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Electromagnetic Interactions Analysis between Two 3-D Scatterers
Using the E-PILE Method Combined with the PO Approximation

Mohammad Kouali1, *, Gildas Kubické2, and Christophe Bourlier3

Abstract—In this paper, the electromagnetic scattering from two scatterers is analyzed from a rigorous
integral formulation solved by the method of moments (MoM). G. Kubické has recently developed the E-
PILE (Extended Propagation-Inside-Layer Expansion) method to calculate the scattering from an object
above a rough surface for a two-dimensional problem. This method allows us to calculate separately
and exactly the interactions between the object and the rough surface. The purpose of this paper is
to extend the E-PILE method to a three-dimensional problem. Such a 3-D problem involves a large
number of unknowns and can not be solved easily with a conventional method of moments by using a
direct LU inversion. Thus to solve this issue, the E-PILE method is combined with the physical optics
(PO) approximation to calculate the local interactions on both the object and the rough surface. By
using this hybrid method, the requirements of memory and CPU time can be reduced significantly.

1. INTRODUCTION

In recent years, composite electromagnetic scattering from an object near a randomly rough surface has
attracted considerable interest in the fields of radar surveillance, target identification, object tracking,
and so on. Some methods have been developed for the efficient analysis of composite scattering for a
two-dimensional problem (2-D) [1–9]. Other examples for a three-dimensional problem (3-D) can be
found in [10–17]. However it is important for practical application to study the case of 3-D problem.

For a large 3-D problem, it is well known that the method of moments (MoM) is limited by the
memory requirement, so some simplifying assumptions must be made. For example Ye et al. proposed
a hybrid method combining analytic Kirchhoff Approximation (KA) and MoM to study the scattering
from 3-D perfect electric target above a 2-D dielectric rough surface [10]. In [11] a half-space Green
function with the rough surface interface is first derived from the KA, then the method of moments is
applied to analyze the scattering for a 3-D problem. In [12] only small problems are investigated from
a fast rigorous method. In [13, 14] some assumptions are made on the coupling mechanisms from the
four-path model. In [15, 16] the electromagnetic scattering of a 3-D object above a 2-D rough surface is
studied using the Finite-difference time-domain (FDTD) approach.

Moreover, even for a 2-D problem, several simplifying assumptions are made for a large one-
dimensional rough surface, since a brute force MoM can be unusable. A parallelization of a rigorous
method based on the MoM was proposed in [1]. In [2] a domain decomposition method with the finite-
element method was applied. In [3] a hybrid algorithm, combining analytic KA and numerical method of
moments MoM, is developed to solve the coupling electric-field integral equations (EFIE) of scattering
from a perfect electric conducting (PEC) object above a randomly rough PEC surface. An efficient
numerical PILE (Propagation-Inside-Layer Expansion) method for computing the field scattered by
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rough layers is proposed in [4]. In [5] an iterative method E-PILE (Extended Propagation-Inside-Layer
Expansion) was combined with the Forward-Backward Spectral Acceleration (FBSA) to accelerate the
computation of the local interactions on the large rough surface. In [6] the fast multipole method is
used to accelerate the computation of the local interactions on the object.

Recently G. Kubické has developed a fast hybrid method for scattering from a large object with
Dihedral effects above a large rough surface (2-D problem) [7]. For such a problem, the object is large,
and the MoM with direct LU inversion can not be applied. Thus, to solve this issue, the E-PILE
method is combined with the FBSA for the local interactions on the rough surface and with physical
optics approximation (PO) for the local interactions on the object.

Very recently we have applied the Forward-Backward (FB) method to calculate the local
interactions on the rough surface [17], we noticed that the complexity of the method is reduced but not
enough for a large 3-D problem. In this paper, the E-PILE method is generalized to a 3-D problem,
and then the physical optics approximation is combined with the E-PILE method to compute the local
interactions on both the object and the rough surface. According to this it becomes unnecessary to
calculate the inverse of the impedance matrix for both the object and the rough surface.

The paper is organized as follows. In Section 2 the E-PILE method is extended to study the
scattering from a 3-D electromagnetic problem, coupling surface integral equations are also derived.
In Section 3, the hybridization of E-PILE with PO approximation is detailed. In Section 4 numerical
examples for different scenarios are presented to validate the method. The final section gives concluding
remarks.

