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Spatial Green Function of a Constant Medium
Overlying a Duct With Linear-Square Refractive

Index Profile
Christophe Bourlier and Nicolas Pinel

Abstract—For a two-dimensional problem, this paper presents
the evaluation of the spatial Green function of environments made
up of a constant medium overlying a duct having a linear-square
refractive index profile. This function must be determined to deal
with the more general problem of scattering from a rough sea sur-
face in the presence of a duct. Indeed, knowing the spatial Green
function, the sea surface roughness effect can be taken into account
rigorously in the calculation of the scattered field by solving the in-
tegral equations on the rough surface. Assuming a slowly-varying
refractive index profile, by using the method of steepest descents,
closed-form expressions of the spatial Green function in different
regions (illuminated and shadowed) are derived. In addition, they
are compared with that obtained from the parabolic wave equa-
tion.

Index Terms—Ducting environments, Green function, inhomo-
geneous media, parabolic wave equation, saddle point technique.

I. INTRODUCTION

I N the past decades, researchers in the areas of applied elec-
tromagnetics and underwater acoustics developed rigorous

and asymptotic models for mathematically describing the wave
propagation over rough surfaces as well as the scattering of
these waves by such surfaces. These studies also investigated
the combined effects of atmospheric conditions (ducting condi-
tions) and surface roughness on the propagation and scattering
problem. To solve this issue, two main methods are available in
the literature: the well-known parabolic wave equation (PWE)
method [1] and the boundary integral equation (BIE) method
[2]–[4].
Under the conditions of predominant forward propagation

and scattering, i.e., when the rough surface is gently undulating
and the angles of propagation and scattering are grazing, the
PWE approximation gives satisfactory results. For a complete
review of this method, see the textbook of M. Levy [1] and
the references therein. The great advantage of the PWE method
is that it can deal with most real-life inhomogeneous environ-
ments. Its main drawback is the underlying paraxial approxima-
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tion leading to an approximation of the propagator (that is, the
Green function).
By contrast, the BIEmethod, which is based on theHelmholtz

wave equation, rigorously calculates all the surface field inter-
actions. If the Green function is known in an appropriate (spa-
tial or spectral) domain, an integral equation can be written for
the induced currents on a rough surface. These currents are then
used in radiation integrals involving the appropriate propaga-
tors to calculate the scattered field at a point above the surface.
The advantage of the BIE method is that it is a rigorous method,
but its main drawback is that the Green function (propagator) is
known only for a small class of refractive index profiles [5], [6].
That is why, when the BIE method is applied [2], the propagator
is usually derived under the PWE approximation.
More recently, for an half-space having a linear square refrac-

tive index profile ( , with and the
height , meaning that the transmitter and receiver heights
check and , respectively), Awadallah and Brown
[3], [4] derived a more rigorous Green function used to calculate
the currents on a perfectly-conducting rough surface from the
BIE method. For this specific case and in the spectral domain,
the exact Green function is expressed in terms of Airy func-
tions. But, in the spatial domain, its inverse Fourier transform
is not numerically tractable, since the involved integrals are dif-
ficult to evaluate even numerically, due to the oscillatory na-
ture of the integrands. Consequently, an approximate solution,
which is valid in the frequency range of interest (i.e., the mi-
crowave range), is obtained asymptotically by using the method
of SD (Steepest Descents) [3], [6], [7] combined with the WKB
(Wentzel-Kramers-Brillouin) [6] approximation. The latter is
valid for a slowly-varying refractive index profile. Then, the
method presented in [3] allows us to validate algorithms based
on the PWE. For practical applications, the condition
and is not met because it corresponds to an environment
having a refractive index lower than one, since
with .
In many physical ducting environments, the refractive index

profile decreases with increasing height up to a given altitude,
and eventually reaches a constant value. The purpose of this
paper is to derive the spatial Green function of such environ-
ments by using the method presented in [8], [9]. It is important
to note that in the case , the derivation of the spatial Green
function strongly differs from the case (presented in [3],
[4] for the special case of a space having a linear square refrac-
tive index profile for all ). In addition, this function is compared
with that obtained under the PWE.
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Fig. 1. Illustration of the different cases for the calculation of the Green func-
tion, with the coordinates of the transmitter and those of the
receiver. Case 1: and . Case 2: and . Case 3:

and . Case 4: and .

