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Sea surface infrared reflectivity is an important parameter in maritime remote sensing. Usually, single
reflection by the sea surface is considered. However, a loss of energy is then reported for large zenith
observation angles (θ > 50°) with a peak of about 4% for θ ≈ 80°, because of the neglect of the multiple
surface reflections. This paper presents calculations for the polarized infrared reflectivity of one-
dimensional sea surfaces (2D problems) with two surface reflections, by introducing a bistatic illumina-
tion function with two reflections. The results show good agreement with the ones obtained by a Monte
Carlo ray-tracing method. It is also shown that the energy conservation criterion is better satisfied after
considering two surface reflections. © 2013 Optical Society of America
OCIS codes: (280.5715) Refractivity profiles; (260.3060) Infrared; (000.5490) Probability theory,

stochastic processes, and statistics; (290.5880) Scattering, rough surfaces; (010.0280) Remote sensing
and sensors.
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1. Introduction

The knowledge of the sea surface reflectivity ρ is cru-
cial in maritime remote sensing in general, for exam-
ple, the estimation of sea surface temperature [1],
the generation of oceanic images [2–5], the vessel
detection [6], etc. The sea surface reflectivity ρ corre-
sponds to the radiance from the sky (atmosphere,
sun, etc.) reflected by the sea surface. It depends on
the incidence and observation directions. However, it
is also commonly averaged on the incidence or the
observation direction over the upper hemisphere to
obtain a hemispherical average reflectivity.

Published models of infrared reflectivity usually
take into account one surface reflection [3,7–9], as
illustrated in Fig. 1. In these models, shadowing
due to the surface roughness is taken into account
with single surface reflection.

The law of energy conservation implies that the
sum of the absorbed and reflected energy equals the
incident one. However, Yoshimori et al. [9] proved
that a loss of energy of up to 4% is found for large
zenith observation angles (corresponding to a
receiver close to the horizon) if multiple surface
reflections were ignored.

Multiple surface reflections are seldom studied be-
cause of their complexity. To take into account multi-
ple reflections by the rough surfaces, the key lies in
the determination of the probability that multiple
surface reflections occur, which is expressed by a
bistatic illumination function with n surface reflec-
tions. Lynch and Wagner [10] built a bistatic illumi-
nation function with two surface reflections (see
Fig. 2), with which they calculated the scattered en-
ergy by a rough surface which was assumed to be a
perfect reflector. They pointed out that the energy
conservation criterion was better satisfied after
considering the second reflection. Bourlier et al.
[11] developed a bistatic illumination function
with multiple surface reflections as the product of
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successive monostatic illumination functions. How-
ever, this model has not been compared with any
numerical results or with measurements. In the
model of Schott et al. [12], a Monte Carlo ray-tracing
method was developed to calculate the infrared re-
flectivity of a rough dielectric surface with multiple
reflections. They arrived at the same conclusion that
the energy conservation criterion was better satisfied
when the second surface reflection was considered.

This paper develops an analytical model to deter-
mine the sea surface reflectivity in the infrared
atmospheric transmission windows (λ ∈ �3; 5� and
[8,12] μm). Polarization is studied, which may
provide additional information in measuring and
analyzing signals [13]. Two surface reflections are
considered by introducing an improved bistatic
illumination function with two surface reflections.
A Monte Carlo ray-tracing method is used as a refer-
ence method. To further evaluate the performance of
the model, the energy conservation criterion is
examined.

In this paper, one-dimensional Gaussian sea surfa-
ces (1D surfaces, 2D problems) of infinite length are
considered, which are defined by the profiles of 2D
surfaces along a given wind direction. The surfaces
are modeled as single-valued, thus whitecaps and
breaking waves are not taken into account. The geo-
metric optics (GO) approximation is assumed to be
valid as the infrared wavelengths studied here
(≈10 μm) are much smaller than the radius of curva-
ture of the capillary waves (several millimeter) of sea
surfaces [14]. Under such an approximation, only
specular reflections are considered. This model can
be applied to other bands where GO is valid.

This paper is organized as follows. In Section 2, the
bistatic illumination function with one surface reflec-
tion is briefly recalled, then it is extended to take into
account two surface reflections. In Section 3, the po-
larized infrared reflectivity of sea surfaces with one
and that two reflections are derived. In Section 4, the
numerical results of the bistatic illumination func-
tions and of the sea surface reflectivity are shown
and compared with those obtained by a Monte Carlo
ray-tracing method. Then the energy conservation
criterion is examined.

2. Bistatic Illumination Function

When solving rough or sea surface infrared reflectiv-
ity ρ, shadowing from the transmitter and the
receiver must be taken into account, especially for
grazing incidence and/or observation directions. On
the other hand, the incidence raymay undergo multi-
ple surface reflections before it is reflected into the
observation direction.

To take into account these phenomena, a bistatic
illumination function Sn

B is employed, where n �
1; 2; 3;… denotes the number of reflections and the
subscript “B” stands for the bistatic configuration.
In this section, the widely used S1

B with one reflection
is recalled, and a model S2

B with two reflections is
derived. We recall that the surfaces are assumed
to be single valued and only specular reflections
are considered.

A. S1
B with One Reflection

To evaluate the shadowing effect in the incidence and
the observation directions, a bistatic illumination
function with one surface reflection S1

B is used, which
gives the probability that the incidence ray is re-
flected once by the surface to the receiver. This paper
follows the idea of Wagner [15] to extend the mono-
static illumination function of Smith [16] to a bistatic
configuration.

Three examples of single surface reflection on an
arbitrary surface point M0 with height ζ0 and slope
γ0 are illustrated in Fig. 1. A system of coordinates
�x; z� is defined, with x being the horizontal direction
toward the receiver and z being the direction of
the zenith. Angles are oriented, with the clockwise
direction (that of θ) being the positive direction.

Fig. 1. Three cases of single surface reflection for 1D surfaces. (a) In case 1, the transmitter and the receiver are on different sides (θ ≥ 0,
θi < 0), while in (b) case 2 and (c) case 3, they are on the same side (θ ≥ 0, θi > 0), with the receiver being lower (θ ≥ θi) in (b) and higher
(θ < θi) in (c).

