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[1] For a three-dimensional problem and by assuming perfectly electric conducting
objects, this paper shows that the Babinet principle (BP) can be derived from the physical
optics (PO) approximation. Indeed, following the same idea as Ufimtsev, from the PO
approximation and in the far-field zone, the field scattered by an object can be split up
into a field which mainly contributes around the specular direction (illuminated zone) and
a field which mainly contributes around the forward direction (shadowed zone), which is
strongly related to the scattered field obtained from the BP. The only difference resides in
the integration surface. We show mathematically that the involved integral does not
depend on the shape of the object but only on its contour. Simulations are provided to
illustrate the link between BP and PO. The main gain of this work is that it provides a
more complete physical insight into the connection between PO and BP.
Citation: Kubické, G., C. Bourlier, M. Delahaye, C. Corbel, N. Pinel, and P. Pouliguen (2013), Bridging the gap between the
Babinet principle and the physical optics approximation: Vectorial problem, Radio Sci., 48, doi:10.1002/rds.20059.

1. Introduction
[2] The electromagnetic wave scattering from a target

in the forward scattering (FS) region (when the target lies
in the transmitter-receiver baseline) [Siegel, 1958] is a very
interesting phenomenon which was first reported by Mie in
1908 when he discovered that the forward scattered energy
produced by a sphere was larger than the backscattered
energy [Glaser, 1985] in a high-frequency domain. This con-
figuration, which corresponds to a bistatic angle near 180ı,
is a potential solution to detect stealthy targets. Indeed, in a
high-frequency domain and in the forward scattering direc-
tion, the RCS (radar cross section) is mainly determined by
the silhouette of the target seen by the transmitter and is
almost unaffected by absorbing coatings or shapings. This
phenomenon can be physically explained by the fact that
the scattered field in the forward direction represents the
perturbation to the incident wave as a blocking effect, which
creates a shadowed zone behind the target. In this region,
while the total field vanishes, the scattered field tends to
the incident field in amplitude but with opposite phase. A
simple explanation can be given using the Babinet principle
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[Siegel, 1958] (BP), which states that the diffraction pattern
(in the forward direction) of an opaque body is identical to
that of a hole (in a perfectly conducting screen) having the
same shape as its silhouette.

[3] Nevertheless, the physical optics (PO) approximation
is sometimes used instead of the BP [Glaser, 1985, 1989;
Kildal et al., 1996] and provides good results around the
forward direction. Ufimtsev [2007, 1990, 1992, 2008, 2009]
studied the shadow radiation and demonstrated that the
PO approximation can be split up into two components
[Ufimtsev, 2007, 2008]: one which mainly contributes in
the backward direction and thus corresponds to a reflected
component, and the other one which mainly contributes in
the forward direction and thus corresponds to a shadowed
component. This last component corresponds to the radi-
ation of a blackbody. Ufimtsev demonstrated that it can
be reduced to a contour integral on its shadow contour
by applying integral equations and boundary conditions on
two objects having the same shadow contour, the shadow
contour being the frontier between the illuminated surface
and the shadowed surface of an object. Nevertheless, since
he considered blackbodies, Ufimtsev [2009] did not study
theoretically the behavior of the reflected component in the
shadow zone.

[4] By contrast, Gordon [1975] did not consider a surface
of arbitrary shape like Ufimtsev did with blackbodies but
applied the physical optics for calculating the diffraction
through apertures: this corresponds to the use of BP. Then,
he showed that the surface integral on the flat area of the
aperture can be reduced to a line integral on the contour
of the aperture and demonstrated that this line integral can
be analytically computed if the aperture is a polygon. In a
more recent study [Kubické et al., 2011] for the scalar
case (2-D problems) it was demonstrated that the shadowed
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component of PO of an arbitrary-shape object is directly
related to BP.

