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Abstract—The problem of electromagnetic wave scattering from a
one-step surface is a well-known subject. The reflected power can be
evaluated using the widely-used Rayleigh roughness parameter. Here,
its extension to the case where the one-step surface overlies a perfectly
flat surface, called one-step layer, is studied.

1. INTRODUCTION

The Rayleigh roughness criterion, first studied by Lord Rayleigh [1, 2],
is a common tool for estimating the degree of roughness of a rough
surface. It is a qualitative approach which makes it possible to calculate
the phase variations of the reflected wave of a rough surface [3]. For
the simple case of a one-step surface, it allows one to calculate the
phase difference between two reflected waves of a one-step surface,
by neglecting edge diffraction phenomenon [4], and by considering
geometric rays [5, 6]. In other words, the illuminated surface area must
be much greater than the electromagnetic wavelength.

In what follows, the case of a one-step surface is recalled, and a
roughness criterion associated to an attenuation of the reflected power
in the specular direction by a factor 4 is defined. This provides one
a criterion for estimating the attenuation of the power received by
an antenna owing to the presence of a step in a surface. Then, this
approach is extended to the case where the one-step surface overlies a
perfectly flat surface (called here one-step layer).
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2. CASE OF A ONE-STEP SURFACE

2.1. General Description

Let us consider an incident plane wave inside a medium Ω1 of
wavenumber k1 and of incidence angle θi. For the case of a one-step
surface (see Figure 1), the wave reflected by the surface does not have
the same path way if the wave is incident on the surface at a point
on the left or on the right of the step. For a surface point A1 (of
height ζ = ζA) on the left of the step, the reflected field E1 has a phase
denoted φ1, and for a surface point A′

1 (of height ζ = ζA′) on the right
of the step, the reflected field E′

1 has a phase denoted φ′
1 (see Figure 1).

We consider here an incident wave that impinges an area S of the
surface ΣA in which the step is present, and such that the illuminated
areas on the left and on the right of the step, SA and SA′, respectively,
are equal: SA = SA′ = S/2. S is such that S = L× b, with L and b the
x- and y-components of S, respectively. The condition {L, b} � λ1

holds (with λ1 the incident wavelength), so that the surface can be
considered of infinite area. These two wave groups of respective phases
φ1 and φ′

1 interfere to form the total reflected field Er, the interference
being described by the phase difference δφ = φ1 − φ′

1. By noting
δζA = ζA − ζA′ the step height, it is easy to show that δφ is given by:

δφ = 2k1δζA cos θi. (1)

Thus, it is usually said that if the phase difference |δφ| < π/2, the
waves interfere constructively, and the step surface can be considered
as slightly rough, or even nearly flat if |δφ| � π/2. In the reverse
configuration, if |δφ| > π/2 (and |δφ| < 3π/2), the waves interfere
destructively, and the surface can be considered as moderately rough
or even very rough. In what follows, a slightly different definition,
which considers the total reflected power Pr, is proposed.
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Figure 1. Phase difference between two reflected waves E1 and E′
1 of

a one-step surface: representation in the plane (x, z).
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2.2. Power Roughness Criterion

Let us focus on the determination of the total reflected power Pr from
such a surface, comparatively to the case of a perfectly flat surface.
The incident power Pi is given by the relation

Pi = |Ei|2S cos θi/(2Z1), (2)

with |Ei| the incident field modulus and Z1 the incident wave
impedance.

For the case of a perfectly flat interface, the total reflected power
is maximum, Pr ≡ Pmax

r , and is easily obtained, as all the reflected
fields Er are in phase (interfere constructively), δφ=0. Thus, the total
reflected power Pr, given with respect to the incident power Pi by the
general relation

Pr/Pi = |Er|2/|Ei|2, (3)

can be simplified in this simple case of a flat surface, |Er| being given
by |Er| = |r12(θi)Ei|, with r12 the Fresnel reflection coefficient inside
Ω1 and onto Ω2.

