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In the context of electromagnetic wave backscattering from ocean-like surfaces, by using
the lowest order of the SSA (SSA-1) model, Bourlier et al. proposed an original technique to
reduce the number of numerical integrations to two for easier numerical implementation. To be
consistent with microwave measurements, closed-form expressions of the Fourier coefficients
with respect to the wind direction of the backscattering normalized radar cross-section (NRCS)
are obtained. For Gaussian statistics, previous work is extended in this paper to kernels of
unified models expanded up to second order, like full SSA and full LCA. Thus, with the
help of Bessel functions and by analytical integrations over the azimuthal angles, the second-
order backscattering (BNRCS) is expressed in terms of two-fold integrations and another
independent integration instead of four-fold integrations, if no analytical integration is made.
This approach allows us to obtain fast results (less than one second). Numerical results are
then presented for different microwave frequencies and wind speeds.

1. Introduction

Since the 1960s, the derivation of the microwave backscattering normalized radar cross-section
(BNRCS) from ocean surfaces is a topic of investigation which makes progress and remains a
challenging task. The first developed model is the two-scale model (TSM) derived for acoustic
waves by Kur’yanov [1] and for electromagnetic waves by Wright [2]. It is probably the most
frequently employed approach, owing to its simple numerical implementation and to the fact
that it gives satisfactory comparisons with measurements. Recently, this approach was improved
[3–5] in order to minimize the effect of the scale-dividing parameter separating the small- and
large-scale components of the roughness, and to increase the level of the cross-polarization.
Moreover, another group of scattering models was proposed, namely the local unified models.
The term local means that the multiple scattering phenomenon is neglected, and the term unified
means that the model satisfies the high- and low-frequency limits given by the geometric optics
approximation at the first order (GOA-1) and the small perturbation method at the first order
(SPM-1), respectively. For more details, see the thorough review of Elfouhaily and Guérin [6].
One of the most popular is the SSA published by Voronovich [7,8]; more recently, models based
on the same decomposition of the scattering matrix as SSA2 were published by Elfouhaily et al.
[9,10].

For rough surfaces obeying a Gaussian process with 1-D or 2-D Gaussian spectra, the nu-
merical implementation of such models for the computation of the NRCS can be done either
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456 C. Bourlier and N. Pinel

from statistical formulas [11–15] or from a Monte Carlo procedure (see [16,17] and references
therein). For a multi-scale sea 1-D surface, the numerical implementation of such models can
be found in [18], whereas for a 2-D surface, quite small-size surfaces [19,20] are assumed for
a Monte Carlo procedure, and additional assumptions are often necessary for the statistical for-
mulas. For instance, in [21–24], only the small slope approximation at the first order (SSA-1) is
considered, in [25], the partial second-order contribution in the NRCS is presented, and in [26],
the phase perturbation technique (PPT) is applied to account for the small slope approximation at
the second order (SSA-2) contribution in the NRCS. In [27], the PPT is also used to implement
the local curvature approximation at the second order (LCA-2) developed by Elfouhaily et al. [9].

In general, the scattered field is expressed by an integral over the surface in which a kernel is
involved, whose mathematical expression depends on the chosen asymptotic model. For instance,
dealing with first-order asymptotic models, the local curvature approximation at the first order
(LCA-1) kernel is equal to the one obtained from the Kirchhoff approximation at the first order
(KA-1) combined with stationary phase approximation (SPA); the SSA-1 one has the same general
form as the LCA-1 one, but the KA-1 polarization term is substituted for the SPM-1 one. The
second-order term of the kernel is expressed in terms of an integral in the Fourier domain, and
thus, it is more difficult to compute numerically. The BNRCS then requires four-fold numerical
integrations.

From the SSA-1 model, Bourlier et al. [22,23] proposed a technique to reduce the number
of numerical integrations to two, which strongly facilitates its numerical implementation. For the
co-polarizations, this allows us to obtain closed-form expressions of the Fourier coefficients {σn}
of the backscattering NRCS σ in the form σ = σ0 + σ1 cos φ + σ2 cos(2φ), which is consistent
with microwave measurements [28–34]. The angle φ is the observation azimuthal angle with
respect to the wind direction, and the coefficients {σn} depend on the observation elevation
angle θ and on the wind speed. The isotropic backscattering term σ0 mainly describes the
wind speed, σ1 the surface asymmetry along the up (φ = 0) and down (φ = 180 degrees) wind
directions, and σ2 the surface asymmetry along the up (φ = 0) and cross (φ = 90 degrees) wind
directions.

The aim of this paper is to extend, for Gaussian statistics (corresponding to σ1 = 0), the work
of Bourlier and Berginc [22] to kernels expanded up to order two, like the SSA2 and the LCA2.
The paper is organized as follows. In Section 2 some classical local unified scattering kernels are
recalled, and in Section 3 the bistatic NRCS is derived, which is the main novelty of the paper.
In Section 4 the BNRCS is derived, and Section 5 presents some comparisons between different
kernels. In addition, an acceleration procedure is proposed to reduce the computing time. The
last section gives concluding remarks.

2. Local unified scattering kernels

2.1. Coordinates system and definition

To describe the general problem in this paper, the same vectorial conventions as in [6] are used. A
right-handed Cartesian coordinate system is defined by the triplet of normalized vectors (x̂, ŷ, ẑ)
(the symbol û stands for a unitary vector, û = u/ ‖u‖), where the z-axis is directed upward. �

is the rough surface which separates the upper medium and the lower medium (respectively, the
air and the sea in our case). The (sea) surface elevation is represented by z = η(x, y) = η(r),
where r is the horizontal component of the three-dimensional position vector R = (r, z). The
incident downward propagative electromagnetic plane wave is characterized by the wavevector
K0 = (k0,−q0), and the up-going scattered wave by the wavevector K = (k, qk). The vectors k0

and k are the horizontal components of the incident and the scattered waves, whereas q0 and qk
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Waves in Random and Complex Media 457

are the vertical ones. We also define QH and Qz related to the coordinates of the wavevectors K
and K0 as QH = k − k0 and Qz = q0 + qk , respectively.

The scattered field above and far away (R → ∞) from the sea surface is assumed to be related
to the incident wave through the relation

E(R) = −2jπ
ejkR

R
S̄(k, k0) · Ê0, (1)

where Ê0 is the incident field, and S̄(k, k0) is the so-called scattering operator, which is a square
matrix of size 2, expressed on the basis of plane waves defined with respect to the incident and
the scattered waves. The symbol ¯ stands for a matrix. In what follows, the elements of the matrix
S̄ will be denoted as {Spq}, with superscripts p = {V,H } and q = {V,H }.

For a given polarization configuration pq, Spq is written as

Spq = 1

Qz

∫
r
N pq(k, k0; η(r))e−j [QH ·r+Qzη(r)]dr, (2)

where N pq(k, k0; η(r)) is a kernel which depends on the approach considered to establish the
solution.

A general development of the kernel N pq(k, k0; η(r)) can lead to

N pq(k, k0; η(r)) = N pq

1 (k, k0) + N pq

2 (k, k0; η(r)) + N pq

3 (k, k0; η(r)) + · · · , (3)

where the sub-kernels up to the third order are expressed from an inverse Fourier transform as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N pq

2 (k, k0; η(r)) =
∫

ξ

N̂ pq

2 (k, k0; ξ )η̂(ξ )ejξ ·rdξ

N pq

3 (k, k0; η(r)) =
∫

ξ

∫
ξ ′
N̂ pq

3 (k, k0; ξ , ξ ′)η̂(ξ )η̂(ξ ′)ej (ξ+ξ ′)·rdξdξ ′,
(4)

where η̂(ξ ) is the Fourier transform of the elevation η(r). The notation ˆ means that the term is
expressed in the spectral domain. As the order of the kernel increases, the number of integrations
in the Fourier domain increases and thus the numerical complexity increases. In this paper, only
kernels up to the second order will be studied.

