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Low-Grazing Angle Propagation and Scattering
Above the Sea Surface in the Presence of a Duct
Jointly Solved by Boundary Integral Equations

Christophe Bourlier, Hongkun Li, and Nicolas Pinel

Abstract—For a two-dimensional problem and at microwave
radar frequencies, this paper presents a method to compute the
field scattered by a highly conducting (the impedance boundary
condition is applied) rough sea surface in the presence of a duct
having a linear-square refractive index profile below a medium of
constant refractive index. In a previous paper, the corresponding
Green's function, which allows us to solve the propagation
problem, has been derived without considering the sea surface.
Using the boundary integral equation (BIE) method, this paper
solves jointly the scattering problem from the sea surface and the
propagation problem by including this Green's function in the
BIE. In addition, to efficiently solve the linear system obtained
from the method of moments by discretizing the integral equa-
tions, the forward-backward method is applied, which allows us
to consider very long rough surfaces.

Index Terms—Ducting environments, electromagnetic scat-
tering, integral equations, nonhomogeneousmedia, parabolic wave
equation, propagation, sea surface electromagnetic scattering.

I. INTRODUCTION

I N the past decades, researchers in the areas of applied
electromagnetics and underwater acoustics have developed

rigorous and asymptotic models for mathematically describing
wave propagation over rough surfaces, as well as the scattering
of waves by such surfaces. These studies also investigated the
combined effects of atmospheric conditions (ducting condi-
tions) and surface roughness on the propagation and scattering
problems. To solve this issue, two main methods are available
in the literature: the well-known parabolic wave equation
(PWE) method [1], and the boundary integral equation (BIE)
method [2]–[4].
Under the conditions of predominant forward propagation and

scattering, i.e., when the rough sea surface is gently undulating
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and theanglesofpropagationandscatteringaregrazing, thePWE
approximation gives satisfactory results. For a complete review
of this method, see the textbook of Levy [1] and the references
therein.Thegreat advantage of thePWEmethod is that it candeal
withmost real-life inhomogeneous environments. Itsmain draw-
back is the underlying paraxial approximation leading to an ap-
proximation of the propagator (that is, the Green's function).
By contrast, the BIEmethod, which is based on theHelmholtz

wave equation, rigorously calculates all surface field interac-
tions. If the Green's function is known in an appropriate (spa-
tial or spectral) domain, an integral equation can be written for
the induced currents on the rough surface. From these currents
and Huygens' principle, which requires the appropriate propa-
gator, the scattered field at a point above the surface can then be
computed. The advantage of the BIE method is that it is a rig-
orous method, but its main drawback is that the Green's function
(propagator) is known only for a small class of refractive index
profiles [10], [15]. That is why, when the BIE method is applied
[2], the propagator is usually derived under the PWE approxi-
mation. In [5]–[8], the BIE method is applied for the scattering
from rough sea surfaces at grazing angles without ducting ef-
fects. In [9], an accelerated BIE scheme is proposed for propa-
gation over the ocean surface.
For a half-space having a linear square refractive index profile

( , with and the height ,
meaning that the transmitter and receiver heights have
and , respectively), Awadallah and Brown [3], [4] derived
the corresponding Green function used to calculate the currents
on a perfectly conducting rough surface from the BIE method.
For practical applications, the condition and
is not met because it corresponds to an environment having a
refractive index lower than one, since with

. Nevertheless, the numerical results presented in these
papers are very interesting and showed that the BIE method is a
good candidate to improve the scattering/propagation prediction
above the sea surface in comparison to the PWE combined with
the split-step Fourier (SSF) method.
In practice, the refractive index profile decreases with in-

creasing height up to a given altitude, and eventually reaches a
constant value. In [11], Bourlier et al. derived the corresponding
Green function of such an environment. In the same spirit as
Awadallah and Brown [3], [4], the purpose of this paper is to
include this Green function in the BIE method to solve, without
approximation, the problem of scattering from a highly con-
ducting rough sea surface. In addition, to solve efficiently the
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Fig. 1. On the left, illustration of the scattering problem. On the right, profile
of the modulus of the square refractive index.

linear system obtained from the method of moments (MoM) by
discretizing the integral equations, the forward-backward (FB)
method is applied, which allows us to consider very long rough
surfaces.
Section II briefly presents the integral equations and Green's

function, and Section III presents the calculation of the inci-
dent field on the surface. Numerical results are presented in
Section IV, and the last section gives concluding remarks.

