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Sub-Domain Decomposition Iterative Method
Combined With ACA: An Efficient Technique
for the Scattering From a Large Highly

Conducting Rough Sea Surface
Christophe Bourlier, Sami Bellez, Hongkun Li, and Gildas Kubické

Abstract—The sub-domain decomposition iterative method
(SDIM) is presented to solve efficiently a large linear system
obtained by sampling the boundary integral equations from the
method of moments. Then, this new technique is tested on the elec-
tromagnetic scattering problem from a large highly conducting
one-dimensional rough sea surface. The diagonal blocks are the
local impedance matrices corresponding to the geometry sub-do-
mains while the off-diagonal blocks are the coupling matrices
describing the interaction between two different sub-domains.
The principle of SDIM is to invert the impedance matrix by blocks
reducing significantly the complexity in comparison to a direct
LU inversion of the whole impedance matrix. In addition, to
accelerate the matrix-vector products and to reduce the memory
requirement, the adaptive cross approximation (ACA) is applied
to compress the sub-domain coupling matrices. For microwave
frequencies, the results show that SDIM converges rapidly and
faster for the TM polarization. Moreover, the mean compression
ratio of ACA is of the order of 98%, which makes this method
very efficient.

Index Terms—Adaptive cross approximation, electromagnetic
scattering by rough surfaces, iterative methods, method of mo-
ments (MoM).

I. INTRODUCTION

T HE study of the microwave scattering from rough sea sur-
faces is a subject of great interest. The applications of

such research concern many areas such as remote sensing, radar
surveillance, optics, and ocean acoustics.
The well-known Method of Moments (MoM) [1]–[3] is a

way of solving rigorously the scattering problem by converting
the boundary integral equation into a linear system, in which
the impedance matrix must be inverted to determine the sur-
face currents. This method has been widely used to calculate
the scattering by perfectly conducting rough sea surfaces as
well as by highly conducting rough sea surfaces by applying
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the impedance boundary condition (IBC). However, the direct
solution of the linear system through LU decomposition is clas-
sically limited by a and complexities in CPU
time and memory requirement, respectively, where is the
number of unknowns. This is computationally very expensive
for electrically large rough surfaces and has lead to use iterative
methods that significantly reduce the storage and computation
cost.
Among these methods, the stationary iterative forward–back-

ward method (FB) [4] combined with the spectral acceleration
(SA) [5], is the most efficient one for the scattering from highly
conducting rough sea surfaces. This method has also been suc-
cessfully incorporated into the iterative schemes of propaga-
tion-inside-layer-expansion (PILE) and extended propagation-
inside-layer-expansion (EPILE) solvers aimed to study the scat-
tering from an object located below, on and above a rough sea
surface, respectively [6]–[10].
For more than a decade, another family of fast direct solvers

has been developed to deal with a very large number of un-
knowns. These methods are fundamentally based on the fact
that the entire problem geometry can be subdivided into several
overlapping or non-overlapping sub-domains (blocks) and
the MoM impedance matrix can also be partitioned into local
impedance sub-matrices. They represent the interaction be-
tween the basis functions within each block, while the coupling
impedance sub-matrices describe the interaction between the
basis functions of the blocks. The problem solution is then
reduced to successively solve a set of impedance sub-matrix
equations. PILE, EPILE, and characteristic basis function
method (CBFM) [11] are based on this concept. The latter
has been applied for the scattering from rough terrain profiles
and in order to minimize the computational cost [12], [13],
accelerations are integrated by using FB method, the physical
optics approximation, etc.
In the same way, this paper presents the sub-domain de-

composition iterative method (SDIM) to solve efficiently a
large linear system obtained by sampling the integral equa-
tions through a MoM with pulse basis functions and point
matching. Then, this new technique is tested on the microwave
electromagnetic scattering problem from a large IBC rough
one-dimensional sea surface. Its principle is to invert the
impedance matrix by blocks, reducing significantly the com-
plexity in comparison to a direct LU inversion of the whole
impedance matrix. Furthermore, it is possible to exploit the
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low-rank properties of the coupling impedance sub-matrices for
the purpose to perform fast matrix-vector products. One of the
most relevant algorithms carrying out this task is the adaptive
cross approximation (ACA), which expresses any matrix as a
product of two compressed matrices. This algebraic method,
developed in 2000 by Bebendorf [14], [15], was then applied to
electromagnetics [16]–[20] and can be seen as a truncated and
partially pivoted Gaussian elimination [14].
Then, SDIM is hybridized with ACA technique to accelerate

