain numerical methods are considered: finite difference schemes (FDTD), and the trans-
mission line modeling (TLM) method. An effective impedance model for random ground roughness
defined by a roughness spectrum, called the SPM model, is exposed. The efficiency of this model for tak-
ing into account the mean effects of random roughness on sound pressure levels and for modeling the
roughness-induced surface wave is shown, by comparing with results of TLM simulations of propagation
above random rough grounds. The direct implementation of the SPM model as a boundary condition in
both TLM and FDTD methods is then studied. This approach allows the modeling of ground roughness
effects in numerical methods without having to mesh finely the ground roughness profile, allowing easier
and faster computations, and more accurate predictions for future impact studies in environmental
acoustics.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The acoustical impact of industrial or transport installations on
the environment is often estimated using simplified engineering
methods. These methods need to be validated and fine tuned using
reference results which can be experimentally or numerically
obtained.

With the increase in computing power, the interest for the
application of time-domain numerical methods to outdoor sound
propagation has risen over the past years, e.g. see Refs. [1–4]. These
methods are relevant as they can take into account most of the
physical phenomena encountered during propagation, such as
micro-meteorological effects (wind and temperature gradients,
atmospherical turbulence) and ground effects, leading to very
accurate numerical results for outdoor sound propagation.

Considering the ground effects, the interaction of the sound
wave with a flat absorbing ground can be taken into account by
transposing a frequency-domain boundary condition into the
time-domain [5,6]. Realistic situations often involve irregular
grounds with non-flat profiles. Ground irregularities with a topo-
graphic scale such as hills may be modeled using curvilinear coor-
dinates solvers [7,8]. However natural grounds may also exhibit
smaller geometry irregularities, whose characteristic size is infe-
rior to the wavelength, known as ground roughness. Ground
roughness produces a scattering of the sound wave that modifies
the ground effect resulting from the interference between the
direct and the ground-reflected wave. Ground roughness also leads
to the formation of a surface wave [9,10].

This work focuses on the modeling of the effects of ground
roughness in time-domain numerical methods for sound propaga-
tion, particularly the Finite Difference Time-Domain (FDTD) and
Transmission Line Modeling (TLM) methods. Some difficulties arise
when considering rough grounds, and the modeling of the ground
profiles is not straightforward. First, the roughness may only be
known statistically. Secondly, refining meshes at the boundaries
in time-domain methods induces higher computation times (refin-
ing meshes could also be tricky regarding the introduction of phase
error and artificial reflections at the transition zones between
coarse and refined parts). To circumvent these difficulties, the
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Fig. 1. Wave vector k0 incident to a surface containing cylinders of radius a and
mean center-to-center spacing b [12].
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effective impedance approach is considered: the effects of rough-
ness on sound propagation are taken into account by considering
a flat surface with a modified impedance boundary condition.
Recently, the effective impedance approach has been used to
model rough sea profiles in order to study numerically the propa-
gation of noise generated by offshore wind farms [11]. Past works
concern the effective impedance model proposed by Attenborough
et al., that takes into account a roughness formed by small scatter-
ers along the propagation path [12]. This model is known as the
boss model, and the corresponding effective impedance is function
of the geometry and spacing of the scatterers. Heuristic extensions
of this model have been validated by reduced scale laboratory
experiments [13,14,10] and outdoor measurements over agricul-
tural surfaces such as plowed grounds [15]. Furthermore, the pos-
sibility and the interest to use this effective impedance model in
time-domain numerical models was shown in Faure et al. [16].

In the present paper, a new effective impedance model for sur-
face roughness is applied and tested for our specific application.
Called the SPM model and originating from works in electromag-
netism, it allows the modeling of the random roughness effects.
The effective impedance is then expressed in function of the rough-
ness spectrum of the height profile.

