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Rigorous Prediction of the Ground Wave Above Flat
and Rough Highly-Conducting One-Dimensional

Sea Surfaces in HF-VHF Band
Christophe Bourlier, Member, IEEE, Gildas Kubické, and Yohann Brelet

Abstract—For horizontally and vertically polarized line sources
in HF-VHF band, a detailed analysis of the propagation over
one-dimensional highly-conducting smooth and rough sea sur-
faces is addressed from an efficient rigorous numerical method:
the method of moments combined with the BMIA-CAG approach
and with the impedance boundary condition (Leontovitch ap-
proximation). This method can treat a huge problem, typically,
ranging from 200 000 to 300 000 for the number of unknowns on
the surface, which allows us to show, for the TM polarization, the
ground wave propagation over a long distance. The contribution
of the surface wave is then exhibited for a smooth sea surface
and compared with the Collin asymptotic formulation deduced
from the Sommerfeld integral. The surface roughness effect on
the propagation is also investigated.

Index Terms—Electromagnetic scattering, ground wave, rig-
orous numerical methods, Sommerfeld integral.

I. INTRODUCTION

T HE Sommerfeld problem of radiation of a line source
above an infinite lossy half-space is a classic problem in

electromagnetics that has received significant attention. How-
ever, because of its relevance in a wide range of applications, it
is still being examined. Collin [1], Wait [2], Sarabandi et al. [3],
[4] (references therein), Koh et al. [5] (references therein), and
many other authors presented a review of this problem for the
vertical and horizontal polarizations. For a rough surface, from
earlier works and from an asymptotic perturbative theory (see
for instance Barrick [6], [7]), Ishimaru et al. [8], [9] introduced
the roughness effect. In addition, in the HF band (3–30 MHz),
Toporkov et al. [10] showed that the conventional small-pertur-
bation method must be multiplied by an attenuation function,
corresponding to the contribution to the surface wave, in which
the pole is modified by the surface roughness.

In the HF-VHF band (typically, Radar frequencies ranging
from 1 MHz to 100 MHz), the sea surface is highly conducting,
implying that the surface normalized impedance modulus is
close to zero (high surface permittivity modulus). For the ver-
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tical polarization and for grazing angles, this particularity in-
volves the existence of a surface wave, which can propagate over
a long distance near the surface: the ground wave. Mathemati-
cally, this wave is due to the pole, in the Fourier domain, of the
Green function, which contributes if , where is
the incidence angle defined from the nadir. Since is close
to zero, must be close to zero, corresponding to
grazing angles. For horizontal polarization, such a phenomenon
does not exist because the Green function pole is not excited (in
this case ).

For highly-conducting surfaces, the calculation of the Som-
merfeld integral is a very difficult task because the integrand
strongly oscillates and decreases slowly. Nevertheless, for large
observation distance, a closed-form asymptotic expression of
this integral can be obtained. Article [1] presents a contempo-
rary solution of this problem and works done on this problem in
the last century. One of the purpose of this paper is to compare
this asymptotic solution with a rigorous solution. In addition,
the surface roughness effect on the surface wave propagation
is also investigated. Indeed, a very efficient numerical rigorous
method, based on the Method of Moment (MoM) is used to com-
pute the scattered field by smooth and rough surfaces and by
applying the impedance boundary condition (Leontovitch ap-
proximation).

To exhibit the ground wave, the surface must be very large, a
few hundreds of kilometers, which implies to solve a problem
with a number of unknowns on the surface ranging from 200
000 to 300 000 for the HF-VHF band. This is impossible from a
classical MoM with a LU inversion. The surface is then assumed
to be 1-D.

The paper is organized as follows. For a smooth surface,
Sections II and III present the problem and asymptotic solu-
tions of the Sommerfeld integral. Section IV is devoted to the
choice and the validation of the efficient rigorous method and
Sections V and VI present numerical results for smooth and
rough surfaces in the HF-VHF band. The last section gives
concluding remarks.

II. FORMULATION OF THE PROBLEM FOR A SMOOTH SURFACE

For a one-dimensional smooth surface of infinite length, in
terms of scalar Green’s functions, the total field above the sur-
face is given by [8] (the time convention is assumed)

(1)

where is the incident field
radiated by the line source located at the point and
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Fig. 1. Description of the problem geometry. The emitter is located at the
height � and the abscissa � . The receiver is located at the height � and the
abscissa �. The image is located at the height �� and the abscissa � .

is the scattered field observed at the point
(see Fig. 1). The upper medium is assumed to be the vacuum
( ). The incident wave number is denoted as .

