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For a vertically polarized line source, in the context of HF (3–30MHz)
ground wave propagation over a curved rough sea surface, this paper
presents different asymptotic and rigorous methods to compute the
attenuation function. When the Earth’s curvature is taken into account,
the attenuation function is expressed as a series, in which the roots of a
differential equation, depending on the Airy function, must be calculated.
In addition, from Taylor series expansions, different closed-form expres-
sions can be obtained. For a smooth sea surface, the purpose of this paper
is to compare these different formulations with fast rigorous numerical
methods, such as the BMIA-CAG (Banded-Matrix-Iterative Approach
CAnonical-Grid) and FB-SA (Forward-Backward Spectral-Acceleration)
methods, based on the method of moments and originally developed for
rough surfaces. These methods are especially efficient to solve a problem
with huge unknowns, which is required to predict the ground wave
propagation over a long surface. In addition, from a partial fraction
expansion of the attenuation function in the Laplace domain, the Bremmer
asymptotic expansion is extended to any order by including the surface
roughness.

1. Introduction

There are many problems in communications, navigation, and applied geophysics
where the system performance depends on the electromagnetic ground wave. The
latter refers to the wave that propagates along the surface of the Earth such that its
characteristics are mainly influenced by the profile and electrical properties of the
Earth’s surface. In addition, since the transmitter and receiver are close to the
surface, direct and ground reflected waves cancel each other, and only surface waves
can propagate.

As addressed in the reviews of Wait [1] and Collin [2] (and references therein),
much theoretical work in the last century, based on asymptotic theories, was done to
solve this issue. Recently, for a flat Earth, Bourlier et al. [3] thoroughly studied the
ground wave propagation over a one-dimensional (1D) rough sea surface using an
efficient rigorous numerical method: the method of moments combined with the
BMIA-CAG [4,5] (Banded-Matrix-Iterative Approach CAnonical-Grid) approach
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and with the impedance boundary condition (Leontovitch approximation). In
addition, they compared with the BMIA-CAG method, the closed-form asymptotic
expression (the Sommerfeld solution of radiation of a vertically polarized line source

above an infinite lossy half-space) of Collin [2], valid for a smooth surface, and
modified by the roughness from the work of Barrick [6,7]. The comparisons were in
good agreement for emitter and receiver heights small in comparison to the
electromagnetic wavelength. A similar study has also been published by Toporkov
et al. [8].

One of the purposes of this paper is to extend the previous work of Bourlier et al.
in order to take the Earth’s curvature into account in the computation of the ground
wave propagation. Then, the BMIA-CAG and FB-SA (Forward-Backward Spectral-
Acceleration) methods [9–11], two efficient numerical rigorous methods based on the

method of moments and originally developed for rough surfaces, are used to validate
different closed-form expressions of the attenuation function obtained from
simplifying assumptions. In addition, in this paper, from a partial fraction expansion
of the attenuation function in the Laplace domain, the Bremmer asymptotic
expansion [12] is extended to any order and by including the surface roughness. This
allows us to express the attenuation function as a sum of flat-Earth attenuation
functions, each being characterized by their pole and residue.

The paper is organized as follows. For a 1D surface, from the work of Bremmer
[12] and by assuming a parabolic profile of the Earth, Section 2 presents the integral

equation satisfied by the attenuation function and different ways to solve it. For a
smooth surface, Section 3 compares the resulting numerical results with that
obtained from the BMIA-CAG and FB-SA methods, and an intuitive method is
addressed to include the sea roughness. The last section gives concluding remarks.

2. Closed-form expressions of the attenuation function

This section presents closed-form expressions for the attenuation function of the
ground wave propagation above a curved smooth 1D surface, obeying a parabolic

profile and assumed to be highly conducting.

2.1. Integral equation satisfied by the attenuation function

For a 1D surface, we show in Appendix 1 that the integral equation satisfied by the
attenuation function F¼ /(2 i), in which  is the total field and  i the incident field
of a line source, is

Fðx, zÞ ¼ 1þ
j�ffiffiffi
�
p

Z x

0

Fð�, z�Þe
jk0ðQRþTQ�TRÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR

QR� TQ

s
1�

�� � � xð Þ � ðz� � zÞ

D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�

q
QR

2
64

3
75 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2�

q
d�, ð1Þ
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where

� ¼ D

ffiffiffiffiffiffi
jk0
2

r
¼

1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

n2

r ffiffiffiffiffiffi
jk0
2

r
: ð2Þ

The points T(0, z0), Q(�, z�) and R(x, z) give the position of the transmitter, a

point on the surface of slope ��¼dz�/d� and the position of the receiver, respectively

(see Figure 1). The terms QR, TQ and TR are distances between two points

expressed from Equation (44). The above equation is valid for k0QR� 1, k0TQ� 1

and k0TR� 1, and assumes that the surface is highly conducting (jDj� 1 or jnj� 1)

to apply the Leontovitch boundary condition. D is the surface normalized

impedance, n the surface refractive index and k0¼ 2�/�0 the incident wavenumber

of the upper medium assumed to be a vacuum.
The Earth’s profile, z�, is expressed as z� ¼ �a

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � �2

p
, in which a� 6378 km

is the maximum equatorial radius of the Earth. A Taylor series expansion over �¼ 0

and up to order 2 leads to

z� � �
�2

2a
�� � �

�

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR

QR� TQ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

�ðx� �Þ

r

1�
�� � � xð Þ � ðz� � zÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2�

q
QR

� 1þ
x� �

2a
QRþ TQ� TR �

x�ðx� �Þ

8a2
,

8>>>>><
>>>>>: ð3Þ

where the transmitter and receiver heights are assumed to be zeros (z0¼ z¼ 0).