Equations (2)–(4) show, up to second order, that the elements of the scattering matrix require
the computation of two-fold 2-D integrals (one over the Fourier domain ξ and one over the spatial
domain r). When the range of length-scales in the surface is not too huge, these integrations can
be done from an FFT algorithm. For a multi-scale ocean surface, the use of an FFT algorithm
is rather time consuming. To overcome this issue, this paper presents a technique to reduce this
computation to a two-fold integrand (one space variable and one frequency variable) by resorting
to azimuthal harmonic expansion of the BNRCS.

2.2. Some local unified kernels

Asymptotic electromagnetic models predicting the scattered field from a rough surface can then
rely on the expansion of the kernel N pq(k, k0; η(r)) in the scattering amplitude expression (2).
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458 C. Bourlier and N. Pinel

In particular, Elfouhaily et al. [9,10] and Voronovich [7] proposed different expressions for the
kernel N pq(k, k0; η(r)), which are detailed in the following.

2.2.1. LCA2 model

The LCA2 sub-kernels established by Elfouhaily et al. are expressed as

⎧⎪⎨
⎪⎩
N pq

1 (k, k0) = Kpq

1 (k, k0)

N̂ pq

2 (k, k0; ξ ) = −jQz

[
Bpq

1

(
k+k0+ξ

2 ,
k+k0−ξ

2

)
− Kpq

1

(
k+k0+ξ

2 ,
k+k0−ξ

2

)]
.

LCA2

(5)

The local curvature approximation up to the second order (LCA2) kernel satisfies the low-
(SPM-1) and the high- (KA-1 combined with SPA) frequency limits to first order. Kpq

1 (k, k0) and
Bpq

1 (k, k0) are the elements of the KA-1 and the SPM-1 polarization matrices, respectively. Their
expressions can be found in [9,18].

To avoid integration over the variable ξ (so that N̂ pq

2 (k, k0; ξ ) = 0), Elfouhaily et al. [9]
(for more details, see Subsection 5.1) proposed an alternative approach, namely the weighted
curvature approximation at the first order (WCA-1), for which

⎧⎨
⎩
N pq

1 (k, k0) = Bpq

1 (k, k0) − jN pq

LCA−2 (k, k0; −Qz∇η) /Qz

N̂ pq

2 (k, k0; ξ ) = 0,

WCA-1 (6)

with

∇η = ∂η

∂x
x̂ + ∂η

∂y
ŷ,

the slope vector of the surface.
Using a Monte Carlo process, the WCA-1 model is more convenient than the LCA-2 model,

because its kernel requires the calculation of the slope vector ∇η, instead of an integration
over ξ for the LCA-2 sub-kernel. The second-order statistical moment of Spq of the WCA-
1 was derived rigorously by Bourlier [23] and was tested for a multi-scale Gaussian 1-D sea
surface. It leads to the computation of three 2-D (1-D for a 1-D surface) integrals, because the
statistical average over the surface slopes cannot be derived analytically, owing to the complexity
of the kernel N pq

LCA-2 over ξ = −Qz∇η. Thus, it is easier to implement the LCA2 model from
statistical formulas than the WCA-1 model. The WCA-1 model was also tested by Guérin
et al. [15] for a Gaussian 2-D surface with a Gaussian spectrum, for which the correlation
between the slopes and the heights is neglected in the evaluation of the statistical formulas for
the bistatic NRCS computation (thus, for this specific case, the numerical implementation of
the WCA-1 model is easier than the LCA2 one). In this paper, this class of kernel will be not
investigated.
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Waves in Random and Complex Media 459

2.2.2. SSA2 model

The small slope approximation up to the second order (SSA2) sub-kernels established by
Voronovich [7] are expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N pq

1 (k, k0) = Bpq

1 (k, k0)

N̂ pq

2 (k, k0; ξ ) = − j

4

[
Bpq

2 (k, k0; k − ξ )

+Bpq

2 (k, k0; k0 + ξ ) + 2QzBpq

1 (k, k0)
]
.

SSA2 (7)

Like the LCA2 and the WCA-1 models, the SSA2 model satisfies fundamental properties
such as reciprocity, shift invariance, tilt variance and SPM-1 limit. However, the SSA2 does not
satisfy the KA-1+SPA limit [35], but it satisfies the small perturbation method at the second
order (SPM-2) limit. Bpq

2 are the elements of the small perturbation method at the second order
(SPM-2) polarization matrix and can be found in [7,18].

2.2.3. The phase perturbation technique (PPT)

From Equations (2), (3) and (4), Spq(k, k0) is expressed as

Spq(k, k0) = 1

Qz

∫
r

[
N pq

1 (k, k0) + N pq

2 (k, k0; η(r))
]
e−j [QH ·r+Qzη(r)]dr, (8)

where

N pq

2 (k, k0; η(r)) =
∫

ξ

N̂ pq

2 (k, k0; ξ )η̂(ξ )ejξ ·rdξ . (9)

To take the second-order sub-kernel into account, the PPT states that (see [26,27], Equation
(8))

Spq(k, k0) ≈ N pq

1 (k, k0)

Qz

∫
r
e
−j

[
QH ·r+Qzη

pq

PPT (r)
]
dr, (10)

where

η
pq

PPT (r) = η(r) − N pq

2 (k, k0; η(r))

jQzN pq

1 (k, k0)
=
∫

ξ

[
1 − N̂ pq

2 (k, k0; ξ )

jQzN pq

1 (k, k0)

]
η̂(ξ )ejξ ·rdξ . (11)

Thus, the scattering operator Spq(k, k0) is similar to a first-order operator, in which the
elevation η(r) is substituted for a filtered elevation η

pq

PPT (r) which is polarization sensitive.

2.3. Bistatic normalized radar cross-section (NRCS)

The incoherent bistatic NRCS is proportional to the second-order centred statistical moment of
the scattering operator Spq(k, k0)

σpq(k, k0) ∝ 〈|Spq(k, k0)|2〉 − |〈Spq(k, k0)〉|2. (12)
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460 C. Bourlier and N. Pinel

From (8), assuming that the surface is stationary (i.e. spatially homogeneous), the second-
order statistical moment of Spq(k, k0), 〈|Spq(k, k0)|2〉, becomes

〈|Spq(k, k0)|2〉 = A0

Q2
z

∫
r
e−jQH ·r

{ ∣∣N pq

1

∣∣2 〈ejQz[η(r1)−η(r2)]
〉

(13)

+ 〈[
N pq

1

(
N pq

2 (r1)
)∗ + (

N pq

1

)∗ N pq

2 (r2)
]
ejQz[η(r1)−η(r2)]

〉 }
dr.

The horizontal position vector, r = r2 − r1, is defined as the difference between two horizontal
position vectors r1 and r2. Since the surface is assumed to be stationary, the statistical averaging
depends only on r = r2 − r1. A0 is the surface area. The symbol ∗ stands for the complex
conjugate. The term with respect to 〈ejQz[η(r1)−η(r2)]N pq

2
∗
(r1)N pq

2 (r2)〉 is neglected because it
represents a second-order contribution (i.e. in η2), whereas the series expansion of the kernel is
valid up to first order (i.e. in η).