First, Section 2 exposes the boss model formalism and the SPM
effective impedance model. The Gaussian roughness spectrum,
which can be used to express the SPM effective impedance model,
is also defined. In Section 3, TLM simulations of middle-range
propagation above random rough grounds are performed, and
the results are compared to analytical results with effective impe-
dance in order to validate the accuracy of the SPMmodel for sound
pressure levels predictions. The ability to model the roughness-
induced surface wave using this effective impedance is also vali-
dated. Section 4 demonstrates the possibility and the interest to
use the SPM effective impedance as a boundary condition in
time-domain methods. The way to proceed for the implementation
of the effective impedance in TLM and FDTD methods is exposed,
and simulations are performed. Finally, in Section 5, the main
results of this work are highlighted and concluding remarks are
drawn.
2. Effective impedance models for random roughness

The effective impedance approach allows to model a rough
ground by a perfectly flat ground with a modified impedance con-
dition taking into account the effects of roughness on sound prop-
agation. The effective impedance is expressed as a function of the
roughness parameters. Then, using an effective impedance, sound
levels above a rough ground can be estimated with simple models
for propagation above a flat impedance ground with an homoge-
neous atmosphere, such as the well known Weyl-Van der Pol for-
mula [17,18].

2.1. Boss model formulation for deterministic roughness

The boss effective impedance model proposed by Attenborough
and Taherzadeh [19], based on Tolstoy’s boss model [20] and Twer-
sky’s work [21], allows to calculate an effective impedance Zeff (or
an effective admittance beff ¼ 1=Zeff ) for a set of semi-cylindrical
scatterers, as shown in Fig. 1.

The effects of roughness are taken into account as a correction
to the surface admittance bS, and Zeff is given by:

1=Zeff ¼ beff ¼ bS þ bR ð1Þ
where bS ¼ 1=ZS. The base impedance ZS for the flat surface can be
evaluated using several models from the literature, such as the
Delany-Bazley or Miki models, the Zwikker and Kosten model or
the Attenborough model (these common ground impedance models
are described in Attenborough et al. [22] for example). Hard-backed
layer correction (thickness effect) can also be applied for the
expression of ZS [23]. The correction bR is function of the angles hi
and /, the frequency, and other parameters depending of the scat-
terers’ size, shape and spacing. These parameters and the exact for-
mulation of bR can be found in Boulanger et al. [12]. The model is
valid for wavelengths larger than the roughness characteristic size,
such as k0h < k0b 6 1 where h is the scatterers’ height (h ¼ a for the
case of semi-cylindrical scatterers), and k0 the wave number.
2.2. SPM model for random roughness

An effective impedance model for sound propagation above
hard randomly-rough surfaces was first developed by Watson
and Keller [24,25]. This model is obtained using the Small Pertur-
bation Method (SPM). It also found applications in the field of elec-
tromagnetic waves propagation above rough surfaces, such as the
surface of the sea in the works of Brelet and Bourlier [26].

A 2D rough surface showing a small and slowly-varying rough-
ness with j k0f cosðhiÞ j< 1 and j @f=@x j< 1 is considered, as shown
in Fig. 2. In this figure k0 and its modulus j k0 j¼ 2pf=c0 are respec-
tively the wave vector and the wave number in the air, with c0 the
sound speed in the air, fðxÞ is the height profile, hi is the angle of
incidence, Z0 is the characteristic impedance of the air and ZS is
the impedance of the surface.

Under this assumption, it is thus possible to perform finite
expansions of the Neumann boundary condition and the Green’s
function for a point source above the profile f. Then, the scattered
field above the rough profile is modeled from a boundary integral
formulation. A mean value of this integral is calculated using the
Dyson equation and the Feynman diagram formalism [27]. Finally
after using the Bourret approximation and some cumbersome
manipulations [26,28], it is possible to derive an effective impe-
dance from an equivalent reflection coefficient, in which the
roughness effect is accounted for. This effective impedance is func-
tion of the roughness spectrum W of the surface. This roughness
spectrum is defined as the Fourier Transform of the autocorrelation
function of the surface height profile f (also defined as the spectral
density of f), as follows:

WðkÞ ¼
Z þ1

�1
expð�2ipkxÞCfðxÞdx ð2Þ

with CfðxÞ ¼ hfðx1Þfðx1 þ xÞi the autocorrelation function of fðxÞ.
The obtained effective impedance (or effective admittance)

accounts for the mean effects of the random roughness on the



Fig. 2. Wave vector k0 incident to a rough surface f.