Reporting the above equations into integral Equation (1), we show that the

attenuation function F is expressed as

FðxÞ ¼ wðxÞ
ffiffiffi
x
p

e
jk0x

3

24a2 ¼
 

2 i
, ð4Þ

in which the w function is expressed as

wðxÞ ¼
e�

jk0x
3

24a2ffiffiffi
x
p þ

j�ffiffiffi
�
p

Z x

0

wð�Þ 1þ
x� �

2aD

� �
e�

jk0 ðx��Þ
3

24a2ffiffiffiffiffiffiffiffiffiffiffi
x� �
p d�: ð5Þ

Figure 1. (Color online) Description of the geometry.
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Bremmer [12] started from the scalar integral equation of a two-dimensional
surface, and converted it into a single integral from a saddle point approximation
[12,13]. The integral equation (5) satisfied by w and derived from a 1D surface is then
exactly the same as that obtained by Bremmer (see [12], equation (1)).

For a detailed review of this issue, see also the excellent reference [14].

2.2. Solution of the integral equation

To solve the integral equation (5), Bremmer [12] used the Laplace transform and
showed that the Laplace transform of w(x), ŵ(p)¼L[w(x)], is

ŵð pÞ ¼
ffiffiffi
�
p
�j�þ

ffiffiffi
p
p

e�
j�
6

H
ð2Þ
2
3

ðuÞ

H
ð2Þ
1
3

ðuÞ

2
4

3
5�1, ð6Þ

where H
ð1Þ
1
3

ðuÞ, H
ð2Þ
1
3

ðuÞ are the Hankel functions of order 1/3 and of the first
and second kinds, respectively, and

u ¼ a
24

jk0

� �1
2 p

3

� �3
2

: ð7Þ

Finally, from Equation (6) the inverse Laplace transform is derived by deforming
the integration path and from the residue theorem. From Equation (4), the resulting
equation is

FNðxÞ ¼ ðk0aÞ
1
6
2�jx

a

� �1
2Xn¼N
n¼1

e j ðk0aÞ
1
3�nx=a

2�n �
1
�2

, ð8Þ

where

� ¼
j

Dðak0Þ
1
3

, ð9Þ

and �n are the roots of the following equation

H
ð1Þ
1
3

ð�2�Þ
3
2

3

 !
þ e�

j�
3 �

ffiffiffiffiffiffiffiffiffi
�2�
p

H
ð1Þ
2
3

ð�2�Þ
3
2

3

 !
¼ 0: ð10Þ

In addition, F(x)¼ limN!1FN(x). For convenience, the above equation can be
converted in terms of standard Airy functions w1(�)¼Bi(�)þ jAi(�)¼�2e�2j�/3

Ai(e4j�/3�) (see [15], p. 447 and [16], p. B9) as

w01ð�Þ � qw1ð�Þ ¼ 0, q ¼ �
1

�2
1
3

, � ¼ 2
1
3�: ð11Þ

The sum (8) converges if the roots �n are ordered as �Im(�1)4�Im(�2)4 � � �4
�Im(�N), where the symbol Im stands for the imaginary part, and N is the number
of roots.
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2.3. Bremmer simplified form of the attenuation function

In Equation (6) for a flat Earth (a!1), the variable u defined from Equation (7)
tends to infinity. Thus, to have a simpler form of the Laplace transform of ŵ(p), a
series expansion of the Hankel functions at infinity can be made. From [17] and for
1/juj! 0, one has

H
ð2Þ
2
3

ðuÞ ¼

ffiffiffiffiffiffi
2

�u

r
e�j u�

7�
12ð Þ
Xk¼K
k¼0

ak
uk
þ o

1

uK

� �
ak ¼

1

ð2j Þk
� kþ 7

6

� �
k!� �kþ 7

6

� �
H
ð2Þ
1
3

ðuÞ ¼

ffiffiffiffiffiffi
2

�u

r
e�j u�

5�
12ð Þ
Xk¼K
k¼0

bk
uk
þ o

1

uK

� �
bk ¼

1

ð2j Þk
� kþ 5

6

� �
k!� �kþ 5

6

� � , ð12Þ

8>>>>><
>>>>>:
where the symbol � stands for the gamma function. Substitution of Equation (12)
into (6) then leads to