For a Gaussian sea surface, the statistical averaging 〈ejQz[η(r1)−η(r2)]〉 is given by

χ (r) = 〈
ejQz[η(r1)−η(r2)]

〉 = e−Q2
z[σ 2

η −W (r)], (14)

where W (r) = 〈η(r1)η(r2)〉 is the surface height autocorrelation function (which is an even
function, W (−r) = W (r)), and σ 2

η = W (0) its height variance.
In Equation (13), the derivation of the second statistical averaging is not straightfor-

ward; that is why it is reported in Appendix 1. Thus, from Equations (50) and (52),
we have

〈|Spq(k, k0)|2〉 = A0

Q2
z

∫
r
e−jQH ·rχ (r)

[ ∣∣N pq

1

∣∣2 + N pq

1

(
χ

pq

1 (−r)
)∗ + (

N pq

1

)∗
χ

pq

1 (r)
]
dr,

(15)

with

χ
pq

1 (r) = jQz

[
Wpq

m (r) − Wpq
m (0)

]
, (16)

and

Wpq
m (r) =

∫
ξ

N̂ pq

2 (ξ )Ŵ (ξ )ejξ ·rdξ . (17)

Ŵ2(ξ ) is the sea height spectrum, and W
pq
m ∈ C is the modified height correlation function. In

addition, since

|〈Spq(k, k0)〉|2 = lim
r→∞

〈|Spq(k, k0)|2〉, (18)

the bistatic NRCS σpq(k, k0), proportional to Equation (12), is expressed as

σpq(k, k0) = A

∫
r
e−jQH ·r(χ (r)

[∣∣N pq

1

∣∣2 + N pq

1

(
χ

pq

1 (−r)
)∗ + (

N pq

1

)∗
χ

pq

1 (r)
]

−e−Q2
zσ

2
η

{ ∣∣N pq

1

∣∣2 + 2Re
[(
N pq

1

)∗
χ

pq

1 (∞)
] })

dr, (19)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
6
 
1
2
 
J
a
n
u
a
r
y
 
2
0
1
0



Waves in Random and Complex Media 461

where

χ
pq

1 (∞) = −jQzW
pq
m (0), and A = 1

π (q0 + qk)2
. (20)

It can be noted that W (∞) = Wm(∞) = 0.
Equation (6.8) of [7] is found, in which the minus sign inside FNN0

αα0
(k, k0; r) in front of r

is missing in the last line. This typographical error was corrected in the paper of Berginc (see
Equation (30) of [13]). McDaniel [25] has the same form as Equation (19).

In the paper of Mouche et al. (see Equation (24) of [27]), the term N pq

1 (χpq

1 (−r))∗ +
(N pq

1 )∗χpq

1 (r) in Equation (19) is replaced by 2Re(N pq

1 χ
pq

1 (r)), and the coherent term is omitted.
The former is true if (χpq

1 (−r))∗ = χ
pq

1 (r) and if χ
pq

1 (r) = (χpq

1 (r))∗, which implies that W
pq
m (r)

must satisfy the same properties (in Equation (16), the term jQz does not appear). These equali-
ties are satisfied if N̂ pq

2 (ξ ) has some particular properties. It is important to note that Ŵ (ξ ) ∈ R

and that Ŵ (−ξ ) = Ŵ (ξ ).
From Equation (19), the integrand Ipq(k, k0; r) = e−jQH ·rIpq

1 (k, k0; r) satisfies
(Ipq

1 (k, k0; −r))∗ = Ipq

1 (k, k0; r), which ensures that σpq(k, k0) is real.
With the PPT and from (14), the bistatic NRCS σpq can be written as

σpq(k, k0) ≈ A
∣∣N pq

1 (k, k0)
∣∣2 e−Q2

zRe[Wpq

PPT (0)]
∫

r
e−jQH ·r[eQ2

zRe[Wpq

2,PPT (r)] − 1
]
dr, (21)

with

W
pq

PPT (r) =
∫

ξ

∣∣∣∣∣1 − N̂ pq

2 (k, k0; ξ )

jQzN pq

1 (k, k0)

∣∣∣∣∣
2

Ŵ (ξ )ejξ ·rdξ . (22)

It is important to note that Wpq

PPT is real if the kernel N̂ pq

2 (k, k0; ξ ) is even (N̂ pq

2 (k, k0; −ξ ) =
N̂ pq

2 (k, k0; ξ )) since Ŵ (−ξ ) = Ŵ (ξ ) ∈ R.

3. BNRCS

The calculation of the bistatic NRCS requires the computation of two 2-D integrals over r and
ξ . For a multi-scale sea surface, gravity and capillarity waves can contribute simultaneously to
the scattering process, which implies that the height spectrum must account for both the low-
and high-frequency regimes, making the four numerical integrations difficult to compute. In
this section, for any kernel and in the backscattering direction (k = −k0 ⇒ A = 1

4πK2 cos2 θ
), we

propose to reduce the number of integrations to two by using the azimuthal properties of the
statistical moments.

In the literature, from microwave (C and Ku bands for instance) experimental data [28–34],
the backscattering NRCS (BNRCS) can be expressed for pq = {V V,HH } co-polarizations in
the form

σpq(−k0, k0) ≡ σpq(θ, φ; u) = σ
pq

0 (θ ; u) + σ
pq

1 (θ ; u) cos φ + σ
pq

2 (θ ; u) cos(2φ), (23)

where φ is the observation azimuthal angle with respect to the wind direction, θ the observation
elevation angle, and u the wind speed. The isotropic backscattering term σ

pq

0 mainly describes
the wind speed, σ

pq

1 the surface asymmetry along the up (φ = 0) and down (φ = 180 degrees)
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462 C. Bourlier and N. Pinel

wind directions, and σ
pq

2 the surface asymmetry along the up (φ = 0) and cross (φ = 90 degrees)
wind directions. For Gaussian statistics, σ

pq

1 = 0.
To isolate the coefficients {σpq

n (θ ; u)}, each side of Equation (23) is multiplied by cos(nφ)
(with n = {0, 1, 2}) and integrated over φ ∈ [0; 2π [, leading to

σpq
n (θ ; u) = 1

enπ

∫ 2π

0
σpq(−k0, k0) cos(nφ)dφ, (24)

with en = 2 if n = 0; 1 otherwise. This decomposition can be interpreted as a Fourier series
decomposition of the BNRCS σpq .

3.1. Case where N̂ pq
2 (ξ ) = 0

For N̂ pq

2 (ξ ) = 0 and using a polar coordinate system, r = (r cos φr, r sin φr ) and k0 =
(k sin θ cos φ, k sin θ sin φ), Equation (19) becomes (with Q2

z = 4q2
0 )

σ
pq

11 (−k0, k0) = A
∣∣N pq

1 (−k0, k0)
∣∣2 e−Q2

zσ
2
η

∫ ∞

0

∫ 2π

0
ejkBr cos(φ−φr )

×{eQ2
z [W0(r)−cos(2φr )W2(r)] − 1

}
rdφrdr, (25)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

W2(r, φr ) = W0(r) − cos(2φr )W2(r)

W0(r) =
∫ ∞

0
Ŵ0(ξ )J0(rξ )dξ

W2(r) =
∫ ∞

0
Ŵ2(ξ )J2(rξ )dξ,

(26)

and Ŵ2(ξ ) = Ŵ0(ξ )�̂(ξ ), kB = 2K sin θ is the Bragg wavenumber. In (25), the subscript 11 means
that the BNRCS results from the autocorrelation of the first-order scattered field. Similarly, in
what follows, the subscript 12 means that the NRCS results from the correlation between the
first-order and the second-order scattered fields.

W0(r) is the isotropic part of the height correlation function W , whereas W2(r) is its anisotropic
part (Jn being the n-th order Bessel function of the first kind). They are computed from the
isotropic part Ŵ0(ξ ) of the sea spectrum and its spreading function �̂(ξ ). It is assumed that
Ŵ (ξ, φξ ) = Ŵ0(ξ )[1 + �̂(ξ ) cos(2φξ )]/(2π ), which is consistent with the sea spectrum model of
Elfouhaily et al. [36].

