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In this article, the fields scattered by coated cylinders, a rough layer, and an object below a rough surface are
computed by the efficient propagation-inside-layer-expansion (PILE) method combined with the physical optics
(PO) approximation to accelerate the calculation of the local interactions on the non-illuminated scatterer, which
is assumed to be perfectly conducting. The PILE method is based on the method of moments, and the impedance
matrix of the two scatterers is then inverted by blocks from a Taylor series expansion of the inverse of the Schur
complement. Its main interest is that it is rigorous, with a simple formulation and a straightforward physical in-
terpretation. In addition, one of the advantages of PILE is to be able to hybridize methods (rigorous or asymptotic)
valid for a single scatterer. Then, in high frequencies, the hybridization with PO allows us to significantly reduce
the complexity in comparison to a direct lower–upper inversion of the impedance matrix of the two scatterers
without loss in accuracy. © 2013 Optical Society of America

OCIS codes: (000.3860) Mathematical methods in physics; (050.1940) Diffraction; (260.0260) Physical
optics; (290.5880) Scattering, rough surfaces.
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1. INTRODUCTION
In this article, the field scattered by two objects, one of which
is not directly illuminated, is computed. For instance, this gen-
eral issue concerns the scattering from a coated object, from a
stack of two rough interfaces of infinite lengths separating
homogeneous media (rough layer), or from an object below
a rough surface of infinite length (see Fig. 1). Numerically,
it is not possible to generate a surface of infinite length.
“Infinite length” means that the surface is large enough for
both the incident field and the surface currents on the edges
to vanish.

The applications of this general issue are numerous, and it
is not possible to present an exhaustive review. See [1–16]
(and references therein) for a partial review and also [5,10]
for the scattering from objects in the presence of more than
one interface. For instance, as shown in [15], the scattering
from a dielectric elliptical cylinder, which is coated eccentri-
cally by a nonconfocal dielectric elliptical cylinder, can be
solved by introducing the Mathieu functions and the equiva-
lent of the Graf theorem on the Bessel functions (used for cir-
cular cylinders). Nevertheless, the complexity of programing
increases in comparison to the scattering from a circular
coated cylinder. For the scattering from a rough layer or an
object below a rough surface, there is no rigorous analytical
solution, and then simplifying assumptions are introduced to
solve the problem analytically. For example, see [2,12,16].

Then, to treat any geometry and any incident field, the
method of moments (MoM) can be applied, which requires
inverting the impedance matrix. If the scatterer is electrically

large (high frequencies) and/or the relative permittivity
(modulus) is large in comparison to one, the number of
unknowns increases significantly, and then the inversion of
the impedance matrix is very time consuming or sometimes
even impossible. To solve this issue, it is then necessary to
develop numerical methods called “rapid.” For the scattering
from two scatterers, a possible candidate is the versatile
propagation-inside-layer-expansion (PILE) method [4]. It has
the main advantage that the resolution of the linear system
(obtained from the MoM) is broken up into different steps.
Two steps are dedicated to solve the local interactions (com-
puted by inverting a matrix), which can be done by efficient
methods valid for a single rough interface, such as forward–
backward (FB) [17–20] [complexity O�N2�], its accelerated
version FB spectral acceleration (FB-SA) [21–24] [complexity
O�N�], and banded-matrix-iterative-approach/canonical grid
(BMIA-CAG) [25–27] [complexity O�N log N�]. Two steps
are dedicated to solve the coupling interactions (computed
from a vector–matrix product), which can be done by updat-
ing the previous efficient methods. This has been investigated
with BMIA/CAG [6] and FB-SA [7] for a rough layer, and by
Bourlier et al. [8] for an object located below a rough surface,
in which FB-SA is applied to calculate the local interactions on
the rough surface. In the same spirit, PILE bas been extended
(and named the E-PILE method) to treat the more general
case of the scattering from two illuminated scatterers
[28,29]. For the scattering from a perfectly conducting (PC)
object above a rough sea surface, to accelerate the computa-
tion of the local interactions on the object, the physical optics
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(PO) approximation bas been applied [30]. For this former
case, the object was embedded in vacuum, unlike the case
studied here, for which the object is below a dielectric rough
surface.

The purpose of this paper is to combine PILE with PO and
to test the validity of this hybridization on the geometries
shown in Fig. 1. It is important to note that PILE has never
been tested on a coated cylinder. The paper is organized as
follows. Section 2 presents the PILE method and validates
it by comparing the radar cross section (RCS) with that
obtained analytically for a coated circular cylinder by intro-
ducing the Bessel functions. Section 3 explains how PILE
can be combined with PO, studies the validity of this new
method, and presents numerical results. Section 4 gives con-
cluding remarks and prospects.