ŵKð pÞ �
ffiffiffi
�
p
�j�þ

ffiffiffi
p
p

Pk¼K
k¼0

ak
ukPk¼K

k¼0
bk
uk

" #�1
: ð13Þ

In addition, since b0¼ 1 and 1/juj! 0, from 1=ð1þ xÞ ¼
Pk¼1

k¼0 ð�xÞ
k for jxj5 1,

the ratio can be written asPk¼K
k¼0

ak
uk

1þ
Pk¼K

k¼1
bk
uk

�
Xk¼K
k¼0

ak
uk
�

Xk¼K
k¼0

�
Xk¼K
k¼1

bk
uk

 !k
2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ck

uk

þo
1

uK

� �
, ð14Þ

in which, from Equation (12),

c0 ¼ 1 c1 ¼�
1

6
c2 ¼

5

72
c3 ¼

5j

72
c4 ¼�

1105

10368
c5 ¼�

565j

2592

c6 ¼
414125

746496
c7 ¼

19675j

11664
c8 ¼�

1282031525

214990848
c9 ¼�

80727925j

3359232
. . .

8><
>:

ð15Þ

In Equation (14), keeping the terms in 1/uk up to order 3 (K¼ 3), and substituting
the resulting equation into Equation (13), one has

ŵKð pÞ �
ffiffiffi
�
p
�j�þ p

1
2 1�

1

6u
þ

5

72u2
þ

5j

72u3

� �
 ��1
: ð16Þ

For K� 3, Bremmer then showed that

wKðxÞ
ffiffiffi
x
p
� Fflat s0

ffiffiffi
x
p� �
þ

Xk¼K,K�3

k¼1

�3kFk s0
ffiffiffi
x
p� �

, ð17Þ

where Fflat is the attenuation function of a flat Earth expressed as

FflatðvÞ ¼
ffiffiffi
x
p
L
�1

ffiffiffi
�
p

�j�þ
ffiffiffi
p
p

� �
¼ 1�

ffiffiffi
�
p

vev
2

erfcðvÞ v ¼ j�
ffiffiffi
x
p
¼

ffiffiffiffiffiffiffiffi
k0x

2j

s
D: ð18Þ

In addition the functions {Fk(v)} are given from Equation (34) of [12] and s0¼ j�.
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2.4. Partial fraction expansion of the attenuation function

In a similar way, the same derivation can be made for any order. Indeed, substitution
of Equation (14) into (13) with u¼ 	s3 leads to

ŵKð pÞ �

ffiffiffi
�
p

s3K�1

�j�s3K�1 þ
Pk¼K

k¼0 ck	�ks3ðK�kÞ
, s ¼

ffiffiffi
p
p

, 	 ¼
2a

3

ffiffiffiffiffiffi
2

jk0

s
: ð19Þ

For K¼ 0, ŵ0ð pÞ ¼
ffiffiffi
�
p

=ð�j�þ sÞ ¼
ffiffiffi
�
p

=ð�j�þ
ffiffiffi
p
p
Þ, corresponding to a flat Earth.

Thus, the higher orders (K4 0) are related to the Earth’s curvature like in the

Bremmer approach presented in the previous subsection. In addition, since the
higher degree of the numerator (3K� 1) is smaller than the higher degree of

the denominator (3K ), for K4 0, ŵK(p) can be expanded as

ŵKð pÞ �
ffiffiffi
�
p Xk¼3K

k¼1

Rk

s� sk
, Rk ¼

1ffiffiffi
�
p lim

s!sk
ŵKðsÞðs� skÞ, ð20Þ

and sk are the roots of the polynomial of the denominator of Equation (19).

In addition, Equation (20) is valid if the poles {sk} are simple. Thus, since s ¼
ffiffiffi
p
p

, the
function ŵK(p) is expressed as a sum of functions of a flat Earth weighted by the

residue Rk and their pole sk. For a flat Earth (K¼ 0), s0¼ j� and R0¼ 1. As a

conclusion, wK(x) is given by

wKðxÞ
ffiffiffi
x
p
�

Fflat s0
ffiffiffi
x
p� �

K ¼ 0Xk¼3K
k¼1

RkFflat sk
ffiffiffi
x
p� �

K4 0:

8><
>: ð21Þ

Instead of using the decomposition (14), which adds an additional restriction,

Equation (13) can be applied directly. Applying the same way as previously, we

show that

ŵKðsÞ �

ffiffiffi
�
p Pk¼K

k¼0 bk	
K�ks3ðK�kÞPk¼K

k¼0 �j�bk þ sakð Þ	K�ks3ðK�kÞ
: ð22Þ

The case K¼ 0 corresponds to a flat Earth. As previously, since the higher degree of

the numerator (3K ) is smaller than the higher degree of the denominator (3Kþ 1),
ŵK(p) can be expanded as

ŵKð pÞ �
ffiffiffi
�
p Xk¼3Kþ1

k¼1

Rk

s� sk
, ð23Þ

and sk are the roots of the polynomial of the denominator of Equation (22). As a

conclusion, for K	 0, wK(x) is given by

wKðxÞ
ffiffiffi
x
p
�

Fflat s0
ffiffiffi
x
p� �

K ¼ 0Xk¼3Kþ1

k¼1

RkFflat sk
ffiffiffi
x
p� �

K4 0:

8><
>: ð24Þ

28 C. Bourlier and G. Kubické
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3. Numerical results

In this section, results computed from the different formulations given from
Equations:

. (8): Bremmer’s rigorous solution expressed from a residues series;

. (17): Bremmer’s asymptotic solution expressed from a truncated partial
fraction expansion;

. (21): the solution expressed from a partial fraction expansion (first
decomposition);

. (24): the solution expressed from a partial fraction expansion (second
decomposition)

are compared.
The first subsection compares and studies the convergence of these different

formulations, and the second subsection compares them with fast rigorous numerical
methods, like the BMIA-CAG (Banded-Matrix-Iterative Approach CAnonical-
Grid) and FB-SA (Forward-Backward with Spectral-Acceleration) methods.

In the following, the surface complex relative permittivity 
r is assumed to be


r ¼ 

0
r þ

j�

2�f
0
¼ 
0r þ

18j�

fðGHzÞ
, ð25Þ

where � is the conductivity in S/m, and n ¼
ffiffiffiffi

r
p

. In addition, �¼ 4 S/m and the real
part of the relative permittivity is 
0r ¼ 80, which implies that the sea complex relative
permittivity is 
r¼ 80þ 72j/f, with f in GHz. For instance, for f¼ 10MHz,

r¼ 80þ j7200)D¼ 0.00838� j0.00829. Moreover, the Earth’s radius is assumed
to be a¼ 6378 km (maximum equatorial radius).

From Equation (4), one has

FðxÞ
�� �� ¼ wðxÞ

�� �� ffiffiffi
x
p

: ð26Þ

3.1. Comparison and convergence of the different formulations

Equation (8) needs to compute the roots of Equation (11), �n. Among a number
of different algorithms for determining these roots, the one described in [18]
(pp. 340–343) is seen to be very accurate and valid for a wide range of frequencies
and ground constants. Its principle is summarized in Appendix 2. An analytical series
expansion of �n can be also found in [14].

Figure 2 plots the ratio jsk/s0j, the phase of sk and jRkj versus the integer k,
respectively. They are computed from the first decomposition given by Equation
(21). The frequency is f¼ 10MHz. The poles {sk} are ordered as jR0j4 jR1j4 � � �4
jR3Kj. Figure 3 plots the same variation but from the second decomposition given by
Equation (24). If Re(sk)� 0, then the argument of sk,�sk ¼ argðskÞ, must verify
j�skj 	�/2, where the symbol Re stands for the real part. As can be seen, Figures 2
and 3 present similar behavior.

Figure 4 plots the modulus jFK(x)j versus the horizontal distance x and the
integer K. Panels (a), (b), (c) and (d) are obtained from Equations (21), (24), (17)
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and (8), respectively. As K increases, panels (a), (b) and (c) show that the series
diverges for large values of x, whereas panel (d) shows a very good convergence and
does not converge for x close to zero. It is important to note that the integers N and
K have different physical interpretations.

The formulations based on the partial fraction decomposition assume that the
parameter juj ¼ j	p3/2j4 1, which implies that j	j4 jpj�3/2. The Laplace variable p is
related to the inverse of the horizontal distance x, leading to x5 j	j2/3¼ xp. This
value is shown in Figure 4(a) and (b) from the vertical dashed line. As we can see, for
x4 xp the results differ according to the value of K4 0.

As x!1, Equation (18) tends to zero if the real part of the pole is negative.
For instance, for a flat Earth, s0¼ j�¼�0.0000212þ j0.00381. In Figures 2 and 3,
the real part of the pole can be positive (j�sk j5�=2), which implies, for large
distance x, that the series diverges, as shown in Figure 4(a) and (b). If we omit these
poles in the computation of the series, then the series converges, but the results for x
close to zero are unphysical. In conclusion, these poles must be included and these
kinds of decomposition, expressed as a sum of flat-Earth attenuation functions, can
be applied only for short distances, typically for x5 2xp¼ 111 km (see Figure 5) for
f¼ 10MHz.
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Figure 2. (Color online) (a) The ratio jsk/s0j versus the integer k. (b) The phase of sk versus k.
(c) The residue modulus jRkj in dB scale versus the integer k. The curves are obtained from the
first decomposition, corresponding to Equation (21). f¼ 10MHz.

30 C. Bourlier and G. Kubické
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In the following, for the Bremmer formulation, K¼ 2, whereas for the first and
second decompositions, K¼ 3.

For the different formulations, Figure 5 plots the modulus jFK(x)j versus the
horizontal distance x. The legends ‘1st Dec’, ‘2nd Dec’, ‘Bremmer Dec’ and ‘Bremmer
Res’ mean that the curves are obtained from Equations (21), (24), (17) and (8),
respectively. As we can see, the results are similar for x5 2xp¼ 111 km, and above
this value, the results diverge, except those computed from the residues series.