Fig. 2. Incidence ray ŝi is reflected twice by the surface into the
observation direction ŝ.
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1. Statistical Expression of S1
B�θ; θi; γ0; ζ0�

The inverse path is used here, which means that the
ray is emitted by the receiver along ŝ− and is reflected
by the point M0 to the transmitter along ŝ−i . The
superscript “−” means the inverse of direction.
Mathematically, the bistatic illumination function
with one surface reflection S1

B can be expressed as
[15,17,18]

S1
B�θ; θi; γ0; ζ0� � p�abc� � p�ac�p�bjac�; (1)

where the definitions of the symbols are given below:

• “the ray M0�ŝ� does not intersect the surface” is
defined as a;
• “the reflection ray of M0�ŝ� propagates in the

ŝ−i direction” is defined as b;
• “the rayM0�ŝ−i � does not intersect the surface” is

defined as c.

The conditional probability p�bjac� can be ex-
pressed by a Dirac delta function

p�bjac� � δ�θspei − θi�; (2)

where θspei is the zenith angle of the specular reflec-
tion ray of ŝ− (inverse path). The probabilities p�a�
and p�c� can both be expressed by the Smith mono-
static illumination function SM (see [16] and [19] for
details). The key lies in studying the dependence
between the events a and c.

In case 1 shown in Fig. 1(a), where the transmitter
and the receiver are on different sides of M0 with
respect to the zenith direction (θ ≥ 0, θi < 0), it is as-
sumed that a and c are independent. As a result,
p�ac� is expressed as [15,17,18]

p�ac� ≈ p�a�p�c�
� SM�θ; γ0; ζ0�SM�θi; γ0; ζ0�
� F�ζ0�Λ�μ��Λ−�μi�; (3)

where F is the cumulative density function, and
μi � cot θi, μ � cot θ are the slopes of the incidence
and the observation directions, respectively. Λ and
Λ− correspond to rays propagating toward and away
from the positive direction of x, respectively (see
[19]). Equation (3) does not consider the correlation
between the heights and the slopes of different
surface points. See [19] for the calculation of the
correlation.

In case 2 shown in Fig. 1(b), where the transmitter
and the receiver are on the same side of M0�θ ≥
0; θi ≥ 0� with the receiver being lower (θ ≥ θi), for
single-valued surfaces, it is sure that M0�ŝ−i � will
not intersect the surface given that M0�ŝ� does not
(p�cja� � 1). In this case, p�ac� is expressed as
[15,17,18]

p�ac� � p�a�p�cja� ≈ p�a� � F�ζ0�Λ�μ�: (4)

Similarly, in case 3 shown in Fig. 1(c), where the
locations of the transmitter and the receiver are in-
verted (θ ≥ 0, θi > 0, θi > θ) compared to case 2, p�ac�
is expressed as [15,17,18]

p�ac� � p�c�p�ajc� ≈ p�c� � F�ζ0�Λ�μi�: (5)

2. Bidirectional Average S̄1
B�θ; θi�

The bidirectional average bistatic illumination func-
tion S̄1

B corresponds to the probability that the inci-
dence ray ŝ− leaves the surface along the ŝ−i direction
after it is reflected once by the surface. It is obtained
by averaging S1

B over the heights and the slopes of
the surface, given by

S̄1
B�θ; θi� � hS1

B�θ; θi; γ0; ζ0�i1; (6)

where h� � �i1 corresponds to the statistical average
given by

h� � �i1 �
Z �∞

−∞

Z �∞

−∞
� � �p�ζ0; γ0�dζ0dγ0 (7)

with p�ζ0; γ0� being the joint probability density func-
tion (PDF) of the heights and slopes of the surface
point M0.

To evaluate the performance of the model, a Monte
Carlo ray-tracing method is used. However, it is
nearly impossible to observe a reflection angle θspei
(inverse path) of the same value as the given θi when
a Monte Carlo ray-tracing method is used. As a re-
sult, the Dirac delta function δ�θspe − θi� is replaced
by a unitary rectangular window function, with a
half-width Δθi, given by

W�θi; θspei ;Δθi� �
�
1; for jθspei − θij ≤ Δθi
0; otherwise

: (8)

Then, the integration over the slopes γ0 of M0 on
the Dirac delta function is replaced by that on a win-
dow corresponding to θspei ∈ �θi − Δθi; θi � Δθi�, which
gives the probability that the reflection ray ŝ−i forms
an angle θspei in this region with the zenith. In this
paper, Δθi � 0.1° is used.

Accordingly, in the ray-tracing method, it is
assumed that rays with θspei ∈ �θi − Δθi; θi � Δθi�
(inverse path) all reach the transmitter. By doing
so, the results of the analytical model and those of
the numerical ray-tracing model can be compared
directly without difficulty.

3. Hemispherical Average S̄1
B;hemi�θ�

The hemispherical average bistatic illumination
function S̄1;hemi

B corresponds to the probability that
the incidence ray ŝ− leaves the surface in any direc-
tion after it is reflected once by the surface. It is
obtained by averaging S1

B over the heights and the
slopes of M0, and over θi on the upper hemisphere
θi ∈ �−π∕2; π∕2�, given by
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S̄1;hemi
B �θ� �

�Z
π∕2

−π∕2
S1
B�θ; θi; γ0; ζ0�dθi

�
1

; (9)

where h� � �i1 is given by Eq. (7).

B. S2
B with Two Reflections

The incidence ray may undergo multiple reflections
before it reaches the receiver. This section considers
two reflections. Figure 2 illustrates the geometry of
this problem for 1D surfaces. An incidence ray ŝi in-
tersects the surface atM1, where it is reflected into a
direction ŝ0. Then, the ray ŝ0 intersects the surface
again, where it is reflected to the observation
direction ŝ.

1. Statistical Expression of S2
B�θ; θi; γ0; ζθ; γ1; ζ1�

To evaluate the probability of observing double sur-
face reflections, a bistatic statistical illumination
function with two surface reflections S2

B is developed
from the monostatic statistical illumination function
without reflection S0

M by Smith [16] and from that
with one reflection S1

M by Li et al. [19].
In the calculation, the inverse path is used here. To

express the bistatic illumination function with two
reflections S2

B, 4 events are defined:

• “the ray M0�ŝ� does not intersect the surface” is
denoted as a;
• “the reflection ray M0�ŝ0−� of M0�ŝ−� intersects

the surface” is denoted as b;
• “the reflection ray of M0�ŝ0−� propagates in the

ŝ−i direction” is denoted as c;
• “the rayM1�ŝ−i � does not intersect the surface” is

denoted as d.