Fig. 3. (a) Example of a random roughness profile realization characterized by (b) a
Gaussian spectrum defined by Eq. (5) with rh ¼ 0:1 m et lc ¼ 0:3 m.
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wave propagation. For a 2D acoustically hard (Neumann boundary
condition) rough surface, the effective admittance is expressed by:

b�
R j ¼ k0 sinðhiÞ½ � ¼

Z þ1

�1

dj0

k0kzðj0Þ k20 � jj0
� �2

Wðj� j0Þ ð3Þ

with k2z ¼ k20 � j2;j ¼ k0 sinðhiÞ and W the roughness spectrum of
the surface. The integrand in Eq. (3) has an integrable singularity

at j0 ¼ 0 due to the term kzðj0Þ�1. The formulation proposed by Bre-
let and Bourlier [26] is then used in order to remove this singularity
and facilitate the numerical integration.

This model as been extended to the case of an impedance rough
surface [29,28]. Similarly to the boss model formulation, for a ran-
dom rough absorbing surface the effects of roughness are also
modeled as a correction of the surface admittance bS. The effective
impedance Zeff is then given by:

1=Zeff ¼ beff ¼ bS þ b�
R ð4Þ

Here again, the base impedance ZS can be expressed by a common
ground impedance model for outdoor sound propagation, as
exposed in Section 2.1. One should note that this SPM model given
by Eq. (4) was derived under the assumption that bS � 1 [29].

Two more important remarks are to be taken into consideration
when using an effective impedance approach and particularly this
SPM model. Firstly, the effective impedance is valuable for calcu-
lating the mean acoustic pressure field. However, it should be
noticed, that the effective impedance is not sufficient to entirely
characterize the acoustic field. For instance, the total intensity
denoted by I ¼ hpp�i is not equal to the coherent intensity
IC ¼ hpihp�i and can only be approximated using an effective impe-
dance. Secondly, as it can be seen in Eq. (3), the effective impe-
dance of a rough locally-reacting ground depends on the angle of
incidence. For long-distance propagation and near-grazing inci-
dence situations, the angle of incidence can be approximated to
hi ¼ p=2 to get rid of the angle-dependency.

2.3. Definition of a Gaussian roughness spectrum

In the following, the SPMmodel given by Eqs. (3) and (4) will be
tested and validated considering a Gaussian roughness spectrum
for the expression of W. Considering this roughness spectrum,
the autocorrelation function of the surface profile is supposed to
be a Gaussian function, and the random roughness is defined by
only two statistical parameters, as detailed below. However, this
commonly used theoretical description of surface roughness does
not always model the roughness of real outdoor surfaces very well.
For example, an exponential autocorrelation function better
describes profiles showing micro-roughness, and is well-suited to
approximate the roughness behavior of cultivated soils [30]. A gen-
eralized power-law spectrum, providing a wide range coverage for
different natural surfaces, was introduced by Li et al. [31]. Never-
theless, in a first approximation of outdoor surfaces modeling,
the Gaussian roughness spectrum is chosen is this work because
roughness profiles characterized by a Gaussian spectrum show a
small and smooth curvature, which satisfies the conditions of
application of the small perturbation method. The Gaussian rough-
ness spectrum is defined in k-space by:

WðkÞ ¼ r2
hlc

2
ffiffiffiffi
p

p e
�k2 l2c

4 ð5Þ

where rh is the standard-deviation of the height and lc the correla-
tion length [32]. Fig. 3 shows an example of a roughness profile
characterized by a Gaussian spectrum.