II. INTEGRAL EQUATIONS AND GREEN FUNCTION

Let us consider a two-dimensional space
(see Fig. 1) made up of a homogeneous medium (defined for

) of constant refractive index over an inhomogeneous
one (defined for , duct), with a linear-square
refractive index profile defined by , with

, where denotes the duct height. In addition, media
and are separated by the rough sea surface. In media

and , the refractive indexes are positive real numbers, and the
refractive index in is a constant complex number with a large
imaginary part in comparison to one (i.e., highly conducting
surface).

A. Integral Equations

The purpose of this article is to calculate the field scattered
by the rough surface in medium when the source is located
in medium by accounting for the refraction effect, since the
medium is inhomogeneous. A method is needed to calculate
the currents on the rough surface, then from the knowledge of
these currents, to calculate the scattered field in from Huy-
gens' principle.
Then, the currents on the surface are computed from the

BIE method that, in general, requires solving for both the field
and its normal derivative. Since the sea surface is highly conduc-
tive for microwave frequencies, the impedance (or Leontovich)
boundary condition (IBC) can be applied:

(1)

This leads to the following BIE [12], [13] for

(2)

In addition, (constant) is the refractive index of medium
, is the refractive

index of medium for , assumed to be independent of
, ( being the EM wavelength in free space) is
the incident wave number of the source, which is assumed to be
located inside , is the incident field on the surface, is
the spatial Green's function in and is a vector
of components in the Cartesian basis .
The surface current ( or ) is computed by

discretizing the integral equations from the MoM by using the
point matching method with pulse basis functions. This leads to
the linear system, , where the impedance matrix,
the unknown vector (of components or dis-
cretized on the surface) and is the vector of components the
incidence field discretized on the surface. If a direct LU inver-
sion is applied to invert , the complexity is , where
is the number of unknowns on the surface. To reduce this com-
plexity to , the Forward-Backward method [14] is ap-
plied, which allows us to consider long rough surfaces. In addi-
tion, the advantage of the FB is that only a row of the impedance
matrix needs to be stored, instead of the whole matrix. The
drawback is that the elements of the impedance matrix must be
re-computed for each FB order.
The scattered field in is then computed by applying Huy-

gens' principle, leading to

(3)

Depending on polarization, or is known from
the BIE solution; the companion quantity in (3) is again deter-
mined using the IBC in (1).
If is a homogeneous medium, then the spatial

Green's function is well-known and is given by
, where is the

zero-order Hankel function of the first kind. For an inho-
mogeneous medium, the spatial Green's function is more
complicated, and is presented in the next subsection.

B. Spatial Green's Function

From [15]–[18], Bourlier et al. [11] evaluated the scalar
Green's function for a homogeneous medium overlying a
duct (medium ) with a linear-square refractive index profile
(the rough surface was not considered). From the boundary
conditions, the exact spectral Green's function is derived with
the help of Airy functions. To have a closed-form expression
of the corresponding spatial Green's function, the method of
steepest descents (SD) is applied. The transmitter is located
in either or , and the receiver can also be located in
either of these two regions, yielding four possible cases. In this
paper, the most interesting case for practical applications is
considered (receiver and transmitter within the duct ). For all

, the resulting spatial Green's function is then [11]

(4)
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where

(5)

In addition, the function is defined as

(6)

