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Improvement of Iterative Physical Optics Using the Physical
Optics Shadow Radiation

Antoine Thomet1, *, Gildas Kubické2, Christophe Bourlier1, and Philippe Pouliguen3

Abstract—The prediction of Radar Cross Section (RCS) of complex targets which present shadowing
effects is an interesting challenge. This paper deals with the problem of shadowing effects in the
computation of electromagnetic scattering by a complex target using Iterative Physical Optics (IPO).
The original IPO is limited to cavities applications, but a generalized IPO can be applied to arbitrary
geometries. This paper proposes a comparison between the classical PO approach and a physical
approach based on shadow radiation (around forward direction) with PO approximation for the
consideration of shadowing effects in generalized IPO. Based on the integral equations, a rigorous
demonstration of this physical shadowing is provided. Then simulation results illustrate the interest of
using physical shadowing both from the transmitter and towards the receiver, compared to the classical
approach.

1. INTRODUCTION

Computing electromagnetic signature of complex targets presenting shadowing effects is a complex
problem for which many solutions have been proposed. Each of these solutions presents benefits and
drawbacks, and two different kinds of methods can be used for arbitrary shaped cavities: rigorous
numerical methods and asymptotic methods.

Numerical methods, like Method of Moments (MoM), can be used to calculate RCS (Radar Cross
Section) of targets with a good precision. These methods, which do not apply any approximation
(but approximation linked to meshing), are known to provide excellent results, but their complexity
is high. MoM has a complexity of O(N3), N being the number of unknowns (which is equal to
the number of non boundary edges of a meshed target). Thus, in case of great target’s dimensions
(compared to wavelength), these methods are generally not used, due to their computing time and
memory requirement. Nevertheless, MoM will be used in this paper as a reference method.

To overcome this issue, asymptotic methods have been developed and can be used in high-
frequency domain for arbitrarily shaped targets with a reduced complexity. These methods are based
on Geometrical Optics (GO), based on ray trajectories, and/or Physical Optics (PO), using surface
currents to calculate scattered fields. When multiple reflections occur, PO is generally preferred to GO,
as GO is less precise, particularly in case of highly curved geometries.

Iterative Physical Optics (IPO) [1–3] is an asymptotic method based on PO. The method has been
originally developed to calculate RCS of cavities [1] and has been generalized to arbitrary geometries [4].
This method can be described by an algorithm in 4 steps:

1) Iteration 0: this first step is to estimate surface currents (inside the cavity, in the case of original
formulation, or on the structure if using generalized IPO) from the incident electromagnetic field;
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2) Field scattering among the structure (Iterative): the calculated currents imply an electromagnetic
field scattered towards the whole structure;

3) Updating surface currents (Iterative): the calculated fields imply evolution of the surface currents;
4) Scattering through observation: field scattered towards the observation point is then calculated.

Knowing that surface currents and fields inside the cavity are inducing each other, steps 2 and 3 are
computed iteratively. The end of iterations can be either determined by a fix number of iterations [1]
or by a convergence criterion [2, 5]. IPO complexity is O(KN2), K being the number of iterations and
N the number of sample points. It is important to note that this asymptotic method permits to reduce
significantly the complexity, as the number of necessary samples is not the same as in rigorous methods:
typically, MoM needs a meshing between λ/8 and λ/10, when IPO can be run for meshing around λ/4
or even λ/3 (for example the number of elements in a λ2 surface is from 64 to 100 for MoM, and reduced
to 16 or 9 for IPO).

The first step of IPO, iteration 0, can have a strong influence on the final result, since the higher-
order currents calculation depends on it. In [1, 6], the authors used an aperture surface to calculate
currents inside the cavity. Although it is accurate in case of scattering by cavities, this method is
not a general shadowing approach, as it needs to determine the aperture surface of the cavity. This
paper focuses on the use of general shadowing approaches in IPO. Note that these techniques, based on
shadowing effects between two objects, can be used not only at iteration 0, but also at steps 4 (when
the observer cannot directly see the whole target), and, for complex geometries, at step 3 (when a part
of the object’s walls is hidden from another part), which is not the case of shadowing by an aperture
surface.

