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3-D Scattering From a PEC Target Buried Beneath a
Dielectric Rough Surface: An Efficient PILE-ACA

Algorithm for Solving a Hybrid KA-EFIE
Formulation

Sami Bellez, Christophe Bourlier, and Gildas Kubické

Abstract—An efficient hybrid KA-EFIE formulation is deployed
to analyze the electromagnetic (EM) scattering from a 3-D
perfectly electric conducting (PEC) object buried beneath a
2-D dielectric rough surface. In this approach, the electric and
magnetic current densities on the rough surface are analyti-
cally obtained through the current-based Kirchhoff approxima-
tion (KA), whereas the electric current density on the buried
object is rigorously determined by solving the electric field inte-
gral equation (EFIE) using the Galerkin’s method of moments
(MoM) with Rao–Wilton–Glisson (RWG) basis functions. The
KA-EFIE matrix system is then efficiently solved by the itera-
tive propagation-inside-layer-expansion (PILE) method combined
with the algebraic adaptive cross approximation (ACA). The cur-
rent densities on the dielectric rough surface are thereafter used
to handle the bistatic normalized radar cross-section (NRCS) pat-
terns. The proposed hybrid approach allows a significant reduc-
tion in computation time and memory requirements compared to
the rigorous Poggio–Miller–Chang–Harrington–Wu (PMCHW)-
EFIE formulation which requires solving a large MoM matrix
equation. Moreover, the hybridization of the ACA algorithm with
the PILE method improves further the computational cost thanks
to the rank-deficient propriety of the coupling matrices. To vali-
date the hybrid approach, we compare its results with those of the
rigorous PMCHW-EFIE approach.

Index Terms—Adaptive cross approximation (ACA), EM
scattering, hybridization, Kirchhoff approximation (KA),
propagation-inside-layer-expansion (PILE) method.

I. INTRODUCTION

I N recent years, the characterization of electromagnetic
(EM) scattering from a perfectly electric conducting (PEC)

object buried beneath a dielectric rough surface has attracted
much interest owing to its extensive applications to terrain
radar remote sensing and buried target detection. Some rig-
orous approaches based on solving surface integral equation
formulations with a method of moments (MoM) [1]–[3] are
investigated for both 2-D [4]–[6] and 3-D [7]–[11] scattering
problems. Depending on the surface that encloses the object
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(open object or closed object) and its EM parameters (PEC or
dielectric), an appropriate choice of an integral formulation can
be made. For instance, the electric field integral equation (EFIE)
formulation [12] is often used for an open PEC object, whereas
the magnetic field integral equation (MFIE) formulation [13]
or the combined field integral equation (CFIE) formulation
[14], as it eliminates interior resonance problem, are, respec-
tively, applied on the boundary of a closed object. Furthermore,
the Poggio–Miller–Chang–Harrington–Wu (PMCHW) formu-
lation [15], [16] is frequently preferred to deal with the scatter-
ing from a dielectric homogenous object, as it yields to a better
conditioned matrix equation as compared to EFIE and MFIE
formulations.

Usually, the rough surface is modeled by a finite-size sur-
face, due to limited computing resources, and a tapered inci-
dent beam is simulated in order to circumvent artificial edge
diffraction effects, occurring when an incident plane wave illu-
mination is considered. In fact, simulating the incident wave
by a tapered Gaussian beam, forces the equivalent current lev-
els on the rough surface to be extremely low away from the
footprint center, thereby the finite-length rough surface can be
viewed as an infinite (closed) surface separating two homoge-
nous domains. On the other hand, by considering an object
beneath the rough surface, the scattering problem becomes
more complicated because of multiple scattering interactions
between the buried object and the rough surface. Indeed, edge
diffraction effects can eventually take place when the field scat-
tered by the buried object greatly illuminates the edges of the
truncated rough surface. Therefore, this latter must have elec-
trically large dimensions in an attempt to eliminate the edge
diffraction phenomenon. However, this increases both compu-
tational time and memory requirements and prevents the direct
solving of the MoM matrix equation (arising from the MoM
discretization of the PMCHW integral equations). For this rea-
son, computationally efficient methods based on MoM as the
sparse-matrix canonical grid (SMCG) method [17]–[19] and
the steepest descent fast multipole method (SDFMM) [20] was
adopted to overcome this difficulty.

Different from the purely numerical methods, this paper
offers a methodology providing a clear merger of an asymptotic
technique with an integral equation formulation numerically
solved by an MoM-based technique in order to achieve a sig-
nificant reduction in CPU time and memory requirements. The

0018-926X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



5004 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 11, NOVEMBER 2015

basic idea of this work is to apply the asymptotic current-
based Kirchhoff approximation (KA) [21], [22], also sometimes
referred to as the tangent plane approximation, in order to ana-
lytically obtain the electric and magnetic current densities on
the dielectric rough surface. This approximation assumes that
the current densities at any point on the rough surface are those
that would be present on an infinite tangent plane at that partic-
ular point. Thus, the current densities are expressed in terms of
the field illuminating the surface and the local Fresnel reflection
coefficients, as the reflection is assumed to be locally specular.
The KA is a very attractive alternative, when applicable (valid
for large radius of curvature relative to the incident wavelength
at every point on the surface), because it avoids the inversion of
the self-impedance matrix of the rough surface arising from an
MoM discretization of the PMCHW surface integral equations.
Moreover, an integral equation formulation seems to be well-
adapted to address the scattering from the PEC-buried object in
as much as the involved MoM matrix equation is often of small
or moderate size and can be solved efficiently.