(7)

and is the complementary error function [19].
In (4), ( ) corresponds to the illu-

minated region, for which the wave is propagating, whereas
( ) corresponds to the shadow region,

for which the wave is evanescent. For , ,
and , so that (4) is continuous for . In
the illuminated region , if and ,
then and , and the second term of (4) can
be neglected. Then, the resulting equation corresponds to that
obtained under the PWE given by

(8)

For close to zero, the Green's function diverges (even when
) because (4) has been derived under assumptions which

are not valid for this case. This issue can be easily solved, some-
what heuristically, by noting that the refraction phenomenon
can be neglected ( ) for close to 0 (more precisely,

close to 0). Then, for
and ,

, corresponding to Green's function of a homogeneous space
of wavenumber . In addition, for ,

, which is consistent with the first term
of (4), since , (illuminated region), ,
and for the amplitude term. Then, (4) is transformed
into

(9)
where the correction term due to the refraction has the prop-
erty when . In the following, this equation is
labeled as “Fock+NFC” because it was obtained from the text-

Fig. 2. Spatial Green's function versus the horizontal distance in meters.
(a) Modulus. (b) Zoom of (a) around . The parameters are (trans-
mitter abscissa), m (transmitter height), m (receiver height) and
see Table I for the values of and . The vertical dashed line indicates the
separation between the illuminated and the shadow regions. (a). (b) Zoom.

TABLE I
SIMULATION PARAMETERS

book of Fock [17] with a near field correction (NFC), which is
applied in this paper.
The integral equations contain the normal derivative of the

Green's function. The analytical expression for
is given in Appendix B.
Fig. 2(a) plots the spatial Green's function versus the hori-

zontal distance inmeters and Fig. 2(b) zooms Fig. 2(a) around
. The vertical dashed line indicates the separation between

the illuminated and shadow regions, for which the abscissa
is defined by ( in (5))

(10)

The labels in the legend are:
• “HS,” is computed by assuming that the medium is
homogeneous ( );

• “PWE,” is computed from the PWE approximation,
meaning that and in (4);

• “PWE+NFC,” is computed from the PWE approx-
imation with a near-field correction, meaning that

;
• “Fock+NFC,” is computed from (9) (which includes
near-field correction).

Near-field correction (NFC) means that the term
in (4) is replaced with (the

Taylor series expansion and the paraxial approximation
are not applied).



670 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 2, FEBRUARY 2015

For close to zero, Fig. 2 shows that the NFC corrects the
modulus and, as expected, the NFC makes it possible to have
good agreement with the results obtained by assuming a homo-
geneous space, since the refraction effect can be neglected when
the receiver and the transmitter are very close. In the illuminated
zone (on the left of the vertical dashed line), Fig. 2 shows that
“Fock+NFC” and 'PWE+NFC” Green's functions match well
and that the “Fock+NFC” function has an oscillatory behavior
near the limit of the shadow zone because it is defined as the
sum of two terms, leading to an interference phenomenon. In
the shadow region, the “PWE+NFC” function decreases slowly,
whereas the “Fock+NFC” 'function decreases rapidly. Then, the
PWE approximation is not valid in this region.

III. INCIDENT FIELD

The incident field, which appears in (2), is defined as the field
produced by the source (antenna) that would exist in the duct in
the absence of the rough surface. When the BIE/FB approach is
used to simulate the problem of propagation over a rough sur-
face in a ducting medium, it is appropriate to calculate the field
produced by the source, the initial field, on a given vertical plane
defined at . The incident field on the rough surface, is then
evaluated by propagating the initial field from the vertical plane
onto the rough surface using the ducting medium propagator.
We use an initial field constructed from an angular spectrum of
plane waves of the form [20]

(11)
with
• the look angle measured from the positive -axis;
• the incident field on the surface ( varies);
• the center of the antenna (constant number) with re-
spect to (the abscissa of the antenna is set to zero);

• , in which is the trans-
verse width of the beam (perpendicular to the propagation
axis) and the vertical footprint (in the plane ).

