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This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of
two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a
set of Poggio–Miller–Chang–Harrington–Wu integral equations that are afterwards converted into a system of
linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao–
Wilton–Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative
propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities,
which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various
structures including canonical geometries are presented and compared with those of the FEKO software in
order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS
patterns. © 2015 Optical Society of America
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1. INTRODUCTION
Recent years have seen increasing interest in efficient and ac-
curate solution of electromagnetic (EM) scattering from
dielectric layered bodies with arbitrarily shape chiefly be-
cause of the importance of the nondestructive testing
(NDT) of composite materials as well as the stealth character-
istic for the military system design. In particular, there is great
interest in studying the reflective and absorptive properties of
targets in order to achieve a reduction of the radar cross sec-
tion (RCS) over a wide range of frequencies at specific scat-
tering directions. However, most of the earlier techniques
have been utilized to solve two-dimensional (2D) problems
[1,2], bodies of revolution [3,4], three-dimensional (3D) homo-
geneous bodies [5–8], and 3D perfectly conducting bodies
[9–16] coated with a lossy material [17–19].

Integral equation solvers [20,21] based on the method of
moments (MoM) [22] are often deployed because they
offer an “exact” description of the interaction of a radar
signal with an arbitrarily shaped structure while exact
analytical solutions are only available for canonical geom-
etries such as spheres and spheroids [23]. The surface integral
equation (SIE) approach is often preferred for homogeneous
and piecewise homogeneous structures since it limits the
discretization of the unknowns to the surface of the
structure and the discontinuous interfaces between different
materials. The volume integral equation (VIE) approach

appears to be more advantageous for a structure with arbi-
trary inhomogeneity.

The SIE approach, widely used in the frequency domain, is
based on the fact that the field inside any homogeneous body
can be represented in terms of the equivalent surface current
densities on its boundary surface using either the equivalence
principle or the vector Green’s theorem [20]. For a structure
consisting of a finite number of homogeneous bodies, a piece-
wise representation of the EM field inside the structure leads
to a system of SIEs over the body boundary surfaces. The in-
tegral equation system must then be solved to find the un-
known surface current densities, which can subsequently
be used to represent the field everywhere.

The Poggio–Miller–Chang–Harrington–Wu (PMCHW) for-
mulation [24,25] is generally employed as it eliminates the
interior resonance problem and it normally yields to a better
conditioned matrix equation as compared to electric field in-
tegral equation (EFIE) formulation [26] or magnetic field in-
tegral equation (MFIE) formulation [26]. The combined field
integral equation (CFIE) formulation [8,27] can also be ap-
plied with suitable expansion and testing functions to avoid
the interior resonance problem.

In this work, we propose a generalization of the PMCHW
formulation in order to treat a structure composed of two
homogeneous dielectric scatterers where only one is illumi-
nated by the EM incident plane wave. The PMCHW integral
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equations are discretized by using the Galerkin MoM [28] with
Rao–Wilton–Glisson (RWG) basis functions defined on tri-
angular patches [10], which converts them to a system of
N linear equations (a matrix equation) with N being the num-
ber of unknown quantities. The matrix equation can be solved
using a direct or an iterative solver. Both solvers are limited in
their application to O�N2� memory space to store the MoM
matrix elements. Furthermore, the complexity of a direct
solver is O�N3�, while for an iterative solver it is O�N2� per
iteration. These requirements have prevented the use of
the conventional MoM to solve electrically large problems
involving a large number of unknowns. In the case of a struc-
ture consisting of two nested homogeneous objects, the
propagation-inside-layer expansion (PILE) method [29], based
on a domain decomposition, is a good candidate for improving
the computational cost in terms of central processing unit
(CPU) time and storage requirements. Indeed, it avoids the
direct solution of the whole MoM matrix equation by using
the partitioned inverse matrix formulas and an iterative
scheme. Besides, the PILE method offers a straightforward
physical interpretation of the scattering process. It was ini-
tially developed to study 2D scattering problems such as
the scattering from a stack of two one-dimensional interfaces
separating homogeneous media [29], the scattering from a
buried object under a randomly rough surface [30], and the
scattering from coated spheres and spheroids [2,31]. There
are two steps in the PILE method procedure: the first step
is dedicated to handling the initial current densities on the
illuminated surface, and the second one, repeated in an
iterative process, to account for the current densities due
to the coupling interactions between scatterers. In both steps,
acceleration algorithms can be applied and will be the subject
of our future work.