Consequently, a powerful hybrid approach considering the
rough surface as a KA region and the PEC-buried object as
an EFIE region (if needed, the CFIE formulation can also be
applied instead of the EFIE formulation) is adopted. The hybrid
KA-EFIE formulation is then converted into a matrix equa-
tion by using an MoM with RWG basis functions [12] defined
on triangular patches discretizing both regions. The resolution
is achieved by the iterative propagation-inside-layer-expansion
(PILE) method [23] which is suitable for scattering problems
involving two scatterers where only one is illuminated by the
incident EM wave. The PILE method is based on the partitioned
inverse matrix formulas and an iterative scheme in which, for
this paper, the algebraic adaptive cross approximation (ACA)
[24] is incorporated. The resulting method is named PILE-ACA
method. The ACA expresses a matrix Z as a product of two
matrices, typically referred to as U and V and it is used to
compress the matrices characterizing the interactions between
the rough surface and the buried object. This technique is very
useful to speed-up the filling of these matrices as well as to
accelerate the matrix–vector products. The paper is organized
as follows. Section II presents the rigorous PMCHW integral
equations-EFIE of the scattering problem and describes the
hybridization of the current-based KA with the rigorous EFIE
formulation. Section III deals with the MoM discretization pro-
cedure and the resolution of the hybrid matrix equation with
PILE and PILE-ACA methods. Section IV shows the numerical
results of the hybrid KA-EFIE approach compared with those of
the rigorous PMCHW-EFIE approach. Finally, Section V gives
concluding remarks.

II. RIGOROUS AND HYBRID FORMULATIONS

A. Problem Geometry

Let us consider the scattering of a tapered incident wave

(E
inc

1 , H
inc

1 ), when assuming the time harmonic dependence
exp (jωt), by a 3-D PEC object buried under a 2-D dielec-
tric Gaussian rough surface with a random height profile z =
f(x, y). The Braunisch approximate 3-D vector-tapered wave

[25] is employed in this paper since it can be evaluated without
resorting to any numerical integrations. The height function z =
f(x, y) has zero mean value. The 2-D surface height spectrum
is given by
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where lcx and lcy are the correlation lengths in the x̂ and ŷ
directions, respectively, Kx and Ky are the spatial frequencies
in the x̂ and ŷ directions, respectively, and σz is the surface
height standard deviation. The incident wave is tapered so that
the illuminated rough surface can be confined to the surface
area Lx × Ly . The sources of the tapered incident wave are in
the domain D1(ε1, μ1), which is usually free space, with per-
mittivity ε1 and permeability μ1. The PEC object occupies the
domain D3 bounded by Γo. It is buried in the dielectric domain
D2(ε2, μ2), at a depth d, under the mean plane of the rough
surface Γs. The outward unit normal vector to the surface Γs

(pointing into the domain D1) is denoted n̂s while the outward
unit normal vector to the surface Γo (pointing into the domain
D2) is denoted n̂o.

B. Rigorous PMCHW-EFIE Formulation

The analysis of EM scattering from a PEC object buried
under a rough surface using the equivalence principle leads to
a set of field integral equations whose unknowns are the cur-
rent densities defined on the boundaries of the rough surface
(Γs) and the buried object (Γo), as illustrated in Fig. 2. From
these integral equations, numerous formulations are developed.
Here, the PMCHW integral equations, which combines EFIE
and MFIE on both sides of the rough surface, and the EFIE
established on the boundary of the buried PEC object are
selected
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where Js and Ms are the electric and magnetic current densi-
ties, respectively, on Γs, Jo is the electric current density on Γo,
and ηi is the complex impedance of the domain Di defined as

ηi =

√
μi

εi
(3)
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Fig. 1. Geometry of the scattering problem of a 3-D arbitrarily-shaped PEC
object (bounded by Γo) buried under a 2-D random dielectric rough surface
(with profile Γs).

and

εi = ε0ε
r
i = ε0

(
ε′i − j

σi

ωε0

)
(4a)

μi = μ0 (4b)

where εri and σi are the relative permittivity and the conductiv-
ity of the domain Di, respectively, ε0 and μ0 are the vacuum
permittivity and permeability, respectively, and ω is the angular
frequency. The operators Li and Ki are defined as

Li

(
X
)
(r, r′) = −jki

∫
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Gi (r, r
′)X (r′) dΓ′

− j

ki
∇
∫
Γ
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′)∇′ ·X (r′) dΓ′ (5a)

Ki

(
X
)
(r, r′) =

∫
Γ

X (r′)×∇′Gi (r, r
′) dΓ′ (5b)

where ki and Gi (r, r
′) are the wavenumber and the scalar

Green’s function associated with the domain Di, respectively,
Γ is the integration surface, and finally X is the input variable
of the operators representing surface current densities Js, Jo,
or Ms. The expression of the scalar Green’s function in the
domain Di is given by

Gi (r, r
′) =

e−jkiR

4πR
(6)

where R =

√
(x− x′)2 + (y − y′)2 + (z − z′)2 is the dis-

tance between the observation r and the source r′ locations.