Classical PO approach (used for example in [1] in the iterations), considers a shadowed region, on
which currents vanish, and a lit region, on which currents are calculated by the PO approximation. The
main drawback of this method, detailed in this paper as “geometrical shadowing”, resides in the fact
that a ray bouncing is used to determine the shadow zone, inducing discontinuous currents.

Another approach, included in particular IPO by Burkholder et al. [7] as part of the first iteration
of IPO, is discussed in this paper, and referred as “physical shadowing” (as it is based on physical
approach, and not geometrical technique as in the classical IPO method). This technique, based on PO
shadow radiation [8–13], is a general method of considering the shadowing effect, which does not need
to use ray tracing. To our knowledge, no rigorous proof of this method, or comparison to geometrical
shadowing has been published. This paper focuses on the demonstration of the physical shadowing
principle, proving that it is a more rigorous approach than the geometrical shadowing.

First, Section 2 presents the theory of both general shadowing approaches. Then simulations are
shown in Section 3, using the example of the dihedral reflector: differences in implementation of the
methods are explained, then results are presented for different configurations, in order to observe the
impact of the shadowing approach considered and to study the improvement of using the physical
shadowing in IPO, both at incidence and at observation. Finally, Section 4 gives concluding remarks
and prospects.

2. THEORETICAL STUDY

2.1. Fields Integral Equations

In this paper, unitary vectors will be noted with a hat: v̂ or V̂ , while other vectors will be noted
in capital letter with an arrow: ~V . ~∇ stands for nabla vectorial operator. Time convention e−jωt is
assumed and omitted in the equations.

This part treats on general problem of scattering by a single object [14]. Let us consider the scenario
depicted in Figure 1.

An object of volume V , bounded by surface S and centered on the phase origin, is surrounded by a
propagation medium which volume V∞ is infinite. Propagation volume is noted V0, where V∞ = V0∪V .
Permittivity and permeability in V0 are noted ε and µ, respectively. A mobile point P ′, of coordinates
vector ~R′, is used for integration. When P ′ is located on surface S, it is linked to a surface element dS′,
with normal vector n̂′ pointing outside V . On the other hand, when it is located in a volume, a volume
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Figure 1. General configuration of scattering problem.

element dV ′ will be associated to P ′. All parameters linked to P ′, that need to be integrated, will be
noted with a “′”. Electric and magnetic fields at P ′ will be noted ~E′ and ~H ′ respectively. Sources are
represented, at each point P ′ of V0, by electric and magnetic current densities ~J ′i and ~M ′

i , and by electric
and magnetic charge densities ρ′e and ρ′m. Observation point is called P , and its coordinates vector is

noted ~R. Φ′ = ejk‖~R− ~R′‖

4π‖~R− ~R′‖ is the Green function.

Then, one can establish [14, 15]:

K(P ) ~H(P ) = ~Hi(P ) + ~Hs(P ) (1a)

K(P ) =

{0 if P ∈ V
1/2 if P ∈ S
1 otherwise

(1b)

~Hi(P ) =
∫∫∫

V0

~I ′H,V dV ′ (1c)

~Hs(P ) =
∫∫

S

~I ′H,SdS′ (1d)

In this expression, the integral kernels are expressed as:

~I ′H,V = jωεΦ′ ~M ′
i + ~J ′i × ~∇(Φ′) +

ρ′m
µ

~∇(Φ′) (2)

~I ′H,S = −jωµΦ′
(
n̂′ × ~E′

)
+

(
n̂′ × ~H ′

)
× ~∇(Φ′) +

(
~H ′ · n̂′

)
~∇(Φ′) (3)

In this final expression, K(P ) is a function related to the position of point P [15], separating the
case P ∈ V , where it highlights extinction theorem, the case P ∈ S, showing the Magnetic Field Integral
Equation (MFIE), and the case P /∈ V where it is related to the Huygens principle. Note that in case
of MFIE, integral of Equation (1d) is a principal value integral [14].