[5] The study is generalized to the vectorial case (3-D
problems) for an arbitrary perfectly electric conducting
object (not only a blackbody: a perfectly electric conducting
(PEC) object being a more general case of the blackbody
since the reflection is also considered) in order to obtain a
more complete physical insight into the connection between
PO and BP. First, a demonstration of the shadow contour
theorem, which is different from that of Ufimtsev since
an arbitrary perfectly conducting object is considered, is
provided. Moreover, the link between the BP and the PO
approximations is studied for any object (not only a flat
surface as Gordon did): the main conclusion is that BP
can be seen as a good approximation of PO in the forward
direction. Then, the behavior of the reflected component
of PO in the shadow zone is theoretically studied. Last,
numerical results compare BP and PO in order to
illustrate the theoretical investigations made before. The
time convention e+i!t is omitted throughout the paper.

2. Theoretical Study
2.1. The Physical Optics (PO) Approximation

[6] Assuming a perfectly conducting target, induced
currents on the object surface can be estimated by using the
PO approximation. For a 3-D (vectorial) problem, the PO
currents are given 8r 2 †PO by the well-known expres-
sions (by using the Fresnel reflection coefficients for a
PEC object): 8̂̂̂

ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

J (r) = On(r) � [Hi (r) + Hr (r)]
= On(r) � [Hi (r) + Hi (r)]

= A
�0

�
jPO + jPO

�
M (r) = – On(r) � [Ei (r) + Er (r)]

= – On(r) � [Ei (r) – Ei (r)]
= A (mPO – mPO)

, (1)

where (Er, Hr) is the reflected field; A = Ei(0)e–ik0 Oki�r

gives the amplitude and the phase of the incident field in
vacuum; �0 is the wave impedance; jPO = On(r) � Ohi(r),
mPO = On(r) � Oei(r), Ohi, and Oei are the polarizations of
the electromagnetic incident field; On is the unitary normal
vector to the surface; r = (x, y, z(x, y)) is a position vector
on the surface; J and M are the electric and magnetic cur-
rents, respectively; and †PO is the target illuminated surface
(surface of the object visible from the transmitter). It can
be noticed that z = z(x, y) is not a bijective function, and
care must be taken to correctly describe the function z(x, y)
for any target (for example, for the sphere, such a func-
tion z(x, y) has two branches describing the upper and lower
hemispheres, respectively). Contrary to the Babinet induced
currents (see below), PO currents have a physical meaning
(of course, M(r) equals 0 in equation (1), but it is written
such that two components remain, even if they cancel each
other). The radiation of these induced currents in far field
(the object is in far field from the receiver), assuming that
the incident field is a plane wave being unitary on the tar-
get, is obtained 8r0 from the Huygens principle [Bakker and
Copson, 1939]:

Es,PO (r 0) = G1I+ + G1I– = Es,+ (r 0) + Es,– (r 0), (2)

where G1 =
�
–ik0e–ik0r0

�
/(4�r0), r 0 = x0 Ox + y0 Oy + z0Oz is the

observation vector in the space, r0 = kr 0k and

I˙ =
Z
†PO

h
jPO –

�
Oks � jPO

�
Oks ˙mPO � Oks

i
ei' ds , (3)

where ' = k0( Oks – Oki) � r, Oki and Oks are the unitary
wave vectors giving the incident and observation directions.
ds = dx dy

q
1 + � 2

x + � 2
y is the surface element, where

�x = @z/@x and �y = @z/@y.
[7] The decomposition in equation (2) corresponds to

the one proposed by Ufimtsev [2007, 2008]. Ufimtsev
then showed from numerical results obtained with PO
that Es,+ (r 0) = G1I+ mainly contributes around the
specular direction and thus corresponds to a “reflected” PO
component. Moreover, Es,– (r 0) = G1I– mainly contributes
around the forward direction and thus corresponds to a
“shadowed” PO component (also called here “forward” PO
component).