In this paper, we address the application of the PILE
method for solving the MoMmatrix equation of a 3D structure
consisting of two nested homogeneous scatterers with arbi-
trary shape. It should be noted that the PILEmethod has never
been tested on a such configuration. The paper is organized as
follows. Section 2 presents the EM formulation of the problem
from the surface integral representations of the EM field to the
adopted PMCHW surface integral formulation. The special
case of a perfectly conducting interior scatterer is also
treated. Section 3 describes the Galerkin MoM discretization
procedure. Section 4 presents the resolution of the MoM ma-
trix equation using the PILE method. Section 5 deals with
memory and computational complexities of the PILE-based
solver. Section 6 shows the numerical results, and finally
Section 7 gives concluding remarks and prospects.

2. PROBLEM GEOMETRY AND EM
FORMULATION
A. Problem Geometry
Let us consider the scattering of an EM plane wave by a 3D
structure embedded in an isotropic homogeneous background
mediumD1, which is usually free space, with dielectric param-
eters (ϵ1, μ1). The problem geometry is illustrated in Fig. 1.
The structure consists of two nested arbitrarily shaped homo-
geneous dielectric objects. The interior object (ϵ3, μ3), occu-
pying the region D3 bounded by the surface S23, is confined
within the domain D2 of the exterior object (ϵ2, μ2) bounded
by the surfaces S12 and S23. The unit normal vector to the sur-

face S12 pointing into the domain D1 is denoted n̂S12
D1

, while the

unit vector n̂S12
D2

is that pointing into the domain D2. Similarly,

n̂S23
D2

and n̂S23
D3

are the unit normal vectors to the surface S23

pointing, respectively, into the domains D2 and D3.

B. EM Field Surface Integral Representations
The analysis of EM scattering from two nested homogeneous
bodies using the surface equivalence principle involves three
equivalent problems (representing the original physical prob-
lem) that need to be combined to take into account the sol-
ution in the different domains. The field inside any domain Di

can be represented as the sum of an exciting field and a scat-
tering field generated by the unknown equivalent surface cur-
rent densities on the domain boundary surface. From these
considerations, an integral representation of the fields inside
each domain can be derived. In the case of the D1 equivalent
problem, the total EM field (E1,H1) inD1 is equal to the sum of
the incident EM field (Einc

1 , Hinc
1 ) and the scattering EM field

generated by the equivalent sources on the interface S12 (J
S12
D1

,
MS12

D1
) for any observation point r ∈ D1. The total EM field is

zero; otherwise (r∉D1). This implies that the equivalent
sources produce an EM field that exactly cancels the incident
EM field (extinction theorem):

∀ r ∈ D1;E1�r�
∀ r∉D1; 0

�
� Einc

1 �r� � η1L1�JS12
D1

��r� −K1�MS12
D1

��r�;

(1a)

∀ r ∈ D1;H1�r�
∀ r∉D1; 0

�
� Hinc

1 �r� � 1
η1

L1�MS12
D1

��r� �K1�JS12
D1

��r�;

(1b)

whereL1 andK1 are integral operators whose expressions are
given by Eq. (6).

For the D2 equivalent problem, the space is homogenized
with the dielectric parameters ϵ2 and μ2. For any observation
point r ∈ D2, the total EM field (E2, H2) is equal to the sum of
the exciting EM field generated by the equivalent sources on
the boundary surface S12 and the scattering EM field gener-
ated by the equivalent sources on the boundary surface S23

of the scatterer occupying the domain D3. The total EM field
is null; otherwise

∀ r ∈ D2;E2�r�
∀ r∉D2; 0

�
� η2L2�JS12

D2
��r� � η2L2�JS23

D2
��r�

−K2�MS12
D2

��r� −K2�MS23
D2

��r�; (2a)

∀ r ∈ D2;H2�r�
∀ r∉D2; 0

�
� 1

η2
L2�MS12

D2
��r� � 1

η2
L2�MS23

D2
��r�

�K2�JS12
D2

��r� �K2�JS23
D2

��r�: (2b)

In the case of the D3 equivalent problem and for any obser-
vation point r ∈ D3, the total EM field (E3, H3) is only equal to
the EM field generated by the equivalent sources on the boun-
dary surface S23 because there is no excitation by an EM field
inside the observation domain. In addition, the total EM field
is null for any observation point r∉D3:
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∀ r ∈ D3;E3�r�
∀ r∉D3; 0

�
� η3L3�JS23

D3
��r� −K3�MS23

D3
��r�; (3a)

∀ r ∈ D3;H3�r�
∀ r∉D3; 0

�
� 1

η3
L3�MS23

D3
��r� �K3�JS23

D3
��r�; (3b)

where ηi (i � 1, 2, or 3) is the complex impedance of the do-
main Di defined as

ηi �
�����
μi
ϵi

r
�4�

and

ϵi � ϵ0

�
ϵri − j

σi
ωϵ0

�
; (5a)