The bistatic illumination function S2
B is then

given by

S2
B�θ; θi; γ0; ζ0; γ1; ζ1� � p�abcd�

� p�ab�p�cjab�p�djabc�. (10)

Determination of p�ab�. It is notable that the first
part p�ab� equals the monostatic illumination
function with one surface reflection S1

M . This paper
uses the model of Li et al. [19]. The probability
p�ab� is developed according to four cases, shown
in Fig. 3 [19]. The reader is referred to [19] for details
about the calculation.

The inverse path is used, which means that a ray
ŝ− is reflected by M0 to M1, with θ01 being the global
reflection angle. In cases 1 and 2, the ray M0�ŝ0−�
propagates rightward (θ01 > 0), whereas in cases 3
and 4, it propagates leftward (θ01 < 0). In cases 1
and 4, it propagates downward (jθ01j > 90°), whereas
in cases 2 and 3, it propagates upward (jθ01j < 90°).
For uncorrelated surfaces, the monostatic illumina-
tion function with one surface reflection is defined
according to these 4 cases, given by [19]

p�ab� � ϒ�μ − γ0�F�ζ0�Λ�μ�

×
�
1 for cases 1 and 4;
1 − F�ζ0�Λ−�μ0� for cases 2 and 3; (11)

where ϒ�μ − γ0� is the unit step function. Note that
when 0 < θ01 < θ, p�ab� � p�a�p�bja� equals 0, as
given “M�ŝ� does not intersect the surface,” it is
impossible that “M�ŝ0−� intersects the surface” (see
Fig. 3 of [19] for discussion). As a result, in case 2,
only the region θ < θ01 < 90° is considered. The
reader is referred to [19] for the result for correlated
surfaces.

Determination of p�cjab�. The second part p�cjab�
corresponds to the probability that the reflection
ray of ŝ0− propagates along the ŝ−i direction. As dis-
cussed in S1

B, it is expressed by a Dirac delta function,
given by

p�cjab� � δ�θspei − θi�; (12)

where θspei is the zenith angle of the specular reflec-
tion ray of ŝ0−.

Determination of p�djabc�. The conditional proba-
bility p�djabc� is the conditional probability that
M1 is viewed by the transmitter along the ŝ−i direc-
tion, given “a”, “b,” and “c.” It can be expressed by
the monostatic illumination function SM , except
for the cases where obvious correlations are found
between the event “d” and “abc,” which are discussed
below.

In case 1 shown in Fig. 3(a) for the region
−90° < θi < θ10, and in case 4 shown in Fig. 3(d)
for the region θ10 < θi < 90° (denoted with red double
arc), it is impossible that “the ray M1�ŝ−i � does not
intersect the surface” (event d) given that “M0�ŝ0−�

Fig. 3. Four configurations of surface reflections (inverse path),
with the reflection ray M0�θ01� propagating. (a) Case 1, rightward
and downward. (b) Case 2, rightward and upward. (c) Case 3,
leftward and upward. (d) Case 4, leftward and downward.
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intersects the surface at M1” (event b), which means
that p�djabc� � 0. In cases 3 and 4 shown in Figs. 3(c)
and 3(d) for the region 0° < θi < θ (denoted with red
triple arc), it is sure that the ray M1�ŝ−i � does not
intersect the surface (event d) given “M0�ŝ� does
not intersect the surface” (event a), whichmeans that
p�djabc� � 1. Besides these situations, p�djabc� is
expressed by the monostatic illumination function
SM . To sum up, the conditional probability p�djabc�
is given by

p�djabc� �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

�
0; −90° < θi < θ10;

p�d�; other θi;
case 1;

p�d�; case 2;�
1; 0° < θi < θ;

p�d�; other θi;
case 3;

2
664
1; 0° < θi < θ;

0; θ10 < θi < 90°;
p�d�; other θi;

case 4;

(13)

where for uncorrelated surfaces p�d� is given by

p�d� �
�
F�ζ1�Λ�μi�; for θi > 0;
F�ζ1�Λ−�μi�; for θi > 0:

(14)

The bistatic illumination function with two
reflections S2

B is then obtained by substituting
Eqs. (11)–(13) for Eq. (10).

It is notable that the bistatic illumination function
defined here is mathematically the same as the
model of Lynch andWagner [10] for uncorrelated sur-
faces with even surface slope PDFs. As a result, the
uncorrelated model with Gaussian slope PDF devel-
oped here gives the same result as that of Lynch and
Wagner. The advantage of the model presented here
is the permission to take into account the correlation
between surface points to improve the performance.

2. Bidirectional Average S̄2
B�θ; θi�

The bidirectional average bistatic illumination func-
tion S̄2

B corresponds to the probability that the inci-
dence ray ŝ− leaves the surface along the ŝ−i direction
after it is reflected twice by the surface. It is obtained
by averaging S2

B over the heights and the slopes of
the surface points M1 and M0, given by

S̄2
B�θ; θi� � hS2

B�θ; θi; γ0; ζ0; γ1; ζ1�i2; (15)

where h� � �i2 is given by

h���i2�
Z �∞

−∞

Z �∞

−∞

Z �∞

−∞

Z �∞

−∞
���p�γ0;ζ0;γ1;ζ1�dζ1dγ1dζ0dγ0

(16)

with p�γ0; ζ0; γ1; ζ1� being the joint PDF of the heights
and slopes of surface points M0 and M1.

For the same reason stated at the end of
Section 2.A, the Dirac delta function used in p�cjab�
is replaced by a unitary window function given
by Eq. (8).