C. Hybrid KA-EFIE Formulation

Since the field integral equations are linear, the superposi-
tion principle can reduce the solution of the original equivalent

Fig. 2. Equivalent scattering problem associated with the problem geometry of
Fig. 1.

Fig. 3. Reduced equivalent scattering problems associated with the application
of superposition principle to Fig. 2.

scattering problem (Fig. 2) to the sum of solutions of sim-
pler equivalent scattering problems (Fig. 3). Thus, the electric
and magnetic current densities (Js and Ms) on the rough sur-
face, Γs, can be represented by a linear combination of two
independent solutions as

Js = J
inc

s + J
sca

s (7a)

Ms = M
inc

s +M
sca

s . (7b)

The electric and magnetic current densities (J
inc

s ,M
inc

s ) are
generated by the incident-tapered wave in the absence of the
buried object [Fig. 3(a)] and the electric and magnetic cur-
rent densities (J

sca

s ,M
sca

s ) are due to the fields scattered by
the buried object in the absence of the incident wave sources
[Fig. 3(b)].

The first step is then to compute the electric J
inc

s and mag-

netic M
inc

s current densities. This can be rigorously achieved
by solving the PMCHW integral equations associated with
the reduced equivalent scattering problem [Fig. 3(a)] using an
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MoM. These integral equations are obtained from (2a) and (2b)
by neglecting the electric current density Jo as
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Nevertheless, solving the matrix equation arising from an
MoM discretization of (8) is prohibitive in terms of CPU time
and storage requirements for electrically large rough surfaces.
Therefore, the current-based KA that analytically gives the
electric and magnetic current densities (without solving the
MoM matrix equation) is used to reduce the computational cost.

In this context, the incident fields are locally decomposed
into their transverse electric (TE) and transverse magnetic (TM)
components using the tangent plane as the interface in order to
independently insert the Fresnel coefficients in the evaluation
of the surface current densities. This is achieved according to
an orthonormal basis (p̂i, q̂i, k̂i) defined at any point r on the
rough surface with

q̂i (r) =
n̂s (r)× k̂i

‖n̂s (r)× k̂i‖
; p̂i (r) = q̂i (r)× k̂i (9)

where the unit vectors q̂i and p̂i are the local perpendicular and
parallel polarization vectors, respectively, and k̂i =

ki

k1
is the

unit incident wave vector.
Thereby, the KA-based current densities at any point r on the

rough surface can be expressed by the following equations:
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where the local incident angle on the rough surface θli sat-
isfies cos θli = −n̂s (r) · k̂i and the geometrical optics (GO)
shadowing function ξD1 (r) satisfies

ξD1 (r) =

{
1, if n̂s (r) · k̂i < 0;

0, if n̂s (r) · k̂i ≥ 0.
(11)

The local Fresnel reflection coefficients of TE polarization RD1
TE

and TM polarization RD1
TM are given by
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In order to reconstruct the final solution, the second step
deals with the computation of the electric and magnetic cur-
rent densities (J

sca

s ,M
sca

s ) induced by the electric and mag-
netic fields (η2L2

(
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)
(r, r′) ,K2

(
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)
(r, r′)) scattered by the

buried object. These current densities can be rigorously deter-
mined by solving the PMCHW integral equations associated
with the reduced equivalent scattering problem [Fig. 3(b)].
These PMCHW integral equations are obtained from (2a) and
(2b) by neglecting the electric and magnetic incident fields and
only leaving the excitation due to the fields scattered by the
buried object as
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However, in order to avoid solving the resulting MoM matrix
equation and further reduce the computational cost, we again
use the KA to obtain the analytic expressions of electric and
magnetic current densities (J

sca

s ,M
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s ) as
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where the local incident angle on the rough surface (from the
bottom) θls satisfies cos θls = n̂s (r) · r̂s (with r̂s =

r−r′
‖r−r′‖ ),

the unit vectors q̂s and p̂s are the local perpendicular and
parallel polarization vectors given by

q̂s (r) =
n̂s (r)× r̂s

‖n̂s (r)× r̂s‖ ; p̂s (r) = q̂s (r)× r̂s (15)

the GO shadowing function, ξD2 (r), satisfies

ξD2 (r) =

{
1, if n̂s (r) · r̂s > 0;
0, if n̂s (r) · r̂s ≤ 0

(16)
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and the local Fresnel reflection coefficients of TE polarization
RD2

TE and TM polarization RD2
TM are given by
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Finally, by adding (10) and (14) and using the EFIE in (2c),
the KA-EFIE formulation (three equations) for a PEC object
buried beneath a dielectric rough surface is obtained. It is also
worthwhile to point out that the rigorous computation of the

incident current densities (J
inc

s , M
inc

s ) and the scattered current
densities (J

sca

s , M
sca

s ) by solving the integral equations (8),
(13), and (2c) using an MoM leads to the same result as that
of the original PMCHW-EFIE formulation given by (2). In fact,
summing up (8) and (13) leads to (2a) and (2b).