3. Numerical validation of the SPM model for a random rough
surface with a Gaussian spectrum

In this section, 2D numerical simulations of propagation above
rough absorbing grounds defined by Gaussian spectra are per-
formed. A Transmission Line Matrix (TLM) code is used to perform
these simulations. Details about the TLM method and its applica-
tion to outdoor sound propagation can be found in Refs. [33,6].
Through the numerical simulations, the ground profiles are



Fig. 4. Snapshot of the acoustic pressure at simulation time t ¼ 0:1 s. A Gaussian pulse is propagating above a random realization of ground 1.
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accurately meshed so the roughness effects are almost exactly
modeled, but this is demanding important calculation resources.
In order to assess the efficiency of the previously exposed SPM
effective impedance for the modeling of roughness effects, analyt-
ical results obtained using the SPM effective impedance are com-
pared to TLM numerical results.
3.1. Grounds definitions and TLM simulations

As the SPM model takes into account the mean effects of ran-
dom roughness on sound propagation, several simulations of prop-
agation above multiple realizations of random rough grounds must
be carried out in order to obtain mean numerical results. The base
impedance ZS of the grounds is calculated using the Miki model
with an hard-backed layer correction, accounting for an absorbing
ground layer of air flow resistivity r and thickness e. Two absorb-
ing grounds showing roughnesses characterized by Gaussian
roughness spectra are considered:

� Ground 1
roughness mean properties (Gaussian spectrum): rh ¼ 0:05 m,
lc ¼ 0:2 m;
impedance properties (Miki model with hard-backed layer):
r ¼ 200 kN:s:m�4; e ¼ 0:015 m.

� Ground 2
roughness mean properties (Gaussian spectrum): rh ¼ 0:07 m,
lc ¼ 0:4 m;
impedance properties (Miki model and semi-infinite ground):
r ¼ 300 kN:s:m�4; e ¼ 1.

For each one of these two ground types, twenty 50 m-long real-
izations of rough grounds are generated [32]. TLM simulations of
the propagation of a Gaussian pulse above each one of the 20
roughness realizations are performed for each ground type. The
frequency content of the signal is 50–1000 Hz. For each simulation,
the source is located at a height HS ¼ 4 m above the average height
of the ground (0 m).

The spatial step of the simulations is Dx ¼ 0:01 m in order to
mesh the roughness with enough accuracy, and the time-step is
Dt ¼ 2:05� 10�5 s. Fig. 4 shows a snapshot of the acoustic pressure
above a random realization of the ground 1 at the simulation time
t ¼ 0:1 s. An incoherent backscattered field is observed due to the
random nature of the roughness.
1 For interpretation of color in ‘Figs. 5–7’, the reader is referred to the web version
of this article.
3.2. Results in frequency domain

Results are studied in the frequency domain considering the rel-
ative attenuation spectra for two receivers located respectively at
heights HR1 ¼ 4 m and HR2 ¼ 0:3 m, at an horizontal distance
d ¼ 50 m from the source. This configuration is chosen because it
ensures attenuation spectra with large ‘‘ground dips” due to the
interference between the direct and reflected fields, thus allowing
a better exposure of the roughness effects. In Fig. 5, for each of the
two ground types, the 20 attenuation spectra DL ¼ LR1 � LR2 (blue1

dashed curves) and their mean value (red curve) are plotted and
compared to the analytical solution with the SPM effective impe-
dance (green curve). This analytical solution is obtained using Eq.
(4) for the expression of the impedance into the Weyl-Van der Pol
formula for 2D cases [17]. The angle of incidence is hi ¼ p=2 for
the calculation of the effective impedance and this analytical solu-
tion, as the considered source-receivers geometry is a case of near-
grazing incidence. The analytical solution for a flat impedance
ground is also plotted (black dashed curve) in order to assess for
the effect of roughness.

The comparison of the numerical results over the rough
grounds to the analytical result for a flat ground (black dashed
curve) shows that the considered roughnesses have a noticeable
effect on sound levels, even for the ground 2 which has a more
spread out and less pronounced roughness. Over the rough
grounds (blue dashed curves), the first ground dips are shifted
towards the lower frequencies, as if the grounds were more
absorbing. This is in agreement with the results of Bashir et al.
[10], when studying the effects of propagation over a rough surface
formed by scatterers of constant geometry. For the two ground
types, the analytical solution with effective impedance (green
curve) fits accurately with the mean numerical results (red curve),
hence showing that the SPM effective impedance model is efficient
to take into account the mean effects of the roughness.
3.3. Results in time domain and surface wave

The SPM effective impedance model gives satisfactory results in
the frequency domain. In order to study its efficiency to model the
roughness-induced surface wave in the time domain, a third type
of ground with a more pronounced roughness (then producing a
stronger surface wave than ground 1 and ground 2) has to be
considered:

� Ground 3
roughness properties (Gaussian spectrum): rh ¼ 0:1 m,
lc ¼ 0:2 m;
impedance properties: Neumann condition.