From the Weyl representation, the scalar Green functions are
expressed in the Fourier domain as

(2)

where

if (propagative waves)
if (evanescent waves)

(3)

and the Fresnel coefficients are defined in H (TE case) and V
(TM case) polarizations as

with

with
(4)

The symbol means that the variables are expressed in the
Fourier domain. Moreover, the normalized surface impedance
is expressed as

(5)

For low grazing angles, and then the ratio
. In addition, for large (highly-conducting surface),

the normalized surface impedance (it becomes inde-
pendent of ), where is the surface refractive index.

The substitution of (4) and (2) into (1) leads to

(6)

where

(7)

and . represents the incident field,
whereas is the incident field of the transmitter image lo-
cated at the point (see Fig. 1). In (6), the sign plus

refers to the TM polarization (or polarization V), whereas the
sign minus refers to the TE polarization (or polarization H).

For a perfectly-conducting surface, and . Thus,
in (6), the term stands for the total field by a
perfectly-conducting surface.

In the following, the surface complex relative permittivity
is assumed to be

(8)

where is the conductivity in S/m, and . In addition,
and the real part of the relative permittivity is

, which implies that the sea complex relative permittivity is
, with in GHz.

III. EVALUATION OF THE SOMMERFELD INTEGRAL

From (7) and (4), a pole occurs at , giving
for the TE polarization and for the TM

polarization. For a highly-conducting surface, since ,
the pole does not contribute for the TE polarization (in this case

), whereas for the TM polarization, the pole can
contribute because , corresponding to grazing
angles. Thus, the evaluation of integral (7) is not straightfor-
ward for the TM polarization because a pole occurs in the inte-
grand. For a 2-D surface, a detailed analysis of several asymp-
totic derivations published in the previous century is addressed
in recent papers of Collin [1] and Koh et al. [5]. See also the
article of Wait [2]. In addition, for a highly-conducting surface
( ), like the sea surface in HF-VHF band, the modulus
of the normalized surface impedance ( ) is close to
zero, which makes the computation of the integral very difficult.

For the TE polarization, we show in Appendix A that

(9)

where and . For a highly-conducting
surface ( ) and unlike the TM polarization, the series
converge very rapidly. We then show that

(10)
for and . In addition,

is the scalar Green function
in the far field zone. For , (10) behaves as

. This explains clearly that for the TE polarization, a surface
wave can not propagate near the surface on a large distance.

For the TM polarization and from Appendix A, we show that

(11)

For a highly-conducting surface, unlike the TE polarization,
since the sum converges very slowly, which makes the
numerical evaluation of the sum very difficult. Thus, the above
equation is not adequate to derive analytically .
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That is why for a two-dimensional (2-D) surface, Collin
[1] addressed an asymptotic evaluation of integral (7) via the
steepest descent method. In the recent paper of Koh et al. [5],
for a 2-D surface, a closed-form expression of the Sommerfeld
integral is also reported, in which special functions are involved
in the sum. But, for close to zero, the sum converges very
slowly, and then the Collin solution is more appropriate for our
application.

In Appendix B, this approach is summarized and applied to a
1-D surface. The resulting integral evaluation has then the same
form as the one obtained for a 2-D surface

(12)

but the argument and the terms are different and
defined as

(13)

with the following condition

(14)

for . The value is of the order of 3 and will
be optimized from the benchmark method presented in the next
section.

For and , (13) becomes

(15)

Moreover, if , then .

IV. RIGOROUS METHOD

This section presents a rigorous fast method based on the in-
tegral equations, which allows us to treat a very large problem.
Indeed, to exhibit the ground wave, which propagates near the
surface over a very large distance from the source point, the sur-
face must be very large, typically, a few hundreds of kilometers.
For a frequency of the order of 30 MHz ( ) and with
a sampling step of , the number of unknowns on
the surface must then be greater than .

The field and its normal derivative on the
surface are expressed from the integral equations [12] as

(16)
where for the TE polarization, and for the TM
polarization. The scalar Green function of the lower medium is

, whereas the one of the upper medium is
.