Appendix 2 computes the integration over φr . From (56), the integration over φr of Equation
(25) leads to

σ
pq

11 (−k0, k0) = 2πA
∣∣N pq

1 (−k0, k0)
∣∣2 e−Q2

zσ
2
η

×
∫ ∞

0

{
eQ2

zW0(r)�0
(
kBr,Q2

zW2(r), φ
)− J0(kBr)

}
rdr, (27)
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where �0 (kBr, 0, φ) = J0(kBr). Thus, from Equations (56) and (23), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ
pq

11,0(θ ; u) = 2πA
∣∣N pq

1 (θ )
∣∣2 e−Q2

zσ
2
η

∫ ∞

0
J0(kBr)

[
eQ2

zW0(r)I0
(
Q2

zW2(r)
)− 1

]
rdr

σ
pq

11,1(θ ; u) = 0

σ
pq

11,2(θ ; u) = 4πA
∣∣N pq

1 (θ )
∣∣2 e−Q2

zσ
2
η

∫ ∞

0
eQ2

zW0(r)J2(kBr)I1
(
Q2

zW2(r)
)
rdr,

(28)

where Im denotes the Bessel function of the second kind and of order m. For an isotropic sur-
face, W2(r) vanishes and σ

pq

11,2(θ ; u) = 0 because I1(0) = 0. As expected, σpq

11,1(θ ; u) = 0 because
Gaussian statistics are assumed. To be consistent with expansion (23), the sum (56) must be
truncated to order 1 (m < 2), which means that the terms {J2m(kBr)Im

(
Q2

zW2(r)
)} can be ne-

glected for m > 1. In addition, the decomposition (56) shows that the terms sin(nφ) cannot
appear.

Eventually, from Equation (28), the computation of the backscattering NRCS requires one
numerical integration over the radial distance r , and one numerical integration over the wavenum-
ber ξ for the computation of the surface height correlation functions {W0(r),W2(r)} given by
Equation (26).

3.2. Case where N̂ pq
2 (ξ ) �= 0

For N̂ pq

2 (ξ ) �= 0, the BNRCS σ
pq

12 related to N̂ pq

2 (ξ ) can be written from Equation (19) as

σ
pq

12 (−k0, k0) = A

∫ ∞

0

∫ 2π

0
ejkBr cos(φ−φr )

× [χ (r, φr )Gpq(r, φr ) − χ (∞, φr )Gpq(∞, φr )] rdφrdr, (29)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ (r, φr ) = e−Q2
z[σ 2

η −W0(r)+cos(2φr )W2(r)]

Gpq(r, φr ) =
∫ ∞

0

∫ 2π

0
Ŵ (ξ, φξ )Ĝpq(ξ, φξ )

[
ejξr cos(φξ −φr ) − 1

]
dφξdξ

Gpq(∞, φr ) = −
∫ ∞

0

∫ 2π

0
Ŵ (ξ, φξ )Ĝpq(ξ, φξ )dφξdξ,

(30)

⎧⎨
⎩

Ĝpq(ξ, φξ ) = −2QzIm
[(
N pq

1

)∗N̂ pq

2 (ξ, φξ )
]

Ĝpq(ξ, φξ ) = −2QzIm
[(
N pq

1

)∗N̂ pq

2 (ξ, φξ )
]+ ∣∣N̂ pq

2 (ξ, φξ )
∣∣2 PPT,

(31)

and Ŵ (ξ )dξ = Ŵ (ξ, φξ )dφξdξ (the term ξ is absorbed in the sea spectrum Ŵ (ξ, φξ )). The
symbol Im stands for the imaginary part. It is important to note that, under the PPT, the term Ĝpq

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
6
 
1
2
 
J
a
n
u
a
r
y
 
2
0
1
0



464 C. Bourlier and N. Pinel

is derived from Equations (21) and (22) by using the series expansion ex ≈ 1 + x. By comparison,
the scattered field (10) derived under the PPT uses the reverse way, that is to say the approximation
1 + x ≈ ex .

In the backscattering direction, we show in Appendices 3 and 4 that the sub-kernel
N̂ pq

2 (−k0, k0; ξ ) of SSA-2 is a periodic function with respect to φξ − φ, whereas that of LCA-2
is a periodic function with respect to φξ . Thus, the function Ĝpq(ξ, φξ ) can be written as a Fourier
series in the form

Ĝpq(ξ, φξ ) =
+∞∑

s=−∞
Ĝpq

s (ξ )ejs(φξ −νφ), (32)

where

Ĝpq
s (ξ ) = 1

2π

∫ 2π

0
Ĝpq(ξ, φξ − νφ)e−js(φξ −νφ)d(φξ − νφ), (33)

and ν = 1 for the SSA-2 sub-kernel, whereas ν = 0 for the LCA-2 one.
We show in Appendix 5 that

σ
pq

12,n(θ ; u) = 2Aπe−Q2
zσ

2
η

∫ ∞

0

∫ ∞

0
rdξdr

+∞∑
s=−∞

Ĝpq
s (ξ )

×
(
Ŵ0(ξ )

{
eQ2

zW0(r)
[
�(0)

n,s (a, b, c) − �(0)
n,s (a, b, 0)

]+ �(0)
n,s (a, 0, 0)

}
+Ŵ2(ξ )

{
eQ2

zW0(r)
[
�(2)

n,s (a, b, c) − �(2)
n,s (a, b, 0)

]+ �(2)
n,s (a, 0, 0)

} )
,

(34)

with

�
(0)
n,s (a, b, c) = (−1)s

2 Js(c)
∑

γ=±1

Jnγ+sν(a)Im0
2

(b)

with m0 = nγ − s + sν even; 0 otherwise,
(35)

�
(2)
n,s (a, b, c) = (−1)s

4

∑
γ1=±1

∑
γ2=±1

Js+2γ2 (c)Jnγ1+sν(a)Im0
2

(b)

with m0 = nγ1 − s − 2γ2 + sν even; 0 otherwise,
(36)

and a = kBr , b = Q2
zW2(r), c = ξr . It can be noted that

⎧⎪⎪⎨
⎪⎪⎩

�
(0)
n,s (a, b, 0) = δs,0

2

∑
γ=±1

Jnγ (a)I nγ

2
(b)

�
(2)
n,s (a, b, 0) = δs,−2+δs,+2

4

∑
γ=±1

Jnγ+sν(a)I nγ+sν

2
(b),

(37)
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{
�

(0)
n,s (a, 0, 0) = J0(a)δs,0δn,0

�
(2)
n,s (a, 0, 0) = J0(a)δs,±2δn,±2ν,

(38)

and {
�

(0)
n,s(0, 0, 0) = δs,0δn,0

�
(2)
n,s(0, 0, 0) = δs,±2δn,±2ν .