2. MATHEMATICAL FORMULATIONS OF THE E-PILE METHOD

Kubické et al. developed the E-PILE method to study the electromagnetic scattering from an object
above a one-dimensional rough surface (2-D problem) [5]. In this paper, the E-PILE method is updated
to study the scattering from a 3-D problem. Consequently the mathematical formulations of the E-PILE
method is extended to the 3-D case.

Let us consider an incident electromagnetic (EM) plane wave that illuminates the system composed
of two perfect electric conductor (PEC) scatterers (object+rough surface) as shown in Figure 1. The
incident electromagnetic fields are written as

Ei(R) = êie
iki·R, Hi(R) =

1
η0

k̂i ×Ei(R), (1)

where ki = k0k̂i, and k0 and η0 are respectively the wave number and wave impedance in air. Note
that the harmonic time convention eiωt is assumed and suppressed throughout this paper. The plane
wave in Equation (1) can be tapered to avoid edge limitations as in [12, 13].

Figure 1. A 3-D model of an object above a rough surface.
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To obtain the first coupling integral equation between S1 and S2 we use the boundary conditions
on scatterer 1 (the object) S1, ∀ R′ ∈ S1

n̂1×Hi(R′)+n̂1 ×−
∫

S1

J1(R1)×∇R1G(R1,R′)dS

︸ ︷︷ ︸
local interactions

+ n̂1×
∫

S2

J2(R2)×∇R2G(R2,R′)dS

︸ ︷︷ ︸
coupling interactions

=
1
2
J1(R′), (2)

where −
∫
S dS is the principal value integral, G(R1,R′)=exp(−ik0r)/4πr is the free-space Green function

with r the distance between the two points R1 and R′, and J1, J2 are the electric currents on the two
scatterers S1 and S2, respectively. G(R2,R′) = exp(−ik0r)/4πr is the free-space Green function with
r the distance between the two points R2 and R′.

Using the boundary conditions on scatterer 2 (the rough surface) S2, the second coupling integral
equation ∀ R′ ∈ S2 is obtained from

n̂2×Hi(R′) + n̂2×−
∫

S2

J2(R2)×∇R2G(R2,R′)dS

︸ ︷︷ ︸
local interactions

+ n̂2×
∫

S1

J1(R1)×∇R1G(R1,R′)dS

︸ ︷︷ ︸
coupling interactions

=
1
2
J2(R′), (3)

The use of the method of moments with point matching and pulse basis functions leads to the following
linear system

Z̄X = b, (4)

where Z̄ is the impedance matrix of the total scene (S1 ∪ S2) of size (N1 + N2) × (N1 + N2). The
unknown vector X of length (N1 + N2) is equal to

XT = [XT
1 XT

2 ], (5)

where T stands for transpose operator. X1 of length N1 contains the unknown currents J1 on scatterer 1
in which J(R1) is written here as a vectorial form. In fact, Equations (2) and (3), and related vectorial
quantities J1, J2, Hi, are in fact projected on the surfaces such that they can be written as scalar
equations. Thus X1 contains the scalar components of J1 (same for all other quantities below: X2,
b1,. . . ). Nevertheless, in order to write equations in compact form, all vectorial quantities are kept in
a vectorial form in the linear system of MoM: the projection on the scalar components is implicit.

XT
1 =

[
J(R1

1) . . .J(RN1
1 )︸ ︷︷ ︸

Scatterer 1

]
, (6)

and

XT
2 =

[
J(R1

2) . . .J(RN2
2 )︸ ︷︷ ︸

Scatterer 2

]
. (7)

The source term b is defined as
bT =

[
bT

1 bT
2

]
, (8)

with

bT
1 =

[
n̂1 ×Hi

(
R1

1

)
. . . n̂1 ×Hi

(
RN1

1

)

︸ ︷︷ ︸
Scatterer 1

]
, (9)

bT
2 =

[
n̂2 ×Hi

(
R1

2

)
. . . n̂2 ×Hi

(
RN2

2

)

︸ ︷︷ ︸
Scatterer 2

]
, (10)

To solve the linear system, the matrix Z̄ is expressed from sub-matrices as

Z̄ =
[

Z̄1 Z̄21

Z̄12 Z̄2

]
. (11)
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Z̄1 corresponds exactly to the impedance matrix of the first scatterer as if it is assumed to be alone (in
free space), Z̄2 corresponds to the impedance matrix of the second scatterer as if it is assumed to be
alone (in free space). Z̄21 and Z̄12 can be interpreted as coupling matrices for the interaction between
S1 and S2. The inverse of matrix Z̄ can be expressed as [4]