On the other hand, two other formulations can be derived.
The first one is the PMCHW-KA-EFIE formulation in which
the PMCHW integral equations (8) are used to compute the

incident current densities (J
inc

s , M
inc

s ), the current-based KA
(14) is used to compute the scattered current densities (J

sca

s ,
M

sca

s ), and the EFIE (2c) is applied to compute the elec-
tric current density (Jo) on the buried object. The second one
is the KA-PMCHW-EFIE formulation in which the current-
based KA (10) is used to compute the incident current densities

(J
inc

s ,M
inc

s ), the PMCHW integral equations (13) are used to
compute the scattered current densities (J

sca

s ,M
sca

s ), and the
EFIE (2c) is applied to compute the electric current density
(Jo) on the buried object. These formulations which involve
a tradeoff between the computational cost and the accuracy of
the solution can also be used.

Once the electric and magnetic current densities (Js, Ms)
are determined through the PMCHW-EFIE formulation (2) or
the KA-EFIE formulation, the EM scattered field at any point
r ∈ D1 can be evaluated using the following expressions:
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In the far-field zone, the integral operators L1 and K1 can be
simplified to LFF

1 and KFF
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where k̂s is the scattering direction and r is the distance from
the origin to the receiver position.

The scattered field is afterward needed for the computation
of the normalized radar cross-section (NRCS; bistatic scattering
coefficient) which is defined as

NRCSpq(k̂i, k̂s) = lim
r→∞ r2

∣∣Esca
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∣∣2

2η1P inc
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where q and p indicate the polarization of the incident and
scattered fields, respectively, p̂s is the scattering polarization
unit vector and P inc

q is the the incident beam power which its
analytical expression is given by

P inc
q =

cos θi
2η1

π

2
g2

[
1− 1 + cos2 θi + 2 tan2 θi

2k21g
2 cos2 θi

]
(21)

with g the tapering parameter of the incident wave and θi its
incidence angle.

III. DISCRETIZATION OF THE KA-EFIE FORMULATION

The hybrid KA-EFIE formulation for the scattering from a
PEC object buried beneath a dielectric rough surface can be
implemented numerically by converting the continuous equa-
tions to a matrix equation with the most versatile numerical
technique referred to as the MoM. The electric and magnetic
currents on the surface Γs are expanded in terms of a known
set of Ns basis functions fs(r) and the electric current on the
surface Γo of the buried object is expanded in terms of a known
set of No basis functions fo(r) as

Js(r) ≈
Ns∑
j=1

Jj
s f

s

j(r) ∀r ∈ Γs (22a)

Ms(r) ≈
Ns∑
j=1

M j
s f

s
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Jo(r) ≈
No∑
n=1

Jn
o f

o

n(r) ∀r ∈ Γo (22c)

where Jj
s and M j

s are the unknown weights of the expansions
for the electric Js(r) and magnetic Ms(r) current densities,
respectively, and Jn

o is the unknown weight of the expansion
for the electric current density Jo(r). Next, for the testing pro-
cedure, the conventional Galerkin’s method is applied on the
surface Γo: the test functions are then chosen equal to the basis
functions. However, on the surface Γs, a point matching method
[26] is applied: the test function is defined as t

j
s = δ(r− rj)τ̂ j

s ,
where δ is the 3-D Dirac delta function, rj is the midpoint of
edge j and τ̂ j

s is a unit vector perpendicular to the edge and
parallel to the triangular facet. The MoM discretization of KA-
EFIE formulation yields to a system of N = 2Ns +No linear
equations that are cast into a matrix equation as follows:[

Rs Rso

Zos Zo

] [
Is
Io

]
=

[
Iis
0

]
(23)

where

Rs =

[
I 0
0 I

]
is a self-reaction matrix of size [2Ns ×

2Ns] and I is an identity matrix.
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Rso =

[
Ree

so

Rme
so

]
is a mutual-reaction matrix of size

[2Ns ×No] which relates the electric and magnetic cur-
rent densities on the rough surface to the electric current
density on the buried object

Ree
so(m,n) =

− ξD2

{(
q̂s ·K2

(
f
n

o

))(
1 +RD2

TM

)
(τ̂m

s · [n̂s × q̂s])

+
(
p̂s ·K2

(
f
n

o

))
cos θls

(
1−RD2

TE

)
(τ̂m

s · q̂s)
}

(24a)

Rme
so (m,n) =

+ ξD2

{
η2

(
p̂s ·L2

(
f
n

o

))
cos θls

(
1−RD2

TM

)
(τ̂m

s · q̂s)

+ η2

(
q̂s ·L2

(
f
n

o

))(
1 +RD2

TE

)
(τ̂m

s · [n̂s × q̂s])
}
.