Fig. 6. (a) Time signal and (b) SPL spectrum at d ¼ 50 m and HR ¼ 1 m above one
random realization of ground 3. ( ) TLM result; ( analytical solution with
effective impedance (SPM model); ( ) analytical solution for the surface wave
contribution (SPM model); ( ) analytical solution for the flat rigid surface.Fig. 5. Attenuation spectra DL at a distance d ¼ 50 m above 20 realizations of each

ground type. ( ) TLM results; ( ) mean TLM result; ( ) analytical solution
with effective impedance (SPM model); ( ) analytical solution for the flat
absorbing ground.
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The ground is considered perfectly rigid in order to focus on the
surface wave only induced by the roughness, as a flat rigid ground
does not produce any surface wave. Propagation of a Gaussian
pulse above one 50 m-long realization of ground 3 is simulated
with the TLM method. The spatial and time steps are the same as
in the previous simulations. The source is located at HS ¼ 1 m
above the ground. The time signal obtained at a distance
d ¼ 50 m and a height HR ¼ 1 m is plotted in Fig. 6(a) (black curve).
This result is compared to an analytical solution for the wave
shape, obtained by inverse Fourier transform of the analytical
result in the frequency domain given by the Weyl-Van der Pol for-
mula with the SPM effective impedance model. The contribution of
the surface wave only is also plotted (red doted curve). This solu-
tion in time-domain for the surface wave contribution is obtained
by inverse Fourier transform of the analytical expression in
frequency-domain for the surface wave term, which is given by
Eq. (24) in [5]. Finally, the analytical solution for the flat rigid sur-
faces is also plotted (green curve) in order to appreciate how much
the TLM solution is perturbed by the roughness.

A strong surface wave due to the roughness is observed on the
TLM result as a low frequency tail (which is absent from the solu-
tion for the flat rigid surface). The shape of the analytical result
with the SPM effective impedance is similar to the TLM result.
The surface wave numerically observed is correctly modeled by
the solution for the surface wave contribution (red dotted curve),
although its amplitude is slightly overestimated. The frequency
content of this roughness-induced surface wave is studied in
Fig. 6(b). The energy maximum of the surface wave contribution
calculated with the SPM model (red dotted curve) is noticeable
for f ¼ 120 Hz and fits exactly with the energy maximum in the
lower frequencies of the TLM result (black curve). These results
show that the SPM effective impedance is also suitable to accu-
rately predict the roughness-induced surface wave.
4. Implementation of the SPM model in time-domain methods

In the previous section, it was shown through comparisons with
numerical TLM simulations that the SPM effective impedance
model is effective and accurate for the modeling of the random
ground roughness effects. The use of the SPM model as a ground
impedance boundary condition in the calculation methods for out-
door acoustics could be particularly helpful, as it would allow to
perform calculations for complex cases of outdoor propagation
(including ground roughness, flows, temperature gradients) with-
out having to discretize the ground roughness profile. In order to
demonstrate this, in this section the SPM effective impedance
model is implemented in two time-domain methods: the TLM
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method, already presented in the previous section, and the FDTD
code named Code_Safari. The computations using the FDTDmethod
are performed using 7-point centered finite-difference schemes
and RK4 schemes. This FDTD method is detailed in Daude et al.
[34].

4.1. Impedance boundary condition in time-domain models

In the frequency domain, the impedance condition at an absorb-
ing boundary is given by:

PðxÞ ¼ ZðxÞVnðxÞ ð6Þ
where PðxÞ and VnðxÞ are respectively the Fourier transforms of
the acoustical pressure and normal velocity at the boundary, and
ZðxÞ the impedance of the surface. In the time domain, this condi-
tion becomes a convolution product. In order to implement impe-
dance models defined in frequency-domain, an efficient recursive
convolution technique is used in both TLM and FDTD methods. This
technique requires that the impedance is approximated by a sum of
first order systems as follows:

ZðxÞ � Z1 þ
XK
k¼1

ak
kk � jx

þ
XL

l¼1

al
kl � jx

þ a�l
k�l � jx

ð7Þ

where ak and kk are real coefficients, and al and kl are complex coef-
ficients. The order of approximation is N ¼ K þ 2L.