the matrix-vector products and to decrease the memory require-
ment. In addition, to reduce the complexity of SDIM, the ap-
proximation based on the fact that the electromagnetic interac-
tion between far blocks is weak, is tested.
This paper is organized as follows. Section II presents the

mathematical formulation of SDIM, its complexity and its re-
sulting complexity when ACA is applied. Section III presents
numerical results and the last section gives concluding remarks.

II. THEORY

A. Mathematical Formulation of SDIM

The MoM [1] for the electromagnetic scattering problem re-
sults in a set of linear system of algebraic equations that are cast
in matrix form as follows:

(1)

where is the known MoM impedance matrix of sizes ,
is an known excitation vector, and , is the unknown
solution vector of sizes , with the number of unknowns
needed to accurately describe the current distribution on the sur-
face. For electrically large geometries, becomes prohibitively
large, and this rules out the option of direct matrix inversion for
computing the vector .
To overcome this issue, the SDIM is developed. It consists in

splitting the surface into sub-domains
. Then, it first computes the current density on each

isolated sub-surface and next, from an iterative scheme,
it updates the current density by interacting the sub-domains
between them.
The matrix can be partitioned as

...
...

. . .
...

(2)

where is the number of sub-matrices of sizes
and .
The matrix is decomposed as follows:

(3)

where

...
...

. . .
...

(4)

and

...
...

. . .
...

(5)

The matrix is a matrix of sizes which contains the
diagonal blocks and a matrix of sizes

which contains the off-diagonal blocks . It
corresponds to the coupling matrix between the blocks.
The matrix is decomposed as follows , where
is a lower triangular matrix, a diagonal matrix and an

upper triangular matrix. These threematrices are of sizes .
Then, from [21, (Eq. (3.54))], we have

(6)

where the matrices and are assumed to be
invertible and stands for the identity matrix.
For any matrix , the following Taylor series expansion

can be applied if the spectral
radius (modulus of its eigenvalue, which has the highest
modulus) of is strictly smaller than one. Assuming that the
spectral radius of the matrix is strictly smaller
than one, then the use of the Taylor series expansion leads to

(7)

where is the characteristic matrix of the sub-
domains decomposition. From (7), The matrix-vector product

can be written as

(8)

From (4), the computation of is straightforward, leading
to

...
...

. . .
...

(9)

Then, the matrix product leads to

...
...

. . .
...

(10)
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Setting

...
...

(11)

from (8) and (10), one shows

(12)

and the unknown vector can be expressed as

(13)

The vectors and are of sizes .
The convergence order is obtained from a crite-

rion. For instance, it can be obtained when
, where is a threshold and norm

stands for the norm two.
It is interesting to note that the calculations of and

are similar as to those of the characteristic basis functionmethod
(CBFM) [11]. Indeed, equals the primary basis function
(PBF), whereas gives the secondary basis func-
tions (SBF). Next, the method differs from ours since a modified
Gram–Schmidt process to construct ortho-normalized functions
is applied to determine the unknown with CBFM.
For (two sub-domains), it can be shown that the SDIM

algorithm is the same as EPILE one [3], [7] developed for the
scattering from two illuminated scatterers. However, it would
be different of the multi-levels EPILE method.