μi � μ0; (5b)

where ϵri and σi are, respectively, the relative permittivity and
the conductivity of the domain Di; ϵ0 and μ0 are, respectively,
the vacuum permittivity and permeability; and ω is the angular
frequency. The operators Li and Ki are defined as

Li�X��r� � −jki

Z
S
Gi�r; r0�X�r0�dS0

� j
ki
∇0

Z
S
Gi�r; r0�∇0 · X�r0�dS0; (6a)

Ki�X��r� �
Z
S
X�r0� × ∇0Gi�r; r0�dS0; (6b)

where ki and Gi�r; r0� are, respectively, the wavenumber and
the scalar Green’s function associated with the domain Di; S
is the integration surface representing S12 or S23; and finally X
is the input variable of the operators representing surface cur-
rent densities JS12

D1
, JS12

D2
, JS23

D2
, JS23

D3
,MS12

D1
,MS12

D2
,MS23

D2
, orMS23

D3
. The

expression of the scalar Green’s function is given by

Gi�r; r0� �
e−jkiR

4πR
; (7)

where R �
������������������������������������������������������������������
�x − x0�2 � �y − y0�2 � �z − z0�2

p
is the distance

between the observation point r and the source point r0.

C. Surface Integral Equation Formulations
By piecewise representation of the EM field inside the homo-
geneous domains (D1, D2, and D3), the original physical prob-
lem is transformed into a system of eight SIEs over the
boundary surfaces S12 and S23 of the domains. The equation
to calculate the electric field is known as the EFIE, and there

are four such equations: EFIES
D1
12 , EFIES

D2
12 , EFIES

D2
23 , and

EFIES
D3
23 . The surfaces SD1

12 and SD2
12 are respectively selected

to be slightly above (in D1) and below (in D2) the surface

S12, while the surfaces SD2
23 and SD3

23 are respectively selected
to be slightly above (in D2) and below (in D3) the surface S23.
The equation to calculate the magnetic field is known as the

MFIE, and there are also four such equations: MFIES
D1
12 ,

MFIES
D2
12 , MFIES

D2
23 , and MFIES

D3
23 . Since there are eight equa-

tions and four unknowns, it is possible to develop a number
of different formulations for solving the surface current den-
sities. For example, one can select the four EFIEs or the four
MFIEs to form a system of equations for a solution of JS12 ,
MS12 , JS23 , and MS23 . Unfortunately, both the EFIE and the
MFIE formulations suffer from the spurious interior reso-
nance problem, and their weighted linear combination, known
as the CFIE, is usually adopted as a remedy. Another possible
way of obtaining a unique solution at an internal resonant fre-
quency is to use the so-called PMCHW formulation, which is
very often employed in the analysis of 3D dielectric bodies by
combining the EFIEs and MFIEs on both sides of the body
boundary interface as

−�Einc
1 �r��tan � ��η1L1 � η2L2��JS12��r� − �K1 �K2��MS12��r�

−η2L2�JS23��r� �K2�MS23��r��tan; (8a)

−�Hinc
1 �r��tan �

�
�K1 �K2��JS12��r� �

�
1
η1

L1 �
1
η2

L2

�
�MS12��r�

−K2�JS23��r� −
1
η2

L2�MS23��r�
�
tan

; (8b)

0 � �−η2L2�JS12��r� �K2�MS12��r�
� �η2L2 � η3L3��JS23��r�−�K2 �K3��MS23��r��tan; (8c)

0 �
�
−K2�JS12��r� − 1

η2
L2�MS12��r� � �K2 �K3��JS23��r�

�
�
1
η2

L2 �
1
η3

L3

�
�MS23��r�

�
tan

: (8d)

It is important to underline that the integral inside the op-
erator Ki�X� (with i � 1, 2, or 3 and X � JS12 , MS12 , JS23 , or
MS23) must be understood in the Cauchy principal value
(CPV) sense, as the other part is in the X∕2 term.