The coefficients ak;l and kk;l are then implemented as exposed in
Dragna et al. [5] and Guillaume et al. [6] for the FDTD and TLM
methods, respectively. It was shown by Cotté et al. [35] that the
following conditions must be verified in order to ensure the stabil-
ity of the computations:

Re½kk;l�Dt < 2:5; Im½kk;l�Dt < 2:5 ð8Þ
4.2. Approximation of the effective impedances

The two effective impedances corresponding to ground 1 and
ground 2 are approximated by Eq. (7) using the vector fitting
method [36]. The approximation is performed for 100 frequencies
between 50 Hz and 1200 Hz with a logarithmic step, for several
order of approximation N such as 5 < N < 10. For each value of
N, the maximum values of Re½kk;l�Dt and Im½kk;l�Dt for poles identi-
fied by the vector fitting method are given in Tables 1 and 2, for
ground 1 and ground 2 respectively. The chosen value of Dt corre-
sponds to a spatial step Dx ¼ 0:05 m in time-domain methods such
Table 1
Approximation of the effective impedance corresponding to ground 1 by vector fitting at o

N K ðkkDtÞmax L ðRe½klDt�Þmax

5 3 1.45 1 0.08
6 6 2.1 0 0
7 3 95.7 2 0.3
8 4 6.23 2 0.28
9 5 4.48 2 0.29
10 6 3.28 2 0.33

Table 2
Approximation of the effective impedance corresponding to ground 2 by vector fitting at o

N K ðkkDtÞmax L ðRe½klDt�Þmax

5 3 3.29 1 0.27
6 4 3.78 1 0.04
7 3 2.42 2 0.17
8 4 3.79 2 0.15
9 3 0.99 3 0.66
10 4 4.3 3 0.13
as the FDTD in which the time-step and spatial step are linked by
the CFL condition Dt ¼ CDx=c0, with the CFL constant C set to
C ¼ 0:9 (a value ensuring the numerical stability of the simula-
tions). The error of approximation by Eq. (7) on real and imaginary
part of Zeff is also given in the two tables. It is estimated as follows:

errðZeffÞ ¼
X
f

Zeffðf Þapprox � Zeffðf Þexact
� �2

,X
f

Zeffðf Þexact
� �2

" #2

ð9Þ
The two effective impedances are implemented in the FDTD and

TLM codes, considering the values ak; kk; al, and kl resulting of the
vector fitting approximation that minimize both the values of
Re½kk;l�Dt and Im½kk;l�Dt and the error of approximation. Thus for
ground 1, according to Table 1 the results of the approximation at
order N = 6 are considered. For ground 2, according to Table 2 the
results of the approximation at order N = 9 are considered.

It is reminded that these two implemented effective impe-
dances were calculated with hi ¼ p=2, and thus are only valid for
simulations of grazing or near-grazing incidence situations.
4.3. FDTD and TLM simulations with SPM effective impedances

FDTD and TLM simulations are performed, considering flat
grounds with SPM effective impedances accounting for random
roughness and absorption of ground 1 and ground 2. In both numer-
ical methods, a spatial step Dx ¼ 0:025 m is chosen (which is 2.5
times bigger than the spatial-step considered in Section 3). For
the TLM and FDTD simulations, the time step is respectively
Dt ¼ 5:1� 10�5 s and Dt ¼ 6:6� 10�5 s. The source-receivers
geometry and configuration are the same as considered in the
TLM simulations of Section 3.2, in which the ground roughness
profile was meshed. In Fig. 7(a) and. (b), the attenuation spectra
obtained by FDTD and TLM (black and blue curves, respectively)
are compared to the mean result of TLM simulations performed
in Section 3.2 (red curve) where the roughness profiles were accu-
rately meshed and almost exactly modeled.