(24b)

Zos =
[
Zee

os Zem
os

]
is a mutual-impedance matrix of size

[No × 2Ns] which characterizes the scattering from the
rough surface to the buried object

Zee
os = −η2

∫
Γo

fo ·L2

(
fs
)
dΓo (25a)

Zem
os =

∫
Γo

fo ·K2

(
fs
)
dΓo. (25b)

Zo = Zee
o is a self-impedance matrix of size [No ×No]

characterizing the local interactions on the buried object

Zee
o = η2

∫
Γo

fo ·L2

(
fo
)
dΓo. (26)

Iis =

[
Ji
s

Mi
s

]
is a vector of size [2Ns × 1] which rep-

resents the initial current densities due to the incident
tapered wave

Ji
s(m) = ξD1

{(
q̂i ·Hinc

1

)(
1 +RD1

TM

)
(τ̂m

s · [n̂s × q̂i])

−
(
p̂i ·Hinc

1

)
cos θli

(
1−RD1

TE

)
(τ̂m

s · q̂i)
}

(27a)

Mi
s(m) = ξD1

{(
p̂i ·Einc

1

)
cos θli

(
1−RD1

TM

)
(τ̂m

s · q̂i)

−
(
q̂i ·Einc

1

)(
1 +RD1

TE

)
(τ̂m

s · [n̂s × q̂i])
}
. (27b)

Because of the computation of the scattered fields only
requires the explicit knowledge of the current densities on the
surface Γs, the matrix equation can be rearranged as

Is =
(
I−R−1

s RsoZ
−1
o Zos

)−1
R−1

s Iis. (28)

Given that the matrix Rs is an identity matrix the above
equation can be simplified as

Is =
(
I−RsoZ

−1
o Zos

)−1
Iis. (29)

This equation can be solved by means of the iterative PILE
method as follows:

I(PPILE)
s =

p=PPILE∑
p=0

(
RsoZ

−1
o Zos

)p
Iis. (30)

It should be noted that (30) is only valid when the spec-
tral radius (modulus of its highest eigenvalue) of the matrix in
the bracket is strictly smaller than one. The order p = PPILE is
obtained according to the following convergence criterion:

‖I(p)s − I
(p−1)
s ‖2

‖I(p)s ‖2
< 1%. (31)

The PILE-based algorithm for solving KA-EFIE matrix
equation is as follows.

• Initialization step
– Compute and store upper Lee

o and lower Uee
o trian-

gular matrices of the self-impedance matrix, Zee
o , of

the buried object.
– Compute the incident electric Ji

s and magnetic Mi
s

current densities on the dielectric rough surface due
to the incident wave illumination

J(0)
s = Ji

s (32a)

M(0)
s = Mi

s. (32b)

• Repeated (n = PPILE times) steps until the convergence is
reached

1) Compute the electric field scattered We
o from the

rough surface to the buried object

We
o = Zee

osJ
(n)
s + Zem

os M(n)
s . (33)

2) Compute the electric current density on the buried
object

Ieo = (Uee
o )

−1
(
(Lee

o )
−1

We
o

)
. (34)

3) Compute the high-order electric and magnetic cur-
rent densities on the dielectric rough surface due to
the coupling interaction between the scatterers

J(n+1)
s = Ree

soI
e
o + J(n)

s (35a)

M(n+1)
s = Rme

so Ieo +M(n)
s . (35b)

4) Check convergence criterion given by (31)
– If satisfied: PPILE = n+ 1 and the algorithm is

stopped
– Else increment n and go to step 1.

The complexities associated with the above PILE-based
algorithm are O (

N3
o + 2Ns + PPILE

(
N2

o + 4NsNo

))
for

operations and O (
4NsNo +N2

o

)
for memory storage. It is

important to note that the complexities of the PILE-based algo-
rithm solving the PMCHW-EFIE matrix equation are O(8N3

s +
N3

o + 4N2
s + PPILE(4N

2
s +N2

o + 4NsNo)) for operations and
O (

4N2
s

)
for memory storage. It is clear that solving the hybrid

KA-EFIE using the PILE-based algorithm significantly reduces
the computational cost.

Since the rough surface is often much larger than the buried
object (Ns 	 No), the most time-consuming task is related to
the matrix–vector products associated with the matrices Zee

os,
Zem

os , Ree
so, and Rme

so (steps 1 and 3). Therefore, the algebraic
ACA is suitable to compress these matrices because their ranks
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are often much less than their dimensions due to the smoothness
of their elements (far-field interactions). The ACA can express a
rectangular matrix Z of size [M ×N ] as a matrix–matrix prod-
uct (ZM×N = UM×κVκ×N ) where κ is the effective rank of
Z. The ACA algorithm converges after κ iterations for a given
tolerance (typically an ACA threshold of 10−3 is often used)
and requires the storage of only κ (M +N) matrix elements.
Its computational cost is O (

κ2(M +N)
)

[27]. We define the
matrix compression ratio as

τ(%) =

(
1− κ (M +N)

MN

)
× 100. (36)

The compression is efficient when κ 
 min(M,N) involv-
ing a compression ratio τ close to 100%. That way, the ACA
improves the computational cost related to filling the matrix
and calculating the matrix–vector product. Indeed, the matrix–
vector product complexity is O (κ(M +N)) instead of the
conventional O (MN).

The PILE-ACA-based algorithm for solving KA-EFIE
matrix equation is obtained by modifying the equations in the
steps 1 and 3 in the PILE-based algorithm as follows.