Fig. 2. Profile of the square refractive index .

Section II presents the spectral Green function for a homo-
geneous medium overlying a duct with linear-square refrac-
tive index profile, whereas in Section III, an evaluation of the
corresponding spatial Green function is addressed. Moreover,
Section III presents numerical results and a comparison with the
PWE. The last section gives concluding remarks.

II. SPECTRAL GREEN FUNCTION

Let us consider a two-dimensional space (see
Figs. 1 and 2) made up of a homogeneous medium (defined
for ) of constant refractive index over an inhomoge-
neous one (defined for , duct), with a linear-square
refractive index profile defined by ,
with . denotes the duct height. Inside , for

, (since and ) and
.We define in the wavenumber , where

is the wavenumber in free space. In addition, such
that in , . Thus, in , the refractive
index is .
Awadallah and Brown [3], [4] assumed that

and studied the special case . It is then
equivalent to consider the case ,
for which the transmitter and the receiver are in of refrac-
tive index shows in dashed straight line in Fig. 2. For practical
applications, the transmitter can be located inside the duct, for
which the refractive index is greater than one. It is then relevant
to study this case.

A. General Case

In this section, we consider the general case: the source (trans-
mitter) can be either in medium or in medium

or a source can be located on each medium.
In addition, and are the transmitter and receiver heights,
respectively.
In , the spectral Green function can be written as

(1)

where the functions and depend on
, whereas depends on . The

term can be physically interpreted as a reflection or
transmission coefficient and it will be computed from the
boundary conditions applied at . In the spectral domain,
the two independent functions (eigen functions)
satisfy the propagation equation ,
where . The function is a downgoing wave
coming from whereas is an upgoing wave coming
from .
To determine , the boundary conditions at the interface
are applied. Assuming that (continuity of the

refractive index at ), they state and at that

(2)

Thus, for , we obtain

(3)

where the Wronskian is defined as

(4)

in which .

B. Cases 1 and 2: Transmitter Outside the duct

For (cases 1 or 2 in Fig. 1, corresponding to the trans-
mitter outside the duct), in the spectral domain, the functions
and are expressed as [6], [8]

(5)

in which is expressed as

(6)

It can be noted that , and because there
is no source in medium as . In addition,

satisfies . The functions
and are defined as and , in
which Ai and Bi are the Airy functions.
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From (3), the reflection and transmission
coefficients at the interface between and are given by

(7)

with

(8)

and from (6).
For , from (5) and (7), the total Green function is then

(9)

For , it can be noted that the term inside the
second exponential function equals the height of the transmitter
image with respect to .

C. Cases 3 and 4: Transmitter Inside the Duct

For (cases 3 or 4 in Fig. 1, corresponding to the
transmitter inside the duct), in the spectral domain, the functions
and are expressed as [6], [8]

(10)

in which , and has the
same expression as except replaces . It can be noted that

because there is no source in medium as .
From (3), the reflection and transmission

coefficients at the interface between and are given by

(11)

where since the Wronskrian
.

For , from (10) and (11), the total Green function is
then

(12)

For , (12) is the same as (9) obtained for
by substituting for , which is in agreement with the reci-
procity principle.