Figures 6 and 7 plot, respectively, the same variations as in Figures 4 and 5 but
for f¼ 20MHz. As expected, as the frequency increases, the signal strength decreases
more rapidly with the distance x. As for the case f¼ 10MHz, for x5 2xp, the
different curves in Figure 7 give similar levels, meaning that the condition
x5 2xp¼ 2j	j2/3 seems to be a good criterion for the domain of validity of the
decomposition of the attenuation function as the sum of flat-Earth attenuation
functions.

3.2. Comparison with fast rigorous numerical methods

This section applies two rigorous fast methods based on the integral equations,
which allow us to consider a very long surface. Indeed, to exhibit the ground wave,
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Figure 3. (Color online) Same as in Figure 2 but for the second decomposition, corresponding
to Equation (24).
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Figure 4. (Color online) Modulus jFK(x)j in dB scale versus the horizontal distance x and the
integer K. f¼ 10MHz.
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Figure 5. (Color online) Modulus jFK(x)j in dB scale versus the horizontal distance x.
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Figure 6. (Color online) Same as in Figure 4 but for f¼ 20MHz.
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Figure 7. (Color online) Same as in Figure 5 but for f¼ 20MHz.
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which propagates near the surface over a very long distance from the transmitter, the
surface must be very long, typically, a few hundred kilometers. For a frequency of
the order of 10MHz (�0¼ 30m) and with a sampling step of �0/10¼ 3m, the number
of unknowns on the surface must then be greater than Ni¼ 100,000. The principle of
these methods is not to invert the impedance matrix �Z but to replace �Z�1b, in which
the vector b is related to the incident field, by a succession of matrix-vector products.
For more details, see [9,10,19,20] for the FB-SA and [4,5,21,22] for the BMIA-CAG.
Since the surface is assumed to be highly conducting (jnj� 1), the IBC (Impedance
Boundary Condition, also named the Leontovitch boundary condition) approxima-
tion can be applied. For the TM polarization, this leads to @ (r0)/@ns¼�jDk0 (r0) on
the surface, where  (r0) is the field on the surface and @ (r0)/@ns is the normal
derivative of the field on the surface.

The scattered field is derived from the field  (r0), computed either from BMIA-
CAG or the FB-SA, and its normal derivative on the surface, @ (r0)/@ns¼�jDk0 (r0),
by applying Huygens’ principle, defined as

 sðrÞ ¼

Z
S

@g0ðr
0, rÞ

@ns
 ðr0Þ �

@ ðr0Þ

@ns
g0ðr

0, rÞ


 �
dS0: ð27Þ

The attenuation function is then computed from  s as

FðrÞ ¼
 sðrÞ þ  iðrÞ

2 iðrÞ
¼ Fðx, zÞ, ð28Þ

where the incident field  i(r) is defined as

 iðrÞ ¼ g0ðr, r0Þ ¼
j

4
H
ð1Þ
0 k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ

2
þ ðz� z0Þ

2

q� �
: ð29Þ

The emitter is located at (x0, z0)¼ (0, 5)m and the surface length is L¼Ni�0/10
(x2 [�L/2;L/2]), since the sampling step is �0/10. It should be noted that
xmax¼max(x)¼Ni�0/20.

3.2.1. Smooth sea surface

Firstly, a smooth sea surface is considered (�z¼ 0, surface height standard
deviation).

Figure 8(a) plots the modulus of the attenuation function versus x. Figure 8(b)
plots the ratio F(x)/F1(x) in dB scale versus x, in which F1 is computed from
Equation (8). f¼ 10MHz and the receiver height is z¼ 5m. In the legend, the label
‘BMIA-CAG’ means that the results are computed from the BMIA-CAG, whereas
the label ‘FB-SA’ means that the results are computed from the FB-SA. In addition,
the label ‘Cir’ means that the Earth has a circular profile (z� ¼ �aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � �2

p
),

instead of a parabolic profile (z����
2/(2a)).

For the BMIA-CAG, since its convergence is related to Dz¼max(z)�min(z), the
maximum distance is 49 km (Ni¼ 215¼ 32,768), corresponding to Dz¼ 6.3�0. Above
this distance, the BMIA-CAG diverges. The strong interaction band matrix is
Ns,BMIA¼ 3 and the number of terms retained in the series expansion of the
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impedance matrix elements of the weak interactions is PBMIA¼ 2. Some numerical
tests, not reported here, on the convergence of BMIA-CAG versus {PBMIA,Ns,BMIA}
have been done. Unfortunately, even with large values of xs and PBMIA, the BMIA-
CAG does not converge. A detailed analysis on the convergence of the BMIA-CAG
is reported in [22].

In contrast, the FB-SA works well for longer distances. Indeed, Ni¼ 218¼ 262,
144)xmax¼ 393 km, and the distance of the strong interaction is xd0¼
50�0¼ 1500m. Since the length xd0 is much greater than one, Ni cannot exceed 218

due to the memory requirement to store the matrix elements of the strong
interactions. A means to avoid this drawback is to compute them at each iteration of
the FB but the computing time increases significantly. Figure 9 plots the same

variation as in Figure 8 but for f¼ 20MHz.
For x close to zero, the ratio increases significantly because Equation (8) is only

valid in far field. In addition, for large values of x, the agreement is less good, which
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Figure 8. (Color online) (a) jF(x)j in dB scale versus x. (b) The ratio F(x)/F(x)Equation (8) in dB
scale versus x. Case of a smooth sea surface. f¼ 10MHz and the receiver height is z¼ 5m.
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Figure 9. (Color online) Same as in Figure 8 but for f¼ 20MHz.
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can be attributed to the edge effect (finite length of the surface). Otherwise, a good
agreement is obtained between the FB-SA, BMIA-CAG and Bremmer formulations.