1) Compute the electric field scattered from the rough sur-
face to the buried object

We
o = Uee

os

(
Vee

osJ
(n)
s

)
+Uem

os

(
Vem

os M(n)
s

)
. (37)

2) Compute the high-order electric and magnetic current
densities on the dielectric rough surface due to the cou-
pling interaction between the scatterers

J(n+1)
s = Uee

so (V
ee
soI

e
o) + J(n)

s (38a)

M(n+1)
s = Ume

so (Vme
so Ieo) +M(n)

s . (38b)

The computational complexity of the above PILE-
ACA-based algorithm is O (

N3
o + 2Ns + PPILE

(
N2

o+

4κ (Ns +No))) with κ =
κee
so+κme

so +κee
os+κem

os

4 , the mean effec-
tive rank of the matrices Zee

os, Zem
os , Ree

so, and Rme
so . For memory

storage, the complexity is reduced to O (
4κ(Ns +No) +N2

o

)
.

IV. SIMULATION RESULTS

Several numerical simulations are considered to demonstrate
the accuracy and effectiveness of KA-EFIE formulation when
solved by PILE-based and PILE-ACA-based solvers. In our
simulations, the length of the truncated rough surfaces is cho-
sen to be L = Lx = Ly = 10.60λ1, where λ1 is the wavelength
of the tapered incident wave with tapering parameter g = L/4,
frequency f = 300 MHz (λ1 = 1 m). It is important to under-
line that the Braunisch approximate 3-D vector-tapered wave
assumes that k1g(1− sin θi) 	 1 and g 	 |z|max [25], and it
is, therefore, not valid for grazing incidence angles. The rough
surface encloses a lossy medium with relative permittivity εr2 =
2− j0.4. As a PEC object, a horizontally PEC 0.2L× 0.2L
plate and then a PEC sphere of radius 0.4λ1 are buried at a
depth d from the mean plane of rough surface (z = 0). The
rough surface and the PEC plate are, respectively, discretized
into 29 282 and 1250 triangular patches, which results in 45 506
(43 681 + 1825) edges and 89 187 (87 362 + 1825) unknowns.

The ACA threshold is set to 10−3. The copolarized scattered
field is evaluated in the far-field zone for the scattering direc-
tion k̂s(θs, φs) defined by θs varying from −90◦ to 90◦ with an
angular step of 1◦ and φs = φi.

In the legends, the results of the rigorous PMCHW-EFIE
formulation are refereed to as “PILE” (taken as reference)
and “PILE-ACA” when using the PILE-based and the PILE-
ACA-based solvers, respectively. Similarly, the results of the
hybrid KA-EFIE formulation are referred to as “KA-PILE” and
“KA-PILE-ACA” when using the PILE-based and the PILE-
ACA-based solvers, respectively. Within the brackets, the first
number indicate the convergence order of the solver and the
second term represents the relative error on current densities of
the dielectric surface as defined by (31).

A. Metallic Square Plate Buried Under a Flat Dielectric
Surface

In this section, the PEC square plate is buried at a depth
d = λ1 from a dielectric flat surface which is illuminated by the
tapered beam in the incidence direction k̂i(θi = 0◦, φi = 0◦)
(normal incidence). In Fig. 4, we present the bistatic NRCS as
a function of the scattering angle θs, for VV and HH polariza-
tions. This figure indicates that PILE and PILE-ACA methods
solving the rigorous PMCHW-EFIE formulation converge after
PPILE = 2 iterations with an error of 0.14%, whereas KA-PILE
and KA-PILE-ACA methods solving the hybrid KA-EFIE for-
mulation converge after PPILE = 2 iterations with an error of
0.12%. This physically means that only two back-and-forth of
the fields scattered from the flat surface to the buried PEC plate
contribute to the NRCS. Given that the NRCS at the order p = 0
corresponds to that of the flat dielectric surface in the absence
of the PEC square plate, we can deduce that the current-based
KA correctly estimates the incident current densities.

Indeed, it can be shown from Fig. 4 that the results of PILE(0)
are in a very good agreement with those of KA-PILE(0) in the
specular lobe θs ∈ [−20◦, 20◦]. For the other scattering direc-
tion, NRCS levels are very low (� 50 dB below the maximum
NRCS value). At the order p = 2, it can also be seen that the
results of KA-PILE and KA-PILE-ACA are in a very good
agreement with those of PILE and PILE-ACA around the spec-
ular direction in the region θs ∈ [−50◦, 50◦]. By comparing the
NRCS curves associated with the zeroth- and second-order, it
can be observed that the total NRCS is mainly due to the dielec-
tric flat surface contribution in the scattering directions defined
by θs ∈ [−10◦, 10◦], whereas the PEC plate contribution to the
NRCS is noticeable in the other scattering directions.

On the other hand, the curves show that the hybridization
of the PILE method with the ACA (for hybrid and rigorous
formulations) is very successful because it introduces no loss
of accuracy on the NRCS. The PILE-ACA mean compression
ratio of the coupling matrices is equal to 93.53% while the KA-
PILE-ACA mean compression ratio of the coupling matrices
is 88.19%. It should be noted that the mutual-reaction matri-
ces (82.98%) are less compressed than the mutual-impedance
matrices (93.66%). In other words, the effective ranks of the
mutual-reaction matrices are higher than those of the mutual-
impedance matrices. This may be due to the fact that these
mutual-reaction matrices directly relate the current densities
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Fig. 4. Comparison between PMCHW-EFIE and KA-EFIE approaches on the
copolarized bistatic NRCS of a PEC square plate buried at a depth d = λ1

under a dielectric flat surface with respect to scattering angle θs for an incident
wave frequency f = 300 MHz and direction k̂i(θi = 0◦, φi = 0◦). (a) VV-
polarization. (b) HH-polarization.

between the dielectric surface and the buried object (local infor-
mations such as Fresnel reflection coefficients are contained in
these matrices).