[8] The unitary wave vectors are defined as

Oki =

2
4 sin �i cos�i

sin �i sin�i
cos �i

3
5 , Oks =

2
4 sin �s cos�s

sin �s sin�s
cos �s

3
5 , (4)

where the spherical angles (�i,�i) and (�s,�s) are the incident
and observation angles, respectively (see Figure 1 for the
“forward scattering alignment” convention). The scattered
field can be written from PO in a spherical coordinate system
as �

Es� ,PO
Es�,PO

�
= G1 NSPO

�
Ei�
Ei�

�
, NSPO =

�
S�� S��
S�� S��

�
, (5)

where NSPO is the diffraction matrix (Sinclair matrix). By
projecting equation (3) in a spherical coordinate system and
by using equations (4) and (5) and the fact that Ohi = Oki � Oei,
we show that the Sinclair matrix can be expressed as

NSPO = NS+ + NS–, (6)

where

NS˙ =
Z
†PO

�
�x NA1˙ + �y NA2˙ + NA3˙

�
ei'(x,y) dx dy , (7)

in which NA1˙ =
�
NJ1 ˙ NM1

�
, NA2˙ =

�
NJ2 ˙ NM2

�
, NA3˙ =�

NJ3 ˙ NM3
�
, '(x, y) = xb1 + yb2 + z(x, y)b3 and

NJ1 =
�

sin �s cos�i cos �s sin�s sin �i – cos �i sin�i sin �s
0 sin �i cos�s

�
, (8)

NJ2 =
�

sin �s sin�i cos �i cos�i sin �s – cos �s cos�s sin �i
0 sin �i sin�s

�
, (9)

NJ3 =
�

– cos �s cos(�s – �i) – cos �s cos �i sin(�s – �i)
sin(�s – �i) – cos �i cos(�s – �i)

�
, (10)

NMn = –adj
�
NJn
�

=
�

–Jn,�� Jn,��
Jn,�� –Jn,��

�
, (11)

where “adj” corresponds to the adjugate matrix, and

8<
:

b1 = k0 (sin �s cos�s – sin �i cos�i)
b2 = k0 (sin �s sin�s – sin �i sin�i)
b3 = k0 (cos �s – cos �i)

. (12)
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Figure 1. Definition of the convention for wave vectors
and angles.

2.2. The Babinet Principle (BP)
[9] The BP is originally an optical principle [Born and

Wolf, 1959] (generalized to electromagnetics [Booker, 1946;
Poincelot, 1957]) which states that the diffraction pattern of
an opaque body is identical to that of a hole having the same
shape as its silhouette (see Figure 2). Thus, according to this
principle, the FS phenomenon is independent of the shape
of the object; the scattering is only due to the target area
projected onto the plane orthogonal to the incident direction
(see Figure 2): the silhouette of the target. The equivalent
induced currents at the aperture are only due to the presence
of the incident field:�

J (r) = On (r) �Hi (r) = A
�0

jPO
M (r) = – On (r) � Ei (r) = –AmPO

8r 2 †Ba. (13)

The plane orthogonal to the incident direction splits the
space into two subdomains: the backward region�+ and the
forward region �– (see Figure 4). †Ba is the target area pro-

jected onto the plane orthogonal to the incident direction and
centered on the phase origin; thus, On = Oz in case of normal
incidence ( On being the normal vector to†Ba here). It must be
noted that the study can be restricted to the normal incidence
case without any assumption. Indeed, by rotating the prob-
lem, variable changes can be performed to always obtain a
local coordinate system in which the incident wave vector
direction is in the negative z one. Moving the transmitter
with a fixed target is equivalent to rotating the target with a
fixed transmitter.

[10] In the far-field zone, the shadow radiation of the BP
currents is computed from the Huygens principle, 8r0 2 �–
(�– being the half space behind the object):

Es,Ba(r 0) = G1IBa, (14)

with

IBa =
Z
†Ba

h
jPO –

�
Oks � jPO

�
Oks – mPO � Oks

i
ei' ds. (15)

The shadow radiation can be written from the BP in a
spherical coordinate system as

�
Es� ,Ba
Es�,Ba

�
= G1 NSBa

�
Ei�
Ei�

�
, (16)

and we show that the Sinclair matrix can be expressed as

NSBa =
Z
†Ba

�
�x NA1– + �y NA2– + NA3–

�
ei'(x,y) dx dy . (17)

Comparing equations (15) and (17) with equations (3) and
(7), I– = IBa and NSBa = NS– (and thus: Es,– (r 0) = Es,Ba (r 0)) if
the integral in equation (7) is independent of the shape of the
integration surface †. This is studied in the next subsection.