2. PILE METHOD
In this section, the PILE method is briefly presented from
[4,6–8].

A. Impedance Matrix Z̄
From the boundary integral equations, the surface currents ψ i

and ∂ψ i∕∂n on each scatterer i (i � f1; 2g) must be deter-
mined. From the MoM, the boundary integral equations are
discretized on each surface of the scatterer, leading to the lin-
ear system Z̄X � b. The unknown vector is then

X �
�
X1

X2

�
; (1)

where the components of the vectors X1 and X2 are the
surface currents discretized on the surfaces S1 and S2,
respectively. They are written as

X1 �
h
ψ1�r1�…ψ1�rN1

� ∂ψ1�r1�
∂n …

∂ψ1�rN1
�

∂n

i
T
; rp∈�1;N1 �

∈ S1; (2)

X2 �
h
ψ2�r1�…ψ2�rN2

� ∂ψ2�r2�
∂n …

∂ψ2�rN2
�

∂n

i
T
; rp∈�1;N2 �

∈ S2; (3)

where the symbol T stands for the transpose operator and Ni

is the number of samples on the surface Si. Then the length of
the vector Xi is 2Ni.

The vector b of length 2�N1 � N2� is the incident field
discretized on the surface Si. It is defined as

b �
�
b1
b2

�

�

2
664ψ inc�r1�…ψ inc�rN1

�
0…0|{z}

N1 times|��������������������������{z��������������������������}
bT1 ;r∈S1

0…0|{z}
2N2 times|�������{z�������}

bT2 ;r∈S2

3
775

T

: (4)

The impedance matrix Z̄ of size 2�N1 � N2� × 2�N1 � N2� is
expressed as

Z̄ �

2
6664

Ā1 B̄1 0̄ 0̄
C̄1

1
ρ01

D̄1 Ā21 B̄21

Ā12
1
ρ01

B̄12 Ā2 B̄2

0̄ 0̄ C̄2
1
ρ12

D̄2

3
7775 �

�
Z̄1 Z̄21

Z̄12 Z̄2

�
; (5)

where

Z̄1 �
�
Ā1 B̄1

C̄1
1
ρ01

D̄1

�
; Z̄2 �

�
Ā2 B̄2

C̄2
1
ρ12

D̄2

�
; (6)

and

Z̄21 �
�

0̄ 0̄
Ā21 B̄21

�
; Z̄12 �

�
Ā12

1
ρ01

B̄12

0̄ 0̄

�
: (7)

The impedance matrix Z̄i of size 2Ni × 2Ni is the imped-
ance matrix of the single scatterer i, where Ni is the number
of samples on scatterer i. Moreover, matrices Z̄21 of size
2N1 × 2N2 (propagation from scatterer 2 to 1) and Z̄12 of size
2N2 × 2N1 (propagation from scatterer 1 to 2) are coupling
matrices between scatterers 1 and 2. The expressions of the
elements of matrices Z̄i and Z̄ij (i � f1; 2g and j � f1; 2g ≠ i)
are reported in Appendix A. ρij � 1 (i � f0; 1g and j �
f1; 2g ≠ i) for the TE polarization and ρij � εi∕εj for the
TM polarization, where εi is the permittivity of medium
Ωi. Appendix B simplifies the matrices when scatterer 2
is PC.

B. Scattered Field and RCS
From the knowledge of the surface currents fψ i; ∂ψ i∕∂ng on
the scatterers Si (i � f1; 2g), the scattered field ψsca;ν inside
the medium Ων (ν � f0; 1; 2g) is computed from the Huygens
principle as

Fig. 1. Scattering from two scatterers where only one is illuminated.
The source (incident field) is defined in medium Ω0.
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8>>>>><
>>>>>:

ψsca;0�r0� �
R
S1

h
ψ0�r� ∂g0�r;r

0�
∂n − g0�r; r0� ∂ψ0�r�

∂n

i
dS

ψ sca;1�r0� �
Pp�2

p�1 sp
R
Sp

h
ψp�r� ∂g1�r;r

0�
∂n − g1�r; r0� ∂ψp�r�

∂n

i
dS

ψsca;2�r0� � −
R
S2

h
ψ2�r� ∂g2�r;r

0�
∂n − g2�r; r0� ∂ψ2�r�

∂n

i
dS

;

�8�

where s1 � −1, s2 � �1, and gν�r; r0� � �j∕4�H�1�
0 �kν‖r0 − r‖� is

the zeroth-order Hankel function of the first kind.
In addition, the RCS in the medium Ω0 is expressed as

RCS � lim
r0→∞

2πr0
����ψsca;0

ψ inc;0

����2 � jψ∞
sca;0j2
4jk0j

; (9)

where k0 is the wavenumber inside the medium Ω0 and

ψ∞
sca;0 � −

1
ψ inc;0

Z
S1

�
jksca · n̂0ψ0�r� �

∂ψ0�r�
∂n

�
e−jksca ·rdS; (10)

where ψ inc;0 is the modulus of the incident field ψ inc in the
medium Ω0. In addition, n̂0 is the unitary vector normal to
the surface pointed toward Ω0.