III. EVALUATION OF THE SPATIAL GREEN FUNCTION

A. Definition

The 2D spatial Green function can be defined from the 2D
spectral Green function as

(13)

where is the spectral Green function derived in
the previous section. In addition, equals the
abscissa difference between the receiver and the transmitter.
The inverse Fourier transform (13) is not numerically

tractable, since the involved integral is difficult to evaluate
even numerically, due to the strongly oscillatory nature of the
integrand in the frequency range of interest (high frequencies).
Consequently, an approximate solution, which is valid in the
frequency range of interest (i.e., the microwave range), is
obtained asymptotically by using the method of SD (steepest
descents).
For an half-space having a linear square refractive index pro-

file ( , with and the height ,
meaning that the transmitter and receiver heights satisfy
and , respectively), Awadallah and Brown [3], [4] de-
rived (13) by using the method of SD (Steepest Descents) [6],
[7] combined with the WKB (Wentzel-Kramers-Brillouin) [6]
approximation. The latter is valid for a slowly-varying refrac-
tive index profile. Moreover, for practical applications, the case

and is not met because it corresponds to a re-
fractive index lower than one since with .
It is important to note that for the case , the deriva-
tion of the spatial Green function strongly differs from the case

(presented in [3], [4] for the special case of a space
having a linear square refractive index profile for all ).
Then, in this paper, an approximate solution of (13) is ob-

tained from the works published by Fock [8] and Kukushkin
[9].

B. Green Function for : Transmitter Inside the Duct

1) Green Function for : Receiver Inside the Duct:
For (case 4 of Fig. 1), the spectral Green function is
expressed from (12). From (6), are real. In (12), this
implies that the functions and take real values and then,

since . Equation (12) is then
expressed from as

(14)

where ,
and .

The spectral Green function [8] (chapter 12) is then the same
as that of a dipole above a circular highly-conducting surface
of radius , which is much greater than the wavelength

. In this case, , in which
is the refractive index of the surface, which is a constant.

Thus, the duct problem is equivalent to take this case by taking
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and . For a highly-conducting
surface, the refractive index modulus , which cor-
responds to . Here, it is important to note that
depends on whereas in [8], is a constant.
With the PWE, the Green function is expressed as [2]

if
otherwise

(15)
In addition, with the PWE, the radial distance

between the transmitter and the re-
ceiver can be approximated in the phase term as

, whereas in the amplitude term .
To calculate the spatial Green function, the inverse Fourier

transform (see (13)) of must be derived. An eval-
uation of this kind of integral is reported in the textbook of [8]
(chapter 7) and [9] (appendix A), in which the saddle points are
assumed to be close to . The integral over ((13)) can then
be converted into an integral over , knowing that is close to

. We have then,

(16)

In addition, from (16),
since . The substitution of (16) and (14) into (13)
leads then to

(17)

where

(18)

(19)

and . In (18) and (19), the subscripts “D” and
“R” refer to direct and reflected (Green function), respectively.
The contour in integrals (18) and (19) encloses in the posi-
tive direction the first quadrant of the complex plane (all the
poles of the integrand are located in this quadrant). In the fol-
lowing, from (13), since , we
have and then, only the case

is considered.
The problem solved in [11], [12] is different of ours. In these

references, a boundary is added corresponding to the Earth as-
sumed to be highly-conducting. Then, the resulting Green func-
tion is expressed as Eq. (19) of [11], in which the denominator
of the integrand has zeros (or poles for the integrand). Then, the
spatial Green function is expressed as an infinite sum of com-
bined Airy functions (normal mode expansion), in which roots
must be determined. Here, this method can not be applied, be-
cause in (19) the reflection coefficient has no pole (because no

boundary; in other words, no bounce on the Earth from a ray
approach).
To find an approximate solution of integrals (18) and (19),

two regions are considered: the illuminated and shadow regions.
a) Illuminated region: Mathematically, this region corre-

sponds to and , which is equivalent to apply
the WKB approximation. Then, from (A1) and (A2), we have

(20)

To approximate , (A1) and (A2) are applied up to the first
order (the terms along and are kept). As increases,
decreases.
The substitution of (20) into (18) and (19) leads to

(21)

(22)

where

(23)
If a function has no singularities near a (single) saddle

point of a real function , where and
, for , then ([7], chapter 4, page 382)

(24)
in which the symbol sgn denotes the sign function.
For the function , we have .