(39)

3.2.1. LCA2 case

We show in Appendix 4 that the LCA-2 sub-kernel N̂ pq

2 (ξ ) is an even function with respect to ξ ,
which means that it is independent of the functions cos φξ and sin φξ (ν = 0). Thus, the Fourier
coefficients {Ĝs(ξ )} vanish for s �= 0, implying that the sum over s is reduced to s = 0. Moreover,
Equations (35) and (36) are simplified at s = 0 as⎧⎪⎨

⎪⎩
�

(0)
n,0 (a, b, c) = J0(c)Jn(a)I n

2
(b) n even; 0 otherwise

�
(2)
n,0 (a, b, c) = 1

2J2(c)Jn(a)
[
I n−2

2
(b) + I n+2

2
(b)
]

n even; 0 otherwise.
(40)

As expected, �
(0)
1,0 and �

(2)
1,0 (n = 1) vanish, which means that the BNRCS is independent of

cos φ.
Equation (34) becomes

σ
pq

12,n(θ ; u) = 2Aπe−Q2
zσ

2
η

∫ ∞

0

∫ ∞

0
rdξdrĜ

pq

0 (ξ )

×(Ŵ0(ξ )Jn(a)
{
eQ2

zW0(r)I n
2
(b) [J0(c) − 1] − δn,0

}
+1

2
Ŵ2(ξ )eQ2

zW0(r)Jn(a)J2(c)
[
I n−2

2
(b) + I n+2

2
(b)
])

, n even. (41)

3.2.2. SSA2 case

We show in Appendix 3 that the SSA-2 sub-kernel N̂ pq

2 (ξ ) is independent of the function
sin(φξ − νφ) (ν = 1). In addition, since Ĝpq(ξ, φξ ) is real, Ĝpq(ξ, φξ ) is in consequence even,
and the Fourier coefficients {Ĝs(ξ )} are real and satisfy Ĝ−s(ξ ) = Ĝs(ξ ) ∈ R. From this property,
the sum over s can be reduced to s ≥ 1, and we have with ν = 1

+∞∑
s=−∞

Ĝpq
s (ξ )�(0)

n,s (a, b, c) = Ĝ
pq

0 (ξ )�(0)
n,0 (a, b, c)

+
+∞∑
s=1

Ĝpq
s (ξ )Js(c)I n

2
(b) [(−1)sJn+s(a) + Jn−s(a)] n even; 0 otherwise, (42)

and

+∞∑
s=−∞

Ĝpq
s (ξ )�(2)

n,s (a, b, c) = Ĝ
pq

0 (ξ )�(2)
n,0 (a, b, c) + 1

2

+∞∑
s=1

Ĝpq
s (ξ )

×{I n−2
2

(b) [Jn−s(a)J2−s(c) + Jn+s(a)J2+s(c)] (−1)s

+I n+2
2

(b) [Jn−s(a)J2+s(c) + Jn+s(a)J2−s(c)]
}

n even; 0 otherwise. (43)
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Equation (34) becomes

σ
pq

12,n(θ ; u) = 2Aπe−Q2
zσ

2
η

∫ ∞

0

∫ ∞

0
rdξdr

× (
Ŵ0(ξ )

{
eQ2

zW0(r)
[
Equation (42) − Ĝ

pq

0 (ξ )I n
2
(b)Jn(a)

]
+ Ĝ

pq

0 (ξ )J0(a)δn,0
}+ Ŵ2(ξ ) × {

eQ2
zW0(r)

[
Equation (43)

− Ĝ
pq

2 (ξ )
∑

γ=±1

Jnγ+2(a)I nγ+2
2

(b)
]+ Ĝ

pq

2 (ξ )J0(a)δn,±2
})

, n even. (44)

Eventually, from Equation (34), the computation of the BNRCS σ
pq

12,n requires two-fold
numerical integrations over the radial distance r and the wavenumber ξ , and one numerical
integration over φξ − νφ for the calculation of the Fourier series coefficients defined by Equation
(33). In addition, a sum is required for the computation of the SSA2.

4. Numerical results

For incidence angles of interest for remote sensing applications, θ ∈ [0; 60] degrees, and for the
VV and HH co-polarizations, this section presents numerical results of the incoherent BNRCS
by assuming an anisotropic height spectrum given by the Elfouhaily et al. [36] model. Two radar
frequencies are studied, f = 5.3 GHz (C-band, sea relative permittivity εr = 67 + j35 [39]) and
f = 14 GHz (Ku-band, εr = 47 + j38 [39]).

The numerical evaluations of the BNRCSs {σpq

11,0, σ
pq

11,2} given by Equation (28) are rather sim-
ple. First, the isotropic W0(r) and anisotropic W2(r) parts of the correlation function are computed
over r ∈ [0; rmax] from Equations (26). For frequencies f = {5.3, 14} GHz, the maximum radial
distance is rmax ≈ {5, 1} meters. It decreases when the incidence angle decreases, the wind speed
increases and the frequency increases. In fact, rmax is a decreasing function of the Rayleigh
roughness parameter defined as Ra = Q2

zσ
2
η = 4σ 2

η cos2 θ (2πf/c)2 with c = 3 × 108 m/s. It is
important to note that since the sea correlation function is independent of {θ, f }, {W0(r),W2(r)}
were computed and stored in a data file. In addition, the sampling over the radial distance r is
done in a logarithmic scale with 200 samples.

The numerical evaluations of the BNRCSs {σpq

12,0, σ
pq

12,2} given by Equation (34) are more com-
plicated, because they require an additional integration over the sea wavenumber ξ ∈ [ξmin; ξmax].
We choose ξmin = 0.25kp, which corresponds to the value for which the sea height isotropic
spectrum falls down to 10−5 times its maximum, which occurs at kp. The value ξmax equals
4K = 8πf/c. Thus, the double integration over r ∈ [0; rmax] and over ξ ∈ [ξmin; ξmax] is done in a
logarithmic scale with 200 × 200 samples. Finally, the Fourier series coefficients defined by Equa-
tion (33) are calculated by using a sampling step over φξ − νφ of 3 degrees. The BNRCSs require
the computation of a sum over s from 0 to smax (see Equations (42) and (43) of the SSA2 model).
With the LCA model, smax = 0, whereas for the SSA model, smax must be determined. This aspect
will be presented in Subsection 4.2. For VV polarization, The SSA2 kernel may present singular
behaviour when the modulus of the sea relative permittivity is much greater than 1 (it tends to a
perfectly conducting surface). For the simulations presented in this paper, this is not the case.

With these parameters, for a given incidence angle θ , on a PC with 4GB of RAM and a
processor of 3 GHz, the computing time is of the order of 0.9 second. The scope of the paper is
not to compare the different backscattering models with measurements. This was already done
thoroughly in previous work [21–23,25–27].
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Figure 1. BNRCS versus the incidence angle θ for f = 14 GHz and u10 = 10 m/s. At the top n = 0
(zero-order harmonic) and at the bottom, n = 2 (second-order harmonic). On the left, VV polarization and
on the right, HH polarization.

4.1. Comparison of SSA2, LCA2 and SPM1

Figure 1 plots the harmonics of the BNRCS versus the incidence angle θ for f = 14 GHz,
u10 = 10 m/s and for VV and HH polarizations. The labels in the legend mean

� SSA11 corresponds to σ
pq

11,n computed from the SSA-1 model with n = {0, 2} and pq =
{V V,HH },

� SSA11+12 corresponds to σ
pq

11,n + σ
pq

12,n computed from the SSA2 model with n = {0, 2}
and pq = {V V,HH },

� LCA11 corresponds to σ
pq

11,n computed from the LCA-1 model with n = {0, 2} and pq =
{V V,HH },

� LCA11+12+PPT corresponds to σ
pq

11,n computed from the LCA2 model combined with
the PPT with n = {0, 2} and pq = {V V,HH },

� SPM-1 corresponds to σ
pq

11,n computed from the SPM-1 and given by

⎧⎨
⎩

σ
pq

11,0(θ ; u) = 2
∣∣N pq

1 (θ )
∣∣2 Ŵ0(kB)/kB

σ
pq

11,2(θ ; u) = σ
pq

11,0(θ ; u)�̂(kB).
(45)
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Figure 2. σ
pq

11,n +∑s=S

s=0 σ
pq,s

12,n of the SSA2 model versus the incidence angle θ , with different val-
ues of the integer S, for f = 14 GHz and u10 = 10 m/s. At the top, n = 0 (zero-order harmonic)
and at the bottom, n = 2 (second-order harmonic). On the left, VV polarization and on the right, HH
polarization.