Let us now consider the special case in which the domain
D3 is occupied by a perfectly conducting body (MS23 is null).
In this case, the expressions in the equation can be simplified
by removing the integral operators acting on the magnetic cur-
rent density MS23�Li�MS23�;Ki�MS23�� and those with dielec-
tric parameters of the domain D3�L3;K3�. After these
simplifications, we need only three integral equations to deter-
mine the unknown quantities since the magnetic current den-
sity on the surface S23 is null. In our case, we use the EFIE
formulation for the metallic surface and the PMCHW formu-
lation for the dielectric interface:

−�Einc
1 �r��tan � ��η1L1 � η2L2��JS12��r�

− �K1 �K2��MS12��r�−η2L2�JS23��r��tan; (9a)

−�Hinc
1 �r��tan �

�
�K1 �K2��JS12��r�

�
�
1
η1

L1 �
1
η2

L2

�
�MS12��r�−K2�JS23��r�

�
tan

;

(9b)
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0 � �−η2L2�JS12��r� �K2�MS12��r� � η2L2�JS23��r��tan: (9c)

However, if the structure includes a closedmetallic surface,
the EFIE [Eq. (9c)] is not sufficient for removing the interior
resonances. In such a case, Eq. (9c) is replaced by the CFIE
(10) to avoid this problem:

0 � α�−η2L2�JS12��r� � η2L2�JS23��r�
�K2�MS12��r��tan � �1 − α�η2n̂S23�r�

×
�
−K2�JS12��r� − 1

η2
L2�MS12��r�

�K2�JS23��r� � n̂S23�r� × JS23�r�
2

�
; (10)

where the constant α is chosen so that the spurious solution is
eliminated. Typically a good choice of α is 0.2 ≤ α ≤ 0.4.

The solution of the integral equation formulations (8)–(10)
yields to the electric and magnetic surface current densities.
These current densities can be used to evaluate the fields scat-
tered by a given structure, at any point r ∈ D1, by using the
following expressions:

Esca
1 �r� � η1L1�JS12��r� −K1�MS12��r�; ∀ r ∈ D1; (11a)

Hsca
1 �r� � 1

η1
L1�MS12��r� �K1�JS12��r�; ∀ r ∈ D1: (11b)

In the far-field zone, the integral operators L1 and K1 can be
simplified to LFF

1 and KFF
1 as

LFF
1 �X� � j

k1
4π

e−jk1r

r
k̂s × k̂s ×

Z
S12

X�r0�e jk1r0 ·k̂sdS0
12; (12a)

KFF
1 �X� � −j

k1
4π

e−jk1r

r
k̂s ×

Z
S12

X�r0�e jk1r0 ·k̂
s
dS0

12; (12b)

where k̂s is the scattering direction and r is the distance from
the origin to the receiver position.

The scattered fields are afterward needed in the computa-
tion of the RCS, which is defined as

RCSpq � 4πr2
jEsca

1 �r� · q̂sj2
jEinc

1 �r� · p̂ij2 � 4πr2
jHsca

1 �r� · q̂sj2
jHinc

1 �r� · p̂ij2 ; (13)

where p̂i and q̂s, respectively, are the incidence and scattering
polarization unit vectors.

3. DISCRETIZATION OF THE SURFACE
INTEGRAL EQUATIONS
The PMCHW formulation for the scattering from two nested
arbitrarily shaped dielectric homogeneous objects is posed in
terms of unknown current densities. In order to convert the
continuous SIEs to a matrix equation, we use the most versa-
tile numerical technique referred to as the MoM. The first step
in the MoM procedure is to discretize the object boundary sur-
faces into a set of patches much smaller than the wavelength.
Weighted basis functions acting as expansion functions for
the unknown current densities are then associated with these
patches. The most common basis functions for a triangular

patch were introduced by Rao et al. [10] and are thus called
RWG basis functions. For a pair of adjacent triangles T�

n and
T−
n sharing a common edge of length ln, these are defined by

fn�r� �
8<
:

ln
2A�

n
ρ�n �r�; if r ∈ T�

n
ln
2A−

n
ρ−n�r�; if r ∈ T−

n

0; otherwise

; (14)

where A�
n denotes the area of the triangle T�

n , and ρ�n is a tan-
gential vector expressed as

ρ�n � ��r�n − r�; r ∈ T�
n (15)

with r�n the free vertex of the triangle T�
n .