Since the surface is assumed to be highly conducting (
), the IBC (impedance boundary condition, also named Leon-

tovitch boundary condition) approximation can be applied. This
leads to

(17)

Thus, substituting (17) into (16), for the TE polarization, only
the field normal derivative is computed from the method of mo-
ments (MoM), and the field is then computed from (17). For
the TM polarization, the field is computed from the MoM,
and the field normal derivative is then computed from (17).

To solve numerically (16), the MoM [11] is applied. Then,
using the MoM with point matching and pulse basis functions,
a linear system is obtained, in which
is the impedance matrix, the vector containing the unknowns

sampled on the surface ( ,
) and the vector containing the sampled incident field
( , ). The elements of the impedance

matrix can be found in [12]. Since the number of unknowns
is huge, a classical LU inversion to invert can not be applied.

In the last two decades, rapid rigorous numerical methods, de-
voted to the scattering from rough surfaces, have been developed
to solve this issue. For instance, one can cite the banded-ma-
trix-iterative-approach/canonical grid (BMIA-CAG) of Tsang
et al. [13], [14] of complexity , the Forward-Back-
ward (FB) method of Holliday et al. [15] of complexity ,
and the accelerated version, forward-backward spectral acceler-
ation (FB-SA), of Chou et al. [16], [17] of complexity .
The principle of these methods is not to invert the impedance
matrix but to replace by a succession of matrix-vector
products. For more details, see [15], [16], [18], [19] for the
FB-SA and see [13], [14], [20] for the BMIA-CAG. It can be
noted that the later is very efficient for slightly rough surfaces,
i. e. , and a fortiori for a smooth surface. Moreover,
the BMIA-CAG required the knowledge of two integers (i) The
width of the strong interaction band matrix, , which is
much smaller than (ii) The term number, , retained
in the series expansion of the impedance matrix elements of the
weak interactions.

For the TM polarization, Fig. 2 shows the ratio
in dB scale ( )

versus the abscissa . is the field on the surface
computed from the BMIA-CAG, whereas , is the
field computed from a direct LU inversion. The frequency

, the
height of the emitter is and its abscissa .
The number of unknowns is ( and the
surface length ). In the legend, the labels give the
order of the BMIA-CAG method ( ).

Fig. 3 plots the same variations as in Fig. 2 but for the TE
polarization. For both polarizations, the number .
As one can see, the BMIA-CAG method converges very rapidly
for both polarizations and after only 1 iteration. In addition, the
difference modulus does not exceed 4 dB for the TM po-
larization and 0.06 dB for the TE polarization. To obtain the high
accuracy of interest here, the FB-SA requires a larger number of
spectral integration points [17] that reduces the efficiency of the
algorithm compared to BMIA-CAG for this problem.
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Fig. 2. Ratio �� �� � in dB scale versus the abscissa.
� � �� ��� � � � �� � 	
���, � � �� �, � � � �, and
� � 
���.

Fig. 3. Same as in Fig. 2 but for the TE polarization.

As a conclusion of this section, in the following, the
BMIA-CAG method can be considered as a benchmark method
and it is more efficient than the FB-SA for our application.

V. NUMERICAL RESULTS FOR A SMOOTH SEA SURFACE

In this section, numerical results are presented for a smooth
sea surface in the HF-VHF band ( ). In ad-
dition, the emitter is located at and the
number of unknowns on the surface is .

The scattered field is derived from the field and its normal
derivative on the surface, computed from the BMIA-CAG, by
applying the Huygens principle defined as

(18)

From (6), the total scattered field can be written as

(19)

where . Thus, for grazing angle ( or
), and for the TE polarization,

whereas for the TM polarization.
From (18) and (19), the normalized functions and are

computed from ( )

(20)

Fig. 4. Ratio �	�

� �� versus � and � for the TM polarization.
� � �� ��� � � � �� � 	
��� ���. The cross indicates the lo-
cation of the emitter.

Fig. 4 plots the ratio versus and
for the TM polarization. and

. The cross indicates the location of the emitter.
Since the total scattered field is symmetrical with respect to ,
only the part for is shown.

As we can see, as the distance increases, decreases
very slowly and contributes near the surface. This behavior is
characteristic of the ground wave and it is in qualitative agree-
ment with (12). By contrast, numerical results not depicted here,
clearly showed that for the TE polarization, the function
vanishes. This means, that the total field vanishes since

. In other words, the surface finite conductivity does not af-
fect the scattered field comparatively to a perfectly-conducting
surface. This is in agreement with (10).