If the integration in (11) is performed in an exact manner,
satisfies the Helmholtz wave equation exactly. The field is

therefore properly “Maxwellian.” From Appendix A, the inci-
dent field on the rough surface is then

(12)

where and . The propagator
is used because the transmitter is located in the duct.

The computation of requires two-fold numerical integra-
tions. For very long surfaces, this computation is very time
consuming. To solve this issue, first, an approximation of (11) is
derived in Appendix C, which allows us to calculate rapidly.
Fig. 3 plots the modulus of the incident field on the surface
versus the height in meters. The labels in the legend are:
• “Numerical,” is computed from a numerical integration
((11));

• “Analytical,” is computed analytically from (C5).
Fig. 3 shows a very good agreement between the results com-

puted from a numerical integration and from the closed-form

Fig. 3. Incident field on the surface versus the height in meters.
(a) Modulus. (b) Phase. The parameters are reported in Table I. The surface is
assumed to be flat.

Fig. 4. Modulus of the normalized incident field on the surface versus its
abscissa in meters. The parameters are reported in Table I. The vertical dashed
lines indicate the locations of the first, second, and third bounces.

expression, validating the application of (C5), which has the ad-
vantage of not requiring a numerical integration.
Fig. 4 plots the modulus and the phase of the normalized inci-

dent field on the surface versus its abscissa in meters.
The parameters are reported in Table I. The labels in the legend
are:
• “PWE,” is computed from (11), and the PWE approx-
imation is used for the calculation of the Green's function

((8));
• “PWE+Ana,” is computed from (C6) (no numerical
integration), and the PWE approximation is used for the
calculation of the Green's function ((8));

• “PWE+NFC,” is computed from (11), and the PWE
approximation with near-field correction (NFC) is used for
the calculation of the Green's function
in (12);

• “Fock+NFC,” is computed from (11), and (9) is used
for the calculation of the Green's function.

Fig. 4 shows very good agreement between the results com-
puted from “PWE” and “PWE+Ana,” validating the applica-
tion of (C6), which has the advantage of not requiring two-fold
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numerical integrations. Fig. 4 also shows that the results com-
puted from “PWE+NFC” and “PWE”match well, implying that
the NFC is not required for propagation. This is due to the
fact that the source is far from the zone of the illuminated sur-
face. For , “PWE” predicts an overshoot because for

, the Green's function is singular. Results computed from
“Fock+NFC” and “PWE+NFC” match well in the illuminated
zone and as expected, strongly differ in the shadow zone, over
which “PWE+NFC” rapidly decreases. As a result, in the fol-
lowing, for “PWE” and 'PWE+NFC,” (C6) will be used to com-
pute on the surface, whereas for “Fock+NFC,” (9), (11) and
(12) will be used.
In Fig. 4, the vertical dashed lines indicate the locations of

the first, second and third bounces. They are obtained from a ray
approach by calculating the ray trajectory. For more details, see
Appendix D. As expected, the location of the maximum of
coincides with the abscissa of the first bounce. In addition, the
surface is large enough to observe the second and third bounces
which will be predicted from the BIE/FB method in the next
section. Fig. 4 also shows that the incident field on the edges
of the surface is very small in comparison to the maximum.
This avoids the edge diffraction phenomenon, which does not
occur for practical applications. In addition, the length of the
illuminated surface, for which the normalized field modulus is
greater than 30 dB is 50 m, which is enough to include all the
roughness scales of the sea surfaces considered.

IV. NUMERICAL RESULTS

The proposed method (BIE/FB) solves the scattering and
propagation problems in three steps:
1) The field radiated by the transmitter (the antenna is mod-
eled from (11)) is calculated on the sea surface from (12).
It needs the knowledge of the Green's function, which de-
pends on the profile of the refractive index. It is computed
from (9).