B. Complexity of SDIM

Let be the complexity to invert and the com-
plexity for the matrix-vector product . Then, the
complexity of SDIM is

(14)
where is the complexity of the matrix-vector product

. If , , and are constant,
the resulting complexity to calculate is then

(15)

If a direct LU inversion is applied to calculate , then
and if the matrix is not compressed

then . Assuming that , then

(16)

Comparing with a direct LU inversion of the matrix
with ), the SDIM is efficient if

. Another advantage of SDIM is that the
solution results from inversions and matrix-vector products of
matrices of smaller sizes. Then, if is not too large, LU direct

inversions can be applied to calculate , which can not
be possible from the whole matrix . In addition, the memory
requirement becomes instead of . Also,
fast methods can be applied to calculate , such as the
forward–backward (FB) [4] method combined with the Spectral
acceleration (SA) [5], which is very efficient for a sea surface
[7]. In addition, if the coupling between the sub-domains is
weak (far interactions), then the indexes in (12) can be chosen
as with and .
Concerning the matrix-vector products, their complexity can be
reduced by compressing the coupling sub-matrix
from the ACA algorithm.

C. ACA Acceleration

The objective of the ACA algorithm is to approximate a given
dense matrix of size by an approximate matrix (of
size too) obtained from a matrix product:

(17)

where and are two dense matrices of sizes and
, respectively; being the effective rank of the matrix .

The two matrices and are constructed by the help of an
iterative scheme, which can be seen as a rank-revealing LU de-
composition [14], [17], which is stopped when the convergence
is reached for a given tolerance threshold . It is very important
to note that to compute and , it is not necessary to calculate
all the elements of the matrix to be compressed (unlike a sin-
gular value decomposition, SVD). Then, the resulting memory
requirement is instead of . For ,
the compression is efficient if . In addition, the com-
plexity of the matrix-vector product also requires

multiplications instead of . We define the com-
pression ratio as

(18)

If , then is close to 1 (100% of compression),
whereas if (case for which ): the compres-
sion is not efficient. If (e.g., or ), then
ACA has a bigger storage requirement than that without ACA.
If the block matrices can be stored, their calculations

are done at the beginning and then the complexity with ACA
becomes

(19)

where is the mean compression ratio of the matrices
of compression ratio ( ) defined as

(20)

III. NUMERICAL RESULTS

The SDIM combined with ACA is tested on the electromag-
netic scattering problem from random rough sea surfaces. Since
the sea surface is highly conductive for microwave frequencies,
the impedance (or Leontovich) boundary condition (IBC) is ap-
plied. To describe the sea surface height (its distribution is as-
sumed to be a normal law), the Elfouhaily et al. [22] rough-
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ness spectrum is applied. It depends on the wind speed, ,
defined at ten meters above the sea mean level. In addition, the
incident Thorsos [23] tapered wave is used to reduce the edges
diffraction.
From the boundary integral equations, applying the MoM

with point matching test functions and pulse basis functions, a
linear system is obtained , where is the impedance
matrix, is the unknown vector of components the surface
current or sampled on the surface, and is a known
vector, related to the incident field sampled on the surface. The
currents is either computed from a direct LU inversion of
(for more details, see textbook [3], in which the MatLab codes
are provided), or from SDIM or from SDIM combined with
ACA. Then, from the Huygens principle, the scattered field is
computed from radiating the currents and and the nor-
malized radar cross section (NRCS) is calculated.

A. Normalized Radar Cross Section

The simulation parameters are listed in Table I.
Fig. 1 plots the NRCS versus the scattering angles . The

labels in the legends mean:
• “LU,” the NRCS is computed using a direct LU inversion
of the whole impedance matrix .

• “SDIM,” the NRCS is computed using SDIM.
• “'SDIM ACA,” the NRCS is computed using SDIM
combined with ACA.

In addition, in the legend, the first number is the SDIM con-
vergence order obtained when the relative residual error
(RRE) is smaller than 0.01. The second number is the RRE value
obtained for and defined as

(21)

SDIM converges if the spectral radius of the matrix
is strictly smaller than one. For a matrix of large

size, it is not possible to calculate the spectral radius because
this operation is very time consuming. Thus, a means to know if
SDIM converges, is to calculate the RRE on the surface currents
or on the scattered field, and if the RRE increases with the order
, then SDIM fails because it does not converge.
Fig. 1 shows that the SDIM converges rapidly (at the order

1) and the value of the ACA convergence threshold is well
chosen since the results closely match. For close to 90 de-
grees, a difference occurs between the NRCSs computed from
LU and SDIM but the corresponding levels are very small (dB
scale). For , this difference is insignificant. The
compression ratios of the sub-domains coupling matrices