2.2. PO Approximation

PO is a method used to calculate the scattered field from an object. It is an asymptotic method based
on the fields integral equations and the tangent plane approximation.
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Based on (1), the scattered field can be expressed by introducing currents. Thus, integral kernels
are calculated as:

~I ′H,S = jωεΦ′ ~M ′ + ~J ′ × ~∇(Φ′) +
j

ωµ

(
~∇ · ~M ′

)
~∇ (

Φ′
)

(4)

where current densities ~J ′ = n̂′ × ~H ′ and ~M ′ = −n̂′ × ~E′ can be expressed:
~J ′ = n̂′ ×

(
~Hi(P ′) + ~Hr

(
P ′)) (5)

~M ′ = −n̂′ ×
(

~Ei

(
P ′) + ~Er

(
P ′)) (6)

In PO approximation, reflected fields ~Er(P ′) and ~Hr(P ′) are calculated by using Fresnel
coefficients [14]. For a perfectly-conducting target, it leads to ~Er(P ′) = − ~Ei(P ′) and ~Hr(P ′) = + ~Hi(P ′).
Then, the surface currents are:

~J ′ = 2n̂′ × ~Hi

(
P ′) (7)

~M ′ = ~0 (8)
Moreover, as PO does not consider creeping waves, another approximation is made: for targets

with large dimensions (compared to wavelength), a shadowed zone is considered, over which current
vanishes. Thus, integration surface is reduced to illuminated part of surface S, called Sill:

~Hs(P ) =
∫∫

Sill

~I ′H,SdS′ (9)

2.3. Scattering Problem with 2 Objects: Coupled Integral Equations

In this part, the problem of scattering by 2 objects is studied. The scenario is illustrated in Figure 2.
Two objects are considered, which volumes and bounding surfaces are V1, S1 and V2, S2,

respectively. Propagation volume is still called V0, where V∞ = V1 ∪ V2 ∪ V0.
Point P ′, of coordinates vector ~R′, is used for integration. When P ′ is located on surface S1 or

S2, surface element dS′ is defined, with normal vector n̂′ pointing towards V0. When P ′ is located in a
volume, a volume element dV ′ will be defined.

For two objects, Equation (1) is still valid, but S is changed into S1 ∪ S2. Thus, the expressions of
the fields are:

K(P ) ~H(P ) = ~Hi(P ) + ~Hs(P ) (10a)

K(P ) =

{0 if P ∈ V1 or P ∈ V2

1/2 if P ∈ S1 or P ∈ S2

1 otherwise
(10b)

Figure 2. General configuration of scattering problem with 2 objects.
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~Hi(P ) =
∫∫∫

V0

~I ′H,V dV ′ (10c)

~Hs(P ) =
∫∫

S1

~I ′H,SdS′ +
∫∫

S2

~I ′H,SdS′ (10d)

Equation (10d) illustrates the superposition theorem, in which surface integrals are coupled, as
they depend on total fields ~E′ and ~H ′, affected by both surfaces. Thus, there are interactions between
the two objects.

2.4. IPO Formulation and Shadowing Phenomenon

To calculate field scattered by two objects, as the two objects interact with each other, it is necessary
to enhance in order to PO take into account the interactions. In IPO, PO is first used to determine
surface currents induced by incident field (at iteration 0), and then in the iterations to update surface
currents (using fields propagating from one object to the other one). Here, the focus is on the way of
using PO method at iteration 0.

Let us consider the same case than in previous section (see Figure 2), with an incident field
propagating “from S1 to S2”: a transmitter (original field source) is inserted at point Pi, such that
S1 is located between Pi and S2. Two methods are studied to take into account the shadowing effects
in the currents: the classical geometrical shadowing and a novel approach called physical shadowing.

At iteration 0, for both methods, fields scattered by the two objects are assumed to be uncoupled.
Surface currents on S1 and the field scattered by S1 are determined by the same way for both methods.
Since S2 is illuminated “after” S1, it does not initially interfere on current calculation on S1, for each
point P1 on S1, the current is calculated by:

~J(P1) = 2n̂(P1)× ~Hi(P1) (11)

On surface S2, a shadowing phenomenon occurs, and surface currents on S2 are calculated differently
depending on using geometrical approach or physical one. Considering a point P2 on S2, the two methods
give different expressions of ~J(P2).