3. Hemispherical Average S̄2
B;hemi�θ�

The hemispherical average bistatic illumination
function S̄2;hemi

B corresponds to the probability that
the incidence ray ŝ− leaves the surface after it is
reflected twice. It is obtained by averaging S2

B over
the heights and the slopes of the surface points M1
and M0, and over θi on the upper hemisphere
θi ∈ �−π∕2; π∕2�, given by

S̄2;hemi
B �θ� �

�Z
π∕2

−π∕2
S2
B�θ; θi; γ0; ζ0; γ1; ζ1�dθi

�
2

; (17)

where h� � �i2 is given by Eq. (16).
Note that when calculating the integration in

h� � �i2, the slope PDF of the surface point M1 is differ-
ent from that of the surface, given that M1 is the in-
tersection point of the ray ŝ0− and the rough surface.
Following the discussion in [19], the slope PDF ofM1
is given by

pγ1�γ1� �

8><
>:

ϒ�γ1−μ1�R �∞
μ1

pγ�t�dt
pγ�γ1�; for cases 1 and 2;

ϒ�μ1−γ1�R
μ1
−∞

pγ�t�dt
pγ�γ1�; for cases 3 and 4;

(18)

where pγ is the marginal surface slope PDF.
The bidirectional and hemispherical average bi-

static illumination functions are used to calculate
the bidirectional and hemispherical reflectivity of
the sea surface in Section 3, respectively.

3. Infrared Reflectivity and Energy Conservation

In this section, the sea surface infrared reflectivity ρ
is calculated. The infrared reflectivity with one re-
flection ρ1 is derived in Section 3.A, and the one with
two reflections ρ2 is derived in Section 3.B.

A. Reflectivity with One Reflection

The sea surface infrared reflectivity with one surface
reflection corresponds to the radiance from the sky
reflected once by the surface into the observation
direction, as illustrated in Fig. 1.

For 1D surfaces, the local angle of incidence χ0
of an arbitrary surface point M0 is given by [see
Fig. 1(a)]

cos χ0 � n̂0 · ŝ �
cos θ − γ0 sin θ��������������

1� γ20

q ; (19)

where n̂0 is the unitary vector normal toM0 and γ0 is
its slope. The local reflectivity of M0 is then given by
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ρlocal1;H;V�χ0� � jrH;V�χ0�j2; (20)

where rH;V is the Fresnel reflection coefficients in
horizontal or vertical polarization, respectively,
given by

rH�χ� �
cos χ − n cos χ 0

cos χ � n cos χ 0
; rV�χ� �

n cos χ − cos χ 0

n cos χ � cos χ 0
;

(21)

where n is the index of refraction of the sea water,
and χ 0 is the local angle of refraction given by Snell’s
law

sin�χ 0� � sin�χ�
n

: (22)

It is notable that, for 1D surfaces, the incidence di-
rection ŝi, the observation direction ŝ and the local
normal n̂0 to any arbitrary surface point belong to
the same plane [the �x; z� plane here]. As a result,
the horizontal polarization directions H and Hi cor-
responding to ŝ and ŝi, respectively, are then identi-
cal, as they are both perpendicular to the �x; z� plane.
In addition, H and Hi do not change from point to
point [14]. As a result, cross-polarization does not
occur for 1D surfaces.

The bidirectional sea surface infrared reflectivity
with one surface reflection is the average of the local
reflectivity over the surface, given by [7]:

ρ1;H;V�θ; θi� � hjrH;V�χ0�j2g0S1
Bi1; (23)

where h� � �i1 is given by Eq. (7). The term g0 results
from projecting the area of the facet around M0 onto
the orthogonal direction of the observation direction
ŝ, given by

g0 � 1 − γ0 tan θ: (24)

S1
B is the bistatic illumination function with one

reflection given by Eqs. (3)–(5).
The hemispherical sea surface infrared reflectivity

with one reflection is obtained by integrating the
bidirectional one over θi on the upper hemisphere
θi ∈ �−π∕2; π∕2�, given by

ρhemi
1;H;V�θ� �

�Z �π∕2

−π∕2
jrH;V�χ0�j2g0S1

Bdθi

�
1

: (25)

B. Reflectivity with Two Reflections

The sea surface infrared reflectivity with two surface
reflections corresponds to the radiance from the sky
reflected twice by the surface into the observation di-
rection, as illustrated in Fig. 2.

As the incidence ray is reflected twice by the sur-
face, the local polarized reflectivity with two surface
reflections is then given by

ρlocal2;H � jrH1
�χ1�j2jrH�χ0�j2;

ρlocal2;V � jrV1
�χ1�j2jrV�χ0�j2; (26)

where the directions of polarizations H1 and V1 are
defined by the local normal n̂1 ofM1 and the direction
of propagation ŝ0. The local angle of incidence χ1 at
M1 is calculated by Eq. (19), by replacing γ0 and θ
with γ1 and θi, respectively. As we stated before, cross
polarization does not occur for 1D surfaces.

The bidirectional reflectivity ρ2;H;V of sea surfaces
with two surface reflections is the average of the local
reflectivity over the whole surface, given by

ρ2;H;V�θ; θi� � hρlocal2;H;Vg0S
2
Bi2; (27)

where h� � �i2 is given by Eq. (16) and S2
B is the bistatic

illumination function with two surface reflections
given by Eq. (10).

The hemispherical sea surface infrared reflectivity
with two reflections is obtained by integrating the
bidirectional one over θi on the upper hemisphere
θi ∈ �−π∕2; π∕2�, given by

ρhemi
2;H;V�θ� �

�Z �π∕2

−π∕2
ρlocal2;H;Vg0S

2
Bdθi

�
1

: (28)

C. Energy Conservation

Following the law of energy conservation, under
thermal equilibrium, the sum of the absorbed and re-
flected energy equals the incident energy. In other
words, the sum of the surface emissivity and hemi-
spherical average reflectivity equals 1

ε�θ� � ρhemi�θ� � 1: (29)

It is reported that this condition is not fulfilled if
only the direct emissivity ε0 and the hemispherical
reflectivity with one reflection ρhemi

1 are considered,
with ε0 � ρhemi

1 < 1 for large θ [9]. Yoshimori et al.
[9] stated that it was because multiple surface reflec-
tions were neglected.

In this paper, the law of energy conservation is
examined, by taking into account the emissivity ε1
with one reflection [14,20–23] and the hemispherical
reflectivity with two reflections ρhemi

2 . In this paper,
the emissivity model ε1 of Li et al. [14] is used.

4. Numerical Results

In this section, the numerical results of the bistatic
illumination function and the surface infrared reflec-
tivity are analyzed. Recall that 1D surfaces are con-
sidered. The models are compared with a Monte
Carlo ray-tracing method. The reader is referred to
Appendix A for details about this method.