(meanvalue ), which clearly shows
that SDIM combined with ACA is very efficient. The number
of blocks is 10 and the block sizes are 600 600.
Fig. 2 plots the current ratio

[dB] [dB]
(difference in dB scale) versus the surface abscissa for

, corresponding to 2 blocks. The vertical
dashed-lines delimit the blocks and is the current com-
puted from a direct LU inversion. The simulations parameters
are listed in Table I. Recall that the order 0 of SDIM computes
the current of each block by neglecting the coupling between
the blocks. Then, at the edges of the blocks, the current value

TABLE I
SIMULATION PARAMETERS OF FIG. 1. IS THE WAVELENGTH
WHERE IS THE FREQUENCY. THE BLOCKS HAVE THE SAME SIZES .

Fig. 1. NRCS versus the scattering angles for GHz. The simulations
parameters are listed in Table I.

Fig. 2. Current ratio in dB (difference in dB scale) versus the
surface abscissa for , corresponding to 2 blocks. The
vertical dashed-lines delimit the blocks. The simulations's parameters are listed
in Table I.

presents a discontinuity. Then, as increases, this effect
decreases because the coupling between the block is better
accounted for. Fig. 2 illustrates this phenomenon.
For the TE polarization (the results are not depicted), the

conclusion is the same but SDIM converges more slowly. The
convergence order is , instead of 1 for the TM
polarization.
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Fig. 3. Convergence order of SDIM versus the number of blocks
and the incidence angle . The simulation parameters are listed in Table II. In
addition, GHz, the polarization is TM, m/s and .

TABLE II
SIMULATION PARAMETERS OF FIGS. 3–7. IS THE

WAVELENGTH WHERE IS THE FREQUENCY.

B. Convergence Order and CPU Time

Fig. 3 plots the convergence order of SDIM versus the
number of blocks and the incidence angle . The simulation
parameters are listed in Table II. In addition, the frequency
equals 3 GHz, the polarization is TM, the wind speed equals
5 m/s and the number of unknowns is .
means that SDIM has not converged. As we can see, SDIM con-
verges rapidly and does not change significantly with
. As increases, increases and above and for

, SDIM failed because it does not converge. Physically,
as increases, the coupling between far sub-domains increases
and then, the order increases.
Fig. 4 plots the CPU time versus the number of blocks . The

simulation parameters are the same as in Fig. 3 with .
The CPU time for LU is a constant number. As we can see for
SDIM, the CPU time does not change with because the con-
vergence order is nearly independent of and the CPU
time is mainly allocated to the calculation of the elements of
the impedance matrix of constant sizes with respect to . For
SDIM ACA, the CPU time is reduced in comparison to that
obtained with SDIM and decreases when increases because
a) The mean compression ratio ranges from 0.977 to 0.994
with a mean value of 0.985 (for ), accelerating the ma-
trix-vector products in (12), b) The CPU time allocated to the
calculation of the elements of the impedance matrices
( ) decreases ( with ).

Fig. 4. CPU time versus the number of blocks . The simulation parameters
are the same as in Fig. 3 with .

Fig. 5. Convergence order of SDIM versus the number of blocks
and the frequency. The simulation parameters are listed in Table II. In addition,

, the polarization is TM, m/s and .

Fig. 5 plots the convergence order of SDIM versus the
number of blocks and the frequency. The simulation parame-
ters are listed in Table II. In addition, , the polarization
is TM, m/s and . As we can see, when
the number of blocks is small, does not change with the
frequency.
Fig. 6 plots the convergence order of SDIM versus

the number of blocks and the with speed . The simulation
parameters are listed in Table II. In addition, GHz
, the polarization is TM and . As we can see, the

sensitivities with respect to are very weak until the number
of blocks reaches 19 (at which time that the SDIM method is
unstable).
Fig. 7 plots the convergence order of SDIM versus

the number of blocks and the polarization. The simulation
parameters are listed in Table II. In addition, GHz
, m/s, and . As we can see, for the TE

polarization, SDIM converges more slowly and as increases,
SDIM can fail for the TE and TM polarizations.
Fig. 8 plots the convergence order of SDIM versus

the number of blocks and for a given number of samples .
The simulation parameters are listed in Table II. In addition,

GHz and m/s. For the TE polarization
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Fig. 6. Convergence order of SDIM versus the number of blocks
and the with speed . The simulation parameters are listed in Table II. In
addition, GHz , the polarization is TM and .