Geometrical shadowing is based on ray tracing to determine which part of surface S2 is shadowed by
S1. If the ray connecting the points Pi and P2 does not cross S1, then surface current is calculated from
incident field, without taking into account the surface S1 ( ~J(P2) = 2n̂(P2)× ~Hi(P2)). Otherwise, surface
current at P2 vanishes ( ~J(P2) = ~0), P2 being considered shadowed by S1. To distinguish those cases,
an illumination function I(P2) is introduced, consisting in a Boolean function which mathematically
reduces the integration surface. This function can only be determined by a geometrical way, using rays.
Then, a general expression of surface current on S2 can be obtained:

~J(P2) =
[
2n̂(P2)× ~Hi(P2)

]
I(P2) (12a)

I(P2) =
{

1 if P2 is illuminated
0 if P2 is shadowed by S1

(12b)

Physical shadowing is an interesting approach of shadowing problem, which does not use any
geometrical technique to determine the surface currents on shadowed surface. This technique is related
to the shadow radiation calculation with PO [8, 9]. The expression of ~J(P2) is derived from the coupled
magnetic fields integral Equation (10), leading to:

~J(P2) = 2n̂(P2)× ~H(P2) (13a)

~H(P2) = ~Hi(P2) +
∫∫

S1

~I ′H,SdS′ +
∫∫

S2

~I ′H,SdS′ (13b)

In (13b), the integral over surface S2 is assumed to be vanished at iteration 0, as PO approximation
neglects the creeping waves. Also, objects being considered as uncoupled, fields in expression of I ′H,S for
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P ′ ∈ S1 are independent of S2. Thus expression
∫∫
S1

I ′H,SdS′ corresponds to the magnetic field scattered

by surface S1 towards point P2, which is calculated by PO method and noted ~H(S1 7→ P2). Then ~J(P2)
can be expressed as:

~J(P2) = 2n̂(P2)×
[

~Hi(P2) + ~H(S1 7→ P2)
]

(14)

Physically, field scattered in forward direction by S1 comes to balance the direct incident field at
P2, expressed as if S1 does not exist. By this way, field ~H(S1 7→ P2) involves a shadowing effect on
surface S2, which is physically more rigorous (because closer to the exact coupled integral equations)
than that obtained by geometrical shadowing. Moreover, it does not need to use a ray algorithm.

In order to be implemented in IPO, shadowed parts and shadowing parts of the target have to
be identified. In [7], the authors use in “IPO shadowing rule” a normal test to avoid any ray tracing:
integration is made only for points P ′ satisfying n̂(P ) · (~R − ~R′) < 0. Thus, using this technique,
physical shadowing application is a part of first IPO iteration. Depending on the case, it could also
be more interesting to determine analytically the shadowed part and the shadowing part, in order to
save computation time (physical shadowing is then iteration 0, and useless parts of the surfaces can be
excluded).

Finally, this theoretical study shows that physical shadowing is a more rigorous approach than
geometrical shadowing. Section 3 provides examples of simulations confirming that using physical
shadowing in IPO permits to improve currents and RCS predictions.

3. IMPLEMENTATION AND NUMERICAL RESULTS

3.1. Scenario Description: Dihedral Reflector

The studied case is the bistatic RCS, in V V polarization, of a thin perfectly conducting right-angled
dihedral reflector. To reduce the impact of edge diffraction, the V V polarization is selected. However,
for the HH polarization, conclusions are similar. This case is particularly interesting in order to exhibit
the impact of shadowing approach. Indeed, the influence of iterations will not be very important due to
its geometry: the number of iterations necessary for convergence is close to the number of geometrical
reflections, which does not exceed 2 in this case. Thus, differences between both shadowing approaches
will be highlighted.

The object is depicted in Figure 3(a) and parameters common to each simulation are given in
Table 1. It consists in two orthogonal plates with infinitely small thickness, noted SX and SZ . The
two sides of each plate are considered apart from each other and noted among their normal directions
: n̂(S+

X) = +Ẑ, n̂(S−X) = −Ẑ, n̂(S+
Z ) = +X̂ and n̂(S−Z ) = −X̂. Incidence and observation points, noted

Pi and Pobs respectively, are located in plane (X̂OẐ) by their elevation angles θi and θs. Oriented angles
are defined in clockwise direction.

