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This paper studies the coherent scattering from random rough layers made up of two uncorrelated random rough surfaces, by
considering 2D problems. The results from a rigorous electromagnetic method called PILE (propagation-inside-layer expansion)
are used as a reference. Also, two asymptotic analytical approaches are presented and compared to the numerical model for
comparison. The cases of surfaces with both Gaussian and exponential correlations are studied. This approach is applied to road
survey by GPR at nadir.

1. Introduction

Scattering by random rough surfaces has been the subject of
active research from 1960s, in various domains of physics like
optics, remote sensing of natural surfaces (sea surfaces, soils,
etc.), and so on. Then, this general field of research begins to
be rather well known, so that research is now more focused
on specific domains like scattering from sea surfaces at
high winds (which includes modeling of whitecaps, breaking
waves, etc.) or low-grazing angles propagation. Also, the
study is generalized to the remote sensing of complex media,
for instance by taking volume scattering into account when
inhomogeneous media are considered or by dealing with
multilayered media.

This paper focuses on the scattering from layered media
made up of one or several random rough surfaces and more
specifically on the coherent scattering. This can be useful
for various applications: in studying indoor propagation at
60 GHz, by taking the roughness of the rendering of office
walls into account [1–3], in optics to determine optical
constants of films [4] and other applications [5–9], to
calculate the grazing incidence forward (i.e., in the specular
direction) radar propagation over sea surfaces [10, 11], and
so on.

Here, the study is applied to ground penetrating radar
(GPR) for nondestructive pavement survey [12, 13] by
taking the roughness of the surfaces into account [14].
Two asymptotic approaches are extended to rough layered
media: the scalar Kirchhoff-tangent plane approximation
(SKA) and the second-order small perturbation method
(SPM2), for calculating the coherent scattering contribution.
A numerical rigorous method, named PILE (propagation-
inside-layer expansion) method [15], is used as a refer-
ence to validate these two asymptotic models. The study
focuses on 2D problems with the so-called 1D surfaces, for
computational ease of the reference numerical method. This
approach is applied to rough layers with two slightly rough
surfaces (usually called “two-layer media”) characterized by
either Gaussian or exponential correlation functions. The
height probability density function (PDF) is assumed to be
Gaussian.

This paper is organized as follows. Section 2 presents
the extension of both the SKA and the SPM2 to calculate
the coherent fields scattered from random rough layers.
Then, Section 3 presents the numerical results for different
scenarios and focuses on the application of road survey by
GPR at nadir (i.e., normal incidence).
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Figure 1: Electromagnetic wave scattering from a 1D random
rough layer with two rough surfaces: representation of the first two
scattered fields Er,1 and Er,2.

2. Random Rough Layer Coherent Scattering:
Asymptotic Modeling

The problem considers a 1D random rough layer made
up of two random rough surfaces separating homogeneous
media Ω1 Ω2 and Ω3 (2D problem). An incident plane wave
impinges inside Ω1 upon the upper rough surface ΣA (see
Figure 1). Owing to the two surfaces, multiple scattered fields
back into Ω1 occur: not only the field Er,1 scattered by the
upper rough surface ΣA, but also higher order fields resulting
from the multiple reflections inside Ω2: Er,2, Er,3, and so on.

2.1. Coherent Scattering of Slightly Rough Layers: Extension
of the Ament Model. To study the influence of surface
roughness on the coherent scattered fields, the Rayleigh
roughness parameter Ra, which is well known for the case
of reflection from single rough interfaces [16], is used.
Considering the reflection onto the upper interface ΣA, it is
usually given by the relation [16, 17]

Rar,1 = k0n1σhA cos θi, (1)

with n1 = 1 being the refractive index of the incidence
medium Ω1, σhA the RMS height of the upper surface ΣA,
and θi the incidence angle relatively to zenith. Equation (1)
corresponds to the Rayleigh roughness parameter associated
to the scattered field Er,1 (see Figure 1). Then, the coherent
scattering is given by the ratio of the amplitude of the mean
scattered field |〈Er,1〉|with the amplitude of the incident field
|Ei| as
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e j2k0n1ζA cos θi
〉