For the case of a one-step surface, the total reflected field Er results
from the coherent summation of the reflected fields E1 at the surface
of height ζA on the left of the step and of the reflected fields E′

1 at
the surface of height ζA′ on the right of the step. Under the condition
SA = SA′ = S/2, Er is given by the relation

Er = E1 + E′
1 = |E1|

(
ejφ1 + ejφ′

1

)
= |E1|

(
1 + ejδφ

)
. (4)

As a consequence, the total reflected power Pr, given by Equation (3),
is maximum if E1 and E′

1 are in phase, i.e., δφ = 0 in Equation (1)
(or more generally, δφ = 2kπ, with k integer), corresponding to
Pr ≡ Pmax

r . Quite the reverse, Er = 0 ⇒ Pr = 0 if E1 and E′
1 are

in phase opposition, i.e., δφ = ±π in Equation (1) (or more generally,
δφ = π + 2kπ, with k integer). This is illustrated in Figure 2 for
various values of the phase difference: δφ = { + 30;+90;+120;+150}
degrees, in the case SA = SA′ = S/2. As can be seen, when the phase
difference increases from δφ = 30 degrees to 150 degrees, the total
reflected field modulus |Er| decreases. Note that for δφ = 120 degrees,
|Er| = (|E1| + |E1′ |)/2 = |E1|, which is equal to half its maximum
value that occurs for a flat surface: |Er| = |Emax

r |/2.
A roughness criterion on the total reflected power Pr, for defining

the limit over which the surface is considered as rough, can be expressed
as follows: It is defined as the limit roughness for which the total
reflected power Pr remains superior to the fourth of its maximum value,
equal to the one for the flat case Pmax

r ,

Pr ≥ Pmax
r /4. (5)
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This corresponds to the criterion on the field modulus |Er| ≥ |Emax
r |/2,

which is valid for |δφ| ≤ 2π/3. Thus, for the case where the illuminated
areas are equal, SA = SA′ = S/2 (case illustrated in Figure 2), this
leads in Equation (1) to the relation |δφ| ≤ 2π/3 (or more generally,
2kπ − 2π/3 ≤ δφ ≤ 2kπ + 2π/3, with k integer). Then, the following
condition on the step height δζA holds:

|δζA|/λ1 × cos θi ≤ 1/6. (6)

As a consequence, the power roughness criterion, given by the ratio
|δζA|/λ1, increases with increasing incidence angle θi.

3. EXTENSION TO A ONE-STEP LAYER

In this section, the power roughness criterion is extended to the
case of a one-step surface over a perfectly flat surface, called one-
step layer. When a perfectly flat lower interface is present, multiple
reflections inside the inner medium Ω2 occur, and consequently
multiple reflections back into Ω1 (see Figure 3). Then, the incident
wave, which impinges the upper one-step surface, undergoes multiple
reflections inside Ω2. On the left of the step, the thickness of Ω2 is
equal to ζA − ζB and is denoted h, and on the right of the step, the
thickness of Ω2 is equal to ζA′ − ζB and is denoted h′ (see Figure 3).

Here, it is assumed that the inner medium thicknesses, h = ζA−ζB

and h′ = ζA′ − ζB , are much lower than the length of the illuminated
surfaces LA = LA′ , so that the intermediate configuration for which the
incident wave hits the surface on the left of the step, and some of the
reflections back into Ω1 occur at a point of ΣA on the right of the step
(which occurs for non-normal incidence, θi �= 0), can be neglected (for
instance, see Figure 4 for the case where the second reflection occurs
on the right of the step). Thus, only the two extreme configurations
represented in Figure 3 contribute to the total reflected field Er.

(a): δφ=+30o (b): δφ=+90o (c): δφ=+120o (d): δφ=+150o

Figure 2. Representation of the reflected field vectors �E1 and �E′
1,

together with the total reflected field vector �Er in the case SA = SA′ =
S/2, for different values of the phase difference δφ.
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Then, it can be seen that these two extreme configurations
correspond to two classical Fabry-Pérot interferometers of thicknesses
h and h′. The field EFP (H) reflected by a Fabry-Pérot interferometer
of general thickness H is expressed with respect to the incident field Ei

by |EFP (H)| = |req(θi;H)Ei|, with req the equivalent Fresnel reflection
coefficient given by the relation [7–9]

req(θi;H) =
[
r12 (θi) + r23(θm) exp

(−jφFP
)]

/
[
1 + r12 (θi) r23(θm) exp

(−jφFP
)]

, (7)

with φFP the phase difference between two successive reflected fields
(for instance between E1 and E2 in Figure 3), given by φFP =
2k2H cos θm. k2 is the wavenumber inside Ω2, and θm the propagation
angle inside Ω2, given by the Snell-Descartes refraction law k1 sin θi =
k2 sin θm.