When calculating the correlated bistatic illumina-
tion function, it is assumed that the joint PDF of the
surface heights and slopes is Gaussian, and the
height autocorrelation function is also Gaussian
(see [7] for the calculation of the correlation). In other
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cases, it is assumed that the surface slopes and
heights of surface points are uncorrelated. For uncor-
related surfaces, the knowledge of the surface height
PDF is not necessary. The surface slope PDF is as-
sumed to be Gaussian with zero mean, given by

pγ�γ� �
1������
2π

p
σγ

exp
�
−

γ2

2σ2γ

�
; (30)

where σγ is the RMS slope of the sea surface. In this
paper, the result of Cox and Munk is used, which re-
lates the surface RMS slope to the wind speed u12 at
12.5 m above the sea surface [24]. The upwind direc-
tion is considered here, for which the RMS slope is
given by

σ2γ � 3.16 × 10−3u12: (31)

The reflectivity in the infrared atmospheric
transmission windows is calculated. The index
of refraction of the sea water n is given by the
model of Hale and Querry [25]. For example, for
wavelengths λ � f4; 10g μm, the index of refrac-
tion n � f0.3510� 0.0046i; 1.2180� 0.0508ig.

As stated in Section 2.A, the Dirac delta functions
in S1

B and S2
B are replaced by the window function

given by Eq. (8) during the calculation for a direct
comparison with the Monte Carlo ray-tracing
method. The integrations in the bistatic illumination
functions S̄1

B, S̄
1;hemi
B , S̄2

B, S̄
2;hemi
B and in the reflectivity

ρ1, ρhemi
1 , ρ2, ρhemi

2 are calculated numerically, as they
do not have analytical solutions.

A. Illumination Function with One Reflection

For given directions θ and θi, the average bistatic
illumination function with one reflection S̄1

B is
given by Eq. (6). The results are shown in Fig. 4.
The wind speed at 12.5 m above the sea surface is
u12 � 10 m∕s (sea surfaces with Beaufort scale ≈5).
S̄1
B is plotted versus θi, for three values of

θ � f30°; 60°; 80°g. The results for u12 � 5 m∕s are
also calculated (as well as in all other simulations
in this paper), which are not shown as they leads
to the same conclusion.

It is shown that the uncorrelated and the corre-
lated models both agree very well with the Monte
Carlo ray-tracing model. For the three observation
directions θ � f30°; 60°; 80°g, the average bistatic il-
lumination function S̄1

B has a maximum around the
global specular reflection direction θ � f−30°;−60°;
−80°g, respectively, meaning that it is most likely
to observe a reflection ray around the global specular
reflection direction of the incidence ray.

The hemispherical average bistatic illumination
function with one surface reflection S̄1;hemi

B is ob-
tained by Eq. (9). The results are shown in Fig. 5 for
a wind speed u12 � 10 m∕s.

It is shown that the hemispherical average bistatic
illumination function S̄1;hemi

B decreases monotonously
with the observation angle θ. For surfaces with wind

speed u12 � 10 m∕s, S̄1;hemi
B ≈ 1 for θ < 40°, meaning

that shadowing is negligible along both the incidence
and reflection directions. Shadowing becomes signifi-
cant as θ increases. For θ → 90°, S̄1;hemi

B � 0. This can
be predicted by the fact that SM�90°� → 0 (see Fig. 2
of [16]), meaning that all the surface points are in the
shadow of the receiver. The results of themodel agree
very well with the Monte Carlo ray-tracing results.

B. Illumination Function with Two Reflections

The average bistatic illumination function with two
reflections S̄2

B is given by Eq. (15). The results are
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Fig. 4. Average bistatic illumination function with one reflection
S̄1
B versus θi for three θ: (a) θ � 30°, (b) θ � 60°, and (c) θ � 80°. The

wind speed u12 is 10 m∕s.
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Fig. 5. Hemispherical average bistatic illumination function
S̄1;hemi
B for surfaces with wind speed u12 � 10 m∕s.
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shown in Fig. 6 for the same parameters as those
in Fig. 4.

Shifts of the maxima between the results of the
model and those obtained from the Monte Carlo
ray-tracing method are found, especially for the
zenith observation angle θ � 30°. The maxima pre-
dicted by the model, with or without the correlation
between the surface points, occur around θi ≈ −80°
for different θ, whereas the Monte Carlo ray-tracing
results suggest that their locations should signifi-
cantly depend on the angle θ.

One possible reason for this difference is that the
slope PDF of M1 [Eq. (18)] is not well calculated. In
the derivation of the slope PDF of M1, it is assumed
that any slope γ1 fulfilling jχ1j < 90° can equally be
the slope of M1, which depends only on the slope
of ŝ0, while the influence of the observation angle θ
is ignored.

Except for this drawback, the results of the present
model are generally of the same level as the ones of the
MonteCarlo ray-tracingmodel. Themaxima of S̄2

B are
of the order of 10−5, 10−4, and 10−3 (recall that
Δθi � 0.1°) for θ � 30°, 60°, and 80°, respectively,
whichmeans that double surface reflections aremore
significant for large zenith observation angles θ.

The hemispherical average illumination function
with two surface reflections S̄2;hemi

B is given by
Eq. (17). The results are shown in Fig. 7 for a wind
speed u12 � 10 m∕s.

It is shown that the model agrees quite well with
the Monte Carlo ray-tracing method. The model, cor-
related or uncorrelated, slightly underestimates the
result at small and moderate θ, e.g., θ < 65°, and
overestimates the result for large θ. A better agree-
ment is obtained by taking into account the correla-
tion between surface points.

It is notable that double surface reflections are
significant only for large zenith observation angles
θ. This is predictable, because the bistatic illumina-
tion function is based on the monostatic illumination
function with one surface reflection [p�ab� in
Eq. (10)], which is significant only in this region
(see Fig. 4 of [14]).

C. Reflectivity with One Reflection

The bidirectional sea surface infrared reflectivity ρ1
is given by Eq. (23). The results are shown in Fig. 8.
Three observation angles θ � f30°; 60°; 80°g are stud-
ied, and the results are shown versus the angle of in-
cidence θi. The wavelength is λ � 10 μm, and the
wind speed u12 is 10 m∕s.