Z̄−1 =
[

T̄ Ū
V̄ W̄

]
, (12)

with 



T̄ =
(
Z̄1 − Z̄21Z̄

−1
2 Z̄12

)−1

Ū = −
(
Z̄1 − Z̄21Z̄

−1
2 Z̄12

)−1
Z̄21Z̄

−1
2

V̄ = −Z̄−1
2 Z̄12

(
Z̄1 − Z̄21Z̄

−1
2 Z̄12

)−1

W̄ = Z̄−1
2 + Z̄−1

2 Z̄12

(
Z̄1 − Z̄21Z̄

−1
2 Z̄12

)−1
Z̄21Z̄

−1
2

, (13)

and the unknown vector X is obtained as[
X1

X2

]
= Z̄−1

[
b1

b2

]
=

[
T̄b1 + Ūb2

V̄b1 + W̄b2

]
. (14)

By using Equations (13) and (14), the current on the upper scatterer X1 can be expressed as

X1 =
(
Z̄1 − Z̄21Z̄

−1
2 Z̄12

)−1
b1 −

(
Z̄1 − Z̄21Z̄

−1
2 Z̄12

)−1
Z̄21Z̄

−1
2 b2, (15)

which leads to

X1 =
(
Z̄1 − Z̄21Z̄

−1
2 Z̄12

)−1 (
b1 − Z̄21Z̄

−1
2 b2

)
=

(
Ī− M̄c,1

)−1 Z̄−1
1

(
b1 − Z̄21Z̄

−1
2 b2

)
, (16)

where Ī is the identity matrix, and M̄c,1 is a characteristic matrix expressed as

M̄c,1 = Z̄−1
1 Z̄21Z̄

−1
2 Z̄12. (17)

The first term in Equation (16) can be expanded as an infinite series over p

(
Ī− M̄c,1

)−1 =
p=∞∑

p=0

M̄p
c,1. (18)

For the numerical computation, the sum must be truncated at the order PE-PILE. From Equations (17)
and (18), the unknown current on the upper scatterer X1 is then expressed as

X1 =
[ p=PE-PILE∑

p=0

M̄p
c,1

]
Z̄−1

1

(
b1 − Z̄21Z̄

−1
2 b2

)
=

p=PE-PILE∑

p=0

X̄(p)
1 , (19)

in which {
X(0)

1 = Z̄−1
1

(
b1 − Z̄21Z̄

−1
2 b2

)
for p = 0

X(p)
1 = M̄c,1X̄

(p−1)
1 for p > 0

. (20)

The unknown vector X2 is obtained by substituting in Equations (20), (19), and (17), subscripts
1, 2, 12, 21 for subscripts 2, 1, 21, 12, respectively.

The norm of the complex matrix
∣∣M̄c,1

∣∣ is defined by its spectral radius, i.e., the modulus of
its eigenvalue which has the highest modulus. Expansion (18) is then valid if

∣∣M̄c,1

∣∣ is smaller than
one. M̄c,1 has a clear physical interpretation as shown in Figure 2: in the zeroth order terms, Z̄−1

1

accounts for the local interactions on the upper scatterer, so X(0)
1 corresponds to the contribution of

the scattering on the upper scatterer, when it is illuminated by the direct incident field (b1) and the
direct scattered field by the lower scatterer (−Z̄21Z̄

−1
2 b2). In the first order term, X(1)

1 = M̄c,1X
(0)
1 , Z̄12
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Figure 2. Physical interpretation of E-PILE method.

propagates the resulting upper field information, X(0)
1 , toward the lower scatterer, Z̄−1

2 accounts for the
local interactions on this scatterer, and Z̄21 re-propagates the resulting contribution toward the upper
scatterer; finally, Z̄−1

1 updates the field values on the upper scatterer. So the characteristic matrix M̄c,1

realizes a back and forth between the upper scatterer and the lower one. The order PE-PILE of E-PILE,
corresponds to the PE-PILE back and forth between the upper and the lower scatterer. In the same
manner, M̄c,2 realizes a back and forth between the lower scatterer and the upper one.