For the TM polarization, Fig. 5(a)-(b) show the real and
the imaginary parts of versus

( ) for an observation height of
. One obtains

The maximum value of
.

It can be seen that the real part presents an oscillating be-
havior, for which the location of the minimum, , is in-
dependent of the frequency. This shows that the term

is not sensitive to the frequency. Thus,
as the frequency increases, the term increases, and
thus the value of decreases, which
means that the real part of decreases more fastly with the
distance . This behavior also holds for the maximum loca-
tion of , i. e. . Using the
same way, we can show that the amplitudes of the extrema are
related to . This means that the function

can be expressed as , where
and the functions and

are real. This new dependence allows us to reduce the number
of freedom degrees. In addition, this result shows clearly that
when the frequency increases, the contribution of the ground
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Fig. 5. (a) ���� � versus � � � ����� � � � � ����� for
the TM polarization and for an observation height of � � �� 	 and
� � �
�� ������ 
��. (b) Same as in (a) but for the imaginary part,
�	�� �.

Fig. 6. ��� ��� �� �� � versus � � � � � for the TM
polarization, for � � �� 
�� and for different observation heights.

wave decreases with the distance, which is in agreement with
the experimental observations.

Fig. 6 plots versus
for the TM polarization, for

and for different observation heights ( ).
is computed from (12), whereas is com-

puted from the BMIA-CAG. The vertical line gives the value
of , for which the Collin formulation
is valid. It was computed from (14) with . In addition,
Fig. 6 plots the curves for zeros receiver and emitter heights
( in (12)).

Fig. 7. Real and imaginary parts of�	 �� �
�
�� � � ���� � versus � �

� �� and for � � �
��������
��.

As expected for small distance , the Collin approach can
not be applied, and as increases, the results match better the
BMIA-CAG ones. Moreover, the Collin formulation is better
when the effect of the heights is included.

For very large distance, , and for ,
in (12), are given by (15), and becomes large.
In addition, the function behaves , and
thus

(21)

Equation (21) shows that, as the frequency increases, the nor-
malized impedance modulus increases, and thus the function

decreases. Fig. 6 also shows that when the observation
height increases, the differences between the BMIA-CAG and
the Collin results increase. This difference can not be attributed
to the accuracy of the BMIA-CAG method because the field
computed on the sea surface is independent of the observation
height, and the scattered field is derived rigorously from the
Huygens principle.

From (2) and for the TM polarization, the reflection coeffi-
cient is expressed in the Fourier domain as

(22)
In addition, , in which

and is expressed from (5). From the bench-
mark method, , where are the Fourier
transforms of the total and incident fields on the surface, respec-
tively, computed from the BMIA-CAG method.

Fig. 7 plots the real and imaginary parts of
( for close to 1)

versus and for . The
horizontal bold lines correspond to the values of . As
expected, for close to 1, the quantity is
constant and equals . With the BMIA-CAG method, this
value is well predicted in terms of average value. Thus, from
the total field on the surface, it is possible to calculate the
surface normalized impedance. This way is very interesting
and will be used to compute the surface normalized impedance
from a rough surface.
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Fig. 8. Relative error in percent of ���� �� �� ���. At the top, the
real part. At the bottom, the imaginary part.

TABLE I
VALUES OF � AND � FOR THE

TM POLARIZATION AND FOR � � �� �	


To optimize the calculation of from the BMIA-CAG
method, Fig. 8 plots the real and imaginary parts of the rel-
ative error in percent, , versus .

is the mean value of computed
over with the BMIA-CAG. In Fig. 7,

. It can be seen, for close to 1 ( close to 0), the
error does not exceed 0.2% and 0.4% for the real and imaginary
parts, respectively, and the value is a good choice.

VI. NUMERICAL RESULTS FOR A ROUGH SEA SURFACE

In this section, a rough sea surface is considered. The rough
surface height is assumed to be a Gaussian stationary stochastic
process with zero mean value, and the height spectrum obeys
the Elfouhaily et al. hydrodynamic spectrum [21], in which the
key parameter is the wind speed at 10 meters above the
sea surface. In an electromagnetic point of view, in HF-VHF
band, since the ratio is much smaller than one, the sur-
face is slightly rough. From the Elfouhaily spectrum, Bourlier
et al. [22] showed that the height standard deviation is

. For instance for (Beaufort
scale 4–5), , which implies that the ratio

for . Thus, the BMIA-CAG
method is very efficient because its order and its strong
interaction band width are proportional to this ratio.
Table I reports these values used for the next simulations, and
they are obtained by using the same way as a smooth surface
(see Section IV).