To test the precision of the MoM, the RCS is compared
with that obtained analytically for a coated circular cylinder
by introducing Bessel functions. The derivation of this
solution is summarized in Appendix C by assuming an incident
plane wave defined in the medium Ω0 by ψ inc �
ψ inc;0e

jk0�x sin θinc−z cos θinc�, where k0 is the wavenumber and
θinc is the incident angle defined from the vertical ẑ (see Fig. 1).
Figure 2 plots the RCS in decibel scale versus the scattering
angle θsca. The radii of the two concentric circular cylinders
are a1 � 3λ0 and a2 � 2λ0; their centers are C1 � C2 � �0; 0�;
the relative permittivities of media fΩ0;Ω1;Ω2g are
fεr0 � 1; εr1 � 2; εr2 � 4� 0.05jg, respectively; and the wave-
length inside Ω0 is λ0 � 1 m. The incidence angle is θinc � 0
and the polarization is TE. For the MoM, the number of

samples per wavelength is Nλ0 � f10; 20g, and in the legend,
the number corresponds to the number of unknowns
2�N1 � N2�. For a dielectric medium Ωi, the number of sam-
ples per wavelength is Nλ0

���������
jεrij

p
, where εri is the relative per-

mittivity of medium i. Figure 3 plots the same results as in
Fig. 2, but for the TM polarization. Figures 4 and 5 plot the
ratio RCSLU∕RCSAnalytical in decibels (difference in decibels)
versus the scattering angle θsca. Figures 2 and 3 show a good
agreement between the two methods, and as the number of
unknowns increases, the difference slightly decreases.
Figures 4 and 5 show that the differences increase when
the RCS is very small, and they are smaller for the TM
polarization.

Table 1 lists the computation time obtained from the
MatLab software. For the analytical solution, the computation
time is very small in comparison to that obtained from the
MoM because the LU inversion of the impedance matrix is
not required. As the number of unknown increases, the
computation time increases because the size of the matrix
to invert increases.

C. Efficient Inversion of the Impedance Matrix
To efficiently solve the system Z̄X � b, the PILE method has
been developed [4]. It is based on the inversion by blocks
(series Taylor expansion of the inverse of the Schur comple-
ment [31]) of the impedance matrix. This leads to

X1 �
" Xp�PPILE

p�0

M̄p
c

#
Z̄−1
1 b1 �

Xp�PPILE

p�0

Y�p�
1 ; (11)

in which

�
Y�0�
1 � Z̄−1

1 b1 for p � 0
Y�p�
1 � M̄cY

�p−1�
1 for p > 0

; �12�

and

M̄c � Z̄−1
1 Z̄21Z̄−1

2 Z̄12: (13)
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Fig. 2. RCS in decibel scale versus the scattering angle θsca. The radii
of the two concentric circular cylinders are a1 � 3λ0 and a2 � 2λ0;
their centers are C1 � C2 � �0; 0�; the relative permittivities of media
fΩ0;Ω1;Ω2g are fεr0 � 1; εr1 � 2; εr2 � 4� 0.05jg, respectively; and
the wavelength inside Ω0 is λ0 � 1 m. The incidence angle is
θinc � 0, and the polarization is TE. For the MoM, the number of
samples per wavelength is Nλ0 � f10; 20g.
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Fig. 3. Results for the same parameters as in Fig. 2, but for the TM
polarization.
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In addition, X2 � −Z̄−1
2 Z̄12X1. We define the norm ‖M̄c‖ of a

complex matrix by its spectral radius, namely, the modulus of
the eigenvalue which has the highest modulus. Expansion (11)
is then valid if ‖M̄c‖ is strictly smaller than one.

Equation (12) has a clear physical interpretation: The total
currents on scatterer 1 are the sum of the contributions Y�p�

1
corresponding to successive iterations p. In the zeroth-order
term, Z̄−1

1 accounts for the local interactions on scatterer 1, so
Y�0�
1 corresponds to the contribution of the direct reflection on

scatterer 1, without entering inside the medium Ω1. In the
first-order term given by Y�1�

1 � M̄cY
�0�
1 , the matrix Z̄12 propa-

gates the resulting currents, Y�0�
1 , toward scatterer 2, Z̄−1

2 ac-
counts for the local interactions on scatterer 2, and the matrix
Z̄21 repropagates the resulting contribution toward scatterer 1;
finally, Z̄−1

1 updates the surface current values on scatterer 1,
and so on for the subsequent terms Y�p�

1 for p > 1. Thus, the
total currents

P
pY

�p�
1 on scatterer 1 correspond to the multi-

ple scattering of the field inside the medium Ω1. The surface
heights are obtained from the convolution of a Gaussian
white noise.