Once the equation Z̄X = b is solved for X, the scattered fields are computed by using Huygen’s
principle on the electric current densities, and the normalized Radar Cross Section (NRCS) of the two
scatterers can be calculated by

NRCS = lim
R→∞

4πR2 ‖Es‖2

2ηPi
, (21)

in which Es is the total scattered electric field in the far field region, and Pi is the incident power
calculated by

Pi =
2π2

η

∫

kρ<k
dkxdky ‖ETE (kx, ky)‖2 (kz/k). (22)

The most complex operation in the calculation of X1 and X2 is Z̄−1
1 and Z̄−1

2 . This calculation concerns
the local interactions on both scatterer 1 and scatterer 2. One way to speed up this operation is to
make a hybridization between the E-PILE method and the PO approximation.

3. HYBRIDIZATION OF E-PILE WITH PO APPROXIMATION

In the previous section, we have developed an exact numerical method E-PILE, based on the method
of moments, to study the scattering from an object above a rough surface for a three-dimensional
problem. The E-PILE is extremely powerful but it is limited to electrically small and moderately
large electromagnetic structures, because its computation cost increases rapidly with an increase of the
electrical size of the problem. Therefore, one strategy to reduce the computation time and memory
requirements is to hybridize the E-PILE method with the PO approximation which is often used to
approximate the current in the illuminated region of large, smooth, conducting bodies.

Let a PEC structure be excited by a time harmonic electromagnetic field of intensities Ei and
Hi. The distribution of surface electric currents on the structure can be evaluated using the PO
approximation as follows

JPO = 2n̂(R)×Hi(R) ∀R ∈ Si, (23)

where Si is the illuminated surface.
Let us consider the 0th order of E-PILE

X(0)
1 = Z̄−1

1

(
b1 − Z̄21Z̄

−1
2 b2

)
, (24)
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where b1 = n̂1(R1)×Hi(R1) and b2 = n̂2(R2)×Hi(R2) are the tangential incident fields on the first
and second scatterer, respectively.

In Equation (24), one can split up the excitation into two sources: one due to the direct illumination
of the incident field b1 and the other one due to the coupling interaction with the second scatterer
Z̄21Z̄

−1
2 b2. The expression Z̄−1

2 b2 corresponds to the surface current density on the second scatterer
as if it assumed to be in free space. By applying the PO approximation, the diagonal elements of Z̄−1

2
are equal to 2 on the illuminated region of the surface and 0 otherwise (no point to point interaction
with PO). The expression Z̄−1

1 b1 corresponds to the surface current density on the first scatterer as if
it assumed to be in free space. By applying the PO approximation, the diagonal elements of Z̄−1

1 are
equal to 2 on the illuminated region of the surface and 0 otherwise. As a result, Z̄−1

1 and Z̄−1
2 are not

calculated, consequently the calculation of E-PILE method will be strongly accelerated.
Mathematically, applying the PO approximation on the two scatterers for the case of a plate above

a rough surface can be explained as follows:
PO on the first scatterer (PO1): First, the illuminated and shadowed regions must be defined

to apply the PO approximation. As illustrated in Figure 3, the top side of the plate Stop is illuminated
by the incident field b1, while the bottom side Sbottom is illuminated by the scattered field from the
rough surface Z̄21Z̄

−1
2 b2. So b1 should be modified as follows:

b′1 =
[

btop
1

bbottom
1

]
, (25)

where

btop
1 =




n̂×Hi(R1
1)

...
n̂×Hi(RNtop

1 )


 , (26)

is the incident field on the top side and

bbottom
1 =




0
...
0






 Nbottom, (27)

is the incident field on the bottom side. Ntop and Nbottom are the number of sampling points on the
top and bottom side, respectively.

The coupling matrix Z̄21 should also be modified as:

Z̄′21 =

[
Z̄top

21

Z̄bottom
21

]
, (28)

where Z̄top
21 is the coupling matrix between the rough surface and the top side of the plate. Since PO

approximation is used, Z̄top
21 is a zero filled matrix because the scattered field from the rough surface

illuminates only the bottom side of the plate. Z̄bottom
21 is the coupling matrix between the rough surface

and the bottom side of the plate which is illuminated by the scattered field from the rough surface.
As a result Equation (20) in the E-PILE algorithm is simplified as:

{
X(0)

1 = 2
(
b′1 − Z̄′212b2

)
for p = 0

X(p)
1 = M̄′

c,1X̄
(p−1)
1 for p > 0

. (29)

in which M̄′
c,1 = 2Z̄′212Z̄12.

PO on the second scatterer (PO2): As illustrated in Figure 4, the rough surface is illuminated
by the direct incident field b2, and the scattered field from the plate Z̄12Z̄

−1
1 b′1. These two fields

illuminate the same side of the rough surface.
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Figure 3. Illustration of propagation paths
according to PO1.