(a)

(c)

(b)

Figure 2. The Babinet principle: (a) forward scattering from an arbitrary obstacle, (b) forward scattering
from the associated opaque screen, and (c) diffraction from the complementary screen, that is, a hole in
the infinite plane.
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Figure 3. Geometry of the pyramidal target: front view and
view from below.

2.3. Proof: “Shadowed” Component
[11] Let C be a positively oriented, piecewise smooth,

simple closed curve in a plane, and let † be the region
bounded by C. By means of Green’s theorem, if P and Q are
functions of (x, y) defined in an open region containing †
and have continuous partial derivatives, thenZ

†

	
@Q
@x

–
@P
@y



dx dy =

Z
C

(P dx + Q dy) , (18)

where the path of integration along C is counterclockwise.
[12] Assuming that b3 ¤ 0 and since b1, b2, and b3 are

independent of x and y:(
@'
@x = b1 + @z

@x b3 = b1 + �xb3

@'
@y = b2 + @z

@y b3 = b2 + �yb3
, (19)

this implies that (
�x = 1

b3
@'
@x – b1

b3

�y = 1
b3
@'
@y – b2

b3

. (20)

[13] Thus, we have

�x NA1– + �y NA2– + NA3– =
NA1–

b3

@'

@x
+
NA2–

b3

@'

@y
+ ˛, (21)

where ˛ = NA3– – NA1–b1/b3 – NA2–b2/b3. From equation (17),
or from the shadow component NS– of equation (7), it is then
relevant to set 8̂̂̂

ˆ̂̂<
ˆ̂̂̂̂
:̂

@P
@y

=

 
–
˛

2
–
NA2–

b3

@'

@y

!
ei'(x,y)

@Q
@x

=

 
˛

2
+
NA1–

b3

@'

@x

!
ei'(x,y)

. (22)

Then 8̂̂
ˆ̂<
ˆ̂̂̂:

P(x, y) =
–˛
2

Z
ei'(x,y) dy –

NA2–ei'(x,y)

ib3
+ p(x)

Q(x, y) =
˛

2

Z
ei'(x,y) dx +

NA1–ei'(x,y)

ib3
+ q(y)

, (23)

where p and q are any functions of x and y, respec-
tively. From the Green theorem, it is important to note thatR

C[p(x)dx + q(y)dy] = 0, since @p/@y = @q/@x = 0. The substi-
tution of equation (23) into equation (18) and into equation
(7) leads to

NSPO = NS+ + NS– =
3X

n=1

�
NSn,+ + NSn,–

�
In,PO, (24)

where 8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

I1,PO = – 1
ib1

Z
CPO

ei'(x,y) dy

I2,PO = 1
ib2

Z
CPO

ei'(x,y) dx

I3,PO =
Z Z

†PO

ei'(x,y) dx dy

, (25)

and 8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

NS1,˙ = – b1
b3

�
NJ1 ˙ NM1

�
NS2,˙ = – b2

b3

�
NJ2 ˙ NM2

�
NS3,˙ = 1

b3

3X
n=1

�
NJn ˙ NMn

�
bn"n

, (26)

in which CPO is the contour of †PO (oriented in counter-
clockwise) so that the integrals I1,PO and I2,PO follow the
contour of †PO. In addition, "3 = 1 and "1,2 = –1. Equation
(24) shows that the Sinclair Matrix calculated with PO
brings three integrals into play. The first two integrals are
one dimensional since they are expressed from the contour
CPO.