, (2)

with r12 being the Fresnel reflection coefficient at the upper
surface, 〈· · · 〉 the statistical average operator, and ζA the ran-
dom rough surface heights variations; the term e j2k0n1ζ cos θi

assumes e− jωt time convention. Then, the coherent field
attenuation due to the surface roughness is given by
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with |Eflat
r,1 | being the scattered field amplitude for the

equivalent perfectly flat surface, which is given by |Eflat
r,1 | =

|r12(θi)| |Ei|. It must be noted that this holds for either 2D
or 3D problems. For Gaussian statistics (i.e., for a Gaussian
height PDF), the above equation simplifies as
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Recent work [17, 18] made it possible to extend the
Rayleigh roughness parameter Ra to the case of reflection
from a rough layer made up of two rough surfaces. For
a Gaussian process (i.e., for rough surfaces with Gaussian
height PDF) and a Gaussian autocorrelation function, a
satisfactory agreement was found in [17, 19] between the
extended Rayleigh roughness parameters and exact numeri-
cal results. Hereafter, the results of this approach are analyzed
more thoroughly by studying its frequency behaviour and an
extension to the case of surfaces with exponential correlation
is tested.

For uncorrelated rough surfaces, the extended Rayleigh
roughness parameter Rar,2 associated to the second-order
scattered field Er,2 is given for lossless media Ω1 and Ω2 by
[17, 19]

Rar,2 =
√

2 (Rat12)2 + (Rar23)2, (5)

with

Rat12 = k0σhA
|n1 cos θi − n2 cos θm|

2
,

Rar23 = k0n2σhB cos θm,

(6)

where n2 is the refractive index of Ω2, σhB is the RMS height
of the lower surface ΣB, and θm is the propagation angle
inside the inner medium Ω2.

Then, for Gaussian statistics, the so-called coherent field
attenuation associated to Er,2 is given by
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This derivation can be extended to any order of reflection
from a two-layer medium [11]. As a consequence, for
Gaussian statistics, the coherent field attenuation associated
to the nth order scattered field Er,n is given by

∣
∣
〈

Er,n
〉∣
∣

∣
∣
∣Eflat

r,n

∣
∣
∣

= e−2Ra2
r,n , n ≥ 2, (8)

where

Rar,n =
√

2(Rat12)2 + (n− 1)(Rar23)2 + (n− 2)(Rar21)2, (9)

with

Rar21 = k0n2σhA cos θm. (10)

This model is then an extension of the so-called Ament
model to random rough layers, and which corresponds
to using the scalar Kirchhoff-tangent plane approximation
(SKA). It is recalled that the above equations are valid for
both 2D and 3D problems.
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2.2. Coherent Scattering under an Extended SPM2 Model. It
is well known that under the SPM2 (second-order small
perturbation method) model, the amplitude attenuation of
the coherent scattered field 〈Er,1〉 is given for 2D problems
and for Gaussian statistics by the relation [20]
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Comparing the classical SPM2 model with the Ament model
(SKA model) for a single rough surface ΣA, it can be easily
seen that the SPM2 model for describing the coherent field
attenuation can be written in terms of the Rayleigh roughness
parameter Rar,1 as
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By comparing (12) with (4), in vacuum (n1 = 1), it can be
noted that the SPM2 and SKA models become equivalent
when the Rayleigh roughness parameter Rar,1 � 1, which
occurs for all θi if the surface RMS height σhA � λ0/2π,
with λ0 the EM wavelength in vacuum. It also occurs, for
instance, for rougher surfaces, as soon as θi is large enough
(θi → π/2). Besides, let us note that the criterion Rar,1 � 1
corresponds to the validity domain of the SPM2 model; thus,
when the SPM model begins to be invalid, the SKA model
is expected to depart from the SPM2 model. Hopefully, we
expect the SKA model to be still valid in this region.