The saddle point is then
. In addition,

. Then, using
(24) and from (21), we obtain

(25)

where

(26)
With the PWE, the Green function is expressed from (15).

The comparison of (15) with (25) leads then to .
Using the same way for the evaluation of integral (22), we

show in Appendix C that

(27)
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where , and are expressed from (C5), (C6) and (C7),
respectively. To give a physical explanation of (27), the case

(28)

is considered. For example, for , ,
and , we have . For this case:

(29)

Reporting (29) into (27) and using (25), the total spatial Green
function is

(30)

Then, the second term of (30) represents the field reflected by
an interface defined at , which equals the duct height. In
addition, the field magnitude corresponds to the broadening of
the bundle of the rays.
In (27), if ,

and then the denominator vanishes and then,
goes to infinity, which has no physical meaning. From (C6),
this corresponds to . Then from (C1),

, and the corresponding abscissa is

(31)

For example, for , , and
, we have . As shown in the

next subsection, the region defined for corresponds to
the shadow zone for the direct field .
The unphysical behavior of the reflected field comes

from the fact that expansion (20) used for is not valid as
. Indeed, as , . For

, without expansion, . Thus, to avoid the diver-
gence of , in (27) from (20), is substituted for

, in which is computed without
approximation. With this substitution, near
( or ), the reflected field be-
haves as and then vanishes. This means that
the reflected field does not exist in the shadow zone defined as

.
b) Shadow region for the direct field : Appendix B sum-

marizes the works of [8] (chapter 7) and [9] (appendix A) to
derive analytically the integration of integral (18) over . Then,
from (B8) and (B14), we have

(32)

where the functions and are expressed from (B2) and
(B6), respectively, and

(33)

and . In addi-
tion,

(34)

where the symbol stands for the complex conjugate.
In (32), corresponds to the

illuminated region whereas
corresponds to the shadow region. For , ,

, , and
. Then, (32) is continuous for .
In the illuminated region , if
and , then and

and the second term of (32) can be neglected. Neglecting
(numerically, we will show that its contribution is minor) and
comparing then the resulting equation with (15) obtained under
the PWE, the same equation is found with
.
2) Green Function for : Receiver Outside the Duct:

For (case 3 of Fig. 1), the spectral Green function is
expressed from (12). Using the same way as in the previous
subsection, the Transmitted spatial Green function is expressed
as

(35)
For the illuminated zone, and

, which is equivalent to apply the
WKB approximation. Then, from (A1) and (A2), we have

(36)

leading from (35) to

(37)

where

(38)
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Fig. 3. Green functions (Eq. (32)), (Eq. (32)), (Eq. (27)) and
(Eq. (15)) versus the horizontal distance in m and for a re-

ceiver height . Top: Modulus. Bottom: Phase. The parameters are
(transmitter abscissa), (transmitter height), (duct
parameter), (duct height) and (wavelength). The vertical
dashed line indicates the separation between the illuminated and the shadow re-
gions.

and . In Appendix D, we show that

(39)

where and , in which and are
expressed from (D6) and (D3), respectively. In addition, is
expressed from (D1).
3) Numerical Results: Fig. 3 plots Green functions ,
, and versus the horizontal distance

in m and for a receiver height . Top: Modulus. Bottom:
Phase. The parameters are (transmitter abscissa),

(transmitter height), (duct parameter),
(duct height) and (wavelength). The

vertical dashed line indicates the separation between the illumi-
nated and the shadow regions. The labels in the legend means
that:
• is computed from the first two terms of (32),
• is computed from the last term of (32) (related to

),
• is computed from (27),
• is the spatial Green function obtained under the
PWE approximation and computed from (15).