[14] For the PO forward component (minus sign compo-
nent in equation (24)), it can be shown for all (�i,�i, �s,�s)
that

NS3,– = N0, (27)
where N0 is the null matrix. Equation (27) clearly shows
that the PO forward component is independent of the object

Figure 4. Forward scattering from the pyramidal target of
Figure 3, in the view from below (xOz plane). The two asso-
ciated subdomains �+ (z > 0) and �– (z < 0) can be split up
into�+ = �1 [�2 [�6 and�– = �3 [�4 [�5;�4 being
defined by an extended shadow zone�4 = �40 [�4–[�400 .
Here ˛1 = atan(3�/3�) = 45ı and ˛2 = atan(3�/7�) '
23.2ı.
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Figure 5. RCS of the pyramidal target for �i = 180ı and
for VV polarization, computed from the MOM, the PO, and
the PO combined with the BP.

shape and depends only on the contour of the illuminated
surface (contour CPO in equation (25)) of the object. This is
consistent with the “Shadow Contour Theorem” [Ufimtsev,
2007, 2008] which states that “The shadow radiation does
not depend on the whole shape of the scattering object, and
is completely determined only by the size and the geometry
of the shadow contour.” We emphasize that this was demon-
strated with an arbitrary perfectly conducting object, which
differs from the works of Ufimtsev and Gordon, as they
considered two arbitrary blackbodies (a PEC object being a
more general case of the blackbody since the reflection is
also considered) and a flat surface, respectively.

[15] From equation (27), the substitution of equation (23)
into equation (18) and into equation (17) leads to

NSBa = NS1,–I1,Ba + NS2,–I2,Ba, (28)
where 8̂̂<

ˆ̂:
I1,Ba = – 1

ib1

Z
CBa

ei'(x,y) dy

I2,Ba = 1
ib2

Z
CBa

ei'(x,y) dx
, (29)

in which CBa is the contour of †Ba (oriented in counter-
clockwise). The integrals I1,Ba and I2,Ba follow the contour of
†Ba.

[16] Thus, from equations (25) and (29), equality between
the PO forward component and BP holds if I1,Ba = I1,PO and
I2,Ba = I2,PO. This is obtained for either

[17] 1. CBa = CPO: the contour of the surface †PO is
identical to the contour of the surface †Ba;
or

[18] 2. '(x, y) = 0 implying b1 = b2 = b3 = 0, which
occurs for �s = �i and �s = �i: this corresponds to the FS
direction, for which ki and ks are collinear.

2.4. “Reflected” Component
[19] For the reflected PO component (plus sign in

equation (24)), we show for all (�i,�i, �s,�s) that

NS3,+ = 2
�

a sin�
sin� –a

�
, (30)

where
a =

cos� (cos �i cos �s – 1) + sin �i sin �s

cos �s – cos �i
, (31)

in which � = �s – �i. Thus, unlike the field “shadowed com-
ponent,” equation (30) shows that the field in the illuminated
zone depends on the surface profile a priori, because the
surface integral I3,PO contributes.

2.5. Discussion
[20] In the reflected direction defined by �s = � – �i

and �s = �i (corresponding to the specular direction for a
horizontal plate), we show that

NS1,˙ = NS2,˙ = NS3,– = N0, (32)

and
NS3,+ = 2

�
cos �i 0

0 – cos �i

�
. (33)

Equation (32) clearly shows that the scattering contribu-
tion related to the forward component (minus sign) vanishes
in the specular direction. It also highlights that the specular
scattered field is only due to the reflected PO compo-
nent, which strongly depends on the object shape related
to the integral I3,PO, since, from equations (24) and (33),
NSPO = S3,+I3,PO.

[21] In the forward direction defined by �s = �i and
�s = �i, we show that8̂<

:̂
NS3,˙= NS1,+ = NS2,+ = N0
NS1,– = 2 cos �i cos2 �i NI
NS2,– = 2 cos �i sin2 �i NI

, (34)

where NI is the identity matrix.
[22] Equation (34) shows that the scattering contribution

related to the reflected PO component (plus sign) vanishes
in the FS direction and that the scattered field is only due to
the forward PO component, which only depends on the con-
tour of the object CPO, since from equations (24) and (34),
NSPO = S1,–I1,PO+S2,–I2,PO = 2 NI cos �i(I1,PO cos2 �i+I2,PO sin2 �i).