Figures 8 and 9 show also that the Earth’s profile can be modeled as a parabolic
profile because the results computed from a circular profile are exactly the same. As
expected, the results obtained from the first decomposition are only valid for small
distances. In comparison to a flat Earth, the curvature effect implies a significant
decrease of the attenuation function and this deviation, according to a flat Earth,
increases with the distance and decreases as the frequency increases.

3.2.2. Rough sea surface

In this subsection, a rough sea surface is considered. The rough surface height is
assumed to be a Gaussian stationary stochastic process with zero mean value, and
the height spectrum obeys the Elfouhaily et al. hydrodynamic spectrum [23], in which
the key parameter is the wind speed u10 at 10 meters above the sea surface. From an
electromagnetic point of view, in the HF band, since the ratio �z/�0 is much smaller
than one, the surface is slightly rough. From the Elfouhaily spectrum, Bourlier et al.
[24] showed that the height standard deviation is �z � 6:29� 10�3u2:0210 . For instance
for u10¼ 10m/s (Beaufort scale 6–7), �z¼ 0.63m, which implies that the ratio
�z/�02 [0.021; 0.042] for f2 [10; 20] MHz.

By using a spectral method, several independent surfaces (but with the same
Gaussian process and the same height spectrum) are generated. For each surface
numbered p, the field  p and its normal derivative @ p/@ns are computed, and then
from Equations (27), (28) and (29) the scattered field  s,p and the function Fp are
computed. The average of F, denoted as hF i, is then obtained from

Fh i ¼
1

Nr

Xp¼Nr

p¼1

Fp, ð30Þ

where Nr is the number of realizations.
From an asymptotic perturbative theory and assuming a flat (the Earth’s

curvature is neglected) rough surface, Ishimaru et al. [25] showed that the coherent
attenuation function hFi keeps the same form as that of a smooth surface, but with a
new surface normalized impedance, Drough, as functions of the smooth surface
normalized impedance, Dflat

¼D, and of the sea roughness spectrum. In other words,
Drough

�Dflat(1þ aþ jb), where (a, b)2R
2.

Assuming a flat rough sea surface, from the BMIA-CAG, Bourlier et al. [3]
investigated several methods to compute the real numbers a and b. They then showed
that a4 0 and is proportional to u210, whereas b5 0 and jb/aj� 1. In addition, they
compared a and b with that obtained from an analytical approach developed by
Barrick [6,7] and based on an asymptotic perturbative theory. A good agreement is
then obtained between both methods.

To our knowledge, the approach developed for a flat rough surface has not been
generalized to the case of a curved rough surface. Thus, to solve this issue, the
method used to take the roughness into account for a flat rough surface is assumed
to be valid for a curved rough surface.
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Figure 10(a) plots the modulus of the attenuation function in dB scale versus x
and u10. Figure 10(b) plots the ratio F(x)/F(x)FB-SA in dB scale versus x and u10.
f¼ 10MHz and the receiver height is z¼ 5m. In the legend, the label ‘Bremmer
Resþ’ means that the results are computed from Equation (8) (Bremmer’s rigorous
solution expressed in terms of a residues series), in which the surface normalized
impedance, Dflat

¼D, is substituted for Drough computed from the work of Barrick
[6,7]. Figure 11 shows the same variation as in Figure 10 but for f¼ 20MHz.

As the wind speed increases, the attenuation function modulus decreases as
observed for a flat rough sea surface. In addition, a satisfactory agreement is observed
between the reference method (FB-SA) and the analytical one, which validates the
proposed intuitive approach. Nevertheless, as the wind increases the difference slightly
increases. Indeed, as the surface roughness increases, the perturbative approach
developed by Barrick becomes questionable. For example, for u10¼ {5, 10}m/s,

k0�z¼ {0.034, 0.138} for f¼ 10MHz, whereas k0�z¼ {0.068, 0.276} for f¼ 20MHz.
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Figure 10. (Color online) (a) jF(x)j in dB scale versus x. (b) The ratio F(x)/F(x)FB-SA in dB
scale versus x. f¼ 10MHz, the receiver height is z¼ 5m and the surface is rough.
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Figure 11. (Color online) Same as in Figure 10 but for f¼ 20MHz.
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This can explain why the ratio in Figure 11 is greater, in absolute value, than that in
Figure 10.