Fig. 7. Convergence order of SDIM versus the number of blocks and
the polarization. The simulation parameters are listed in Table II. In addition,

GHz , m/s and .

(top), as the surface length increases m and for
a given , the convergence order decreases because each sub-
domain length is larger and then, the coupling effect is already
accounted for. As expected, as the number of blocks increases
and for a given surface length, the convergence order increases.
In addition, SDIM can fail if the number of blocks is too large.
For the TM polarization, the proposed method is robust than
in TE, because it converges with a smaller and with a
larger .
Fig. 9 plots the CPU time versus the number of unknowns .

The simulation parameters are listed in Table II. In addition,
GHz , m/s and the polar-

ization is TM. Fig. 10 plots the NRCS versus the scattering an-
gles . The simulation parameters are the same as in Fig. 9 with

. As we can see in Fig. 9, the SDIM ACA is very
efficient in comparison to a direct LU inversion and as expected,
as the number of blocs increases, the CPU time of SDIM ACA
decreases. For example, for and , the CPU
times is divided approximately by in com-
parison of that obtained for . This is in agreement with
(19). In Fig. 9, ranges from 0 to 2.

Fig. 8. Convergence order of SDIM versus the number of blocks
and for a given number of samples . The simulation parameters are listed
in Table II. In addition, GHz , and m/s. (a) TE
polarization. (b) TM polarization.

Fig. 9. CPU time versus the number of unknowns . The simulation parame-
ters are listed in Table II. In addition, GHz , m/s

and the polarization is TM.

As in Fig. 1, Fig. 10 shows a good agreement between the
methods, except for grazing scattering angles, for which the
levels are very small.
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Fig. 10. NRCS versus the scattering angles . The simulation parameters are
the same as in Fig. 9 with .

C. Weak Coupling Approximation

Fig. 11 plots the NRCS versus the scattering angle and
the ratio (difference in dB scale). In the
legend, the first integer is the number of adjacent blocks
taken in the sum over of (12). This means in (12) that

with , and .
As we can see, around the specular direction defined as
, the coupling between the sub-domains can be neglected and

it becomes significant far from the specular direction, but the
NRCS is small. In addition, the TE polarization is more sensitive
to the coupling than the TM polarization, which explains why
the convergence order of SDIM is larger for the TE polarization.
With this approximation of weak coupling between the sub-

domains, for a given order of SDIM, the number of matrix-
vector products is

(22)

instead of , with . From (19), the ACA
complexity is

(23)

where

(24)

Then, the complexity is reduced by a factor if
for the calculation of the matrix-vector products and

also for the memory requirement.

IV. CONCLUSION

In this paper, the new SDIM method computing the NRCS
by a random rough highly conducting sea surface is presented.
For the TM polarization, this method converges very rapidly,
whereas for the TE, its convergence is slower and can fail when
the sizes of the blocks, ( being the number of blocks),
are too small in comparison to the number of samples of the
surface. For example, for , SDIM can fail from

Fig. 11. First subplot: NRCS versus the scattering angle . Second subplot:
NRCS ratio, (difference in dB scale) versus the scat-
tering angle . The simulation parameters are listed in Table II. In addition,

GHz , m/s, and , and is
computed from Fig. 7. (a) TE polarization: . (b) TM polariza-
tion: .

. In addition, to accelerate the matrix-vector products for
the coupling between the sub-domains, ACA is applied to re-
duce significantly the CPU time and the memory requirement.
Indeed, the mean compression ratio is of the order of 98%,
which makes SDIM+ACA very efficient. Applying the weak
coupling approximation between the sub-domains, both the ma-
trix-vector product and the memory requirement can be further
reduced.
In the future, this method will be tested for the scattering of

several perfectly conducting objects above a 1-D sea surface and
for the scattering from a two-dimensional sea surface.
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