Simulations are run with a meshing around λ/8, as in MoM, in order to have coherent comparisons,
but IPO can be used with bigger meshes without loss of accuracy.

Table 1. Global simulation parameters.

Parameter Notation Justification Value
frequency F X band 10GHz

planes length L 8λ 240mm
planes thickness ε no thickness 0
depth among Ŷ Dy 8λ 240mm
points per length Npts meshing around λ/8 63

number of iterations Niter convergence 2
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(a) (b)

Figure 3. Geometrical configuration and illustration of geometrical shadowing. (a) Dihedral reflector
configuration. (b) Particular case showing geometrical shadowing at both incidence and observation.

Shadowing effects (see Section 3.2) can be considered both from the transmitter (when the dihedral
is partly illuminated due to shadowing from other parts) and towards the receiver (when a part of
dihedral cannot be seen by the observation point without passing through another part). Therefore two
different scenarii are proceeded: one with a fix incidence and a varying observation, showing the effect
of shadowing towards receiver; and one with several incidence directions, showing cases of shadowing
from transmitter.

The relative norm 2 error is used to estimate the validity of the different results. It is defined, for
a set of N components of ~V , in comparison to a reference set ~V REF , by:

εREF
(

~V
)

=

∥∥∥~V − ~V REF
∥∥∥

∥∥∥~V REF
∥∥∥

(15a)

where ‖~Y ‖ =

√√√√
N∑

x=1

|Yx|2 (15b)

Yx, x = 1, . . . , N , representing the N elements of any vector ~Y .

3.2. Implementation

In order to explain the implementation of both kind of shadowing from the transmitter and towards
receiver, let us consider the case of an incidence angle θi ∈ (−45; 0)◦ and observation angle θs ∈ (−45◦; θi)
(see Figure 3(b)). These shadowing effects are described below, their consideration is illustrated in
Figure 4, showing the implementation of IPO algorithm.

From incidence point Pi, a shadowing effect is to be considered for surface S+
X . The geometrical

shadowing needs to calculate an illumination function (Ii(S+
X)). This function is a Boolean function

separating the part of the surface where the current is calculated by PO approximation ( ~J =
2n̂(S+

X)× ~Hi(S+
X)) from the part where current is forced to zero ( ~J = ~0). In case of physical shadowing,

shadowing effect is applied by considering a field propagating from S−Z in its forward direction balancing
incident field ( ~J = n̂× [ ~Hi + ~H(S−Z 7→ S+

X)]).
The receiver (after iterations of IPO), located on Pobs cannot directly observe the whole S+

X surface.
Geometrical approach consists in considering another boolean function (Is(S+

X)), separating the part
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Figure 4. IPO algorithm with different cases of shadowing.

of the surface that can be directly observed from the part hidden by SZ plane, where currents will be
forced to zero for radiation. Using physical shadowing approach at observation simply leads to consider
each surface current in radiation, following the Huygens principle, fields induced by currents from S+

Z

being balancing those from S+
X .

Note that in case of more complex geometries a third case of shadowing effect can be considered
inside the cavity.

3.3. Numerical Results: Shadowing toward Receiver

First, a simulation has been set in order to show the differences between both shadowing approaches
at observation. In this case, an incidence from the dihedral’s bisector (θi = +45◦) is considered, and
observation angle varies (θs ∈ [−180; 180]◦). Thus, depending on the observation angle, the whole
dihedral or a part of it can be seen at the observation point. In this case, there is no shadowing effect
at incidence, since the whole S+

X and S+
Z surfaces are illuminated, and thus physical shadowing and

geometrical shadowing are the same.
Figure 5(a) shows the obtained results, comparing IPO method with physical shadowing, IPO with

geometrical shadowing and MoM. Figure 5(b) plots a zoom of this result in the most interesting zone
of observation. Also errors in different zones are given in Table 2.