4. Conclusion

For a vertically polarized line source in the HF band, analysis of the propagation
over one-dimensional highly conducting curved rough sea surfaces was investigated
from an efficient rigorous numerical method: the method of moments combined with
the FB-SA approach. The ground wave is then exhibited for flat and curved rough
sea surfaces. In addition, the numerical results are compared with Bremmer’s
rigorous solution expressed as a residues series, valid for a curved smooth surface of
parabolic profile, in which the surface normalized impedance is substituted for a
modified surface normalized impedance to include the surface roughness and
computed from the work of Barrick. Comparisons then showed a good agreement
between the FB-SA results and Bremmer’s results, which validates Bremmer’s
rigorous solution combined with the work of Barrick.

For short distances, typically smaller than xp ¼ j	j
3=2 ¼ ð8a

2

9k0
Þ
1=3, where  ranges

approximately from 1 to 2, this paper also showed that the attenuation function can
be approximated as a sum of flat-Earth attenuation functions, each being
characterized by their pole and residue. In addition, for x2 [0; xp], the Bremmer
asymptotic solution given by Equation (17) can be applied.

In this paper, the emitter (z0) and receiver (z) heights are assumed to be zeros in
the Bremmer solution. For non-zeros heights, Equation (8) must be substituted
for [1]

FNðxÞ ¼ ðk0aÞ
1
6
2�jx

a

� �1
2Xn¼N
n¼1

Gnð�0ÞGnð�Þ
e j ðk0aÞ

1
3�nx=a

2�n �
1
�2

, ð31Þ

where

Gnð�Þ ¼
w1ð�n � �Þ

w1ð�nÞ
, �0 ¼

k0z0

ðk0aÞ
1=3

, � ¼
k0z

ðk0aÞ
1=3

, ð32Þ

in which Gn is a ‘height-gain’ function.
For small values of �, we can show that

Gnð�Þ ¼ 1� �
w01ð�nÞ

w1ð�nÞ
þ �2

w001ð�nÞ

2w1ð�nÞ
þ Oð�3Þ

¼ 1� j ðk0zÞDþ �n
ðk0zÞ

2

ðk0aÞ
2=3
þOð�3Þ, ð33Þ

since w01ð�nÞ � qw1ð�nÞ ¼ 0 with �n ¼ 21=3�n and w001ð�Þ � �w1ð�Þ ¼ 0 8�. Thus, up to
first order, Gn(�)Gn(�0)� 1� jk0(zþ z0)D. For instance, with f¼ 10MHz and
z¼ z0¼ 5m, Gn(�)Gn(�0)��0.15 dB, which approximately corresponds to the
mean value in Figure 8(b). For f¼ 20MHz, Gn(�)Gn(�0)��0.42 dB, which
approximately corresponds to the mean value in Figure 9(b).
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In addition, the atmosphere is assumed to be homogeneous, meaning that the air
refractive index is assumed to be constant and equals unity. For mean meteorological
conditions, a simple means to treat an inhomogeneous atmosphere is to replace the
Earth’s radius a by an effective radius ae¼Ka, where K¼ 4/3 [18].

In this paper, the sea surface is assumed to be homogeneous, meaning that the
surface permittivity is independent of the surface abscissa (no islands, for instance).
This issue is currently under investigation for a flat [26] and curved Earth.
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Appendix 1. Integral equation verified by the attenuation function

For a one-dimensional surface, the total field  (r) and its normal derivative @ (r)/@ns on the
surface satisfies, for r0 2 (�0[S) (upper medium �0 plus surface S), the following integral
equation [27]

 ðr0Þ ¼  iðr
0Þ þ

Z
S

 ðrÞ
@g0ðr, r

0Þ

@ns
�
@ ðrÞ

@ns
g0ðr, r

0Þ


 �
dS: ð34Þ

The scalar Green function of the upper medium is defined as g0 ¼ gðr, r0Þ ¼
j
4H
ð1Þ
0 ðk0 r� r0k kÞ and  i(r

0) is the incident field illuminating the surface. The function H
ð1Þ
0 is

the Hankel function of zeroth order and of the first kind and k0¼ 2�/�0 is the incident
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wavenumber. r ¼ xx̂þ zẑ ¼ ðx, zÞ is a point on the surface and r0 ¼ x0x̂þ z0ẑ ¼ ðx0, z0Þ is the
observation point. x̂ and ẑ are unitary vectors in Cartesian coordinates. In Equation (34),
the Cauchy principal value of the integral, defined as r¼ r0, is  (r0)/2. Thus, for r0 2�0,
Equation (34) becomes

 ðr0Þ

2
¼  iðr

0Þ þ �

Z
S

 ðrÞ
@g0ðr, r

0Þ

@ns
�
@ ðrÞ

@ns
g0ðr, r

0Þ


 �
dS: ð35Þ

Since the surface is assumed to be highly conducting (jnj� 1), the IBC (Impedance
Boundary Condition, also named the Leontovitch boundary condition) approximation can be
applied. This leads, on the surface for the TM polarization, to @ (r)/@ns¼�jDk0 (r), where D
is the surface normalized impedance defined as D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=n2

p
=n, in which n is the refractive

index. The only unknown is now the field  (r) and from Equation (35), one obtains