2) The currents on the surface, and , are com-
puted by solving the boundary integral (2) (BIE). From
the MoM, it is equivalent to solve a linear system. To de-
crease the memory requirement and the computing time,
the forward–backward (FB) method is applied. This step
uses the Green function of the first step, which shows that
the propagation and scattering problems are correlated (in
free space, the calculation of the currents is a scattering
problem).

3) From the Huygens principle (3), the surface currents can
radiate to give the scattered field measured by the receiver.

Simulation parameters are reported in Table I. For a perfectly
conducting (PC) surface, .
For the simulations, we consider that both the transmitter and

the receiver are inside the duct. However, similar simulations
for which either or both of them are outside the duct can be
performed, since Green's function computed in [6] considered
these cases.

A. Flat Surface

In this section, the surface is assumed to be flat and having
the dielectric properties of sea water.

Fig. 5. Current modulus on a flat and IBC surface versus the surface ab-
scissa . The “Fock+NFC” Green's function is used and the polarization is TM.
The vertical dashed lines indicate the locations of the first, second and third
bounces.

Fig. 5 plots the current modulus on the surface versus the
surface abscissa . The “Fock+NFC” Green's function is used
and the polarization is TM. The vertical dashed lines indicate the
location of the first, second and third bounces (see Appendix D).
In the legend, the first number corresponds to the iteration order
of FB , starting from 1, and is the current on the
surface obtained for by considering only the forward
contribution (i.e., the backward contribution is not accounted
for). The second number is a mean value defined by

(13)

where is the surface current at the abscissa and com-
puted at the order and, is the FB convergence
order. It is obtained when the relative residual error (RRE) be-
tween two consecutive orders of the FB is smaller than 0.01.
RRE is defined as , in which
is the surface currents at the order , and the symbol

stands for the norm two (Euclidean norm).
As expected, due to the refraction effect, the current on the

surface exhibits different locations for which the current mod-
ulus is maximum at an abscissa corresponding to those com-
puted from a ray approach. The first spot (zone over for which
the current contributes) has a nearly Gaussian shape like the in-
cident beam. Indeed, the first spot is strongly related to the in-
cident field, which has a narrow beam centered on . As the
abscissa increases, the second spot still has a Gaussian shape,
but the beam waist is larger than the first spot due to refrac-
tion. Awadallah and Brown [3], [4] also observed this behavior.
Fig. 5 shows that the FB method converges rapidly and that the
order of convergence is , since the results are very
close to those obtained for and . In addition,
for , the backward contribution can be neglected.
Fig. 6 plots the total field modulus versus the

abscissa and the height . The parameters are the same as in
Fig. 5. Fig. 7 plots the same variations as in Fig. 6, but for three
specific heights m.
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Fig. 6. Total field modulus versus the abscissa and the height
. Same parameters as in Fig. 5. On the left, the pink vertical line indicates the
source extent centered on . The white dashed line plots the ray trajectory for
a source located at (indicated by a white cross). The black dashed line
plots the ray trajectory for a source located at . The other crosses
give the locations of the extrema (maximum heights of the ray trajectories, see
Appendix D) of coordinates ( is the number of bounces).
The order .

Fig. 7. Same variations as in Fig. 6, but for three specific heights .

Fig. 6 shows that the results are consistent with those obtained
from a ray approach. For m (by consid-
ering and is the number of bounces), the total field
decreases rapidly (see also Fig. 7). As increases, the interfer-
ence zone between the spots increases.
Fig. 8 plots the same variations as in Fig. 7, but for TE polar-

ization and instead of in Fig. 7. In
addition, the convergence order is instead of .
In comparison to the TM polarization, the FB order of conver-
gence is greater, but the order remains sufficient to
have good accuracy, and the backward contribution can again
be neglected.
Fig. 9 plots the same variations as in Fig. 5, but for both PC

and IBC surfaces and . Fig. 10 plots the same varia-
tions as in Fig. 9, but for TE polarization. For TE polarization,
the results obtained for PC and IBC surfaces match very well,
meaning that the sea surface can be assumed to be PC. By con-
trast, for the TM polarization, the sea surface can not be consid-
ered as PC. This comes from the fact that for the TM (or V) po-

Fig. 8. Same variations as in Fig. 7, but for TE polarization.