In the illuminated zone (on the left of the vertical dashed line),
Fig. 3 shows that and give similar results and that

has an oscillatory behavior because it is defined as the sum
of two terms, leading to an interference phenomenon. In the
shadow region, slowly decreases, whereas rapidly
decreases. As expected, the PWE approximation is not valid in
this region. Fig. 3 also shows that the contributions of and
are minor in comparison to , leading to the conclusion

that the total spatial Green function . In addition,
contributes only in the illuminated region, first increases when
increases and then strongly decreases near the limit of the

illuminated zone.

Fig. 4. Receiver height in m versus the Green functions and for
horizontal distances . Top: Modulus. Bottom:
Phase. The parameters are the same as in Fig. 3.

Fig. 4 plots the receiver height in m versus the Green
functions and for horizontal distances

. Top: Modulus. Bottom: Phase. The pa-
rameters are the same as in Fig. 3. For a given ,
is constant whereas has an oscillatory behavior around
a mean value close to . In addition, as increases
(or approaches the shadow zone), the oscillation number in-
creases and the difference between and increases.
For , the continuity of the Green function is ensured
and then, the use of approximations to calculate analytically
the Green function did not modify the boundary conditions at

(see also Fig. 6).

C. Green Function for : Transmitter Outside the Duct

1) Green Function for : Receiver Inside the Duct:
For (case 2 of Fig. 1), the spectral Green function is
expressed from (9). For , (12) is the same as
(9) obtained for by substituting for .
Thus, the spatial Green function is

(40)

2) Green Function for : Receiver Outside the Duct:
For , in (7), , which means that the
reflection coefficient vanishes. Indeed, since ,
the use of the WKB approximation implies a zero reflection co-
efficient. Then, from (9) and since , we have

(41)

Thus, From (24), we show that

(42)
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Fig. 5. Same variations as in Fig. 3, but for .

Fig. 6. Same variations as in Fig. 4, but for .

The Green function is equal to the Green function expressed
from the PWE (15), in which the radial distance

in the phase term and .
3) Numerical Results: Fig. 5 plots the same variations as in

Fig. 3, but for (transmitter outside the duct).
Since , the Green function is expressed from

(40). In addition, is plotted and it is derived from as
. Its expression is

(43)

In (43), the first term is related to the propagation in free space
under the PWE approximation and the second term is

related to the duct effect, which modifies both the phase and the
amplitude of the field. Fig. 5 shows that the series expansion
(43) is valid only for close to zero. In addition, no shadow
zone occurs.
Fig. 6 plots the same variations as in Fig. 4, but for
. For , the Green function equals Green function

computed from PWE (see (42)). For , differs from
because is valid only for close to zero (see

Fig. 5).
Numerical results, not depicted here, showed that the spatial

Green function satisfies the reciprocity principle.

IV. CONCLUSION

For a two-dimensional problem, this paper presents the eval-
uation of the spatial Green function of a space made up of homo-
geneousmedium overlying a duct with a linear-square refractive
index profile. From the boundary conditions, the exact spectral
Green function is derived with the help of the Airy functions.
To have a closed-form expression of the corresponding spatial
Green function, the method of SD (Steepest Descents) is applied
and comparisons are made with the PWE.
When the transmitter is located inside the duct (often met for

practical applications), for abscissa near the transmitter, the re-
sults are the same as those obtained from the PWE. On the other
hand, far from the transmitter, the spatial Green function rapidly
decreases in the shadow zone, whereas the PWE results slowly
decrease. This means that the PWE is not valid in this region.
In addition, we show that the contribution of the “Reflected”
Green function (27) and that computed from (32) are negligible
in comparison to the “Direct” (32) Green function.
In a future paper, by adding a rough surface of profile

(centered on ), the Green function above the rough surface
will be computed by solving the integral equations, which re-
quires the Green function derived in this paper. When the PWE
is used as a propagator, the currents computed on the rough sur-
face are also approximated. On the contrary, by solving rigor-
ously the integral equations, no approximation is used to calcu-
late the propagator and the currents on the rough surface. Thus,
the use of the spatial Green function evaluated in this paper
and combined with the BIE will allow us to have a benchmark
method and then to test the accuracy of the PWE.