Then, at least in the domain where the Ament model
(or SKA model) and the SPM2 model are both valid, the
SPM2 model for describing the amplitude attenuation of the
n coherent scattered fields 〈Er,n〉 of rough two-layer media
can be written as

∣
∣
〈

Er,n
〉∣
∣

∣
∣
∣Eflat

r,n

∣
∣
∣

= 1− 2Ra2
r,n. (13)

Then, the remark for a single rough interface for comparing
the SPM2 and SKA models can be extended to the two-layer
case: the SPM2 and SKA models become equivalent when the
Rayleigh roughness parameter Rar,n � 1.

In what follows, both asymptotic extended models are
compared to a numerical reference method to study their
validity domain.

3. Numerical Validation

In order to compute the fields scattered from the rough
layer, a numerical method, based on the method of moments
(MoM), is used as a reference to validate the above two
asymptotic methods for 2D problems. This method, called
PILE (propagation-inside-layer expansion) method [15], is
a rigorous numerical method that can be speeded up by the
acceleration methods [21, 22]. In this study, the PILE method
is accelerated by the Forward-Backward method (FB) [23]
together with the Spectral Acceleration (FB-SA) [24–26] and
denoted by PILE + FB-SA [22].

Contrary to other MoM-based reference numerical
methods which generally can calculate only the total scat-
tered field from rough layers Etot =

∑∞
k=1 Er,k = Er,1 +

Er,2 + · · · , the PILE method is able to rigorously compute
each scattered field contribution (Er,1, Er,2, and so on, see
Figure 1).

3.1. Application to Pavement Survey by GPR at Nadir. The
simulation parameters are chosen to match to the conven-
tional GPR configuration used for pavement survey at traffic
speed (e.g., [27]), that is, air-coupled radar configuration
at vertical incidence (nadir, θi = 0). It is assumed that the
scope of probing is limited to the first two layers of the
pavement structure, which corresponds to the two rough
surfaces represented in Figure 1.

The studied pavement structure is made up of a layer
medium Ω2 of ultra-thin asphalt surfacing (UTAS) of mean
thickness H = 20 mm [28], overlying a rolling band Ω3 of
same general composition (see Figure 1 with θi = 0). The
two asymptotic methods are compared with the numerical
model in a much wider frequency band than in [14] (here,
f ∈ [0.5 ; 10.0] GHz), in order to study the frequency
limits of the two asymptotic methods. Also, the influence
of the correlation length of the surfaces on the validity of
the models is studied. The UTAS and the rolling band are
assumed to be equivalent to homogeneous media at normal
incidence and at the frequency band under study [13, 29, 30].
Their relative permittivities εr typically range between 4 and
8 [29, 31], and their conductivities σ between 10−3 and
10−2 S/m [32]. For the simulations, we take εr2 = 4.5 and
εr3 = 7, respectively, and σ2 = 5 × 10−3 S/m and σ3 =
10−2 S/m, respectively. Then, by considering nondispersive
media, the complex relative permittivity εr can be calculated
as [14]

εr = εr + j
σ

2π f ε0
, (14)

with ε0 = 10−9/36π F/m the permittivity inside the vacuum.
For instance, for f = 5 GHz, the complex relative permittiv-
ities are εr2 = 4.5 + j0.018 and εr3 = 7 + j0.036. The two
rough interfaces ΣA and ΣB are assumed to have a Gaussian
height PDF. About the height autocorrelation function, some
studies showed that it is closer to an exponential function
than a Gaussian one [33, 34]. Then, it is interesting to look
at the influence of the choice of correlation on the accuracy
of the asymptotic models. In particular, as the so-called
Ament model is based on the scalar Kirchhoff-tangent plane
approximation (SKA) which is valid for locally flat surfaces,
its performances should degrade for changing from Gaussian
correlation to exponential correlation. By contrast, the SPM2
model can deal with nonlocally flat surfaces but is limited
to slightly rough surfaces; for random rough layers, this
corresponds to the following generalized criterion:

Rar,n � 1. (15)