By using a spectral method, several independent surfaces (but
with a same Gaussian process and a same height spectrum) are
generated. For each surface numbered , the field and its
normal derivative are computed, and then from (18)

Fig. 9. (a) �� �� � versus � � � � � for the TM polarization and for an
observation height of � � �
 �. (b) Same as in (a) but for �� �� �. � �
�� �	
, � � �	 
	 �� ���, and � � ��.

and (20), the scattered field and the function are com-
puted. The average of , denoted as is then obtained
from

(23)

where is the number of realizations.
Fig. 9(a)-(b) show and , respectively,

versus for the TM polarization and for an obser-
vation height of . and .

As the wind speed increases, the distance over which the
surface wave propagates decreases significantly. Thus, the sur-
face roughness strongly affects the propagation. This behavior
is in agreement with the results reported by Ishimaru et al. [8].
They showed from an asymptotic perturbative theory and for a
Gaussian spectrum, that the coherent field decreases faster with
respect to than the one of a smooth surface. Fig. 9(a)-(b) also
show that the roughness has a minor impact on the extrema am-
plitude, which means that the pole imaginary part, related to the
damping, is less affected by the surface roughness than the pole
real part.

Fig. 10 represents the same variations as in Fig. 9(a) but for
the modulus, and versus . The ratio is defined as

, in which is the value of for a
given threshold . The superscripts refer to
smooth and rough surfaces, respectively. Fig. 11 plots the ratio

versus for a threshold and for three observation
heights. One can see that the curves coincide. This confirms that
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Fig. 10. Same as in Fig. 9(a) but for the modulus, � �� � � and versus � � .
� � �� ���.

Fig. 11. Ratio � versus the wind speed � for a threshold � � ���. � �

�� ���.

the roughness affects only the real part of the pole, and then
with .

Fig. 11 also shows that is slightly sensitive to the observa-
tion height, revealing that does not depend on the scattered
field , and it is rather an intrinsic property of the field on the
surface , as the surface pole. In addition, is strongly related
to or to the standard deviation .

From an asymptotic perturbative theory, Ishimaru et al. [8]
showed that the coherent attenuation function keeps the
same form as the one of a smooth surface, but with a new pole
([8, Eq. (46)]), as functions of the smooth surface pole and of
the sea roughness spectrum. In other words, the pole of a rough
surface can be expressed as , in
which and for . This relation
also holds for the surface normalized impedance, that is to say

.
Several ways can be used to calculate and . First, they

are computed from the field on the surface (see the end of
Section V, label “From ” in the legend of Fig. 12). Second,
they are computed from (12) and (15) (label “From ” in the
legend of Fig. 12). Indeed, (12) shows that depends only
on if approximations (15) are valid. In this case, for a same
threshold , chosen such as (15) is valid, one has

leading to

(24)

Fig. 12. � �� � � � 		 
� versus � . At the top, the real part
	. At the bottom, the imaginary part �. � � �� ���.

Fig. 13. � �� � � � 		 
� versus the frequency � in MHz. At
the top, the real part 	. At the bottom, the imaginary part �. � � 
 ���.

For , ,
which is a real number.

Fig. 12 plots the ratio versus
with . At the top, it can be seen that both

methods predict similar results and like , the real part is pro-
portional to . A linear regression leads to

(the regression coefficient is 0.99375) with
(label “Linear reg.” in Fig. 12). At the bottom, the

prediction of the imaginary part differs from the method, but
remains small comparatively to the real part . Thus, as previ-
ously said, the roughness has a minor impact on the imaginary
part of the surface normalized impedance or on the surface pole.

Fig. 12 also shows comparisons with the Barrick theory [6]
((22) applied to 1-D surfaces, i.e., ) based on a perturbative
method. For the real part, as the wind increases, the difference
increases. Indeed, as the surface roughness increases, the use of
a perturbative approach is questionable. For example, for

, . For small wind speeds, a slightly differ-
ence also appears. For the imaginary part, as the BMIA-CAG,
the Barrick asymptotic theory predicts levels much smaller than
the real part.