D. Numerical Results for the Three Scenarios
For the scattering from a rough surface, to simulate a surface
of infinite length, both the incident field and the surface cur-
rents must vanish on the edges. Thus, the well-known tapered
Thorsos wave is applied [32]. In addition, the normal RCS
(NRCS) or the scattering coefficient is then [33]

NRCS�θinc; θsca� � lim
r0→∞

r0‖psca;0‖
Pinc

� 1
16πη0k0

jψ∞
sca;0j2
Pinc

; (14)

where

Pinc �
g cos θinc

2η0

���
π

2

r �
1 −

1� 2 tan2 θinc
2k20g

2 cos2 θinc

�
; (15)

and η0 � 120π is the wave impedance in Ω0. In addition, Pinc is
the average incident power on the surface z � 0, psca;0 is the
Poynting vector of the scattered field, ψ∞

sca;0 is expressed from
Eq. (10), and the parameter g controls the extent of the inci-
dent wave and typically equals L∕4, where L is the surface
length. Unlike the RCS (in meters for a two-dimensional
problem), the NRCS is dimensionless.

Figure 7 plots the RCS (in dBm) or the NRCS (in dB) versus
the scattering angle θsca for a coated elliptical cylinder, an
elliptical cylinder below a rough surface, and a rough layer,
respectively. The polarization is TE, and the parameters of the
scenarios are given in the caption of Fig. 6. In the legend, for
each PILE order, the number is the residual error, defined as

εPILE � normθsca �RCSPILE − RCSLU�
normθsca �RCSLU�

; (16)

where the symbol “norm” is norm 2. The same definition is
used for the NRCS. The subscript “LU” means that the imped-
ance matrix is inverted from a direct LU inversion. Figure 7
shows that PILE converges rapidly. The order zero
corresponds to the scattering from only the upper scatterer.
Thus, PILE allows us to quantify the coupling between the two
scatterers, which cannot be exhibited from a direct LU inver-
sion. Values of the norm ‖M̄c‖ of the characteristic matrix de-
fined by Eq. (13) is given in Table 2, for the TE and TM
polarizations. For a detailed analysis of the PILE convergence,
the reader is referred to [4] for a random rough layer and to [8]
for an object below a random rough surface.

3. PILE COMBINED WITH PO
As shown previously, the first advantage of PILE in compari-
son to a direct LU inversion is the ability to quantify the cou-
pling between the two scatterers. Equation (12) clearly shows
that the calculation of Z̄−1

i u is required, in which Z̄i is the
impedance matrix of the scatterer i alone. Then, rapid meth-
ods developed for a single scatterer can be applied. This is the
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Fig. 5. Ratio RCSLU∕RCSAnalytical in decibels (difference in decibels)
versus the scattering angle θsca. The parameters are the same as in
Fig. 3.

Table 1. Computation Times in Seconds to Obtain

the Results of Figs. 2 and 3

Polarization LU, Nλ0 � 10 LU, Nλ0 � 20 Analytical

TM 1.67 5.80 0.02
TE 1.66 5.83 0.02
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Fig. 4. Ratio RCSLU∕RCSAnalytical in decibels (difference in decibels)
versus the scattering angle θsca. The parameters are the same as in
Fig. 2.
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second advantage of PILE. For example, when the scatterer is
a rough surface, to accelerate the computation of the
local interactions, FB, FB-SA, or BMIA/CAG can be applied.
For more details, see [6,7] for a rough layer and [8] for any
scatterer below a rough surface. In addition, in [8], it was
shown for FB that the order PFB of convergence is obtained
by considering only the scattering from the single rough sur-
face (without the other scatterer). Physically, this point can be
explained by the fact that the inversion of the impedance
matrix is independent of the incident field u.

For a closed surface, like an elliptical cylinder, FB, FB-SA,
and BMIA-CAG do not converge. Then, to accelerate the cal-
culation of the local interactions on a closed object, the PO
approximation (also valid for a rough surface) can be com-
bined with PILE. This is the purpose of this section.