For the upper surface ΣA, the root mean square (RMS)
height σhA is of the order of 0.6–1 mm, and the correlation
length LcA of the order of 5–10 mm [33, 34]. For the lower
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Figure 2: Frequency behavior of the amplitude attenuation of the coherent scattered fields 〈Er,1〉 and 〈Er,2〉 (V polarization) in the frequency
band f ∈ [0.5; 10.0] GHz, comparatively to the flat case: results from the PILE code and comparison with the SKA and SPM2 asymptotic
models for Gaussian surfaces. The upper and lower correlation lengths are LcA = 10.0 mm and LcB = 30.0 mm, respectively.
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Figure 3: The same simulation parameters as in Figure 2 (with LcA = 10.0 mm and LcB = 30.0 mm), but for exponential correlation surfaces.

surface ΣB, the RMS height σhB and the correlation length
LcB are a bit greater. For the first scenario to be studied here,
chosen simulation parameters are σhA = 1.0 mm, LcA =
10.0 mm, σhB = 2.0 mm, and LcB = 30.0 mm. The two rough
surfaces are assumed to be uncorrelated [14].

The antenna is assumed to radiate a vertically polarized
plane wave in the far field of probed pavement like in [35]:
the antenna is about 400 mm above the sand surface, for
which the far-field condition has been checked from data.
The antenna is thus located beyond the Fraunhofer distance
with respect to the probed pavement.

The typical width of probed surface antenna footprint
is of the order of 300–500 mm [35, 36]. Then, for the
simulations, surfaces of length L = 2400 mm are considered,
illuminated by a Thorsos beam of attenuation parameter
g = L/6 [37] (the Thorsos beam is a tapered plane wave,
whose tapering has a Gaussian shape; the tapering is used
to reduce the incident field to near zero at the ends of the
surface realizations and thereby to reduce the edge effects to
negligible levels). The two rough interfaces are sampled with
a sampling step Δx = λ2/8, with λ2 the wavelength inside Ω2.
A normal (θi = 0) incident wave is taken, and the first two
orders of the reflected fields by the rough layer E1 and E2 are
calculated by the PILE method at the different frequencies f
over the GPR band, that is, [0.5; 10.0] GHz.

3.2. Numerical Results. In Figure 2, the frequency behavior
of the amplitude attenuation of Er,1 and Er,2 in vertical (V)
polarization is investigated for Gaussian correlation in the
whole range of the band f ∈ [0.5 ; 10] GHz, for which
N = 100 Monte-Carlo processes were used.

As expected, for both contributions, the influence of
the roughness of the interfaces continuously increases with
frequency, inducing a decrease of the scattered magnitude
at nadir. This is confirmed by the Rayleigh roughness
parameters Rar,1 and Rar,2 which increase as the frequency
f increases. The decrease in amplitude is stronger for 〈Er,2〉
than for 〈Er,1〉, as predicted by Ra expressions. Moreover,
for the first-order 〈Er,1〉, a general very good agreement of
both the SKA and SPM2 models can be found with the PILE
reference method. In particular, a perfect match is found
for the lower frequencies and for both asymptotic models.
Slight differences between the SKA and the SPM2 occur with
increasing frequencies, from approximately 8 GHz. For the
second-order 〈Er,2〉, a general excellent agreement of only the
SKA model can be found with the PILE reference method.
Indeed, the SPM2 model significantly deviates from the PILE
method, starting from approximately 3.5–4 GHz. This can be
attributed to the fact that Rar,2 is much higher than Rar,1;
then, the general condition Rar,n � 1 for the SPM2 to
be valid occurs for lower frequencies. As a comparison, for
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Figure 4: Frequency behavior of the amplitude attenuation of the coherent scattered fields 〈Er,1〉 and 〈Er,2〉 (V polarization) in the frequency
band f ∈ [0.5 ; 10.0] GHz, comparatively to the flat case. Results from the PILE code and comparison with the SKA and SPM2 asymptotic
models for Gaussian surfaces. The upper and lower correlation lengths are LcA = 6.4 mm and LcB = 15.0 mm, respectively.
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Figure 5: The Same simulation parameters as in Figure 4 (with LcA = 6.4 mm and LcB = 15.0 mm), but for exponential correlation surfaces.

f = 4 GHz, Rar,1 = 0.084, whereas Rar,2 = 0.362. By using a
least square method on the PILE results, a Gaussian fit is also
applied as a test for comparison. This fitting process confirms
that the PILE method for describing the attenuation of the
coherent field amplitude can be approximated by a Gaussian
attenuation with respect to the frequency; the agreement is
particularly good for the second-order 〈Er,2〉.