As expected, the BNRCS decreases more quickly for HH polarization. For near-nadir incidence
angles, Figure 1 reveals that the LCA11 and the SSA11 models are similar, which means that
SSA11 reproduces the KA-1 reduced to the SPA (theoretically, SSA11 does not reproduce the
Kirchhoff approximation, but since the sea surface is highly conducting and the backscattering
angle vanishes, the SPM polarization matrix is close to the Kirchhoff one). It can be noted that
by construction, the LCA11 model is the same as the KA-1 + SPA model. For incidence angles
ranging from 0 to approximately 20 degrees, only gravity waves contribute to the scattering
and therefore KA-1 + SPA can be applied. However, a smooth transition for scattering angles
θ ∈ [20; 40] degrees is observed, for which the KA-1+SPA model becomes invalid and the Bragg
scattering regime (given by SPM1) contributes increasingly. In this region, SSA11 tends to SPM1,
and the higher orders of SSA2 and LCA2 contribute. For the LCA2 model, this contribution is
positive for the VV polarization, whereas it is negative for the HH polarization. For the SSA2
model, this contribution is negative for the VV polarization and it is weak, whereas it is positive
for the HH polarization and it is much smaller than that of the LCA model. Thus, the behaviour
of the kernel of each model is very different.

It is important to note that the LCA2 results plotted in Figure 1 use the PPT, which consists
in adding the term |N̂ pq

2 |2 in Equation (31). If the PPT is not applied, then for larger scattering
angles, simulations, not reported in this paper, show a non-physical behaviour of the BNRCS
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Figure 3. Ratio |∑s=S

s=0 σ
pq,s

12,n |/σpq

11,n of the SSA2 model versus the incidence angle θ , with different values
of the integer S, for f = 14 GHz and u10 = 10 m/s. At the top, n = 0 (zero-order harmonic) and at the
bottom, n = 2 (second-order harmonic). On the left, VV polarization and on the right, HH polarization.

for the HH polarization. With the SSA model, the results obtained with the PPT are the same as
those plotted in Figure 1. For a one-dimensional sea surface, as explained in detail in the paper of
Bourlier et al. [18], although the LCA kernel reaches the SPM1 and the KA1 + SPA limits and is
tilt invariant, the BNRCS does not converge toward the Bragg regime. A theoretical explanation
is given in the conclusion of [18]. Thus, the use of the PPT in the LCA model allows us to remove
this drawback. This is why, in the paper of Mouche et al. [27], the LCA model with the PPT gives
satisfactory results on the BNRCS.

4.2. Calculation of the integer smax

In Equations (42) and (43), the sums over s ∈ N must be truncated at smax. To compute rigorously
the integer smax, the following ratio is defined

κ =
σ

pq

11,n +
s=smax∑
s=0

σ
pq,s

12,n

σ
pq

11,n + σ
pq

12,n

, (46)

where σ
pq,s

11,n is the elementary BNRCS at order s of σ
pq

12,n = ∑s=∞
s=0 σ

pq,s

12,n (smax → ∞). As the
integer smax increases, the ratio κ converges toward 1. From the above equation, smax is then
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Figure 4. Integer smax of the SSA model versus the incidence angle θ for frequencies f = {5.3, 14} GHz
and for wind speeds u10 = {5, 10} m/s. At the top, n = 0 (zero-order harmonic) and at the bottom, n = 2
(second-order harmonic). On the left, VV polarization and on the right, HH polarization.

obtained when κ becomes larger than a threshold κs ∈]0; 1[. For the simulation κs = −0.3 dB,
corresponding to κs = 0.933 in linear scale.

Figure 2 plots the BNRCS σ
pq

11,n +∑s=S
s=0 σ

pq,s

12,n for increasing S ∈ [0; smax] of the SSA2 model
versus the incidence angle θ , for f = 14 GHz and u10 = 10 m/s. To better see the difference
according to S, Figure 3 plots the ratio |∑s=S

s=0 σ
pq,s

12,n |/σpq

11,n. As can be seen, for increasing S, the
difference with the next integration S + 1 decreases, and then the difference becomes negligible
when S = smax.

Figure 4 plots the integer smax of the SSA2 model versus the incidence angle θ , for frequencies
f = {5.3, 14} GHz and for wind speeds u10 = {5, 10} m/s. As can be seen, the integer smax

increases slightly with the angle θ , and is not very sensitive to the polarization and the order n

of the harmonic. Typically, for θ ≤ 30 degrees, smax ≤ 3, whereas for θ ∈]30; 60] degrees, smax

reaches the maximum value 7 on average. Thus, the sum over s converges rapidly.

4.3. Optimization of the SSA2 and LCA2 computation

Equation (34) requires the computation of two-fold numerical integrations over the radial distance
r and the sea wavenumber ξ . First, integrating over r , the resulting integrand depends then only on
ξ . Plotting this integrand versus ξ , we observe that two wavenumbers {ξl, ξh} mainly contribute
to the scattering process. The first one is defined as ξl = 1.66kp (low frequency), in which kp

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
6
 
1
2
 
J
a
n
u
a
r
y
 
2
0
1
0



Waves in Random and Complex Media 471

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

Incidence angle θ (degrees)

R
at

io
 |σ

12
|/σ

11
VV, n=0

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

Incidence angle θ (degrees)

R
at

io
 |σ

12
|/σ

11

HH, n=0

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

Incidence angle θ (degrees)

R
at

io
 |σ

12
|/σ

11

VV, n=2

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

Incidence angle θ (degrees)

R
at

io
 |σ

12
|/σ

11

HH, n=2

SSA11+12
SSA11+12    +MP1
SSA11+12    +MP2
SSA11+12    +MP3

Figure 5. Ratio |σpq

12,n|/σpq

11,n of the SSA model versus the incidence angle θ , with different choices of
the integration over ξ . At the top, n = 0 (zero-order harmonic) and at the bottom, n = 2 (second-order
harmonic). On the left, VV polarization and on the right, HH polarization.

corresponds to the wavenumber for which the sea height isotropic spectrum Ŵ0(ξ ) is maximum.
In fact, 1.66kp corresponds to the maximum of the slope isotropic spectrum ξ 2Ŵ0(ξ ). The
second one is defined as ξh = kB (high frequency). Thus, the second-order BNRCS results from
the interference of two waves of wavenumbers {ξl, ξh}. More precisely, for ξ = ξh, one can
observe that the adjacent wavenumbers also contribute to the scattering process, and we show
that ξh → ξh ∈ [kB − �ξ ; kB + �ξ ], with �ξ = 0.5kB. It is equivalent to multiplying the sea
spectrum by a pulse function centred around kB and of width 2�ξ .

Figure 5 plots the ratio |σpq

12,n|/σpq

11,n of the SSA2 model versus the incidence angle θ , with
different choices of the integration over ξ . The labels in the legend mean that

� for MP1, ξ = ξl = 1.66kp for the integration,
� for MP2, ξ = ξh for the integration with a sampling step of 0.1kB (nξ = 11),
� for MP3, ξ = {ξl, ξh} for the integration,
� else ξ ∈ [0.25kp; 4K] (full spectrum) with nξ = 200 (number of samples).

As one can see, for low incidence angles, only the sea wavenumber ξ = ξl contributes to the
scattering process, whereas for moderate incidence angles (Bragg regime), both the low (ξl) and
high frequencies ({ξh}) contribute. Moreover, the results are very close to that obtained from the
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Figure 6. Ratio |σpq

12,n|/σpq

11,n of different kernels versus the incidence angle θ , with different choices of
the integration over ξ . At the top, n = 0 (zero-order harmonic) and at the bottom, n = 2 (second-order
harmonic). On the left, VV polarization and on the right, HH polarization.

full spectrum. Thus, with this new integration, the computing time is reduced to 0.07 second
instead of 0.90 second, when the full spectrum is used.