Fig. 9. Same variations as in Fig. 5, but for both PC and IBC surfaces and
.

Fig. 10. Same variations as in Fig. 9, but for the TE polarization.

larization, the Fresnel reflection coefficient can be close to zero
near the Brewster angle . For ,
which is close to the angle of the first bounce at the surface

with
m.

Fig. 11 plots the same variations as in Fig. 5, but for
“Fock+NFC,” “PWE+NFC” and “PWE” Green's functions
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Fig. 11. Same variations as in Fig. 5, but for for “Fock+NFC,”“PWE+NFC”
and “PWE”Green's functions and .

and . For the PWE, the derivation of the diagonal
elements of the impedance matrix is reported in Appendix E.
Fig. 11 shows that the results computed from “Fock+NFC”
and “PWE+NFC” match very well, meaning that the inclusion
of the second term in (9) can be neglected and . This
is equivalent to considering that the Green's function does
not vanish in the shadow zone. Fig. 11 also shows that the
results computed from “PWE+NFC” and “PWE” are in good
agreement, except for near 0 (transmitter abscissa), for which
an overshoot appears (not shown here), because the Green's
function is singular. This means that for the near-field
correction (NFC) has a small impact on the computation of
the currents on the surface. By contrast, simulations not de-
picted here showed that the PWE cannot be applied for the
computation of . This comes from the fact that the paraxial
approximation ( ) is not valid during the
integration over of (3). Indeed, for a given , during the
integration over , can be close to , making the paraxial
approximation invalid.

B. Random Rough Sea Surface

In this section, the roughness of the sea surface is taken into
account. It is assumed that the rough surface height is a Gaussian
stationary stochastic process with zero mean value, and that the
height spectrum obeys the Elfouhaily et al. hydrodynamic spec-
trum [22], in which the key parameter is the wind speed at
10 meters above the sea surface. The simulation parameters are
reported in Table I.
The RMS surface heights corresponding to wind speeds

m s, are m. For a given
incidence angle , the electromagnetic surface roughness is
characterized by the Rayleigh parameter, ;
for , the values are .
For wind speeds m s and for TM and TE po-

larizations, numerical results not shown here demonstrated that,
as for a flat surface, the FB method converges at order one and
the backward contribution can be neglected. From a geometrical
point of view, this can be explained by the fact that the proba-
bility that the field specularly backscattered by the surface is

Fig. 12. Total scattered power versus the abscissa and the height . The sim-
ulation parameters are given in the caption of Fig. 3. Moreover, the wind speed
is m s and the polarization is TM. (a) coherent component. (b) in-
coherent component. The horizontal dashed line indicates the maximum height

m (maximum height of the ray trajectories).

very small at low grazing angles. Indeed, this probability is re-
lated to , in which is the sur-
face slope variance.
Several independent surfaces are generated as realizations of

the Gaussian random process using the spectral method. For
each surface numbered , the field and its normal derivative

are calculated, and then from (3), the total scattered
field is computed. The average coherent and
incoherent scattered powers are then computed.
Fig. 12 plots the total scattered power versus the abscissa

and the height . The simulation parameters are given in the cap-
tion of Fig. 3. Moreover, the wind speed is m s and
the polarization is TM. Fig. 12(a)–(b) plot the coherent and in-
coherent components, respectively. The horizontal dashed line
indicates the height m (maximum height of the
ray trajectories for a flat surface with m). In
comparison to Fig. 6 (flat surface), due to the surface roughness,
the scattered power is not negligible above , because the
roughness modifies the local specular angles (which are random
variables). As expected, for defined before the first bounce, the
incoherent component is negligible, whereas for this region, the
coherent power is strong, corresponding to the incident field.
As the number of bounces increases, the power is more dif-
fuse. Indeed, the incident field of the first bounce (which can
be obtained from the propagation of the currents of the pre-
vious bounce) is random, unlike the incident field illuminating
the first bounce, which is deterministic. In general, outside the
first bounce region, the levels of the incoherent power are larger
than those of the coherent power.
Fig. 13 plots the same variations as in Fig. 12, but for three

specific abscissas m, and only the co-
herent component is shown. The abscissas are chosen such that