It is shown that the model agrees very well with
the Monte Carlo ray-tracing method. Taking into ac-
count the correlation between the surface heights
and slopes hardly modifies the results.

It is readily visible in Fig. 8 that the H and V po-
larized reflectivity with one reflection ρ1 do not equal
each other. The V polarized ρ1 is always smaller,
which implies that the reflection ray of an unpolar-
ized ray, whose intensity in any polarization is the
same, would be partially polarized, with the inten-
sity in H polarization being stronger.

It is notable that the locations of the peaks of ρ1 in
H and V polarizations are different. In addition, they
are not located in the global specular reflection direc-
tion. This effect is the most significant for θ � 60°
shown in Fig. 8(b), where the peaks of ρ1 in H and
V polarizations are shifted to about θi ≈ −70° and
θi ≈ −85°, respectively. This effect is reported in
the measurements of the sea surface sun glitter
[2,3], where the peak of the sun glitter was shifted
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Fig. 6. Average bistatic illumination functionwith two reflections
S̄2
B versus θi, for three θ: (a) θ � 30°, (b) θ � 60°, and (c) θ � 80°.

The wind speed u12 is 10 m∕s.
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Fig. 7. Hemispherical average bistatic illumination function with
two surface reflections for wind speed u12 � 10 m∕s.

1 September 2013 / Vol. 52, No. 25 / APPLIED OPTICS 6107



toward the horizon (jθij is larger than the one of the
global specular reflection direction).

The hemispherical average reflectivity ρhemi
1 is

obtained by Eq. (25). The results are shown in Fig. 9
for a wind speed u12 � 10 m∕s and a wavelength
λ � 10 μm.

The model generally agrees well with the Monte
Carlo ray-tracing method. For grazing angles
θ > 80°, the model slightly overestimates ρhemi

1 . In
general, the correlated model gives a better agree-
ment with the Monte Carlo ray-tracing method.

It is shown that the H polarized ρhemi
1 monoto-

nously increases with the zenith observation angle
θ, while the V polarized ρhemi

1 slightly decreases to
a minimum and then increases because of the
Brewster angle (θB ≈ 50.6°, for λ � 10 μm, flat sur-
face). Besides, the H polarized ρhemi

1 is always larger
than that in V polarization, which is opposite from
the sea surface emissivity ε0, where ε0;V is always
larger (see Fig. 6 of [14]). This is because, under ther-
mal equilibrium, more waves in one polarization are
reflected implies that less waves in this polarization
are absorbed (then re-emitted), and vice versa. We
may also conclude that V polarized infrared signals
better represent the state of sea surfaces (larger ε0;V ),
whereas H polarized infrared signals better
represent the radiance from the sky (larger ρ0;H),
e.g., the sun glitter.

D. Reflectivity with Two Reflections

The bidirectional sea surface infrared reflectivity ρ2
is given by Eq. (27). The results are shown in Fig. 10,
for the same parameters as those in Fig. 8.

It is shown that for small and moderate zenith
observation angles, e.g., θ � 30° in Figs. 10(a)
and 10(b) and 60° in Figs. 10(c) and 10(d), the results
of the present model have similar forms to the Monte
Carlo ray-tracing results, but the locations of the
peaks are different. A better agreement is obtained
for large observation angle, θ � 80° in Figs. 10(e)
and 10(f). Note that ρ2 is much more significant
for large θ than for small and moderate ones. Similar
discrepancies between the bistatic illumination
function S2

B and the corresponding Monte Carlo
ray-tracing results are found, as shown in Fig. 6.
The reason may be that the slope of M1 is not well
calculated.

It is notable that the peaks of ρ2 do not occur in the
global specular reflection directions. As predicted by
the Monte Carlo ray-tracing method, double surface
reflection shifts the peak of the surface reflectivity
from the global specular reflection direction toward
the horizon.

The hemispherical average reflectivity with two
surface reflections ρhemi

2 is obtained by Eq. (28).
The results are shown in Fig. 11 for a wind speed
u12 � 10 m∕s and a wavelength λ � 10 μm.

It is shown that the model agrees quite well
with the Monte Carlo ray-tracing result. The uncor-
related model overestimates the surface reflectivity,
which is largely overcome after taking into account
the correlation between the surface heights and
slopes. It is shown that ρhemi

2 is close to zero for
small and moderate observation angles θ. It is rela-
tively significant for large observation angles,
e.g., θ > 70°.

E. Energy Conservation

The law of energy conservation, given by Eq. (29), is
examined here, and the results are shown in Fig. 12,
for a wind speed at 12.5 m above the sea surface
u12 � 10 m∕s, and for a wavelength λ � 10 μm.
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Fig. 8. Bidirectional reflectivity with one reflection ρ1 versus θi,
for three θ: (a) θ � 30°, (b) θ � 60°, and (c) θ � 80°. The wind speed
u12 is 10 m∕s and the wavelength is 10 μm.
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Fig. 9. Hemispherical average infrared reflectivity with one
reflection ρhemi
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The sea surface emissivity ε0 and ε1 are obtained
following the model of Li et al. [14]. Unpolarized
emissivity and reflectivity are considered, which
are obtained by averaging the ones inH and V polar-
izations. The analytical results are compared with
those of the Monte Carlo ray-tracing method.

When the sea surface infrared emissivity without
surface reflection ε0 and the hemispherical average
reflectivity with one reflection ρhemi

1 are considered
[Fig. 12(a)], energy is conserved for θ < 50°
(ε0 � ρhemi

1 ≈ 1). However, ε0 � ρhemi
1 < 1 in the region

50° < θ < 90°, which means that a loss of energy is
predicted. This is because multiple surface reflec-
tions are not considered [9]. The minimum is about
0.96 for θ ≈ 80°, with a loss of energy being about 0.04
(4% of the incident energy is “lost”). The correlated
model shows a sharp peak exceeding 1 for θ ≈ 88°,
which is due to the poor convergence of the method
for grazing θ.

After taking into account the surface infrared
emissivity with one reflection ε1 obtained by the
model of Li et al. [14] [Fig. 12(b)], the region where
energy conservation is checked is extended to
θ < 60°. In addition, the peak of the loss of energy
is reduced to about 0.02.