Fig. 13 plots the ratio versus the
frequency in MHz. At the top, the real part . At the bottom,
the imaginary part . The wind speed is . The
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Fig. 14. � �� � � versus � � ������� � �� for the TM polarization and for
an observation height of � � �	 
. � � ��� 	�
�� and 	 � ��.

definition of the labels is the same as in Fig. 12. As the fre-
quency increases, the real part increases slightly. Comparatively
to Fig. 12, this increasing is lower, which means that the ratio

is less sensitive to the frequency than the wind
speed. As in Fig. 12, the imaginary part decreases very slowly
with the frequency. In addition, these behaviors are in agree-
ment with the Barrick results.

Figs. 12 and 13 reveal that the method with the label “From
” seems to be more accurate that the one with the label “From

”. It can be explained by the fact that the field on the surface
presents oscillations, which makes the evaluation of the pole

difficult. In addition, as the roughness increases (either the wind
speed increases or/and the frequency increases), the coherent
field decreases (the diffuse component increases), which makes
the evaluation of the pole difficult because more surface realiza-
tions are necessary.

Fig. 14 represents versus (
) for the TM polarization and for an observation height

of . and . As
expected, for a rough surface, the multiplication of the abscissa

by allows us to retrieve approximately the
curves obtained for a smooth surface ( ) and for a given
frequency. The extremum level differs because the roughness
also slightly modifies the imaginary part of the pole.

VII. CONCLUSION

For horizontally and vertically polarized line sources in
HF-VHF band, analysis of the propagation over one-dimen-
sional highly-conducting smooth and rough sea surfaces has
been investigated from an efficient rigorous numerical method:
the method of moments combined with the BMIA-CAG ap-
proach. For the TM polarization, the ground wave is then
exhibited for smooth and rough sea surfaces, whereas for the
TE polarization, such a wave can not be excited. The numerical
results are compared with asymptotic theories based on the
Sommerfeld integral.

For frequencies ranging from , the main
concluding remarks of this study are:

• The distance over which the ground waves propagates de-
creases when the frequency increases and the wind speed
increases.

• Equations (12) and (13), which give an approached ex-
pression of the attenuation function and
deduced from the Collin work, for which the antenna
heights are assumed to be small in comparison to the
wavelength, is valid for distance approximately greater
than , where is the incident wavenumber
( ) and the surface normalized impedance ex-
pressed from (5).

• For a rough sea surface, the attenuation function keeps
the same mathematical expression of the one of a smooth
surface, in which the pole of a smooth surface, ,
must be replaced by of the rough surface. In ad-
dition, the pole can be approximated by

with .
• The real is positive, slightly sensitive to the frequency

and proportional to .
• The real is negative, much smaller than in absolute

value and its impact is minor on the attenuation function.

APPENDIX A
DERIVATION OF

TM Polarization: For the TM polarization, the substitution
of (4) into (7) leads to

(A1)

where and .
Using the Laplace transform

(A2)

one has

(A3)

where . Unfortunately, it is very difficult to obtain a
closed-form expression of the above integral.

Doing a succession of integrations by parts, we show that

(A4)

For a highly-conducting surface, since the sum con-
verges very slowly, which makes the numerical evaluation of the
integral very difficult.
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TE Polarization: For the TE polarization, the substitution
of (4) into (7) leads to

(A5)

Using the variable transformations
and , one has

(A6)

where is the integration contour of the scalar Green function
in the complex plane defined as

. Series expansion over
around zero of the fraction leads to

(A7)

In addition, since

(A8)

and , one has

(A9)

For a highly-conducting surface, since the sum con-
verges very rapidly.

APPENDIX B
EVALUATION OF FROM THE COLLIN APPROACH

In this appendix, the Collin approach [1] is summarized and
applied to a 1-D surface.

Let us consider the following integral

(B1)

where is a function having a simple single zero de-
fined for , and is the contour of the scalar Green function
in the complex plane defined as

.
First, the integration contour of the integral is converted to

the steepest-descent contour (SDC) leading to

(B2)

where

(B3)

and

(B4)

Collin then showed that

(B5)

where

(B6)

In our case, the following integral must be derived

(B7)
Thus, from (B1), we have , ,

and , leading from (B6)
to

(B8)
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