(in the subscript, the integer stands
for the number of bounces), where and are the ab-
scissa of the ray trajectories for which the heights are maxima
(indicated by black crosses in Fig. 6, m). The
results obtained for a flat ( m s) surface and for a sur-
face of wind speed m s are also shown. Fig. 14 plots
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Fig. 13. Vertical cuts of the coherent power in Fig. 12 for different horizontal
distances from the source. In addition to m s, the results for

m s and m s (flat surface) are shown.

Fig. 14. Same variations as in Fig. 13, but for the incoherent component. For
the flat surface case, the incoherent power is zero (minus infinity in dB scale)
and is therefore not shown in the dB plots.

the same variations as in Fig. 13, but for the incoherent com-
ponent. For , the coherent component is smaller
than that obtained for a flat surface, whereas for ,
the opposite effect is observed. In addition, over this last re-
gion, the incoherent component remains nearly constant for

. As for a flat surface, the interference phenomenon is
strong, whereas for the incoherent component, this phenomenon
is strongly damped. Awadallah and Brown [3], [4] also observed
this behavior. As the height increases, Fig. 14 also shows that the
incoherent component decreases as the wind speed decreases.

V. CONCLUSION AND DISCUSSION

In this paper, the propagation and scattering problems are
solved jointly by solving numerically the BIE (scattering
problem), in which the appropriate Green's function (propaga-
tion problem) is used to take into account refraction phenomena
in the duct. To solve large problems, the BIE is combined with

the FB method, which allows us to reduce the complexity to
( is the number of unknowns on the surface) and

to store only one row of the impedance matrix at a time. The
numerical results then showed that:
1) For the PWE, the near field-correction (“PWE+NFC”) on
the Green's function is necessary for the radiation of the
currents, but it can be neglected for the current computation
on the surface.

2) The shadowed region predicted by the propagator
“Fock+NFC” can be omitted for both the calculation of
the currents and of the fields radiated by the currents; this
means that the propagator “PWE+NFC” is a very good
approximation.

3) For TE polarization, the sea surface can be assumed to be
perfectly conducting.

4) For TM polarization, the sea surface cannot be assumed to
be perfectly conducting owing to the Brewster angle, and
then the IBC approximation is applied.

5) The FB method converges very rapidly for a linear sea
surface (no breaking waves), i.e., at the first order, and
the backward contribution on the surface currents can be
neglected.

In addition, the coherent and incoherent components of the
the power scattered by a rough sea surface have been computed
for wind speeds m s. The numerical results
showed that, as the number of bounces increases, the coherent
component shows strong fluctuations with respect to the obser-
vation height, whereas the incoherent power decreases mono-
tonically with the observation height.
For the simulations, the duct parameter is m .

In practice, is of the order of m , meaning that to ob-
serve several bounces, the surface must be longer than that gen-
erated for m . Nevertheless, the physical pro-
cesses (scattering and propagation) remain nearly the same and
then, the method proposed in this paper can be used as a bench-
markmethod to validate asymptotic theories applied to calculate
the propagation factor. See for instance [23] and the references
therein. When the PWE is combined with the split-step Fourier
(SSF) method, the boundary conditions (scattering problem) on
the rough sea surface are determined from asymptotic models. It
is important to note that, since the surface currents are computed
from BIE, no approximation is used in this paper, except that the
Green's function is derived from a saddle point technique [11].
In the future, to treat more realistic ducting environments, the

Green function will be extended (from an analytical or a nu-
merical way) to several layers having a linear square refractive
index profile to investigate a tri-linear profile. This work is under
investigation.