A numerical experiment by decreasing the burial depth from
d = λ1 to d = 0.5λ1 was made. It was found that the mean
compression ratio of the mutual-impedance matrices becomes
equal to 91.60% while that of the mutual-reaction matri-
ces becomes 63.89% and the computational overhead of the
ACA algorithm when applied to the mutual-reaction matrices
becomes high. For this case, the mutual-reaction matrices are
diagonally dominant, and hence, seldom rank-deficient. This
leads us to conclude that the use of the ACA algorithm to com-
press the coupling matrices (particularly the mutual-reaction
matrices) is only efficient for large burial depths.

B. Metallic Square Plate Buried Under a Rough Dielectric
Surface: Impact of Incidence Angle on the Accuracy of the
Hybrid KA-EFIE Approach

In this section, the dielectric flat surface is changed to be
a dielectric rough surface obeying a Gaussian process with a

Fig. 5. Comparison between PMCHW-EFIE and KA-EFIE approaches on the
copolarized bistatic NRCS of a PEC square plate buried at a depth d = λ1

under a dielectric rough surface (σz = 0.2λ1, lc = 1.5λ1) with respect to
scattering angle θs for an incident wave frequency f = 300 MHz and direction
k̂i(θi = 0◦, φi = 0◦). (a) VV-polarization. (b) HH-polarization.

Gaussian height spectrum having a standard deviation height
σz = 0.2λ1 and a correlation length lc = lcx = lcy = 1.5λ1.
The burial depth of the square PEC plate is d = λ1. Two
incidence directions are considered: k̂i(θi = 0◦, φi = 0◦) and
k̂i(θi = 20◦, φi = 0◦). In Figs. 5 and 6, we present the bistatic
copolarized NRCS as a function of the scattering angle θs for
k̂i(θi = 0◦, φi = 0◦) and k̂i(θi = 20◦, φi = 0◦), respectively.
The legends of these figures indicate that only two back-and-
forth (PPILE = 2) of the fields scattered from the rough surface
to the buried PEC plate contribute to the NRCS. For both 0◦ and
20◦ incidences, the copolarized results of the hybrid formula-
tion are in a very good concordance with those of the rigorous
formulation, except for grazing scattering angles.

On the other hand, the hybridization of the PILE method with
the ACA (for hybrid and rigorous formulations) is very success-
ful and does not introduce a loss of accuracy on the NRCS. The
PILE-ACA mean compression ratio of the coupling matrices
is equal to 93.55% while the KA-PILE-ACA mean compres-
sion ratio of the coupling matrices is 88.58%. We found that
the compression ratio of the coupling matrices does not vary
with the incidence angle. However, we notice again that the
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Fig. 6. Comparison between PMCHW-EFIE and KA-EFIE approaches on the
copolarized bistatic NRCS of a PEC square plate buried at a depth d = λ1

under a dielectric rough surface (σz = 0.2λ1, lc = 1.5λ1) with respect to
scattering angle θs for an incident wave frequency f = 300 MHz and direction
k̂i(θi = 20◦, φi = 0◦). (a) VV-polarization. (b) HH-polarization.

mutual-reaction matrices (83.57%) are less compressed than the
mutual-impedance matrices (93.60%) and they involve a high-
computational overhead of the ACA algorithm. That is why, it
may be wise to compress only the mutual-impedance matrices
for short burial depths.

C. Metallic Square Plate Buried Under a Rough Dielectric
Surface: Impact of the Surface Roughness on the Accuracy of
the Hybrid KA-EFIE Approach

Now, two cases of surface roughness are considered: 1) a
standard deviation height σz = 0.1λ1 and a correlation length
lc = lcx = lcy = 1.5λ1 and 2) a standard deviation height σz =
0.2λ1 and a correlation length lc = lcx = lcy = 1λ1. The burial
depth of the square PEC plate is d = λ1. The rough surface
is illuminated by the tapered beam in the incidence direc-
tion k̂i(θi = 0◦, φi = 0◦). For both cases, Figs. 7 and 8 show
that the copolarized results obtained with the hybrid KA-EFIE
approach agree with rigorous approach results, yet with visible
discrepancies at grazing scattering angles. These discrepancies

Fig. 7. Comparison between PMCHW-EFIE and KA-EFIE approaches on the
copolarized bistatic NRCS of a PEC square plate buried at a depth d = λ1

under a dielectric rough surface (σz = 0.1λ1, lc = 1.5λ1) with respect to
scattering angle θs for an incident wave frequency f = 300 MHz and direction
k̂i(θi = 0◦, φi = 0◦). (a) VV-polarization. (b) HH-polarization.

are mainly due to the shadowing effects (not accounted for both
in the calculation of the current densities) and multiple scatter-
ing interactions on the rough surface. By applying the bistatic
average shadowing function given in [28] to the NRCS simu-
lated by the hybrid KA-EFIE approach, it was observed that the
discrepancies for |θs| close to 90◦ are decreased.