Figure 4. Illustration of propagation paths
according to PO2.

The unknown currents on the rough surface can be calculated from the E-PILE algorithm as follows:{
X(0)

2 = 2
(
b2 − Z̄122b′1

)
for p = 0

X(p)
2 = M̄′

c,2X̄
(p−1)
2 for p > 0

. (30)

in which M̄′
c,2 = 2Z̄122Z̄

′
21.

In conclusion, the inverse of the impedance matrices Z̄−1
1 and Z̄−1

2 are not calculated. Thus, the
complexity for the inversion O(N3

1 ) becomes 1 and O(N3
2 ) → 1 also. So the workload is reduced as the

expense of reduced accuracy. PO1 and PO2 shadowing effects being geometrically taken into account
in the incident vector and during the coupling matrix fillings. Indeed, we can note that the E-PILE
combined with the PO on both scatterers is similar to the Iterative Physical Optics (IPO) [20].

4. NUMERICAL RESULTS

4.1. Validity of E-PILE Method

The E-PILE method is tested firstly for the case of two parallel horizontal PEC plates, and secondly
for the case of a PEC plate above a PEC randomly rough surface. To quantify the convergence of the
E-PILE method versus its order, the Relative Residual Error (re) is introduced and defined as

re =
norm(X−XLU)

norm(XLU)
. (31)

X represents the electric current induced on the surface. The subscript LU means that the vector is
computed from LU inversion. For a low re, the vector X obtained from the E-PILE method is close to
XLU computed from the direct LU inversion. We compare the results obtained by E-PILE with those
computed from the MoM with a direct LU inversion (MoM-LU), which is the reference method here.

Consider two parallel plates shown in Figure 5, the dimensions of the upper plate are S1 = 2λ0×2λ0,
the dimensions of the lower one are S2 = 6λ0 × 6λ0, the distance D between the two plates is 5λ0,
sampling steps are ∆x = ∆y = λ0/8. An incident EM plane wave vertically polarized illuminates the
system, with angles θi = 0◦ for results in Figure 6(a) and θi = 45◦ for results in Figure 6(b), where the
Radar Cross Section (RCS) computed from the E-PILE method is compared with that obtained from
MoM-LU versus the scattering angle θs.

Figure 6 shows that as the order of E-PILE increases it converges to LU (E-PILE 8 is closer to
LU than E-PILE 0). Other simulations, not depicted here, showed that the E-PILE method converges
more quickly as the distance between the two plates increases, since the electromagnetic coupling is less
important than the previous case. In fact, the order PE-PILE is directly related to the coupling between
the two scatterers.
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Figure 5. Composite model of two parallel horizontal PEC plates.
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Figure 6. Convergence of E-PILE versus its order, for the case of two parallel plates, S1 = 2λ0 × 2λ0,
S2 = 6λ0 × 6λ0, D = 5λ0: (a) θi = 0◦, (b) θi = 45◦.

Let us now consider the configuration of a PEC plate above a PEC rough surface as shown in
Figure 7. The dimensions of the plate are S1 = 2λ0 × 2λ0 and the rough surface obeys a Gaussian
process with a Gaussian height spectrum with root mean square height σz = 0.2λ0, correlation lengths
are Lcx = Lcy = 1λ0. The dimensions of the rough surface are S2 = 6λ0 × 6λ0, the distance D between
the plate and the rough surface is 5λ0, sampling steps are ∆x = ∆y = λ0/8. An incident EM plane wave
vertically polarized illuminates the system, with angles θi = 0◦ for results in Figure 8(a) and θi = 45◦
for results in Figure 8(b), where the RCS computed from the E-PILE method is compared with that
obtained from MoM-LU versus the scattering angle θs.

Figure 8 shows that E-PILE method is also valid for this configuration, and as the order of E-PILE
increases it converges to LU.

Now we focus on the convergence rate of the E-PILE method for the four previous scenarios:

(1) Scenario of Figure 6(a).
(2) Scenario of Figure 6(b).
(3) Scenario of Figure 8(a).
(4) Scenario of Figure 8(b).