APPENDIX A
EXPANSION OF THE AIRY FUNCTIONS

For , with , the Airy func-
tions and their derivatives can be expanded as [6] (chapter 3,
pages 181–186), [10] (chapter 10, starting from page 446)

(A1)

and

(A2)

where , , and .

APPENDIX B
EVALUATION OF INTEGRAL (18)

From [8], integral (18) can be written as
where obtained from a conventional SD tech-
nique based on (24), where is expressed from (26).
corresponds then to the field in the illuminated zone. For the
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evaluation of , using their integral representation for both
factors and and performing the integra-
tion over , a double contour integral is obtained, in which new
variables can be introduced to perform one integration. The re-
sulting equation is then [8]

(B1)

where the contour , in which
the superscript means from the right . In addition

(B2)

The residue of integral (B1) at the point equals the
quantity . Thus [8]

(B3)

where (the value is in-
cluded in ), in which the superscript means from the left
( can be either negative or positive).
To evaluate (B3), the method of SD is applied. The saddle

points of , defined as are . For ,
the saddle points which contribute are
and because they can be close to
the poles of the integrand (B3). In the textbook of Fock
[8], the contribution of the saddle point
close to zero is not considered since is not encircled in the con-
tour (or ). On the other hand, Kukushkin [9] derived this
contribution and then the contour is substituted for

.

A. Saddle Point

For , the variable is introduced, and the contour
equals to or , is defined but cutting the horizontal axis

at the point . If , then the contour is equal to
and the resulting integral is . If , then the contour
is similar to and the resulting integral is .
To calculate the contribution of the saddle point with
, we assume for that

and in (B3), where

(B4)

In (B1), the contour is then deformed as
( and then )
with ). Then [8]

(B5)

with [10]

(B6)

and

(B7)

In addition, ,
, in which and are the Fresnel in-

tegrals and erf is the error function defined as
and .

In conclusion, for , (B5) gives whereas for ,
(B5) gives . Then

(B8)

B. Saddle Point

The integral (B1) must be evaluated when the saddle
point is close to zero. The same way is used as
in [9], in which the misprints are corrected in this appendix.
Since is close to zero, we have from (B1)

(B9)

where

(B10)

and and .
To derive the function , the function

is introduced and defined by

(B11)
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Then, the function is derived from integrating over ,
leading to

(B12)

where the function depends only on the variables . This
function is then calculated from (B10) by taking , leading
to . Then, from (B10) and (B12), we
obtain

(B13)
Reporting (B13) into (B9), we obtain

(B14)

where (real number) and the symbol
stands for the complex conjugate. In addition, calcu-

lating analytically, we can show numerically that
.

APPENDIX C
EVALUATION OF INTEGRAL (19) IN THE ILLUMINATED REGION

In this appendix, integral (19) is evaluated from (24) and from
the works of [8] (chapter 12).
From (23), we have

(C1)

With , the root of satisfies then

(C2)

In addition, we have

(C3)

Isolating for each subequation of (C3) and equating them,
satisfies the following cubic equation

(C4)

Then, the physical solution (real solution) is

(C5)

The root is then obtained from as

(C6)

Reporting (C6) and (C3) into (23) and (C1), we show

(C7)

The substitution of (C7) into (22) and the use of (24) leads to
(27).

APPENDIX D
EVALUATION OF INTEGRAL (37)

In this appendix, integral (37) is evaluated from (24).
From (38), we have

(D1)

The root of satisfies then

(D2)

where

(D3)

and the condition .
Letting , we have then

(D4)

where

(D5)

The physical solution is then ( and
)

(D6)

where

(D7)

REFERENCES

[1] M. Levy, Parabolic Equation Methods for Electromagnetic Wave
Propagation, ser. Electromagnetic Waves 45. London: Inst. Elect.
Eng., 2000.