In order to solve the integral equations (8) with the MoM,
the electric and magnetic currents on the surface S12 are
expanded in terms of a known set of NS12 basis functions,
f j�r�, as

JS12�r� ≈
XNS12

j�1

aS12
j f j�r�; ∀ r ∈ S12; (16a)

MS12�r� ≈
XNS12

j�1

bS12
j f j�r�; ∀ r ∈ S12; (16b)

and the electric and magnetic currents on the surface S23 are
expanded in terms of a known set of NS23 basis functions,
fn�r�, as

JS23�r� ≈
XNS23

n�1

aS23
n fn�r�; ∀ r ∈ S23; (17a)

MS23�r� ≈
XNS23

n�1

bS23
n fn�r�; ∀ r ∈ S23; (17b)

where aS12
j and bS12

j are, respectively, the unknown weights of
the expansions for the electric JS12�r� and magnetic MS12�r�
currents and aS23

n and bS23
n are the unknown weights of the ex-

pansions for the electric JS23�r� andmagneticMS23�r� currents,
respectively. In this case, the same basis functions have been
used to expand the electric and magnetic currents on both
surfaces. Next, the test functions are chosen equal to the
basis functions (Galerkin’s method) yielding to a system of
(N � 2NS12 � 2NS23) linear equations that are cast in a matrix
equation composed of an impedance matrix Z, an unknown
vector α, and a right-hand side vector V:

Z|{z} α|{z} � V|{z}�
ZS12S12

ZS12S23

ZS23S12
ZS23S23

�
|��������������{z��������������}

�
αS12

αS23

�
|��{z��}

�
VS12

VS23

�
|��{z��}2

6666664

ZEJ
S12S12

ZEM
S12S12

ZEJ
S12S23

ZEM
S12S23

ZHJ
S12S12

ZHM
S12S12

ZHJ
S12S23

ZHM
S12S23

ZEJ
S23S12

ZEM
S23S12

ZEJ
S23S23

ZEM
S23S23

ZHJ
S23S12

ZHM
S23S12

ZHJ
S23S23

ZMM
S23S23

3
7777775

2
666664

αJ
S12

αM
S12

αJ
S23

αM
S23

3
777775

2
666664

VE
S12

VH
S12

VE
S23

VH
S23

3
777775

:

�18�
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The impedance matrix Z contains four submatrices: the
submatrices ZS12S12

and ZS12S12
are self-impedance matrices de-

scribing the local interactions between basis and testing func-
tions on the dielectric surfaces S12 and S23, respectively. The
submatrices ZS12S23

and ZS23S12
are mutual-impedance matri-

ces. The mutual-impedance matrix ZS12S23
(or ZS23S12

) charac-
terizes the coupling interactions between the basis functions
of the surface S23 (or S12) and the testing functions of the sur-
face S12 (or S23). Each submatrix is composed of four subma-
trices describing the interactions between basis and testing
functions associated with the electric and magnetic current
densities. The right-hand side vector (excitation vector) is also
composed of four subvectors: the vectors VE

S12
and VH

S12
re-

present, respectively, the electric and magnetic incident fields
on the surface S12. Meanwhile, the vectors VE

S23
and VH

S23
re-

present the electric and magnetic incident fields on the sur-
face S23, respectively. The elements of these vectors are
equal to zero because the surface S23 is not illuminated by
the incident wave [see Fig. 2(a)].

4. SOLVING THE MATRIX INTEGRAL
EQUATION
The discretization of the integral equations with the MoM has
led to a system of N linear equations that must be solved
to obtain the surface current densities, where N � 2NS12�
2NS23 . The direct solution of the resulting MoM matrix equa-
tion via LU decomposition is extremely time consuming or
impossible (in terms of computational complexity O�N3�
and storage O�N2�) when the problem geometry becomes
large compared to the wavelength (N becomes large). There-
fore, a possible candidate is the iterative PILE solver [29]. Be-
cause the computation of the scattered fields only requires
explicit knowledge of the current densities on the surface
S12, the MoM matrix equation can be rearranged as

αS12
� �I −Mc

S12
�−1Z−1

S12S12
VS12

; (19)

where I is the identity matrix and Mc
S12

is the characteristic
matrix of the structure defined as

Mc
S12

� Z−1
S12S12

ZS12S23
Z−1
S23S23

ZS23S12
: (20)

The Taylor expansion of the inverse of the matrix �I −Mc
S12

�
is given by

�I −Mc
S12

�−1 �
Xp�∞

p�0

�Mc
S12

�p: (21)

By putting Eq. (21) into Eq. (19), we obtain the final equation:

α�PPILE�
S12

�
Xp�PPILE

p�0

�Mc
S12

�pZ−1
S12S12

VS12
: (22)

The series is truncated at order p � PPILE according to the
following convergence criterion:

‖α�p�
S12

− α�p−1�
S12

‖
2

‖α�p�
S12

‖
2

< ΔS12
: (23)

In this paper an error of ΔS12
� 1% is used for all numerical

simulations. The convergence order PPILE of the PILE method

Fig. 1. Original physical problem: geometry of a structure (D2∪D3�
consisting of two nested homogeneous dielectric scatterers em-
bedded in an isotropic medium (D1). The structure is illuminated
by an incident EM plane wave (Einc

1 , Hinc
1 ), which is generated by im-

pressed sources in the background medium D1.