[23] In conclusion, we can state that the BP is a good
approximation of the PO around the FS direction; that is,
Es,Ba = Es,PO when Es,+ ! 0 for a bistatic angle around 180ı.
The BP exactly matches the PO forward component if the
contour of †Ba is the same as the one of †PO. Then, the BP
can be seen as a particular case of the PO approach.

3. Numerical Results
3.1. Combining PO and BP for a Pyramidal Target

[24] Let us consider the scene given in Figure 3, in which
a square pyramid is illuminated by an incident plane wave.

[25] The Cartesian coordinates of the apex of the pyra-
mid, which links the four elementary planar surfaces S1, S2,
S3, and S4, is (–2�, –4�, 3�), and the length of a side of the
square base S5 is L = 10�. The origin is located at the cen-
ter of the base S5. Edge and apex diffractions are neglected
because the present work focuses on the FS phenomenon.

[26] Two asymptotic approaches can be considered to
compute the RCS of this target. The first one consists in
applying the PO approximation on each illuminated surface
and then computing the radiation of the induced currents
from the Huygens principle for all positions of the receiver.
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Figure 6. Enlarged detail of Figure 5 around the boundary
between �1 and �2.

This takes into account both reflected and forward compo-
nents of PO for all excited surfaces (†PO = S1 [ S2 [ S3[ S4
for a normal incidence for example). The other asymptotic
approach combines PO and BP [Pouliguen et al., 2003]
(as detailed for the 2-D case in [Kubické et al., 2011]):
for a given position of the receiver, PO is applied on
surfaces visible from both the transmitter and the receiver
(the receiver is in the reflected zone (backward region) of
the considered surface) and BP on surfaces which are visi-
ble only from the transmitter (the receiver is in an extended
shadow zone which correspond to the zone behind the con-
sidered surface). Thus, in the extended shadow zone of the
whole target, only BP is applied for all four illuminated sur-
faces. As already discussed for the 2-D case in Kubické et al.
[2011], combining PO with BP on each elementary surface
implies that the reflected PO component is neglected in the
extended shadow region of the surfaces where BP is applied.
Indeed, it was demonstrated that BP is an approximation of
the forward component of PO. Nevertheless, according to
PO, the reflected component is much lower than the forward
component in the FS direction of a given surface, but this
can induce slight discontinuities in the RCS at the subdo-
mains boundaries. Thus, combining PO and BP can be seen
as an approximation of PO.

Figure 7. Enlarged detail of Figure 5 around the boundary
between �2 and �3.

Figure 8. Enlarged detail of Figure 5 around the boundary
between �3 and �4.

3.2. First Case: Normal Incidence and VV Polarization

[27] We first consider the normal incidence case, depicted
in Figure 4. PO and BP surfaces are †PO = S1 [ S2 [ S3 [ S4
and †Ba = S5.

[28] The RCS calculated by these two asymptotic
approaches are compared with the RCS computed by a
benchmark method: the well-known method of moments
(MOM). The comparison is depicted in Figure 5 versus the
scattering elevation angle �s for �i = 180ı (corresponding to
an incidence orthogonal to the pyramid base: 	i = 180 – �i =
0ı), �i = 0ı, and �s = 0ı and for VV polarization.

[29] As can be seen, results from the two asymptotic
approaches agree well with that of the benchmark method
and in particular around the specular direction of surface
S2 (�s = 45ı) and around the FS direction (�s = 180ı).
Differences between the classical PO and the PO combined
with the BP (PO+BP) can be observed for �s 2 [60ı; 140ı].
Indeed, the reflected PO component of surface S4 is set to
0 in �2, the reflected components of surfaces S1, S3, and S4
are set to 0 in �3, and the reflected components of all the
surfaces are then set to 0 in �4 = �40 [ �4– [ �400 for
the computation of PO+BP, and, as the observation angle
increases, these contributions decrease in the classical PO.