Figure 9 compares the Relative Residual Error for each scenario versus E-PILE order. As a general
remark, it can be observed that E-PILE converges more slowly for scenario (1). This is due to the value
of the incidence angle θi = 0◦. Indeed, for this scenario more iterations (reflections between the two
plates) are needed to obtain a weak field region on the lower plate as a result of the presence of the
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Figure 7. Composite model of a PEC plate above a PEC rough surface.
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Figure 8. Convergence of E-PILE versus its order, for the case of a plate above a rough surface,
S1 = 2λ0 × 2λ0, S2 = 6λ0 × 6λ0, D = 5λ0, σz = 0.2λ0, Lcx = Lcy = 1λ0: (a) θi = 0◦, (b) θi = 45◦.

upper plate above it. Furthermore, If we choose re = 0.02 as a threshold value, then we can notice from
Figure 9 that E-PILE converges more rapidly for scenarios (2) and (4) where θi = 45◦ than scenarios
(1) and (3) where θi = 0◦. So we can conclude that E-PILE method is sensitive to the incidence angle.

4.2. Validity of E-PILE Hybridized with Physical Optics (E-PILE+PO1+PO2)

To validate our hybrid method E-PILE+PO1+PO2, comparisons with MoM-LU for two different
configurations are proposed. The first one is the case of two parallel horizontal PEC plates, and the
second one is the case of a PEC plate above a PEC rough surface, the order of E-PILE, PE-PILE = 8,
for all simulations.

Let us firstly consider the case of two parallel horizontal plates of dimensions S1 = 1λ0 × 1λ0,
S2 = 8λ0 × 8λ0, the distance between them is 5λ0, and the sampling steps are ∆x = ∆y = λ0/8. The
two plates are illuminated by an EM plane wave with incidence angle of θi = 0◦. Comparisons of RCS
versus θs are shown in Figures 10(a) and 10(b). From the Figures, a very good agreement is observed
between the hybrid method E-PILE+PO1+PO2 and MoM-LU, for both V V and HH polarizations.

Figure 11 shows the current distribution obtained by E-PILE+PO1+PO2, on both plates for the
previous configuration with V V polarization. The field scattered from S2 illuminates only the bottom
side of S1, whereas the incident wave illuminates the upper side of S1. Consequently, currents are
constant on S1top and the coupling mechanism between S1 and S2 implies a non-null current on S1bottom.
We can also notice that the presence of S1 above S2, creates a shadowing region (dark region with less
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Figure 9. Relative residual error versus E-PILE order.
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Figure 10. Comparison of the radar cross-section of two parallel plates computed from the hybrid
method (EPILE 8+PO1+PO2) with that obtained from the reference method (MoM-LU) versus the
scattering angle. The parameters are S1 = 1λ0 × 1λ0, S2 = 8λ0 × 8λ0, D = 5λ0, θi = 0◦: (a) vertical
polarization, (b) horizontal polarization.

current) on the lower surface S2. As a result, it seems that our method explains well the expected
physical phenomena.

As a second example, consider the case of a plate of dimensions S1 = 1λ0 × 1λ0 above a rough
surface which obeys a Gaussian process with σz = 0.2λ0, Lcx = Lcy = 1λ0, the dimensions of the rough
surface are 8λ0 × 8λ0, the distance D between the plate and the rough surface is 5λ0, sampling steps
are ∆x = ∆y = λ0/8. The incident plane wave has an incidence angle of θi = 0◦. Comparisons of RCS
are shown in Figures 12(a) and 12(b).

In our hybrid method, PO is applied on both the plate and rough surface. It is shown in [18, 19]
that multiple reflections phenomena on the rough surface is very weak and can be neglected for surfaces
of root mean square slope less than 0.35 (σs < 0.35). In our case σs =

√
2σz
Lc ≈ 0.28. Figures 12(a)

and 12(b) show that the hybrid method works well for the backscattering from about θs = −50◦ to
θs = +50◦. The disagreement observed at grazing angles is due to the edge diffraction. Thus, in order
to avoid this limitation an incident tapered wave is applied to the system for larger problems.

Hereafter we investigate the previous cases but for larger electromagnetic problems. Consider the
configuration of two parallel horizontal plates of dimensions S1 = 2λ0× 2λ0, S2 = 14λ0× 14λ0. We use
an incident tapered wave with θi = 0◦, g = L/2 (L is Lx or Ly). Comparisons of RCS versus θs are
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Figure 11. Current distribution on the two plates computed from the hybrid method.
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Figure 12. Comparison of the radar cross-section of a plate above a rough surface computed from
the hybrid method (EPILE 8+PO1+PO2) with that obtained from the reference method (MoM-LU)
versus the scattering angle. The parameters are S1 = 1λ0 × 1λ0, S2 = 8λ0 × 8λ0, D = 5λ0, σz = 0.2λ0,
Lcx = Lcy = 1λ0, θi = 0◦: (a) vertical polarization, (b) horizontal polarization.

shown in Figures 13(a) and 13(b). From these figures, a very good agreement is observed between the
hybrid method E-PILE+PO1+PO2 and MoM-LU, for both V V and HH polarizations.