A. PILE Combined with PO
For scatterer 2, which is assumed to be PC, the total field on
the object surface in the medium Ω1 due to a single reflection
is given under the PO approximation by

ψ2�r� � 2
�
ψ inc;1�r� r ∈ S2;Ill

0 r ∈ S2;Sha
and

∂ψ2�r�
∂n

� 0∀ S2;TMpolarization; (17)
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Fig. 6. (a) Coated elliptical cylinder: semi-major axis a1 � 6λ0, a2 � 3λ0, semi-minor axis b1 � 4λ0, b2 � λ0, centers C1 � �0; 0�, C2 � �−1;−1�λ0,
and rotation angles α1 � 0, α2 � −10°. (b) Elliptical cylinder below a rough surface: a2 � 4λ0, b2 � 2λ0, C2 � �0;−3�λ0, α2 � 0, surface length
L1 � 80λ0, center C1 � �0; 0�λ0, height standard deviation σz1 � 0.5λ0, correlation length Lc1 � 2λ0; the surface height autocorrelation function
is Gaussian, and the parameter of the Thorsos wave is g � L1∕4. (c) Rough layer: L1 � L2 � 80λ0, σz1 � 0.5λ0, σz2 � 0.1λ0, Lc1 � 2λ0,
Lc2 � λ0, C1 � �0; 0�λ0, C2 � �0;−2�λ0; the surface height autocorrelation function for both surfaces is Gaussian, and the parameter of the Thorsos
wave is g � L1∕4. In addition; for the three scenarios, the incidence angle is θinc � 30°, the relative permittivities of media fΩ0;Ω1;Ω2g are
f1; 2� 0.1j; j∞�PC�g, and the total number of unknowns are N � f1047; 2434; 3040g, for scenarios (a), (b), and (c), respectively.
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∂ψ2�r�
∂n

� 2

( ∂ψ inc;1�r�
∂n r ∈ S2;Ill

0 r ∈ S2;Sha

and ψ2�r� � 0∀ S2;TEpolarization; (18)

where ψ inc;1 is the incident field in Ω1 radiated from the
surface currents on scatterer 1, S2;Ill stands for the illumi-
nated surface, and S2;Sha for the shadowed surface
(S2 � S2;Ill∪S2;Sha). Then, under the PO approximation, the
inverse of the impedance matrix, Z̄−1

2 , is a diagonal matrix
of elements 2�•� for the TM polarization and of elements

2∂�•�∕∂n for the TE polarization. The complexity of the inver-
sion is then O�1�, instead of O�N3

2� with a direct LU inversion.

For example, for the calculation of Y�1�
1 � Z̄−1

1 Z̄21Z̄−1
2 Z̄12Y

�0�
1 ,

where Y�0�
1 � Z̄−1

1 b1, first, the vector Y�0�
1 is multiplied by the

matrix Z̄12, giving u � Z̄12Y
�0�
1 . It can be considered as an in-

cident field for scatterer 2. If PO is applied on scatterer 2,
some elements of Z̄12 can then be zero due to the fact that
a point on scatterer 2 is not viewed from a point on scatterer
1. For a convex object, this condition is satisfied if n̂2 · �r2 −
r1� > 0 [where r1;2 � �x1;2; z1;2� is a point on scatterer (1, 2)
and n̂2 is the normal to the surface S2 at the point r2 pointed
toward the medium Ω1]. Then, the elements of the modified
matrix Z̄0

12 are
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Fig. 7. (a) RCS in dBm versus the scattering angle θsca; (b) NRCS in dB versus the scattering angle θsca; (c) NRCS in dB versus the scattering angle
θsca. The parameters of the three scenarios are given in the caption of Fig. 6, and the polarization is TE.

Table 2. Values of the Norm ‖M̄c‖ of the

Characteristic Matrix Defined by Eq. (13)

Polarization Scenario 1 Scenario 2 Scenario 3

TE 0.2780 0.0735 0.1573
TM 0.5468 0.0746 0.1336
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Z 0
12;mn � Z12;mn

1− sgn��r2;m − r1;n� · n̂2;m�
2

� Z12;mn

1� sgn��x2;m − x1;n�v2;mγ2;m − �z2;m − z1;n�v2;m�
2

:

(19)

Next, u � Z̄12Y
�0�
1 is multiplied by Z̄−1

2 . Then, if PO is applied
on scatterer 2, the surface currents v � Z̄−1

2 u are computed as
follows:

v � Z̄−1
2 u � Z̄−1

2 Z̄0
12Y

�0�
1 � D̄

�
Ā0
12

1
ρ01

B̄0
12

��w1

w2

�

� D̄
�
Ā0
12w1 �

1
ρ01

B̄0
12w2

�
; (20)

where D̄ is a diagonal matrix of elements 2�•� for the TE
polarization and of elements 2∂�•�∕∂n at the point r2. In
addition, Y�0�

1 � �wT
1w

T
2 �T (w1 and w2 are vectors of length

N1). For the TM polarization, the above equation requires
us to compute ∂Ā12∕∂n and ∂B̄12∕∂n at the point r2. These
computations are expressed in Appendix D.