Figure 9. Same simulation parameters as in Figure 5 but
computed from PO, PO in reflection, and PO in forward
scattering.
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Figure 10. Same simulation parameters as in Figure 5 but
computed from PO in forward scattering and BP.

Moreover, slight discontinuities in the RCS computed from
PO+BP can be observed at the boundaries between the dif-
ferent subdomains �i. The first one occurs at the boundary
between �1 and �2 for �s = ˛1 = atan(3�/3�) = 45ı (an
enlarged detail is depicted in Figure 6). Indeed, from this
angle (and higher) the reflected PO component of surface S1
is set to 0 in PO+BP. The second one occurs at the bound-
ary between �2 and �3 for �s = 90ı (an enlarged detail is
depicted in Figure 7). Indeed, from this angle (and higher)
the reflected PO components of surfaces S3 and S4 are set to
0 in PO+BP. The last discontinuity occurs at the boundary
between �3 and �4 for �s = 90ı + ˛2 = 90ı + atan(3�/7�) =
113.2ı (an enlarged detail is depicted in Figure 8). Indeed,
from this angle (and higher) the reflected PO component of
surface S2 is set to 0 in PO+BP. These discontinuities do not
appear with classical PO method (for which the reflected PO
components are not set to 0).

[30] Figure 9 compares the RCS computed from the scat-
tered field Es,PO (PO approach) with the RCS of its two
components: the reflected one Es,PO+ and the FS one Es,PO–.

[31] As can be seen, the scattered field from PO is mainly
due to the reflected component Es,PO+ (r0) 8r0 2 �1 [

Figure 11. Forward scattering from a pyramidal target with
a lateral incidence.

Figure 12. RCS of the pyramidal target for �i = 155ı and
for VV polarization, computed from the MOM, the PO, and
the PO combined with the BP.

�2. In other words, the reflected component Es,PO+ (r0)
mainly contributes to the scattering process 8r0 2 �1 [
�2. For increasing �s from 140ı, the reflected component
decreases strongly and the FS component becomes the main
contribution to the scattered field, Es,PO+ (r0) being negli-
gible in the extended shadow zone �4 = �40 [ �4– [
�400 . It must be noted that this phenomenon begins to
occur in subdominant �3, which is in the reflected zone
of S2.

[32] Figure 10 compares the RCS of the FS component
of PO with the RCS obtained by applying BP on the whole
target.

[33] A perfect agreement is obtained. This illustrates the
proof given in section 2.3. Indeed, here CBa = CPO: the con-
tour of the surface†PO (contour of the surface S5) is identical
to that of the complementary Babinet screen †Ba. As theo-
retically demonstrated, in this case, the Babinet principle is
included in PO approach since Es,Ba (r0) = Es,PO– (r0). Inter-
estingly, it can be noted that these results perfectly match
the results obtained with other Cartesian coordinates of the
apex S: even if the target is different, the same FS component
is obtained. The shape of the illuminated surface does not

Figure 13. Enlarged detail of Figure 12 around the boun-
dary between �1 and �2.
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Figure 14. Enlarged detail of Figure 12 around the boun-
dary between �2 and �3.

play a role, which is consistent with the “Shadow Contour
Theorem” [Ufimtsev, 2007, 2008].

3.3. Second Case: Lateral Incidence and VV
Polarization

[34] We now consider the lateral incidence case, depicted
in Figure 11. PO and BP surfaces are†PO = S1[S2[S3[S4,
and †Ba corresponds to the projection of the object onto the
plane orthogonal to the incident direction (this corresponds
to the projection of S5.)

[35] The RCS of the PO and of the PO combined with
the BP approaches are compared with the RCS computed
from the MOM in Figure 12 versus the scattering elevation
angle �s for �i = 155ı (corresponding to a lateral incidence:
	i = 180ı – �i = 25ı), �i = 0ı, and �s = 0ı and for VV
polarization.