For these two cases, one can see a perfect agreement between
the two numerical results with SPM effective impedance and the
mean numerical result of Section 3.2. First, this shows that the
effective impedances for the two grounds were correctly imple-
mented in both time-domain models. Secondly, these results
demonstrate the interest of using SPM effective impedance in
numerical methods, as it allows to accurately take into account
rder N.

ðIm½klDt�Þmax err(Re[Z]) (%) err(Im[Z]) (%)

0.46 1.47 1.37
0 0.61 1.18
0.3 0.03 1.16
0.25 0.29 1.06
0.33 0.35 1.02
0.28 0.18 0.70

rder N.

ðIm½klDt�Þmax err(Re[Z]) (%) err(Im[Z]) (%)

0.11 0.45 3.76
0.12 0.32 3.21
0.12 0.42 2.66
0.17 0.13 1.87
1.35 0.12 1.61
0.26 0.11 1.75
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Fig. 7. Attenuation spectra DL at d ¼ 50 m resulting from numerical simulations
with SPM effective impedance. ( ) FDTD result, ( ) TLM result, ( ) mean
TLM result obtained in 3.2.
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the effects of random ground roughness without exactly meshing
the ground profile. Furthermore, bigger spatial steps can be consid-
ered, thus leading to shorter calculation times, and thus to long-
range outdoor sound propagation applications.
5. Concluding remarks

Ground roughness has noticeable effects on outdoor sound
propagation: (i) it shifts the ground dip due to the ground effect
towards the lower frequencies and (ii) it leads to the formation
of a surface wave. The boss model approach allows to express an
effective impedance for a ground roughness formed by regular
scatterers, such as semi-cylinders. In this paper, an effective impe-
dance model for random roughness was developed. Using the
Small Perturbation Method (SPM), it models the mean effects of
random ground roughness characterized by a roughness spectrum,
such as the Gaussian roughness spectrum which is defined by two
statistical parameters. Just like the boss model formulation, for an
absorbing ground, the ground roughness effect is modeled as a cor-
rection to the base admittance of the ground surface.

This SPM effective impedance model was validated numerically
for middle-distance outdoor sound propagation cases. Two-
dimensional TLM simulations of 50 m propagation above absorb-
ing and rigid random rough grounds (whose roughness was
defined by a Gaussian spectrum) were performed. The results were
compared to analytical solutions calculated with the SPM effective
impedance model, and showed that the SPM effective impedance
accurately takes into account the mean effects of roughness on
sound level spectra, and also correctly models the roughness-
induced surface wave.

Then, the possibility and the interest to use the SPM effective
impedance model at boundary conditions in time-domain numer-
ical methods was shown. SPM effective impedances were imple-
mented in FDTD and TLM codes by approximating the effective
impedance by a sum of rational functions, using the vector fitting
technique to identify the coefficients of these functions. FDTD
and TLM numerical methods with SPM effective impedance have
been proven to be efficient and useful for simulating complex
middle-range propagation cases with time-domain methods, as
they allow to take into account quite easily the mean effects of a
statistically defined roughness. The ability to do that without
meshing the roughness can also significantly reduce the computa-
tion time.

It should be pointed out that in order to be used in time-
domain, an impedance model must be physically admissible and
verify reality, causality and passivity conditions [37,38]. The Miki
model with thickness effect was the base impedance model con-
sidered to derive the SPM effective impedance for the considered
grounds using Eq. (4). Recent studies [39,40] showed that the Miki
model is actually not physically admissible, and not the best suited
model for long-range outdoor sound propagation predictions
despite its common use. Nevertheless it gave satisfactory results
within the frame of this work. Furthermore, this SPM effective
impedance approach should still prove functional using more
refined base impedance models, such as the slit pore model [22].

A promising application for effective impedance models and
particularly for the SPM model would be to use them in engineer-
ing methods for long-range noise impact predictions. This would
require experimental data to characterize roughness spectra of
natural grounds. The model will be soon available in Code_TYMPAN,
an open source software dedicated to outdoor sound engineering
calculations [41]. Another application would concern propagation
above the water for offshore wind farms, as roughness spectra have
been studied for sea surfaces [42].
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