 ðr0Þ

2
¼  iðr

0Þ þ �

Z
S

 ðrÞ
@g0ðr, r

0Þ

@ns
þ jDk0g0ðr, r0Þ


 �
dS, ð36Þ

where

@g0ðr, r
0Þ

@ns
¼ Jrg0ðr, r

0Þ � n̂s ¼ �
jk0
4

Hð1Þ1 ðk0 r� r0k kÞ

r� r0k k
r� r0ð Þ � n̂s, ð37Þ

where n̂s ¼ ð��x̂þ ẑÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
is the unitary vector normal to the surface at the point r, in

which �¼ dz/dx is the surface slope.
Assuming that k0kr� r0k� 1, the Green function can be expanded as

g0ðr, r
0Þ ¼ g10 ðr, r

0Þ ¼
j

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�k0 r� r0k k

s
e j ðk0 r�r0k k��=4Þ, ð38Þ

and since Hð1Þ1 ðuÞ � �jH
ð1Þ
0 ðuÞ for u� 1, one obtains

@g0ðr, r
0Þ

@ns
¼ jk0g

1
0 ðr, r

0Þ
r� r0

r� r0k k
� n̂s: ð39Þ

Substitution of Equations (38) and (39) into Equation (36) then leads to

 ðr0Þ

2
¼  iðr

0Þ þ jk0�

Z
S

 ðrÞ g10 ðr, r
0Þ D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
�

� x� x0ð Þ � ðz� z0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðz� z0Þ2

q
2
64

3
75dx, ð40Þ

where dS ¼ dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
.

For more clarity, the points T(0, z0), Q(�, z�) and R(x, z) are defined, and stand for the
position of the transmitter, a point on the surface and the position of the receiver, respectively
(see Figure 1). Assuming that k0QR� 1, with the new notations the above equation becomes

 ðRÞ

2
¼  iðRÞ þ jk0�

Z
S

 ðQÞ g10 ðQRÞ D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
�
� � � xð Þ � ðz� � zÞ

QR


 �
d�, ð41Þ

where QR is the distance between the points Q and R.
The attenuation function is defined as  ¼ 2 iF. Substituting this equation into (41), and

dividing by  i(R), one obtains for  iðRÞ ¼ g10 ðTRÞ with k0TR� 1

FðRÞ ¼ 1þ j2k0�

Z
S

FðQÞ
g10 ðQRÞ g10 ðTQÞ

g10 ðTRÞ
D

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
�
� � � xð Þ � ðz� � zÞ

QR


 �
d�: ð42Þ
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The use of Equation (38) then leads to

Fðx, zÞ ¼ 1þ
jffiffiffi
�
p �

Z x

0

Fð�, z�Þ�e
jk0ðQRþTQ�TRÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR

QR� TQ

s
1�

�� � � xð Þ � ðz� � zÞ

D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�

q
QR

2
64

3
75 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2�

q
d�, ð43Þ

where �ð�Þ ¼ Dð�Þ
ffiffiffiffiffiffiffiffiffiffiffi
jk0=2

p
and ��¼ �(�). Moreover,

QR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � xÞ2 þ ðz� � zÞ2Þ

q
TQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� � z0Þ

2
q

TR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðz� z0Þ

2
q

:

8>>>>><
>>>>>: ð44Þ

Appendix 2. Algorithm to compute the roots of Equation (11)

This appendix presents a simple and efficient algorithm [18] to compute the roots of
Equation (11).
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Figure 12. (Color online) (a) Root values {tn, �n} versus the integer n. (b) Values of f1(�n)
versus the integer n. (c) Integer P versus the integer n. f¼ 10MHz and 
¼ 10�7.
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First, the roots of Equation (11) are computed for jqj!1)jDj!1, which leads, from
fundamental properties of the Airy functions, to finding the zeros of Ai(tn)¼ 0. Letting
zn¼ tne

�j�/3, the roots for jqj!1 are then expressed as Ai(�zn)¼ 0, in which zn is real and
positive. They can be computed from [15]. For instance, zn¼ {2.3381, 4.088, 5.521, 6.787,
7.944, . . .}.

For a given integer n, the roots of w01ð�Þ � qw1ð�Þ ¼ 0, in which w1(�)¼Bi(�)þ jAi(�), can
then be computed from the following recurrence equation

�pþ1 ¼ �p �
w01ð�pÞ � qw1ð�pÞ

�pw1ð�pÞ � qw01ð�pÞ
where �1 ¼ tn þ 1=q: ð45Þ

The above equation was obtained from the Newton–Raphson method and from the
property w001ð�Þ � �wð�Þ ¼ 0. The algorithm is stopped when j f1ð�pÞj ¼ jw

0
1ð�pÞ � qw1ð�pÞj � 
,

where 
 is the desired precision, giving P¼ p.
For f¼ 10MHz and 
¼ 10�7, Figure 12 plots the root values {tn, �n}, the values of f1(�n)

and the integer P versus the integer n. As can be seen in Figure 12(c), the algorithm converges
rapidly (after eight iterations) and the desired precision is reached since j f1(�n)j5 
 in
Figure 12(b). In addition, in Figure 12(a) the roots �n weakly differ from the tn roots, which
explains why the algorithm converges rapidly.
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