Fig. 2. Equivalent problems representing the original physical problem. (a) D1 equivalent problem, (b) D2 equivalent problem, and (c) D3 equiv-
alent problem.
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has a physical meaning because it corresponds to the number
of back and forths of the scattering fields between the surfa-
ces S12 and S23. The scattering process is as follows: (1) the
incident waveVS12 illuminates the surface S12 of the structure.
(2) The matrix-vector product Z−1

S12S12
VS12 gives the zeroth-or-

der electric and magnetic current densities α�0�
S12

on the surface
S12. These current densities are the same as those obtained
when the structure only contains the exterior object bounded
by the surface S12. (3) The first-order electric and magnetic
current densities are then α�1�

S12
� α�0�

S12
�Mc

S12
α�0�
S12

. The matrix-
vector product Mc

S12
α�0�
S12

gives the current densities caused
by the coupling effect between the surfaces in a back-and-
forth manner. The matrix-vector product ZS23S12

α�0�
S12

� W�0�
S23

represents the fields scattered from the surface S12 exciting
the surface S23. Z−1

S23S23
W�0�

S23
� α�0�

S23
computes the current den-

sities α�0�
S23

on the surface S23. ZS12S23
α�0�
S23

� W�0�
S12

represents the
fields scattered from the surface S23 exciting the surface S12.
Finally, Z−1

S12S12
W�0�

S12
� Mc

S12
α�0�
S12

gives the current densities in-
duced by the fields scattered by the surface S23. The sum
α�1�
S12

� α�0�
S12

�Mc
S12

α�0�
S12

updates the current densities on the
surface S12. (4) The process is repeated until the norm error
criterion is satisfied.

5. MEMORY AND COMPUTATIONAL
COMPLEXITIES OF THE PILE-BASED
SOLVER
The computational cost of the PILE method depends on
how the method is programmed. There are two ways
involving a trade-off between computational and memory
complexities. The first one is related to the following
computations:

• Initialization step

✓ Compute the initial electric and magnetic current den-
sities on S12 based on a direct LU solver: O�M3

S12
� multiplica-

tions and O�M2
S12

� memory space to store the elements of the
self-impedance matrix of the surface S12, whereMS12

� 2 NS12

is the number of unknowns on S12.
• Repeated (PPILE times) steps until a convergence is

reached

✓ Compute the EM field scattered from S12 to S23 using a
matrix-vector product: O�MS23

MS12
� multiplications and

O�MS23
MS12

� memory space to store the elements of the
mutual-impedance matrix characterizing the scattering from
S12 to S23.
✓ Compute the electric and magnetic current densities on
S23 based on a direct LU solver: O�M3

S23
� multiplications and

O�M2
S23

� memory space to store the elements of the self-
impedance matrix of the surface S23, where MS23

� 2 NS23

is the number of unknowns on S23.
✓ Compute the EM field scattered from S23 to S12 using a
matrix-vector product: O�MS12

MS23
� multiplications and

O�MS12
MS23

� memory space to store the elements of the
mutual-impedance matrix characterizing the scattering from
S23 to S12.
✓ Compute high-order electric and magnetic current den-
sities on S12 based on a direct LU solver: O�M3

S12
� multiplica-

tions and O�M2
S12

� memory space to store the elements of the
self-impedance matrix of the surface S12.

According to these computations, the operational count
of the PILE-based solver is O�M3

S12
� PPILE�M3

S12
�M3

S23
�

2MS12
MS23

��, while that of the direct solver is
O��MS12

�MS23
�3�. Consequently, the computational com-

plexity increases rapidly with the convergence order PPILE.
As a result, for few iterations, this approach does not allow
us to have better performance in terms of CPU time (without
applying any fast solver to invert the self-impedance matrices)
in comparison with the direct LU solution of the whole MoM
matrix equation. However, there is another way to program
the PILE method involving a much lower computational com-
plexity than the first way. So, it seems more advantageous to
start by computing and storing the LU decomposition of both
self-impedance matrices in the initialization step as follows.

• Initialization step

✓ Compute and store the L and U decomposition triangular
matrices of the self-impedance matrices and compute the ini-
tial electric and magnetic current densities on S12: O�M3

S12
�

M3
S23

�M2
S12

� operations.
• Repeated (PPILE times) steps until a convergence is

reached

✓ Compute the EM field scattered field from S12 to S23

using a matrix-vector product: O�MS23
MS12

� multiplications.
✓ Compute the electric and magnetic current densities on
S23 based on a direct LU solver (only matrix-vector product):
O�M2

S23
� multiplications.