It is important to underline that the convergence order PPILE

is equal to 2 for both cases of surface roughness. As an aux-
iliary note, the PILE-ACA-based solver does not introduce a
loss of accuracy on the NRCS compared to the conventional
PILE-based solver. However, it is found that its effectiveness
also depends on the roughness of the surface. In fact, for the
first case, the KA-PILE-ACA mean compression ratios of the
mutual-impedance and mutual-reaction matrices are equal to
93.60% and 84.77%, respectively, whereas they are equal to
93.51% and 79.66%, respectively, for the second case. The
computational times required for solving the rigorous and
hybrid formulations related to the first surface roughness case
are specified in Table I, in order to illustrate the time reduction
achieved by the hybrid approach.
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Fig. 8. Comparison between PMCHW-EFIE and KA-EFIE approaches on the
copolarized bistatic NRCS of a PEC square plate buried at a depth d = λ1

under a dielectric rough surface (σz = 0.2λ1, lc = 1λ1) with respect to scat-
tering angle θs for an incident wave frequency f = 300 MHz and direction
k̂i(θi = 0◦, φi = 0◦). (a) VV-polarization. (b) HH-polarization.

TABLE I
TOTAL SOLVING TIME RELATED TO THE SURFACE ROUGHNESS CASE

(σz = 0.1λ1 AND lc = lcx = lcy = 1.5λ1)

In order to complete the numerical validation step, we
present in Fig. 9, a comparison on the phase of copolarized
scattered fields for the second surface roughness case.Fig. 9
shows that the phase of copolarized scattered fields obtained
with the hybrid KA-EFIE approach also agrees with that sim-
ulated by the rigorous approach. Finally, it is important to
mention that we did not present cross-polarized results because
our hybrid KA-EFIE approach is unable to correctly predicting
the depolarization coming from the surface roughness.

D. Metallic Sphere Buried Under a Rough Dielectric Surface

Let us now focus on a PEC sphere of radius 0.4λ1 buried at a
depth d = λ1 under a rough surface having a standard deviation

Fig. 9. Comparison between PMCHW-EFIE and KA-EFIE approaches on the
phase of the electric field scattered from a PEC square plate buried at a depth
d = λ1 under a dielectric rough surface (σz = 0.2λ1, lc = 1λ1) with respect
to scattering angle θs for an incident wave frequency f = 300 MHz and
direction k̂i(θi = 0◦, φi = 0◦). (a) VV-polarization. (b) HH-polarization.

height σz = 0.2λ1 and a correlation length lc = lcx = lcy =
1.5λ1. The rough surface is illuminated by the tapered beam
at an incidence direction k̂i(θi = 0◦, φi = 0◦).

In Fig. 10, we present the bistatic NRCS as a function of
the scattering angle θs for VV and HH polarizations. This
figure shows that the copolarized results obtained by the hybrid
KA-EFIE approach agree with the rigorous approach results,
except for grazing scattering angles where discrepancies can
be observed. As mentioned earlier, these discrepancies are
mainly due to the shadowing effects and multiple scattering
interactions on the rough surface.

By comparing the PILE-ACA-based results with those of the
PILE method, we can deduce that the ACA compression does
not introduce a significant error on the NRCS. Furthermore,
the KA-PILE-ACA mean compression ratios of the mutual-
impedance and mutual-reaction matrices are equal to 94.33%
and 88.17%, respectively. Finally, it can also be observed from
Fig. 10 that the total response (sphere buried under the rough
surface) and that of the rough surface only are almost compara-
ble for a burial depth equals λ1 in the scattering angular sector
|θs| < 50◦.
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Fig. 10. Comparison between PMCHW-EFIE and KA-EFIE approaches on the
copolarized bistatic NRCS of a PEC sphere buried at a depth d = λ1 under a
dielectric rough surface (σz = 0.2λ1, lc = 1.5λ1) with respect to scattering
angle θs for an incident wave frequency f = 300 MHz and direction k̂i(θi =
0◦, φi = 0◦). (a) VV-polarization. (b) HH-polarization.

V. CONCLUSION

In this paper, a hybrid KA-EFIE approach has been presented
for the evaluation of EM scattering from a PEC object buried
beneath a dielectric rough surface. The KA-EFIE formulation
is discretized using an MoM with RWG basis functions and it
is then efficiently solved by the iterative PILE method com-
bined with the algebraic ACA algorithm. This hybrid approach
can deal with realistic scattering scenarios because it leads
to a significant reduction in computation time and memory
requirements in comparison to the rigorous PMCHW-EFIE
formulation which requires solving a large MoM matrix equa-
tion. Some numerical results were presented to illustrate the
accuracy, the versatility, and the usefulness of the PILE and
PILE-ACA methods solving the KA-EFIE formulation. The
ACA algorithm is used to accelerate the time-consuming cou-
pling interaction between the rough surface and the buried
object. Nevertheless, its efficiency depends on the burial depths
as well as the surface roughness, especially when it is applied
to the mutual-reaction matrices. Numerical simulations have

shown that a burial depth of one wavelength is enough for flat
and slightly rough surfaces to obtain good compression ratios.
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