Now let us consider the case of a plate of dimensions S1 = 2λ0 × 2λ0 above a rough surface
which obeys a Gaussian process with σz = 0.2λ0, Lcx = Lcy = 1λ0, the dimensions of the rough
surface are 14λ0 × 14λ0, the distance D between the plate and the rough surface is 5λ0, sampling steps
are ∆x = ∆y = λ0/8. The incident tapered wave has an incidence angle of θi = 0◦ and g = L/2.
Comparisons of RCS are shown in Figures 14(a) and 14(b).

Figures 14(a) and 14(b) show a good agreement between the hybrid and the reference method for
all scattering angles in the two polarizations V V and HH. We can conclude that using the tapered
wave allows us to reduce the inaccuracies in the results shown in Figures 14(a) and 14(b).
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Figure 13. Comparison of the radar cross-section of two parallel plates computed from the hybrid
method (EPILE 8+PO1+PO2) with that obtained from the reference method (MoM-LU) versus the
scattering angle. The parameters are S1 = 2λ0 × 2λ0, S2 = 14λ0 × 14λ0, D = 5λ0, θi = 0◦: (a) vertical
polarization, (b) horizontal polarization.

4.3. Convergence of E-PILE

The purpose of this subsection is to study the influence of the parameters of the system on the
convergence of the E-PILE method. In order to obtain the order PE-PILE which permits us to have
a good convergence, the Relative Residual Error (re) must be smaller than a chosen value equal to 10−2

in what follows. We study hereafter the case of two parallel PEC plates.

4.3.1. Influence of the Dimensions of the Plates

Let us consider the problem of two parallel PEC plates, the lower plate dimensions are 6λ0× 6λ0, while
the upper plate length is not constant, the incident wave is vertically polarized with angle θi = 30◦,
and the distance D between the plates is 10λ0. Table 1 presents the order PE-PILE for each dimension
of the upper plate.

From Table 1, we can notice that as the length of the upper plate increases, the order PE-PILE
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Figure 14. Comparison of the radar cross-section of a plate above a rough surface computed from the
hybrid method (EPILE 8+PO1+PO2) with that obtained from the reference method (MoM-LU) versus
the scattering angle. The parameters are S1 = 2λ0 × 2λ0, S2 = 14λ0 × 14λ0, D = 5λ0, σz = 0.2λ0,
Lcx = Lcy = 1λ0, θi = 0◦: (a) vertical polarization, (b) horizontal polarization.
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Table 1. Order PE-PILE versus the dimensions of the upper plate S1. The parameters are S2 = 6λ0×6λ0,
θi = 30◦, D = 10λ0.

Upper plate dimensions PE-PILE

S1 = 1λ0 × 1λ0 1
S1 = 2λ0 × 2λ0 3
S1 = 4λ0 × 4λ0 10

increases, which means that we have more forth and back between the lower and the upper plate.
Indeed, as the dimensions of the upper plate increase and become closer to the dimensions of the lower
one, the region between the two plates can be described as an open wave guide, so the wave is guided
between the two plates and induces more reflections.

4.3.2. Influence of the Distance between the Two Plates

The same configuration of two parallel PEC plates is tested here, S1 = 2λ0 × 2λ0, S2 = 6λ0 × 6λ0, the
distance D between the two plates is not constant, the incident wave is vertically polarized with angle
θi = 30◦. Table 2 presents the order PE-PILE for each distance between the two plates.

Table 2. Order PE-PILE versus the distance D between the two plates. The parameters are
S1 = 2λ0 × 2λ0, S2 = 6λ0 × 6λ0, θi = 30◦.

The distance D PE-PILE

D = 3λ0 8
D = 10λ0 3
D = 15λ0 1

Table 2 shows that as the distance between the two plates decreases, the order PE-PILE increases, as
a consequence of higher coupling between the two plates, this implies that the E-PILE method converges
more quickly for a larger distance between the two plates.