As a consequence, for the case on the left of the step in Figure 3,
the total reflected field EFP (h) is given by |EFP (h)| = |req(θi;h)Ei|,
with h = ζA − ζB, and for the case on the right of the step in Figure 3,
the total reflected field EFP (h′) is given by |EFP (h′)| = |req(θi;h′)Ei|,
with h′ = ζA′ − ζB. Finally, the total reflected field Er, given by
Equation (4), is expressed for LA = LA′ = L/2 � h′ by

|Er| = | [req(θi;h) + req
(
θi;h′)]Ei|/2. (8)

Following the same way as for the single interface case, the phase
difference between the two extreme configurations is given by
Equation (1), and the criterion for the total reflected power attenuation
by a factor 4, comparatively to the case of two flat interfaces remains
the same and is given by Equation (6).
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Figure 3. Phase difference between two reflected waves of a one-
step surface over a perfectly flat lower interface (one-step layer):
representation in the plane (x, z).
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Figure 4. Limit case of the one-step layer, which occurs for non-
normal incidence, θi �= 0.

3.1. Case of Two Flat Interfaces

Comparatively to the single flat interface case, the presence of the
lower flat interface induces interferences between the multiple reflected
fields, so that the total reflected field can significantly vary in modulus
between a maximum value and a minimum value which is zero. As
a result, comparatively to the single flat interface case, for the simple

Figure 5. Illustration of the power roughness criterion of two flat
interfaces for both V and H polarizations: cflat

3 = |req|2 − |r13|2/4
with respect to the normalized layer thickness h/λ1. The relative
permittivities are εr2 = 2.2 and εr3 = 80. The legend represents the
values of the incidence angle θi in degrees.
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case of two flat interfaces, the criterion in Equation (5) simplifies as

|req(θi;h)|2 ≥ |r1x(θi)|2/4, (9)

r1x being the Fresnel reflection coefficient of the single flat interface
case considered depending on the application studied, which can be
the interface of the inner medium, Ωx = Ω2, or rather the interface of
the lower medium, Ωx = Ω3.

This is illustrated in Figure 5, where the term cflat
3 = |req|2 −

1/4|r13|2 is compared to 0 for both V and H polarizations. This term
must be ≥ 0 in order to check the power roughness criterion (5). The
relative permittivities are εr2 = 2.2 and εr3 = 80. It can be seen
that the term cflat

3 is always positive for both polarizations and for all
plotted incidence angles θi. This is due to the fact that εr2 = 2.2 is close
to εr1 = 1 and much inferior to εr3 = 80, so that the main contribution
to the total reflected field Er comes from the second-order reflected
field E2 (see Figure 3). The other contributions (E1, E3, Er4, etc.)
are low comparatively to E2, so that the coherent summation of all
contributions En (with n = {1, 2, 3, 4, . . . }) remains always positive.
Thus, for this typical configuration, the Rayleigh power roughness
criterion (5) is validated for moderate incidence angles.

The influence of the relative permittivities εr2 and εr3 can then
be studied. First, by changing only the inner relative permittivity εr2,
only the term |req|2 inside cflat

3 = |req|2 − 1/4|r13|2 is modified. As
illustrated in Figure 6 for εr2 = 4, increasing εr2 implies an increase of

Figure 6. Same configuration as in Figure 4, except for the inner
medium relative permittivity εr2 = 4.
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Figure 7. Same configuration as in Figure 4, except for the lower
medium relative permittivity εr3 = 5.

the phase term φFP because the latter is proportional to (εr2)1/2, so
that the oscillation frequency of cflat

3 with respect to the normalized
layer thickness h/λ1 is increased. Moreover, by increasing εr2 from
2.2 to 4, the second-order reflected field E2 is decreased and the first-
order one E1 is increased, so that they tend to have contributions of
the same order. Thus, the oscillations amplitude is increased, and the
mean level of the oscillations is decreased and gets closer to 0. As a
consequence, for a few configurations the power roughness criterion (5)
is not checked any more.