Figure 6 plots the ratio |σpq

12,n|/σpq

11,n of the SSA and LCA models with and without the
inclusion of the PPT versus the incidence angle θ , and with different choices of the integration
over ξ for the LCA model. The model with the label ‘LCA11 + 12 + PPT + MP4’ is similar (but
not equivalent) to the reduced curvature approximation (RCA) model developed by Mouche et al.
[27]. It only includes the Bragg frequency ξ = kB, whereas the model with the label ‘LCA11 +
12 + PPT + MP2’ includes the frequencies ξ ∈ [kB − �ξ ; kB + �ξ ] with �ξ = 0.5kB for the
integration over ξ .

As one can see, for the SSA model, the results with and without the PPT are similar. The
LCA results show that the low frequencies contribute to the scattering process only for incidence
angles smaller than 25 degrees, since the results with the labels ‘MP2’ (ξ = ξh, high-frequency
component) and ‘MP3’ (ξ = {ξl, ξh}, low- and high-frequency components) become similar for
θ > 25◦. In addition, since σ12 � σ11 for small θ angles, we can conclude for θ ∈ [0; 60]◦ that
the LCA11 + 12 + PPT model gives similar results to the LCA11 + 12 + PPT + MP2 one.
When only a single wavenumber ξ = kB is taken into account in the integration over ξ (label
‘LCA11 + 12 + PPT + MP4’), the BNRCS is underestimated. This behaviour does not occur
in the paper of Mouche et al. [27]. A possible explanation is that they used the approximation
1 + x ≈ ex , which implies that the BNRCS is overpredicted since ex ≥ 1 + x ∀x, and thus a
single frequency is sufficient to model the Bragg modulation, whereas several frequencies around
ξ = kB are needed when the approximation 1 + x ≈ ex is not applied.
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The different behaviour of the SSA and LCA models can be explained by the fact that the LCA2
sub-kernel is quadratic in its lowest order (N̂ pq

2 (ξ ) = [∇∇N̂ pq

2 (ξ )]ξ=0 ξ 2 + O(ξ 2)), whereas the
SSA2 sub-kernel behaves as N̂ pq

2 (ξ ) = [∇N̂ pq

2 (ξ )]ξ=0 ξ + O(ξ ). Thus, the SSA model brings
more low-frequency components than the LCA model, which explains that in Figure 5, the curve
with the label ‘MP1’ (ξ = ξl , low-frequency component) is comparable to the curve with the label
‘MP3’ (ξ = {ξl, ξh}, low- and high-frequency components). This is not the case for the LCA2
model, because the LCA1 kernel reaches the KA-1+SPA limit, whereas the SSA1 kernel reaches
the SPM-1 limit, and thus, its higher order, SSA2, must compensate this behaviour to reach the
KA-1+SPA limit for small incidence angles θ .

5. Conclusion

In this paper, closed-form expressions of the Fourier coefficients σn(θ, u10) along cos(nφ) of
the BNRCS are expressed. Since a Gaussian process is assumed, σ1 = 0. Then, the ‘11’ order,
resulting from the correlation of the first-order scattered field, requires two independent numerical
integrations over the wavenumber ξ (for the calculation of the height correlation function), and
over the radial distance r . The ‘12’ order, resulting from the cross-correlation between the first-
and second-order scattered fields, requires two-fold numerical integrations over the radial distance
r and over the wavenumber ξ , and one numerical angular integration for the computation of the
Fourier series coefficients of the second-order kernel. The SSA2 and LCA2 kernels were tested
for microwaves frequencies and different wind speeds. The numerical results showed that the
SSA2 and LCA2 have different behaviours, and the correction from the ‘12’ order is larger for the
LCA2 model than for the SSA2 model. In addition, an optimization for the numerical integration
over ξ was proposed, leading to a computing time of the ‘12’ order less than 0.1 second on a
standard office computer for a given wind speed, a given frequency and a given incidence angle.

The prospects of this paper are the extension of the formulation to a non-Gaussian process, as
done in [23] for the ‘11’ order, and the calculation of the BNRCS for the cross-polarizations with
the help of the PPT. Indeed, if the PPT is not used, the ‘12’ order contribution vanishes because
in Equation (31), N pq

1 = 0 in the backscattering direction for pq = {HV,V H }. In addition,
more recent kernels, like the reduced local curvature approximation (RLCA) [10,20], could be
implemented.
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Appendix 1. Derivation of the statistical average
From Equation (9), with η(ri) = ηi , one has

〈
N pq

2 (r2)ejQz(η1−η2)
〉 =

〈∫
ξ2

N̂ pq

2 (ξ 2)η̂(ξ 2)ejξ2·r2ejQz(η1−η2)dξ 2

〉

= 1

(2π )2

∫
ξ2

∫
r3

N̂ pq

2 (ξ 2)ejξ2·(r2−r3)
〈
η3e

jQz(η1−η2)
〉
dξ 2dr3, (47)

where η̂(ξ 2) = 1
(2π )2

∫
r3

η3e
−jξ2·r3dr3. Thus, the calculation of the statistical average requires the derivation

of
〈
η3e

jQz(η1−η2)
〉
. To do so, the following property is applied

η3e
jQz(η1−η2) =

[
∂

∂a3
ejQz(η1−η2)+a3η3

]∣∣∣∣
a3=0

. (48)

Since 〈eη〉 = e〈η2〉/2 and the sum of Gaussian random variables is also a Gaussian random variable, Equation
(48) can be expanded as

〈
η3e

jQz(η1−η2)
〉 = jQz

〈
ejQz(η1−η2)

〉
[W (r13) − W (r23)] , (49)

where 〈ejQz(η1−η2)〉 is expressed from Equation (14), and W is the height correlation function.
Noting that the integral (47) depends only on r2 − r3 = −r23, the substitution of (49) into (47) yields

〈
N pq

2 (r2)ejQz(η1−η2)
〉 = jQz

〈
ejQz(η1−η2)

〉 [
Wpq

m (r) − Wpq
m (0)

]
, (50)
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where

Wpq
m (r) =

∫
ξ

N̂ pq

2 (ξ )Ŵ (ξ )ejξ ·rdξ , (51)

Ŵ (ξ ) being the sea spectrum.
Since 〈η∗

1e
jQz(η1−η2)〉 = [〈η2e

jQz(η1−η2)〉]∗|{1,2}→{2,1}, we eventually have

〈
η∗

f (r1)ejQz(η1−η2)
〉 = −jQz

〈
ejQz(η1−η2)

〉 [
Wpq

m
∗(−r) − Wpq

m
∗(0)

]
. (52)

Appendix 2. Integration over φr

Let us consider the following integral

�0(a, b, φ) = 1

2π

∫ 2π

0
eja cos(φ−φr )−b cos(2φr )dφr . (53)

The exponential term can be expanded as [37]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp[ja cos(φ − φr )] =
n=+∞∑
n=−∞

jnJn(a)ejn(φ−φr )

exp[−b cos(2φr )] =
m=+∞∑
m=−∞

jmJm(jb)e2jmφr ,

(54)

where Jm is the Bessel function of the first kind and of order m. Substitution of Equation (54) into Equation
(53) and the derivation of the integration over φr lead to

�0(a, b, φ) =
∑
n,m

jn+mJn(a)Jm(jb)ejnφδ2m−n,0, (55)

where δn,p is the Kronecker symbol defined as δn,p = 1 if n = p; 0 otherwise. In addition, since Jm(jb) =
jmIm(b), where Im denotes the Bessel function of the second kind and of order m, we obtain

�0(a, b, φ) =
m=+∞∑
m=−∞

J2m(a)Im(b)e2jmφ

= J0(a)I0(b) + 2
m=+∞∑
m=1

J2m(a)Im(b) cos(2mφ), (56)

because J−2m(a) = (−1)2mJ2m(a) = J2m(a) and I−m(b) = Im(b).
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Appendix 3. Backscattering polarization matrices of the SSA2 kernel
In the backscattering direction, the dimensionless elements of the SPM-1 polarization matrix are [7]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