Figure 3 presents the numerical results for the same
parameters as in Figure 2, but for surfaces with exponential
correlation. The same general comments and conclusions
as for Gaussian correlation can be made here. Indeed, the
results of the PILE code do not change significantly from
Gaussian to exponential correlation: there is only a slight
decrease for the higher frequencies here. Then, both the SKA
and SPM2 models show a good agreement for 〈Er,1〉, and the
SKA model shows a very good agreement for 〈Er,2〉. Then, it
is interesting to notice that the agreement is even better for
the second-order contribution, which validates the proposed
approach for random rough layers. These results lead us
to the conclusion that for this typical configuration, the
coherent scattering of random rough layers does not change
significantly from Gaussian to exponential correlation, as
predicted by the SKA and SPM2 models.

For studying the validity domain of extended SKA and
SPM2 models, another set of simulations is led for a different
configuration. We chose to reduce the correlation length of

both surfaces LcA and LcB: we took LcA = 6.4 mm and LcB =
15.0 mm and kept other parameters constant (in particular,
the surface RMS heights), in order to increase the surface
slopes. Indeed, as the SPM2 model is valid for small surface
slopes and the SKA model is valid for negligible slopes,
increasing the RMS slopes should degrade the agreement.
Then, as both the SKA and SPM2 models do not depend
on the surface correlation length, their results do not change
with the configuration.

Associated results for Gaussian correlation can be found
in Figure 4. Let us note that for Gaussian surfaces, this
modification implies changing the surfaces RMS slopes from
σsA = 0.141 and σsB = 0.094 to σsA = 0.221 and σsB =
0.189. Compared to Figure 2, it can be noted that the results
of the PILE method slightly decrease for the first echo
〈Er,1〉, and that this decrease gets stronger as the frequency
increases. This decrease may be attributed to the increase
of the surface slopes, which induces a broadening of the
scattered field in regions away from the specular direction,
which in consequence may decrease the coherent specular
scattered field. Besides, despite the decrease of the PILE
results, both SKA and SPM2 models show a general good
agreement with the PILE method, and in particular for
the lower frequencies. For the second echo 〈Er,2〉, the PILE
results do not change significantly: there is a slight decrease
for the lower frequencies, but a slight increase for the higher
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Figure 6: Frequency behavior of the amplitude attenuation of the coherent scattered fields 〈Er,1〉 and 〈Er,2〉 (V polarization) in the frequency
band f ∈ [0.5; 10.0] GHz, comparatively to the flat case: results from the PILE code and comparison with the SKA and SPM2 asymptotic
models for Gaussian surfaces. The upper and lower correlation lengths are LcA = 4.0 mm and LcB = 8.0 mm, respectively.
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Figure 7: The same simulation parameters as in Figure 6 (with LcA = 4.0 mm and LcB = 8.0 mm), but for exponential correlation surfaces.

frequencies. Then, the SKA model remains in a very good
agreement with the PILE method.

The same analysis is made on surfaces with exponential
correlation in Figure 5. Similar comments can be made here
by comparing Figure 5 with Figure 2: for the first echo, the
PILE code slightly decreases, and this decrease gets stronger
as f increases. Then, for exponential correlation here, the
difference of both the SKA and SPM2 models with the
PILE method begins to be rather significant for the higher
frequencies, and in particular for f tending to 10 GHz. For
the second echo, there is also a slight decrease of the PILE
code for the lower frequencies. Thus, the SKA model remains
in a (very) good agreement with the PILE method in the
whole frequency range, even for the higher frequencies where
the coherent attenuation is significant.