APPENDIX A
APPROXIMATION OF THE INCIDENT FIELD

From the Huygens' principle, the incident field on the sea sur-
face is determined by the field on the aperture and its
normal derivative as

(A1)
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Under the far-field approximation, the above equation can be
simplified as

(A2)

where is the unitary vector normal to the aperture, and
are the unit vectors of and , respectively. Then
(A1) can be written as

(A3)
In addition, assuming that the field on the aperture is lo-

cally plane, then . If the propagation direction
slightly deviates from (case of grazing look angles), then

. The incident field on the sea surface given by (A1) can
then be approximated as

(A4)

APPENDIX B
NORMAL DERIVATIVE OF THE SPATIAL GREEN'S FUNCTION

This Appendix presents the derivation of the normal deriva-
tive defined as

(B1)

where is the surface slope,
the normal to the surface pointing toward ,

and .
From (9), we have

(B2)

where

(B3)

In addition

(B4)

and is obtained from by substituting the subscript for
.
Then, from (5), it can be shown that

(B5)

and

(B6)

APPENDIX C
EVALUATION OF THE INCIDENT FIELD ON THE SURFACE

This Appendix presents the evaluation of the incident field on
the surface. First, a closed-form expression of (11) is found.
Using the approach of Toporkov et al. [21], setting

and making a Taylor series expansion up to the second order
over and around zero, we have

(C1)

where

(C2)

The substitution of (C1) into (11) and the integration over lead
then to

(C3)

where and is the error function. From
numerical trials, we showed that both functions give values
very close to unity, leading to the following simplification:

(C4)

The term gives the phase term and
equals that of a plane wave. The term is related to the
damping of the wave.
For grazing angles , which implies that
and then, . Equation (C4) becomes

(C5)
In [9] (Eq. (32)), this equation is used to calculate .
Using the Green's function under the PWE approximation

given from (4), in which and , we have from (C5)
and (12) with and

(C6)
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where

(C7)

APPENDIX D
EQUATION OF THE RAY TRAJECTORY

For a linear square refractive index profile, the equation of the
ray trajectory is a parabola [1]. Then, in , for
where is the abscissa of the first bounce, the equation of the
ray trajectory can be written as

(D1)

where and must be determined. Since and
, and . It can be then

shown that .
For the second arch of the parabola ( ), the

equation of the ray trajectory can be written as

(D2)

where and must be determined. Since
and , we have and

. The distance between two consecutive
bounces is and the coordinates of the
extrema of the parabola is .
For the th arch of the parabola ( ) ( ),

the equation of the ray trajectory is then

(D3)

where . The points giving the maximum
heights have coordinates

.

APPENDIX E
DIAGONAL ELEMENTS OF THE IMPEDANCE MATRIX UNDER

THE PWE APPROXIMATION

This Appendix presents the derivation of the elements of the
impedance matrix under the PWE approximation with no NFC.
The corresponding spatial Green's function is

(E1)

For the diagonal elements, corresponding to , the re-
fraction effect can be neglected, which is equivalent to take

in the above equation. Then (the subscript 0 is added
for )

(E2)

In general, from the point matching method, the diagonal el-
ements are derived from solving the following integral

(E3)

where for the Dirichlet boundary conditions and
for the Neumann boundary conditions, with

because for , , corresponding to in (2). In
addition, is the surface spatial sampling step.
For close to , , where .

Then, substituting this equation and (E1) (with ), (E2) into
(E3), we can show that

(E4)

and

(E5)
for the Dirichlet and Neumann boundary conditions, respec-
tively. In addition, . Then,

(E6)

and

(E7)

where

(E8)

in which and are the Fresnel integrals.
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