B. Numerical Results
Figure 8 plots the RCS (in dBm) or the NRCS (in dB) versus
the scattering angle θsca for a coated elliptical cylinder, an el-
liptical cylinder below a rough surface, and a rough layer. The
polarization is TE, and the parameters of the scenarios are
given in Fig. 6. In the legend, the labels are as follows:

– “PILE� LU� PO” means that PILE is hybridized with
LU for the calculation of the local interactions on scatterer
1 and with PO for the calculation of the local interactions
on scatterer 2.

– “PILE� FB� PO” means that PILE is hybridized with
FB for the calculation of the local interactions on scatterer
1 and with PO for the calculation of the local interactions
on scatterer 2.

– “PILE” means that PILE is not hybridized
(“PILE� LU� LU”).

– “LU” means that a direct LU inversion is applied.
In addition, the integer number after PILE between paren-

theses is the PILE order. It is chosen such that the residual
error is smaller than 0.01. Last, the last number is the residual
error computed from Eq. (16) by substituting the subscript
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Fig. 8. Same results as in Fig. 7, but the results with hybridization are added.
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“PILE” by the chosen hybridization. When FB is applied, its
order is determined from the study of the scattering from
the single rough surface by choosing a residual error smaller
than 0.01. For Figs. 8(b) and 8(c), PFB � 7.

As we can see in Fig. 8, a very good agreement is obtained
between LU and the hybridization and the small difference in
the residual error has a minor impact on the RCS or NRCS.
Simulations for an incidence angle θinc � 0, not reported here,
also showed very good agreements.

Figure 9 plots the computation time versus the number of
unknowns. Scenario 1 is chosen, and to increase the number
of unknowns, the problem size artificially increases by
applying a scaling on the sizes of the cylinders. As the number
of unknowns increases, Fig. 9 shows that PILE� LU� PO re-
quires less computation time than LU and PILE� LU� LU.
Due to the fact that the local interactions on the illuminated
scatterer are computed from a direct LU inversion, the com-
plexity for PILE� LU� PO is O�N3

1�. It is also important to
note that the memory space requirement for PILE� LU�
PO is smaller than for PILE� LU� LU, because the imped-
ance matrix of the non-illuminated object is not computed
(thus, not stored).

To study the limit of validity of PILE� LU� PO, we con-
sider the scenario of Fig. 6(a) with the following changes:
a1 � 2λ0, a2 � λ0, b1 � 2λ0, b2 � λ0 (smaller cylinders) and
C1 � �−0.5;−0.5�λ0. In Fig. 10(a), the corresponding RCS is
plotted versus θsca. We consider also the scenario of Fig. 6(c)
with the following changes: σz2 � 0.5λ0 (rougher lower sur-
face). The PO approximation is valid if the curvature radius
of the surface rc0 is much larger than the wavelength λ0
and if there are no multiple reflections, since PO is applied
at the first order. More precisely, from [34], rc0 cos3 θ0 ≫ λ0,
where θ0 is the local angle defined with respect to the normal
to the surface.

For Fig. 10(a), rc2 � λ0, which is smaller than that used in
Fig. 8(a). In Fig. 10(a), this explains why the residual error is
larger than that obtained in Fig. 8(a).

For Fig. 10(b), the mean of rc2 � �1� γ22�3∕2∕jγ02j, where
γ2 � z02�x2� � dz2∕dx2, is hrc2i � 5.60, whereas in Fig. 8(c),
hrc2i � 14.98. In addition, for a random rough surface, the

multiple reflections can be neglected if the surface slope stan-
dard deviation σs is smaller than 0.3. For Fig. 8(c), σs2 � 0.15,
whereas in Fig. 10(b), σs2 � 0.73. This explains why the
residual error is larger than that obtained in Fig. 8(c). A means
to decrease the residual error is to apply the PO at the second
order, meaning that the second reflection is accounted for.
This procedure has been published to include the second re-
flection for the scattering from a PC dihedral located above a
sea surface [30]. Then the complexity of programming and of
the resulting method increase.