These results can be analyzed by splitting up the observation domain in different zones:

• for θs ∈ (0; 90)◦, both S+
X and S+

Z surfaces are fully seen by the receiver, and S−X and S−Z are unseen.
In this case, there is no shadowing effect and geometrical shadowing and physical shadowing give
exactly the same results. These results are close to MoM reference results, especially around the
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(a) (b)

Figure 5. Results for shadowing towards receiver. Case of the dihedral reflector for θi = +45◦;
comparing MoM, IPO with physical shadowing and IPO with geometrical shadowing; see Table 1 for
general parameters. (a) RCS V V versus θs for θs in [−180; 90]◦. (b) Enlarged details for θs in [−45; 5]◦.

Table 2. Bistatic RCS V V error per zone, related to results in Figure 5; comparing IPO with physical
shadowing and IPO with geometrical shadowing to MoM.

εMoM(σ) (%) (0; 90)◦ (−45; 0)◦ (−90; −45)◦ (−180; −90)◦

IPO, physical shadowing 3.7 32 34 0.61
IPO, geometrical shadowing 3.7 199 - -

specular direction θi = +45◦, and differences are mainly due to the non consideration of edge
diffraction by PO;

• for θs ∈ [−45; 0)◦ (see enlarged details Figure 5(b)), surfaces S−X and S+
Z cannot be seen, S−Z is fully

seen (but not illuminated), and surface S+
X is partially shadowed by SZ plate. Thus only a part

of S+
X is considered in geometrical shadowing, while in physical shadowing approach, field from

S+
Z comes to balance field from the whole S+

X plane. Differences can be observed between both
techniques, and physical shadowing globally leads to results closer to MoM;

• for θs ∈ [−90;−45)◦, surfaces S−X and S+
Z cannot be seen, S−Z is fully seen, and surface S+

X is
still shadowed by SZ plate. The difference is that S+

X is now considered fully shadowed by SZ in
geometrical shadowing, while physical shadowing still considers that the field scattered from S+

Z

balances field from the whole S+
X surface. Thus geometrical shadowing leads to a non existent

scattered field, and a RCS equal to 0m2 (−∞dBm2), while IPO with physical shadowing still
matches relatively well the reference;

• for θs ∈ (−180;−90)◦, surfaces S−X and S−Z , where currents vanish, are directly seen at observation
point, while illuminated surfaces S+

X and S+
Z are hidden. For geometrical shadowing, for the same

reason than previous zone, RCS vanishes (to be rigorous, except at the single point θs = −135◦,
GO being able to calculate scattered field in the exact forward scattering direction). For physical
shadowing, this case ends up to typical forward scattering using PO approximation [8, 9], and the
calculated RCS is very close to the reference.

Note that the same observations can be made in the other sense (θs ∈ [90; 180)◦) by symmetry.
Moreover, a discontinuity can be observed for geometrical shadowing at θs = 0◦ (and also at θs = +90◦),
obvious in Figure 5(b), due to the fact that Is(S+

Z ) is suddenly forced to zero. This non physical
discontinuity is avoided by the use of physical shadowing.
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In conclusion, using physical shadowing at observation in IPO gives more complete and accurate
results. Indeed, it leads to a more general result (permitting observation around the forward scattering
direction), it permits to suppress any discontinuity due to the geometry, and, in zones where it differs
from geometrical approach of shadowing effect, the results obtained with physical shadowing are closer
to reference method.

3.4. Numerical Results: Shadowing from the Transmitter

This section shows series of results for θi ∈ [−45; 0)◦. In such a case, as seen previously, a shadowing
effect is to be considered from the transmitter for surface S+

X . Observation is made over θs ∈ [0; 90]◦
so that influence of shadowing at observation is weak: for geometrical shadowing, no ray boucing is
needed towards the receiver, and the only difference with physical shadowing at observation is the field
scattered by S−Z in forward direction, which has a slight influence on results. Also, surface current
~J(S+

X) is observed, for both cases of shadowing, in comparison with MoM surface currents behaviors.
Figures 6(a), 6(b) and 6(c) show results of bistatic RCS V V and surface currents on S+

X for incidence
angles θi = −10◦, θi = −20◦ and θi = −30◦, respectively. Tables 3 and 4 present the errors calculated
for both methods, on RCS and currents, respectively.