Second, by changing only the lower relative permittivity εr3,
both terms |req|2 and |r13|2 inside cflat

3 are modified. This time, the
oscillation frequency with respect to the normalized layer thickness
h/λ1 remains constant, as φFP does not depend on εr3. This is
illustrated in Figure 7 for εr3 = 5 (by keeping εr2 = 2.2). Nevertheless,
a significant decrease of εr3 implies a significant decrease of the term
|req|2. Indeed, this does not change the first-order reflected field E1 but
significantly decreases the second-order reflected field E2, so that E2

has this time a lower contribution than E1. As a result, comparatively
to Figure 5, the oscillations amplitude is decreased, and the mean level
of the oscillations is significantly decreased and gets much closer to 0.
It can be deduced that the term |r13|2 also significantly decreases at the
same time, which contributes to remain the mean level of cflat

3 close to
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zero but still positive. As a consequence, similarly as in Figure 6, for
some configurations the power roughness criterion (5) is not checked
any more.

In next subsection, the influence of the one-step layer is studied,
and in particular the influence of the step height δζA.

3.2. Case of a One-step Layer

Comparatively to the single flat interface case, the case under study
has two constraints: One on the step height δζA given by Equation (6),
and one on the Fabry-Pérot interferometer configuration given by
Equation (9). As a consequence, comparatively to the single flat
interface case, for the case under study, the criterion in Equation (5)
simplifies for L/2 � h′ as

|req(θi;h) + req(θi;h′)|2/4 ≥ |r1x(θi)|2/4, (10)
with h′ = h− δζA. This is illustrated in Figure 8 with Ωx = Ω3, where
the term cstep

3 = |req(θi;h)+req(θi;h′)|2/4−|r13(θi)|2/4 is compared to
0 for both V and H polarizations. Once again, this term must be ≥ 0
in order to check the power roughness criterion (5). The normalized
step height is δζA/λ1 = 0.1, and the other parameters are the same as
in Figure 5 for the case of two flat interfaces.

Contrary to the case of two flat interfaces in Figure 5, for all
plotted cases the term cstep

3 takes values inferior to 0, except in V

Figure 8. Same configuration as in Figure 4, but for a one-step layer
with a normalized step height δζA/λ1 = 0.1.
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Figure 9. Same configuration as in Figure 7, except for the normalized
step height δζA/λ1 = 0.5.

polarization for θi = 60◦. This illustrates that the presence of a
one-step in a surface plays a significant role in the power roughness
criterion, even for relatively low normalized step heights δζA/λ1.
Moreover, as illustrated above for the case of two flat interfaces, the
influence of the relative permittivities εr2 and εr3 is also significant.

The influence of changing the step height δζA is illustrated in
Figure 9 where δζA/λ1 = 0.5 (comparatively to Figure 8 where
δζA/λ1 = 0.1). This simulation confirms that the step height δζA has
a significant influence on the total reflected power, because significant
differences appear with Figure 8. In particular, for low to moderate
incidence angles θi, secondary interferences can be observed (here
mainly for θi = 0), which can be attributed to the interference between
the fields reflected from two flat interfaces with thicknesses h and h′.
Moreover, it can be seen that contrary to Figure 8, for θi = 0◦ and
in both polarizations, the power roughness criterion is never checked
which means that in these two cases the one-step layer is always very
rough. This must be compared with θi = 60◦ in V polarization, where
the power roughness criterion is always checked which means that in
this case the one-step layer is always slightly rough. This illustrates
the great variability of the electromagnetic roughness of the one-step
layer for this case.

Thus, the presence of a flat interface under a one-step surface
has a significant influence on its electromagnetic roughness, leading to
specific physical behaviours.
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4. CONCLUSION

In conclusion, from the case of a one-step surface, the electromagnetic
roughness of a one-step layer was derived. It was then established
that for a one-step layer, the electromagnetic roughness significantly
varies with several parameters. Thus, depending on the media relative
permittivities, the layer thickness, the step height, the incidence angle,
and the polarization, the layer can be considered as slightly rough, or
on the contrary very rough.
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