If a direct LU inversion is used, the method complexity
is O��N1 � N2�3�. For PILE� LU� LU, the complexity is
similar. For PILE� LU� PO, the complexity becomes
O�N3

1� and the memory requirement is also reduced since
the matrix Z̄2 is not stored and the coupling matrix Z̄12 is
not full. For PILE� FB� PO, the complexity is reduced
to O�N2

1�. For a detailed analysis of the complexity of PILE�
FB − SA� FB − SA and PILE� FB − SA� LU, see [7] and [8],
respectively.
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Fig. 9. Computation time versus the number of unknowns. Scenario
1 is chosen, and to increase the number of unknowns, the problem
size artificially increases by applying a scaling on the sizes of the
cylinders.
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Fig. 10. Same results as in Fig. 8, but with the following changes:
(a) Fig. 10(a): scenario 1 of Fig. 6(a) but a1 � 2λ0, a2 � λ0,
b1 � 2λ0, b2 � λ0 (smaller cylinders) and C1 � �−0.5;−0.5�λ0;
(b) Fig. 10(b): Scenario 3 of Fig. 6(c) but σz2 � 0.5λ0 (rougher lower
surface).
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4. CONCLUSION
In this paper, from the integral equations to calculate the field
scattered by two scatterers where only one is illuminated, an
efficient numerical method has been presented. The PILE
method is based on the MoM, and the impedance matrix of
the two scatterers is then inverted by blocks from the Taylor
series expansion of the inverse of the Schur complement. Fur-
thermore, the PILE method allows one to use any fast method
developed for a single interface. Here, for scatterer 2 assumed
to be PC, to decrease the complexity of PILE, PO or/and FB

have been hybridized with PILE, and according to the sce-
nario, this hybridization gives satisfactory results. A prospect
of this paper is to extend the hybridization to the case of a
dielectric scatterer in order to reduce the complexity.

APPENDIX A: ELEMENTS OF THE
MATRICES
In Eq. (5), the elements of the block matrices fĀ1; B̄1; C̄1; D̄1g
are expressed as

A1;mn �

8>>><
>>>:
−
jk0vnjΔnj

4
H�1�

1 �k0∥rn − rm∥�
∥rn − rm∥

× �γn�xn − xm� − �zn − zm�� for m ≠ n

� 1
2
−
vnjΔnj
4π

γ0�xn�
1� γ2�xn�

for m � n

; (A1)

B1;mn � jjΔnj
��������������
1� γ2n

p
4

8<
:
h
1� 2j

π ln
�
0.164k0

��������������
1� γ2n

p
jΔnj

�i
for m � n

H�1�
0 �k0‖rn − rm‖� for n ≠ m

; (A2)

C1;mn �

8>>><
>>>:
−
jk1vnjΔnj

4
H�1�

1 �k1∥rn − rm∥�
∥rn − rm∥

�γn�xn − xm� − �zn − zm�� for m ≠ n

−
1
2
−
vnjΔnj
4π

γ0�xn�
1� γ2�xn�

for m � n

; (A3)

D1;mn � jjΔnj
��������������
1� γ2n

p
4

(h
1� 2j

π ln
�
0.164k1

��������������
1� γ2n

p
jΔnj

�i
for m � n

H�1�
0 �k1‖rn − rm‖� for m ≠ n

; (A4)

where rn � �xn; zn� ∈ S1 (coordinates of the point on the sur-
face S1), rm � �xm; zm� ∈ S1, γn � dzn∕dxn, γ0n � dγn∕dxn, Δn

is the sampling step, vn � sgn�n̂n · ẑ� (where n̂n is the normal
vector to the point rn), H

�1�
0 is the zeroth-order Hankel function

of the first kind, and H�1�
1 is its derivative. The elements of

the matrices fĀ2; B̄2; C̄2; D̄2g are obtained from those
of fĀ1; B̄1; C̄1; D̄1g by substituting the wavenumbers
fk0; k0; k1; k1g for fk1; k1; k2; k2g, respectively.

The elements of the coupling matrices fĀ12; B̄12; Ā21; B̄21g
are

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

A12;mn � −
jk1v1;njΔ1;nj

4
H�1�

1 �k1∥r1;n − r2;m∥�
∥r1;n − r2;m∥

× �γ1;n�x1;n − x2;m� − �z1;n − z2;m��

A21;mn � −
jk1v2;njΔ2;nj

4
H�1�

1 �k1∥r2;n − r1;m∥�
∥r2;n − r1;m∥

× �γ2;n�x2;n − x1;m� − �z2;n − z1;m��

B12;mn �
jjΔ1;nj

�����������������
1� γ21;n

q
4

H�1�
0 �k1‖r1;n − r2;m‖�

B21;mn �
jjΔ2;nj

�����������������
1� γ22;n

q
4

H�1�
0 �k1‖r2;n − r1;m‖�

: �A5�

APPENDIX B: IMPEDANCE MATRIX WHEN
SCATTERER 2 IS PC
If scatterer 2 is assumed to be PC, the impedance matrix Z̄2

can be simplified. For the TE polarization (Dirichlet boundary
condition), ψ2 on the surface vanishes and the only unknown
on the surface is ∂ψ2∕∂n. Then