Finally, the hemispherical average reflectivity
with two reflections ρhemi

2 is taken into account, illus-
trated in Fig. 12(c). Energy conservation is achieved
for almost all θ. Except for the sharp peak of the cor-
related model, a slight loss of energy is still found for
65°≲ θ ≲ 85°, with a peak of about 0.005.
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Fig. 10. Bidirectional reflectivity with two reflections ρ2 versus θi, for three values of θ: (first row) θ � 30°, (second row) θ � 60°, and (third
row) θ � 80°, in horizontal polarization on the left, and in vertical polarization on the right. The wind speed u12 is 10 m∕s and the
wavelength is 10 μm.
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The hemispherical average reflectivity ρhemi�θ� is
sometimes calculated from 1 − ε�θ� by using the
law of energy conservation [22,26]. Then, the energy
conservation criterion is fulfilled by construction.
However, energy conservation cannot be achieved
for large θ by analytical or numerical methods even
after taking into account up to two surface reflec-
tions, as shown in Fig. 12. As a result, an overestima-
tion in the reflectivity ρhemi is predicted for large θ
(see also Section 4 of [27] for discussion), especially
when multiple surface reflections are ignored in
the calculation of the surface emissivity ε�θ�. Besides,
another drawback of this method is that it cannot
separate the contribution of each surface reflection
in the surface reflectivity.

5. Conclusion

Surface multiple reflections are important when
solving rough/sea surface reflectivity for large zenith
observation angles. This paper calculates the sea
surface infrared reflectivity with two surface reflec-
tions by introducing a bistatic illumination function
with two surface reflections. A Monte Carlo ray-
tracing method is used as reference. It is shown that
the model agrees well with the reference, where an
overestimation is observed. Taking into account
the surface correlation improves the agreement.
Then, the law of energy conservation is examined.
It is shown that the energy conservation criterion

is better satisfied after taking into account the sur-
face infrared emissivity with one reflection ε1 and
the hemispherical average reflectivity with two re-
flections ρhemi

2 . Cross polarization effect and compari-
son with measurements are left to further study by
considering 2D surfaces.

Appendix A: Monte Carlo Ray-Tracing Method

To evaluate the performance of the model, a Monte
Carlo ray-tracing method is used. In this paper, 1D
rough surfaces are generated with Gaussian height
PDF and Gaussian height autocorrelation function.
For a Gaussian autocorrelation function, the correla-
tion length of the surface Lc is given by

Lc �
���
2

p
σζ∕σγ; (A1)

where σζ and σγ are the RMS height and RMS slope of
the surface, respectively. For sea surfaces with a
wind speed u12 � 10 m∕s, σζ ≈ 0.46 m, and σγ ≈
0.17 (thus Lc ≈ 3.7 m), derived from the sea surface
spectrum of Elfouhaily et al. [28].

The model in this paper is built for surfaces of in-
finite length. However, it is impossible to perform
ray-tracing on a surface of infinite length. Thus,
the surface length L is chosen according to the zenith
observation angle θ, so that the limited surface
length does not cause significant error. In this paper,
L � 200Lc for θ ≤ 70°, L � 500Lc for 70° < θ ≤ 80°,
and L � 5000Lc for 80° < θ ≤ 90° are chosen. The
spatial sampling step is 1 cm. The reader is referred
to Section 4 of [29] for details about the generation of
the surface.

Then, ray-tracing is performed over these surfaces.
An incidence ray is sent along ŝ− (inverse path) and
all the illuminated surface points (corresponding to
M0) are denoted as a set Ω (see Fig. 4 of [29] for de-
tails about the algorithm). The reflection rays are
traced. The surface points for which the reflection
rays do not intersect the surface again correspond
to single surface reflection, noted as a set Ω1. The
other points in Ω correspond to two and more surface
reflections, noted as Ω2�. The reflection rays in
Ω2�, corresponding to ŝ0− in Fig. 2, intersect the
surface in M1 and are reflected again. The reflection
rays (ŝ−i in Fig. 2) are traced, and the ones which do
not intersect the surface again is noted as Ω2. The
other points inΩ2� correspond to three andmore sur-
face reflections, thus are noted as Ω3�. This process
can be repeated to take into account more surface
reflections.

When calculating the average bistatic illumination
function or the bidirectional reflectivity, the surface
points in Ω1 and Ω2 with θspei ∈ �θi − Δθi; θi � Δθi� are
selected. The average bistatic illumination functions
S1;2
B equal the ratio of the number of points, N1 and

N2 selected from Ω1 and Ω2, respectively, over the
number of the total surface points Ns. The bidirec-
tional reflectivity is obtained from the average reflec-
tivity of each selected path
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Fig. 12. Verification of the energy conservation. The sum of sur-
face emissivity and hemispherical average reflectivity is shown:
(a) ε0 � ρhemi

1 is studied, (b) ε1 and is taken into account, and
(c) then ρhemi

2 is finally considered. The wind speed is
u12 � 10 m∕s, and the wavelength is λ � 10 μm.
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ρMC
1;H;V � 1

Ns

XN1

i�1

jrH;V�χ0;i�j2g0;i;

ρMC
2;H;V � 1

Ns

XN2

i�1

jrH;V�χ0;i�j2jrH;V�χ1;i�j2g0;i; (A2)

where χ0;i and χ1;i are the local incidence angles at
each selected point M0 and M1, respectively. Follow-
ing Eq. (24), g0;i is given by

g0 � 1 − γ0;i tan θ (A3)

with γ0;i being the slope of each selected point M0.
The hemispherical average illumination function

and the hemispherical average reflectivity are calcu-
lated in a similar way, but with all points in Ω1 and
Ω2 being selected, regardless of the direction of ŝ−i .
The hemispherical average bistatic illumination
function equals the ratio of the number of points NΩ1

and NΩ2
in Ω1 and Ω2, respectively, over the number

of the total surface points Ns. The hemispherical
average reflectivity is the average reflectivity of each
path, which is given similarly as Eq. (A2) by replac-
ing N1 and N2 with NΩ1

and NΩ2
, respectively.

Finally, the results obtained from each surface are
averaged. In this paper, the Monte Carlo results are
obtained from 200 surface realizations.

References
1. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, N. R.