4.3.3. Influence of Lower Surface Roughness

Let us consider the case of a PEC plate of dimensions S1 = 2λ0 × 2λ0 above a PEC rough surface
of dimensions S2 = 6λ0 × 6λ0 which obeys a Gaussian process, with Lcx = Lcy = 1λ0, but σz is not
constant as in Table 3. The distance D between the two scatterers is 5λ0, and the incident wave is
vertically polarized with angle θi = 30◦. Table 3 presents the order PE-PILE for each σz of the lower
scatterer S2.

Table 3. Order PE-PILE versus the lower surface mean square height. The parameters are S1 =
2λ0 × 2λ0, S2 = 6λ0 × 6λ0, θi = 30◦, D = 5λ0.

Mean square height PE-PILE

σz = 0λ0 4
σz = 0.2λ0 5
σz = 0.5λ0 7

Table 3 shows that as σz of the lower surface increases, the order PE-PILE increases, which means
that the surface roughness affects the order of E-PILE method.
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4.4. Complexity

The complexity of the two algorithms (E-PILE) and (E-PILE+PO1+PO2) are given in Table 4, in
which
• T1 is the complexity of the matrix inversion for the local interactions on scatterer 1.
• T2 is the complexity of the matrix inversion for the local interactions on scatterer 2.
• T11 is the complexity of the matrix-vector product for the local interactions on scatterer 1.
• T22 is the complexity of the matrix-vector product for the local interactions on scatterer 2.
• T12 is the complexity of the matrix-vector product for a coupling step (object toward surface).
• T21 is the complexity of the matrix-vector product for a coupling step (surface toward object).

Table 4. Complexity of E-PILE and E-PILE+PO1+PO2.

Algorithm T1 T11 T2 T22 T12 T21

E-PILE N3
1 N2

1 N3
2 N2

2 N1N2 N1N2

E-PILE+PO1+PO2 0 1 0 1 N1N2 N1N2/2

To compare the computing time of the two algorithms (MoM-LU) and (E-PILE+PO1+PO2) which
is closely related to the complexity, the case of two parallel plates S1 above S2 is considered, S2 of
dimensions 7λ0 × 7λ0, the length of S1 is not constant. Comparisons of computing time versus the
length of S1 are shown in Figure 15. The CPU used is Intel(R) Xeon(R) 2.83 GHz with 16 GBytes of
RAM. From Figure 15, we can notice that the hybrid method allows us to reduce greatly the computing
time.
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Figure 15. Comparison of computing time of the hybrid and rigorous method versus the length of S1

for the case of two parallel plates S1 above S2.

One can evaluate the theoretical storage requirements by considering the plate above a rough surface
for three methods: the MoM (with direct LU inversion of the impedance matrix of the whole scene),
the E-PILE and the E-PILE+PO1+PO2. The MoM needs to store (N1 + N2)2 complex elements. The
memory requirements of E-PILE, E-PILE+PO1+PO2 are listed in Table 5.

From the table, one can see that the E-PILE method combined with the PO approximation permits
us to significantly reduce the storage requirements.

Table 5. Storage requirements of E-PILE and E-PILE+PO1+PO2.

Algorithm Z̄1 Z̄12 Z̄21 Z̄2

E-PILE N2
1 N1N2 N1N2 N2

2

E-PILE+PO1+PO2 1 N1N2
N1N2

2 1
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5. CONCLUSION

In this paper, a new efficient hybrid method to study the electromagnetic scattering from a 3-D problem
of two scatterers is presented. The method is based on the rigorous E-PILE method, originally developed
to predict the field scattering from an object above a one-dimensional rough surface. In this work, the
E-PILE method is extended to solve 3-D electromagnetic problems. Indeed, the E-PILE order is linked
to the number of reflections between the two scatterers (object+rough surface). A major advantage of
the E-PILE method is that it can be combined with algorithms originally developed to solve problems
of scattering from a single scatterer in free space. Consequently, we combined the E-PILE method with
the PO approximation to calculate the local interactions on the two scatterers. By this way there is
no need to calculate the inverse of the impedance matrix for both scatterers, which will allow us to
reduce the complexity of the E-PILE method. The hybrid method E-PILE+PO1+PO2 has then the
complexity of O(N1N2) instead of O((N1 + N2)3) for MoM-LU where N1 and N2 are the number of
sampling points on the object and rough surface, respectively. As a prospect of this paper, it could
be interesting to use the FBSA approach to accelerate the calculation of the local interactions on the
rough surface instead of using the PO approximation, as done in [5] for a 2-D problem.
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