[2] B. J. Uscinski, “Sound propagation with a linear sound-speed profile
over a rough surface,” J. Acoust. Soc. Am., vol. 94, no. 1, pp. 491–498,
1993.

[3] R. S. Awadallah, “Rough Surface Scattering and Propagation Over
Rough Terrain in Ducting Environments,” Ph.D. dissertation, Virginia
Polytech. Inst. State Univ., Blacksburg, VA, USA, 1998.



BOURLIER AND PINEL: SPATIAL GREEN FUNCTION OF A CONSTANT MEDIUM 3181

[4] R.-S. Awadallah and G. S. Brown, “Low-grazing angle scattering from
rough surfaces in a duct formed by a linear-square refractive index pro-
file,” IEEE Trans. Antennas Propag., vol. 48, no. 5, pp. 1461–1474,
2000.

[5] A. J. Robins, “Exact solutions of the Helmholtz equation for plane
wave propagation in a medium variable density and sound speed,” J.
Acoust. Soc. Am., vol. 93, no. 3, pp. 1347–1352, 1993.

[6] L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. New York,
NY, USA: Academic Press, 1980.

[7] L. B. Felsen and N. Marcuvitz, Radiation and Scattering Waves. En-
glewood Cliffs, NJ, USA: Prentice-Hall, 1973.

[8] V. A. Fock, Electromagnetic Diffraction and Propagation Problems.
Paris: Pergamon Press, 1965.

[9] A. Kukushkin, Radio Wave Propagation in the Marine Boundary
Layer. London: Wiley-VCH, 2004.

[10] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions. Mineola, NY, USA: Dover Publications, 1972.

[11] T. Ishihara and L. B. Felsen, “Hybrid ray-mode parameterization of
high frequency propagation in an open waveguide with inhomoge-
neous transverse refractive index: Formulation and application to a
bilinear surface duct,” IEEE Trans. Antennas Propag., vol. 39, no. 6,
pp. 780–788, 1991.

[12] T. Ishihara and L. B. Felsen, “Hybrid ray-mode parameterization of
high frequency propagation in an openwaveguidewith inhomogeneous
transverse refractive index: Numerical results and quality assessment,”
IEEE Trans. Antennas Propag., vol. 39, no. 6, pp. 789–797, 1991.

Christophe Bourlier was born in La Flèche, France
on July 6, 1971. He received the M.S. degree in elec-
tronics from the University of Rennes (France), in
1995 and the Ph.D. degree from the SEI (Système
Électronique et Informatique) Laboratory, in 1999.
While at the the University of Rennes, he was

with the Laboratory of Radiocommunication where
he worked on antennas coupling in the VHF-HF
band. Currently, he is with the IETR Laboratory
(Institut d’Electronique et des Télécommunications
de Rennes, France) at Polytech Nantes (University of

Nantes, France). He works as a Researcher at the National Center for Scientific
Research on electromagnetic wave scattering from rough surfaces and objects
for remote sensing applications and Radar signatures. He is the author of more
than 130 journal articles and conference papers.

Nicolas Pinel was born in Saint-Brieuc, France, in
1980. He received the Engineering degree and M.S.
degree in electronics and electrical engineering both
from Polytech Nantes (Ecole polytechnique de l’uni-
versité de Nantes), Nantes, France, in 2003 and the
Ph.D. degree from the University of Nantes, France,
in 2006.
He is currently working as a Research Engineer

in the IETR Laboratory (Institut d’Électronique et
de Télécommunications de Rennes), Nantes, France.
His research interests are in the areas of radar and

optical remote sensing, scattering and propagation. In particular, he works on
asymptotic methods of electromagnetic wave scattering from random rough
surfaces and layers.