(a)
(b)

(c)

Figure 6. RCS in V V polarization versus θs and surface current versus X for different values of
incidence angle: (a) θi = −10◦; (b) θi = −20◦; (c) θi = −30◦; comparing MoM, PO with physical
shadowing and PO with geometrical shadowing; see Table 1 for general parameters.
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Table 3. RCS V V error per incidence angle, related to results Figures 6 and 7; comparing IPO with
physical shadowing and IPO with geometrical shadowing to MoM.

εMoM(σ) (%) θi = −10◦ θi = −20◦ θi = −30◦ θi = −45◦

physical shadowing 20 14 13 39
geometrical shadowing 18 14 31 -

Table 4. Surface current error per incidence angle, related to results Figures 6 and 7; comparing IPO
with physical shadowing and IPO with geometrical shadowing to MoM.

εMoM(J) (%) θi = −10◦ θi = −20◦ θi = −30◦ θi = −45◦

physical shadowing 24 24 21 42
geometrical shadowing 29 39 44 -

Figure 7. RCS in V V polarization versus θs and surface current versus X for extreme case of θi = −45◦;
comparing MoM, PO with physical shadowing and PO with geometrical shadowing (vanishing currents
and RCS); see Table 1 for general parameters.

In such cases, using geometrical shadowing at iteration 0 consists in determining Ii(S+
X) and

multiplying by the obtained Boolean, the current calculated by PO approximation from the incident
field ; physical shadowing consists in adding the field from S−Z to the incident field.

Observing the current progression among X axis permits to confirm that physical shadowing
is physically more realistic than geometrical technique. Indeed, the geometrical model presents a
discontinuous behavior, which is not physical, and leads to a result less close to the one obtained
by MoM. If the current looks more realistic using physical shadowing for any of the 3 incidence angles
considered here, improvement (compared to MoM) is more obvious for angles implying more shadowing
effects.

In the different cases of Figure 6, RCS versus θs is near a cardinal sine shape. This behavior can
be simply explained based on IPO with geometrical shadowing. Indeed in this case, the RCS is the
one of the geometrically illuminated part of S+

X plane (the part in which Ii(S+
X) = 1), modified by the
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iterating process (which is not very influent in the present case). The general formula of RCS V V of a
rectangular plate of dimensions LX by LY is provided in (16), and justifies the sinc shape.

σ =
4π(LXLY )2

λ2
sinc2

(
kLX

2
[sin(θi)− sin(θs)]

)
cos2(θi) (16)

Using physical shadowing permits a better consideration of the distortion of the sinc shape, which
is observed on the MoM results. Thus, results obtained by IPO are better with physical shadowing than
with geometrical shadowing, which is more obvious for incidence angle far from zero.

Last, case of an incidence θi = −45◦ shows an extreme case highlighting interest of using physical
shadowing. Figure 7 shows the corresponding results. With such an angle, surface S+

X is geometrically
fully shadowed (Ii(S+

X) = 0 all along the surface). Then geometrical shadowing ends up in vanishing
currents. On the other hand, physical shadowing gives surface current quite close to the MoM one. Then
the non zero currents obtained by MoM and IPO with physical shadowing leads to an existing signature,
whereas RCS calculated by IPO with geometrical shadowing ends up in a RCS of 0m2 (−∞dBm2).

As seen previously, in such a case geometrical shadowing considers that S+
X is fully shadowed by SZ

plane. On the other hand, using physical shadowing consists in adding the field from S−Z to the incident
field, which does not end up in a current constantly equal to zero. Relatively close to the MoM current,
this result shows a particular case where geometrical shadowing cannot permit to calculate RCS, while
IPO with physical shadowing does, with quite a good accuracy.

4. CONCLUSION

This paper provides a comparison of two shadowing techniques used in generalized IPO method (applied
to arbitrary geometries): geometrical shadowing and physical shadowing (interpreting shadowing as
interference of shadow radiation on incident wave). Based on MFIE applied to electromagnetic scattering
by coupled objects, it has been demonstrated that physical shadowing is more rigorous than the
classically used geometrical shadowing.

The results show an improvement of RCS prediction by IPO while using physical shadowing
instead of the classical geometrical approach, both at incidence and observation. Results obtained
after iterations are closer to reference results, and physical shadowing is more complete, as it permits
to treat cases of incidence and observation where geometrical shadowing is not able to furnish a result.
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