Nalli, H. B. Howell, W. P. Menzel, O. Brown, J. Brown, P.
Minnett, and W. McKeown, “Observations of the infrared ra-
diative properties of the ocean implications for the measure-
ment of sea surface temperature via satellite remote sensing,”
Bull. Am. Meteorol. Soc. 77, 41–51 (1996).

2. W. Su, T. P. Charlock, and K. Rutledge, “Observations of reflec-
tance distribution around sunglint from a coastal ocean
platform,” Appl. Opt. 41, 7369–7383 (2002).

3. V. Ross, D. Dion, and G. Potvin, “Detailed analytical approach
to the Gaussian surface bidirectional reflectance distribution
function specular component applied to the sea surface,”
J. Opt. Soc. Am. A 22, 2442–2453 (2005).

4. K. Caillault, S. Fauqueux, C. Bourlier, P. Simoneau, and L.
Labarre, “Multiresolution optical characteristics of rough
sea surface in the infrared,” Appl. Opt. 46, 5471–5481 (2007).

5. V. Ross, D. Dion, and D. St-Germain, “Experimental validation
of the modtran 5.3 sea surface radiance model using miramer
campaign measurements,” Appl. Opt. 51, 2264–2276 (2012).

6. D. A. Vaitekunas, K. Alexan, O. E. Lawrence, and F. Reid,
“Shipir/ntcs: a naval ship infrared signature countermeasure
and threat engagement simulator,” Proc. SPIE 2744, 411–424
(1996).

7. C. Bourlier, G. Berginc, and J. Saillard, “Theoretical study on
two-dimensional Gaussian rough sea surface emission and re-
flection in the infrared frequencies with shadowing effect,”
IEEE Trans. Geosci. Remote Sens. 39, 379–392 (2001).

8. S. Fauqueux, K. Caillault, P. Simoneau, and L. Labarre,
“Multiresolution infrared optical properties for Gaussian
sea surfaces: theoretical validation in the one-dimensional
case,” Appl. Opt. 48, 5337–5347 (2009).

9. K. Yoshimori, K. Itoh, and Y. Ichioka, “Thermal radiative and
reflective characteristics of a wind-roughened water surface,”
J. Opt. Soc. Am. A 11, 1886–1893 (1994).

10. P. J. Lynch and R. J. Wagner, “Rough-surface scattering: shad-
owing, multiple scatter, and energy conservation,” J. Math.
Phys. 11, 3032–3042 (1970).

11. C. Bourlier, G. Berginc, and J. Saillard, “Monostatic and bi-
static statistical shadowing functions from a one-dimensional
stationary randomly rough surface: II. Multiple scattering,”
Waves Random Media 12, 175–200 (2002).

12. P. Schott, N. de Beaucoudrey, and C. Bourlier, “Reflectivity of
one-dimensional rough surfaces using the ray tracing tech-
nique with multiple reflections,” in Geoscience and Remote
Sensing Symposium, 2003. IGARSS ‘03. Proceedings. 2003
IEEE International (2003), vol. 7, pp. 4214–4216.

13. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw,
“Review of passive imaging polarimetry for remote sensing
applications,” Appl. Opt. 45, 5453–5469 (2006).

14. H. Li, N. Pinel, and C. Bourlier, “Polarized infrared emissivity
of one-dimensional Gaussian sea surfaces with surface reflec-
tions,” Appl. Opt. 50, 4611–4621 (2011).

15. R. J. Wagner, “Shadowing of randomly rough surfaces,”
J. Acoust. Soc. Am. 41, 138–147 (1967).

16. B. Smith, “Geometrical shadowing of a random rough sur-
face,” IEEE Trans. Antennas Propag. 15, 668–671 (1967).

17. M. Sancer, “Shadow-corrected electromagnetic scattering
from a randomly rough surface,” IEEE Trans. Antennas
Propag. 17, 577–585 (1969).

18. C. Bourlier, J. Saillard, and G. Berginc, “Intrinsic infrared
radiation of the sea surface,” Prog. Electromagn. Res. 27,
185–335 (2000).

19. H. Li, N. Pinel, and C. Bourlier, “A monostatic illumination
function with surface reflections from one-dimensional rough
surfaces,”Waves Random ComplexMedia 21, 105–134 (2011).

20. K. Masuda, “Infrared sea surface emissivity including multi-
ple reflection effect for isotropic Gaussian slope distribution
model,” Remote Sens. Environ. 103, 488–496 (2006).

21. X. Wu and W. L. Smith, “Emissivity of rough sea surface for
8–13 μm: modeling and verification,” Appl. Opt. 36,
2609–2619 (1997).

22. N. R. Nalli, P. J. Minnett, and P. Delst, “Emissivity and reflec-
tion model for calculating unpolarized isotropic water surface-
leaving radiance in the infrared. I: theoretical development
and calculations,” Appl. Opt. 47, 3701–3721 (2008).

23. P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed
effects on sea surface emission and reflection for the along
track scanning radiometer,” J. Atmos. Ocean. Technol. 13,
126–141 (1996).

24. C. Cox and W. Munk, “Measurement of the roughness of the
sea surface from photographs of the sun’s glitter,” J. Opt. Soc.
Am. 44, 838–850 (1954).

25. G. M. Hale and M. R. Querry, “Optical constants of water
in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12,
555–563 (1973).

26. C. R. Zeisse, C. P. McGrath, K. M. Littfin, and H. G. Hughes,
“Infrared radiance of the wind-ruffled sea,” J. Opt. Soc. Am. A
16, 1439–1452 (1999).

27. D.E.Freund,R.I.Joseph,D.J.Donohue,andK.T.Constantikes,
“Numerical computations of rough sea surface emissivity
using the interaction probability density,” J. Opt. Soc. Am. A
14, 1836–1849 (1997).

28. T. Elfouhaily, B. Chapron, K. Katsaros, and D. Vandemark, “A
unified directional spectrum for long and short wind-driven
waves,” J. Geophys. Res. 102, 15781–15796 (1997).

29. C. Bourlier, J. Saillard, and G. Berginc, “Effect of correlation
between shadowing and shadowed points on the Wagner and
Smith monostatic one-dimensional shadowing functions,”
IEEE Trans. Antennas Propag. 48, 437–446 (2000).

1 September 2013 / Vol. 52, No. 25 / APPLIED OPTICS 6111