TE : Z̄2 � B̄2; X2 �
∂ψ2

∂n
: (B1)

For the TM polarization (Neumann boundary condition),
∂ψ2∕∂n on the surface vanishes and the only unknown on
the surface is ψ2. Then

TM : Z̄2 � Ā2; X2 � ψ2: (B2)

In addition, the coupling matrices are simplified as

8>>><
>>>:

TE : Z̄12 �
h
Ā12

1
ρ01

B̄12

i
; Z̄21 �

�
0̄

B̄21

�

TM : Z̄12 �
h
Ā12

1
ρ01

B̄12

i
; Z̄21 �

�
0̄

Ā21

� : �B3�
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APPENDIX C: ANALYTICAL SOLUTION OF
A COATED CIRCULAR CYLINDER
This appendix briefly presents the field scattered by a coated
circular cylinder (two concentric circular cylinders) and com-
puted in polar coordinates �r; θ�, where the angle θ is defined
from the horizontal axis x̂. An incident plane wave is
considered: ψ inc�ψ inc;0e

jk0�x sin θinc−z cos θinc� �ψ inc;0e
jk0r sin�θinc−θ�

[k0 � k0�x̂ sin θinc − ẑ cos θinc�] with tan θ � z∕x and
r �

����������������
x2 � z2

p
.

In media Ω0, Ω1, and Ω2, the total fields are

ψ0�r; θ� �
Xn��∞

n�−∞
�AnJn�k0r� � BnH

�1�
n �k0r��e−jnθ with

An � ψ inc;0e
jnθinc ; (C1)

ψ1�r; θ� �
Xn��∞

n�−∞
�CnJn�k1r� � DnH

�1�
n �k1r��e−jnθ; (C2)

ψ2�r; θ� �
Xn��∞

n�−∞
EnJn�k2r�e−jnθ; (C3)

respectively, where H�1�
n is the nth-order Hankel function of

the first kind and Jn is the nth-order Bessel function of the
first kind. In Eqs. (C1)–(C3), the four unknowns are Bn,
Cn, Dn, and En. The boundary conditions state that

8>>>>>><
>>>>>>:

ψ0�a1; θ� � ψ1�a1; θ�
ψ1�a2; θ� � ψ2�a2; θ�

∂ψ0

∂r
��
r�a1

� ρ01
∂ψ1

∂r
��
r�a1

∂ψ1

∂r
��
r�a2

� ρ12
∂ψ2

∂r
��
r�a2

: �C4�

From Eqs. (C1)–(C3), this leads for any �θ; n� to

2
6666664

H�1�
n �k0a1� −Jn�k1a1� −H�1�

n �k1a1� 0
k0H

0�1�
n �k0a1� −ρ01k1J

0
n�k1a1� −ρ01k1H

0�1�
n �k1a1� 0

0 Jn�k1a2� H�1�
n �k1a2� −Jn�k2a2�

0 k1J
0
n�k1a2� k1H

0�1�
n �k1a2� −k2ρ12J

0
n�k2a2�

3
777775

2
666664
Bn

Cn

Dn

En

3
777775 �

2
666664

−AnJn�k0a1�
−Ank0J

0
n�k0a1�
0
0

3
777775: (C5)

This linear system can be solved analytically or numerically
by inverting the matrix of size 4 × 4. The RCS in medium Ω0 is
then expressed as

RCS�θinc; θsca� �
4
k0

���� Xn��∞

n�−∞
Bne

jn�θinc�θsca−π�
����2: (C6)

APPENDIX D: DERIVATION OF THE
COUPLING MATRICES FOR PO
From Eq. (5), we show that

∂B12;mn

∂n

����
r2;m

�
jk1v2;mjΔ1;nj

�����������������
1� γ21;n

q
H11

4r12
������������������
1� γ22;m

q �z12 − γ2;mx12� (D1)

and

∂A12;mn

∂n

����
r2;m

� −
jk1v1;njΔ1;njv2;m
4

������������������
1� γ22;m

q �w00 �w10�γ1;n � γ2;m�

�w11γ1;nγ2;m�; (D2)

where

8>>>>>>>><
>>>>>>>>:

w00 �
k1z

2
12H10

r212
� �x212 − z212�H11

r312

w10 �
x12z12

r312
�2H11 − H10k1r12�

w11 �
k1x

2
12H10

r212
� �z212 − x212�H11

r312

; �D3�

and x12 � x1;n − x2;m, z12 � z1;n − z2;m, r12 �
��������������������
x212 � z212

q
,

H10 � H�1�
0 �k1r12�, H11 � H�1�

1 �k1r12�.
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