[36] Here again, the results from the two asymptotic
approaches agree well with that of the benchmark method
and in particular around the FS direction (�s = 180ı –
	i = 155ı). Some differences between the classical PO
and PO+BP can be observed from �s = 45ı (and higher).
Moreover, three discontinuities in the RCS computed from
PO+BP can be observed. The first one occurs at the bound-
ary between �1 and �2 for �s = 45ı (an enlarged detail is
depicted in Figure 13, in which PO and PO+BP perfectly

Figure 15. Enlarged detail of Figure 12 around the boun-
dary between �3 and �4.

Figure 16. Same simulation parameters as in Figure 12 but
computed from PO, PO in reflection, and PO in forward
scattering.

match for �s < 45ı since there is no shadow). The second
one occurs at the boundary between �2 and �3 for �s = 90ı
(an enlarged detail is depicted in Figure 14). The last dis-
continuity occurs at the boundary between �3 and �4 for
�s = 113.2ı (an enlarged detail is depicted in Figure 15).
Of course, these discontinuities, which are due to the same
reasons as detailed before in the first case, do not appear with
the classical PO method.

[37] Figure 16 compares the RCS computed from the scat-
tered field Es,PO (PO approach) with the RCS of its two
components: the reflected one Es,PO+ and the FS one Es,PO–.

[38] Like for the first case, the reflected component
decreases in the shadow region (Es,PO+ being negligible in
�4), and the FS component becomes the main contribution
to the scattered field. Figure 17 compares the RCS of the FS
component of PO with the RCS obtained by applying BP on
the whole target.

[39] Here the two approaches do not match. Indeed, here
CBa ¤ CPO: the contour of the surface †PO (contour of the
surface S5) is different from that of the complementary Babi-
net screen†Ba due to the equivalent rotation of the target. As
already written, moving the transmitter with a fixed target is
equivalent to rotating the target with a fixed transmitter. This
case is equivalent to that of a normal incidence (like for the
first case) but with a rotated pyramidal target with an angle

Figure 17. Same simulation parameters as in Figure 12 but
computed from PO in forward scattering and BP.
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of 25ı. Thus, the proof detailed in section 2.3 is only satis-
fied when '(x, y) = 0 implying b1 = b2 = b3 = 0, which
occurs for �s = �i and �s = �i: this corresponds to the FS
direction, for which ki and ks are collinear. Indeed, as can
be seen in Figure 17, a perfect agreement is obtained in the
FS direction �s = �i = 155ı. The Babinet principle can be
seen as an approximation of the PO approach which provides
exactly the same results as the PO in the FS direction.

4. Conclusion
[40] For a three-dimensional (3-D) problem, this paper

shows that the Babinet principle (BP) can be derived from
the physical optics (PO) approximation. Indeed, following
the same idea as Ufimtsev, from the PO approximation and
in the far-field zone, the field scattered by an object can
be split up into a field which mainly contributes around
the specular direction (illuminated zone) and a field which
mainly contributes around the forward direction (shad-
owed zone), which is strongly related to the scattered field
obtained from the BP. The only difference resides in the
integration surface.

[41] A theoretical study provided the mathematical proof
that the involved integral in the FS component of PO does
not depend on the global shape of the object. This corre-
sponds to a demonstration of the shadow contour theorem
which is different from that of Ufimtsev, since it considers
here a PEC object of arbitrary shape, not two blackbodies
(a PEC object being a more general case of the blackbody
since the reflection is also considered). Moreover, the behav-
ior of the reflected component of PO in the shadow zone
is studied theoretically. Then, when the contour of †PO is
the same as the one of the complementary Babinet screen
†Ba, BP exactly corresponds to the FS component of PO.
Thus, BP is contained in the PO approximation. When the
two contours are not the same, BP can be seen as a good
approximation of the PO approach, and BP provides exactly

the same results as PO in the FS direction. These theoretical
conclusions were illustrated with the scattering from a pyra-
midal target to better investigate the link between BP and
PO.
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