✓ Compute the EM field scattered from S23 to S12 using a
matrix-vector product: O�MS12

MS23
� multiplications.

✓ Compute the high-order electric and magnetic current
densities on S12 based on a direct LU solver (only matrix-
vector product): O�M2

S12
� multiplications.

The complexity of the PILE method is then reduced to
O�M3

S12
�M2

S12
�M3

S23
� PPILE�M2

S12
�M2

S23
� 2MS12

MS23
�� be-

cause, inside the iterative process, the inversions of the
self-impedance matrices are reduced to only matrix-vector
products. In summary, the PILE method can be programmed
in two ways depending on the computer storage capacity, and
it can be classified as fast when O��MS23

�MS12
�2� memory

space is available.

6. SIMULATION RESULTS
In this section, some numerical simulations are presented to
validate the implementation procedure and to demonstrate
the accuracy of the PILE-based method. Our study considers
three structure geometries that are illuminated by an EM
plane wave at the frequency f � 300 MHz (λ1 � 1 m) in the
incidence direction k̂i�θi � 0°;ϕi � 0°�. It is vertically and
then horizontally polarized. The scattered field is evaluated
in the far-field zone in the scattering direction k̂s�θs;ϕs� de-
fined by θs varying from −90° to 90° with an angular step
of 2° and ϕs � ϕi. The first structure S1 consists of two con-
centric homogeneous dielectric spheres. The interior sphere
characterized by the relative permittivity ϵrin � 2 − j8 and the
radius rin � 0.5λ1 is embedded in an exterior sphere having
the relative permittivity ϵrex � 2 − j0.1 and the radius
rex � λ1. The interior and exterior spheres are respectively
discretized into 5376 and 10,780 triangular patches, which re-
sults in 24,234 edges and 48,468 unknowns. The second struc-
ture S2 is composed of two concentric dielectric tilted
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cylinders. The interior cylinder of relative permittivity
ϵrin � 2 − j12, radius rin � 0.5λ1, and length hin � 2λ1 is em-
bedded in an exterior cylinder characterized by the relative
permittivity ϵrex � 2 − j0.1, the radius rex � 0.3λ1, and the
length hex � 3λ1. The interior and exterior cylinders are re-
spectively discretized into 4826 and 8876 triangular patches
leading to 20,553 edges and 41,106 unknowns. The third struc-
ture S3 consists of a PEC tilted cylinder having the radius
rin � 0.2λ1 and the length hin � 0.8λ1 embedded in a dielectric
sphere of radius rex � λ1 characterized by the relative permit-
tivity ϵrex � 2 − j0.1. The interior cylinder and the exterior
sphere are respectively discretized into 1880 and 12,660 tri-
angular patches involving 21,810 edges and 40,800 unknowns.
All of the considered cylinders are initially oriented with their
axis in the ẑ direction and then are tilted by successively ap-
plying a rotation of 45° about the x̂ axis and another rotation
of 45° about the ŷ axis, so as to have nonzero cross-polarized
levels.

In Fig. 3(a), we present the bistatic RCS of the structure S1

as well as the phase of the scattered field as a function of the
angle θs for VV and HH polarizations. The cross-polarization

(HV and VH) returns are not plotted for this configuration
because they are null due to symmetry reasons. The curves
in Fig. 3(a) show good agreement between the FEKO and
PILE-based solutions in magnitude and phase for both VV
and HH polarization channels. The PILE-based method con-
verges to the FEKO solution after PPILE � 4 iterations with
an error of 0.31%. It can also be seen that the PILE-based sol-
ution at p � 3 gives a satisfactory result with an error of 1.45%.
This physically means that there are four back and forths of
the scattering fields between the sphere interfaces. We under-
line that the solution at the order p � 0 corresponds to that
of the exterior sphere placed in free space in the absence
of the interior sphere. Furthermore, we notice a slight differ-
ence between the RCS levels in the specular direction
k̂s�θs � 0°;ϕs � 0°�. This difference is about 0.4 dB for both
copolarizations. In addition, due to the symmetry of the
structure S1, the curves are also symmetric about the specular
direction.

The cross-polarized RCS values shown in Figs. 4(b) and
4(c) are not null when the incidence and the scattering planes
are the same and represent a target symmetry plane.