BV V
1 (−k0, k0) = (1−εr )(q ′2

0 +εr k
2
0 )

(εr q0+q ′
0)2

BV H
1 (−k0, k0) = BHV

1 (−k0, k0) = 0

BHH
1 (−k0, k0) = εr−1

(q0+q ′
0)2 K2,

(57)

whereas the elements of the SPM-2 polarization matrix are [7]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BV V
2 (−k0, k0; ξ ) = 2(εr−1)

(εr q0+q ′
0)2

{
1−εr

εr qξ +q ′
ξ

[
εrk

2
0ξ

2 − q ′2
0

(k0·ξ)2

k2
0

]

+ q ′2
0

(
qξ − q ′

ξ

)+ εrK
2q ′

ξ

}

BHH
2 (−k0, k0; ξ ) = 2(εr−1)K2

(q0+q ′
0)2

{
1−εr

εr qξ +q ′
ξ

[
ξ 2 − (k0·ξ)2

k2
0

]

− q ′
0 − (

qξ − q ′
ξ

) }
,

(58)

with

⎧⎪⎨
⎪⎩

q0 =
√

K2 − k2
0 q ′

0 =
√

εrK2 − k2
0

qξ =
√

K2 − ξ 2 q ′
ξ =

√
εrK2 − ξ 2.

(59)

The elements of the cross-polarizations are not computed and are then not presented. Let us
note that the notation u2 corresponds to u2 = u · u = ||u||2. Equation (58) shows that BV V

2 (−k0; k0, ξ )
and BHH

2 (−k0, k0; ξ ) are even functions with respect to ξ . Thus, in Equation (7) with k = −k0,
Bpq

2 (−k0, k0; −k0 − ξ ) = Bpq

2 (−k0, k0; k0 + ξ ), and

Mpq (−k0, k0; ξ ) = Bpq

2 (−k0, k0; −k0 − ξ ) + Bpq

2 (−k0, k0; k0 + ξ )

+2QzBpq

1 (−k0, k0)

= 2
[
Bpq

2 (−k0, k0; k0 + ξ ) + 2q0Bpq

1 (−k0, k0)
]
. (60)

To be consistent with the notation adopted in this paper, the elements of the SPM-1 and SPM-2
polarization matrices must be multiplied by −2qq0 = −2q2

0 in the backscattering direction.
Equation (60) behaves as k0 · ξ and ξ 2 = ξ 2 evaluated at ξ ′ = k0 + ξ . Since in polar coordinates

ξ = (ξ cos φξ , ξ sin φξ )

⎧⎨
⎩

ξ ′2 = k2
0 + ξ 2 + 2k0ξ cos

(
φ − φξ

)
k0 · ξ ′ = k2

0 + k0ξ cos
(
φ − φξ

)
,

(61)

the elements {Mpq (−k0, k0; ξ )} are periodic functions with respect to the angle φ − φξ . Moreover, one can
notice that MV V (−k0, k0; 0) = MHH (−k0, k0; 0) = 0.
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Appendix 4. Backscattering polarization matrices of the LCA2 kernel
In the backscattering direction, the elements of the KA-1 polarization matrix are [9,18]

KV V,HH
1 (−k0, k0) = 2K2RV V,HH (q0), (62)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
RV V (q0) = εr q0−

√
(εr−1)K2+q2

0

εr q0+
√

(εr−1)K2+q2
0

RHH (q0) = q0−
√

(εr−1)K2+q2
0

q0+
√

(εr−1)K2+q2
0

.

(63)

From Equation (58) multiplied by −2q2
0 and from Equation (5), the elements T pq (k, k0; ξ ) =

jN pq

2 (k, k0; ξ )/Qz are expressed in the backscattering direction as

T pq (k, k0; ξ ) = [
Bpq

1 (−k0, k0) − Kpq

1 (−k0, k0)
]∣∣

k0=ξ/2
. (64)

Like the SSA-2 kernel Mpq , T V V (−k0, k0; 0) = T HH (−k0, k0; 0) = 0, and unlike the SSA-2 kernel,
they are even functions with respect to ξ , because they depend only on ξ 2 = ξ 2. In addition, unlike the
SSA-2 kernel, they are independent of k0. For a perfectly conducting surface (εr = i∞), one has

T V V

(
−k0, k0;

ξ

2

)
= T HH

(
−k0, k0;

ξ

2

)
= ξ 2

2
. (65)

In conclusion, the behaviour of the LCA-2 kernel with respect to ξ is very different from the SSA-2
one.

Appendix 5. Integrations over {φr, φξ , φ} with N̂ pq
2 (ξ ) �= 0

From Equations (24), (29), (30) and (32), the following triple integral must be derived

∫ 2π

0

∫ 2π

0

∫ 2π

0
eja cos(φ−φr )+jc cos(φξ −φr )−b cos(2φr )+s(φξ −νφ)

×Ŵ2(ξ, φξ ) cos(nφ) dφrdφξdφ, (66)

where a = kBr , b = Q2
zW2(r) and c = ξr . In addition, the sea height spectrum is defined as Ŵ (ξ, φξ ) =

1
2π

[Ŵ0(ξ ) + cos(2φξ )Ŵ2(ξ )].

5.1. Term with respect to Ŵ0(ξ )
Using the same method as in Appendix 2, the integration over φr yields

1

2π

∫ 2π

0
eja cos(φ−φr )+jc cos(φξ −φr )−b cos(2φr )+s(φξ −νφ)dφr

=
∑
m,p

(−1)pJ2m+p(a)Jp(c)Im(b)ejφ(2m+p−sν)+jφξ (s−p). (67)
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Thus, the integration of Equation (67) over φξ ∈ [0; 2π [ leads to

∫ 2π

0
Equation (67)dφξ = 2π (−1)sJs(c)

∑
m

J2m+s(a)Im(b)ej (2m+s−sν)φ

= 2π (−1)sJs(c)
∑

m even

Jm+s(a)I m
2

(b)ej (m+s−sν)φ. (68)

The integration of Equation (68) multiplied by e−jnφ over φ ∈ [0; 2π [ gives

∫ 2π

0
Equation (68)e−jnφdφ = (2π )2(−1)sJs(c)Jn+sν(a)I m0

2
(b)

with m0 = n − s + sν even,

(69)

and

Equation (66) = 2π 2(−1)sJs(c)Ŵ0(ξ )
∑
γ=±1

Jnγ+sν(a)I m0
2

(b)

with m0 = nγ − s + sν even.

(70)

5.2. Term with respect to Ŵ2(ξ )
In this case, the integrand of Equation (67) must be multiplied by cos(2φξ ) = 1

2 (ej2φξ + e−j2φξ ). Using the
same method as previously, one has from (68) with (s → s + 2)

1

2π

∫ 2π

0

∫ 2π

0
ej2φξ eja cos(φ−φr )+jc cos(φξ −φr )−b cos(2φr )+s(φξ −νφ)dφrdφξ

= 2π (−1)sJs+2(c)
∑

m even

Jm+s+2(a)I m
2

(b)ej (m+s−sν+2)φ. (71)

The integration of Equation (71) multiplied by e−jnφ over φ ∈ [0; 2π [ gives

∫ 2π

0
Equation (71)e−jnφdφ = (2π )2(−1)sJs+2(c)Jn+sν(a)I m0

2
(b)

with m0 = n − s − 2 + sν even.

(72)

Eventually,

Equation (66) = π 2(−1)sŴ2(ξ )
∑

γ1=±1

∑
γ2=±1

Js+2γ2 (c)Jnγ1+sν(a)I m0
2

(b)

with m0 = nγ1 − s − 2γ2 + sν even.

(73)
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