At last, 2 more sets of simulations for both Gaussian and
exponential surfaces are studied: first, by increasing again the
correlation lengths (LcA = 4.0 mm and LcB = 8.0 mm) in
Figures 6 and 7 and second, by increasing the RMS heights
(σhA = 1.5 mm and σhB = 3.0 mm) and correlation lengths
kept constant (LcA = 6.4 mm and LcB = 15.0 mm) in
Figures 8 and 9. First, by decreasing again the correlation
lengths, as expected the agreement of both SKA and SPM
models is poorer in general, and in particular for the first-
order |〈Er,1〉|. The overestimation by both SKA and SPM
models increases as the frequency increases (the SPM model

gives slightly better agreements) and becomes significant for
the higher frequencies. This is not surprising, as here the
RMS slopes are significant: σsA = σsB = 0.354. Besides,
the agreement is better for exponential correlation than for
Gaussian correlation. For the second-order |〈Er,2〉|, for both
correlations, slight differences occur in the range 1–4 GHz,
owing to the increase of the RMS slopes (σsA = σsB =
0.354 here). However, the SKA model shows a general good
agreement in the whole frequency range.

Second, this time (Figures 8 and 9) by increasing the
RMS heights with correlation lengths kept constant (LcA =
6.4 mm and LcB = 15.0 mm) compared to Figures 4 and 5,
the results are similar to the reference configuration (σhA =
1.0 mm and σhB = 2.0 mm). Here, this corresponds to RMS
slopes σsA = 0.331 and σsB = 0.283. The main observable
differences occur in the second-order |〈Er,2〉| where the SKA
model slightly overestimates the reference method for the
lower frequencies, like in Figures 6 and 7. Nevertheless, here
the agreement is better, and in particular for the first-order
|〈Er,1〉|.

As a consequence, it can be concluded that the agreement
is less sensitive to the RMS heights than the correlation
lengths. The main difference is in the frequency validity
domain of the SPM model: as predicted by theory, it
decreases as the RMS heights increases (see in particular
|〈Er,2〉|). Thus, the SKA model is in a general (very) good
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Figure 8: Frequency behavior of the amplitude attenuation of the coherent scattered fields 〈Er,1〉 and 〈Er,2〉 (V polarization) in the frequency
band f ∈ [0.5; 10.0] GHz, comparatively to the flat case. Results from the PILE code and comparison with the SKA and SPM2 asymptotic
models for Gaussian surfaces. The upper and lower correlation lengths are LcA = 6.4 mm and LcB = 15.0 mm, respectively, and the upper
and lower RMS heights are σhA = 1.5 mm and σhB = 3.0 mm, respectively.
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Figure 9: The same simulation parameters as in Figure 8 (LcA = 6.4 mm and LcB = 15.0 mm and σhA = 1.5 mm and σhB = 3.0 mm), but for
exponential correlation surfaces.

agreement with the PILE method in the whole frequency
range for both Gaussian and exponential correlations. Its
main limitations are the small correlation lengths in the
higher frequencies for the first-order scattered field |〈Er,1〉|.

4. Conclusion

This paper presented the extension of both the SKA and
SPM2 models to coherent scattering from random rough
layers, where the two random rough surfaces are uncor-
related. An application is then presented for dealing with
the pavement survey by GPR at nadir, in a large frequency
range ( f ∈ [0.5; 10.0] GHz), and for surfaces with both
Gaussian and exponential correlations. The comparisons
with a numerical reference method made it possible to
validate both asymptotic models in their validity domains
for 2D problems. For 3D problems, similar results and
conclusions are expected, as the SKA model for describing
the attenuation of the coherent scattering owing to the
surface roughness is the same for 2D and 3D problems.

In particular, the SKA model was shown to correctly
predict the coherent scattered field for typical configurations
in pavement survey by GPR at nadir. By taking into account
the time delay of each echoes in this new model, this direct

simple EM model can be a good candidate for its use in
signal processing algorithms for the estimation of physical
parameters of the pavement like its thickness H [13, 14] and
also and more important, for the estimation of the RMS
heights of the rough surfaces σhA and σhB simultaneously.
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