Fig. 3. Comparison between FEKO software and PILE-based model results on the copolarized bistatic RCS as well as on the phase of the scattered
electric field of a structure consisting of two nested dielectric spheres with respect to scattering angle θs (ϕs � 0°) for an incident plane wave
frequency f � 300 MHz and direction k̂i�θi � 0°;ϕi � 0°�. The interior sphere of relative permittivity ϵrin � 2 − j8 and radius rin � 0.5λ1 is em-
bedded in an exterior sphere with relative permittivity ϵrex � 2 − j0.1 and radius rex � λ1. (a) VV polarization, (b) VV polarization, (c) HH polari-
zation, and (d) HH polarization.
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In Fig. 4, we plot the bistatic RCS of the structure S2 as a
function of the angle θs for all of the polarization channels (VV,
VH, HV, and HH). For this configuration, the curves indicate
good agrement between the FEKO and PILE-based RCS for all
of the polarization channels. The convergence of the PILE-
based solution is obtained after PPILE � 3 iterations with an
error of 0.96% on the current densities associated with the
exterior cylinder surface. The second-order PILE-based
RCS values also represent a satisfactory result with an error
of 5.03% on the current densities related to the exterior cylin-
der surface. Regarding the VV-polarized bistatic RCS values
shown in Fig. 4(a), we observe a slight difference between
the FEKO- and PILE-based levels in the angular range
θs ∈ �−90°;−50°�.

In Fig. 5, we show the bistatic RCS of the structure S3 as a
function of the angle θs for all of the polarization channels. In
this figure we can clearly observe very good agreement be-
tween FEKO and the PILE-based RCS values for all of the
polarization channels. Furthermore, the PILE-based method
convergence order is PPILE � 4 with an error of 0.22% on
the current densities associated with the exterior sphere sur-
face. The curves also indicate that the PILE-based solution for

a convergence order p � 3 provides a fairly good result on the
full-polarized RCS with an error of 1.13%. As we mentioned
earlier, the zeroth-order PILE-based solution accounts only
for the scattering from the exterior sphere (it is as if the struc-
ture is composed only by the exterior object). This explains
the symmetry of the curves associated with zeroth-order
PILE-based copolarized RCS about the specular direction
[Figs. 4(a) and 4(d)]. Given the interior cylinder orientation,
this symmetry is immediately lost for higher-order PILE-based
copolarized RCS. By analyzing the cross-polarized RCS values
[Figs. 4(b) and 4(c)], we observe that the zeroth-order PILE-
based RCS values are equal to zero (very low level corre-
sponding to digital noise). This allows us to deduce that
the higher-order cross-polarized RCS values of the structure
S3 are mainly due to the contribution of the tilted interior cyl-
inder. Therefore, the presence of the interior scatterer can be
detected thanks to the cross-polarization channels.

According to the simulation results, we can conclude that
the convergence order of the method PILE depends on the
geometry of the scatterers, their dielectric parameters, and
the thickness of the coating material.

Fig. 4. Comparison between FEKO software and PILE-based model results on the full-polarized bistatic RCS of a structure consisting of two
nested dielectric tilted cylinders with respect to scattering angle θs (ϕs � 0°) for an incident plane wave frequency f � 300 MHz and direction
k̂i�θi � 0°;ϕi � 0°�. The interior cylinder of relative permittivity ϵrin � 2 − j12, radius rin � 0.5λ1, and length hin � 2λ1 is embedded in an exterior
cylinder with relative permittivity ϵrex � 2 − j0.1, radius rex � 0.3λ1, and length hex � 3λ1. (a) VV polarization, (b) VH polarization, (c) HV polari-
zation, and (d) HH polarization.
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7. CONCLUSION
In this paper, a PILE-based algorithm has been presented for
the evaluation of EM scattering from 3D structures consisting
of two nested homogeneous dielectric bodies with arbitrary
shape. The problem was formulated in terms of PMCHW in-
tegral equations that are discretized by means of the Galerkin
MoM with RWG basis functions. The resulting MoM matrix
equation arising from these integral equations was iteratively
solved by the PILE algorithm involving a significant reduction
of computational cost in comparison to a direct inversion of
the whole MoM impedance matrix. Some numerical results
were presented to validate the algorithm implementation
and illustrate the accuracy, the versatility, and the usefulness
of the PILE-based approach on the analysis of the interaction
of an EMwave with a complex 3D structure. As a guideline for
future work, it is important to improve the performance
of the PILE algorithm by accelerating the matrix-vector prod-
ucts in its iterative scheme. The principal idea is to compress
the coupling matrices using the algebraic adaptive cross-
approximation (ACA) algorithm [32], which reduces signifi-
cantly the number of operations. Another idea is to hybridize
the PILE approach with the current based physical optics

(PO) asymptotic technique [2,16,31] in order to avoid the
inversion of one of the self-impedance matrices.
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