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A Geometrical Optics Model of Three Dimensional
Scattering From a Rough Surface
Over a Planar Surface
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Abstract—An analytical method is described for predicting the
bistatic normalized radar cross section of a rough homogeneous
layer made up of a rough surface over a flat surface. The model
is based on iteration of the Kirchhoff approximation to calculate
the fields scattered by the rough layer, and is reduced to the high-
frequency limit in order to obtain numerical results rapidly. The
shadowing effect, significant for larger incidence or scattering an-
gles, is taken into account through the use of shadowing functions.
The model is applicable for moderate to large upper surface rough-
nesses having small to moderate slopes, and for both lossless and
lossy inner media. It was validated for a two-dimensional problem
(with 1D surfaces) in a preceding contribution. Here, the extension
of the model to 2D surfaces is developed, and results are presented
to validate the asymptotic model by comparison with a numerical
reference method.

Index Terms—Electromagnetic scattering by rough surfaces,
multilayered media, multistatic scattering, physical optics.

I. INTRODUCTION

CATTERING from dielectric homogeneous layers has
many applications in remote sensing, including the sensing
of ocean ice, sand cover of arid regions, or oil slicks on the
ocean, as well as in optics, including optical studies of thin
films/coated surfaces and analysis of antireflection coatings.
The use of asymptotic models can be very useful to predict the
scattered signal of such systems, as such models provide fast
numerical results compared to “exact” numerical methods (for
instance, see [1]-[3] and references therein), while retaining
accuracy for specific classes of surfaces.
Many asymptotic models of electromagnetic scattering from
a single rough interface have been developed over the last
years. By contrast, few asymptotic models have been developed
for rough layers separating homogeneous media, see mainly
[4]-[9]. Most of the available asymptotic models for rough
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layers are difficult to implement numerically and demand ex-
tensive computing time. To our knowledge, the specific case of
rough layers with rms heights that may be large compared to the
electromagnetic wavelength (while retaining moderate slopes)
has not been treated before, and is the subject of this paper.
The aim of this paper is to extend the Kirchhoff approximation
to the case of a rough layer (with a rough upper interface and
a perfectly flat lower interface) and to obtain a formulation
of the bistatic normalized radar cross section (NRCS) in the
high-frequency limit. The model has been described in recent
publications [10], [11] for one-dimensional (1D) rough layers,
in which the surface shadowing effect is taken into account
[12], [13]. Here, the extension of the model to two-dimensional
(2D) rough layers is developed in order to include general
three-dimensional (3D) problems and to study scattering in
cross-polarizations. Numerical results are presented and com-
pared with a reference numerical method to validate the model.

II. CALCULATION OF THE SCATTERED FIELDS DERIVED
WITH THE KA AND THE MSP

A. Problem Presentation

The studied system (see Fig. 1) is composed of a rough layer
(with a rough upper interface X4 and a perfectly flat lower
interface Y ), separating homogeneous media €2, with a =
{1, 2, 3}. The three media €2,,, with relative permittivity €,.,,, are
assumed to be non magnetic (relative permeability p,. = 1). Let
E; be the incident field of polarization €&; insidf: thq me(Alium 04
in the direction K; = (i, kiy, kiz)/|k1] = (Kiz, kiy, ki) (the
elevation angle, with respect to the vertical axis z, being 6;, and
the azimuth angle, with respect to the axis X, being ¢;). The in-
cident field on the upper surface ¥ 4 at the point A; is given by
Ei(Ra,) = Epe'*1 Ki-Raqg; (the term ¢ ~** is omitted) where
RA, =24, X+ ya,y + 24,2, with z4, and y4, the abscissa,
and z4, the elevation of the point A;. k; is the wave number
inside €2 (relative permittivity €,.1).

The field transmitted into the intermediate medium €25 along
the direction Kml is reflected by the flat lower interface at the
point B into the specular direction Kpl, and then reflected by
the upper surface at the point A9, and so on. Thus, multiple re-
flections of the field inside 25 occur, and this system can be seen
as a rough dielectric waveguide. The first two scattered fields
in reflection, E; 1 and E, 3, are treated in detail in this paper;
higher orders can be expressed at any order in reflection in a
similar manner to that described here. E, 1, E, 5 are observed
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Q; (83)

Fig. 1. Multiple scattering from a rough layer with a rough upper interface
and a flat lower interface, represented in the plane (%X,2). The points on the
upper surface 3 4 are denoted as {A;, Ao, ..., A, }, whereas the points on
the lower surface X 5 are denoted as { By, Bo, ..., B,_1}. 8, is the elevation
incidence angle, and 6, is the elevation scattering angle in reflection, measured
with respect to the vertical axis z. The positive sense is defined as clockwise.

in the direction Ky = (Kya, kiry, krz)/[1| = (bras firy, frz).
ml;

The unit wave vectors Ki, IA{N K Kpl are defined by

K; = (sin §; cos ¢;, sinb; sin ¢;, — cos ;) (1a)
K, = (sin 6, cos ¢, sin B, sin ¢,., + cosb,.) (1b)
Koy = (Sin By1 €OS P, 8iN B,1 8IN Ppy1, — €08 b,1)  (1€)
Kpl = (sinfp1 cOS ¢p1, sinby1 sin pp1, +cosbpr).  (1d)

In order to calculate the fields E, ; and E, 5, the Kirchhoff
approximation (KA) (which is sometimes also called physical
optics approximation, or tangent plane approximation) is used
for the (upper) rough interface, and the Weyl representation of
the Green’s function is used to describe the propagation from
one scattering point to another. More precisely, the KA is iter-
ated for each scattering inside the rough layer, i.e. on the interac-
tion among interfaces (and not for multiple scattering from the
rough interface). The field at any point of the (upper) rough sur-
face can then be approximated by the field that would be present
on its infinite tangent plane. Thus, the Snell-Descartes laws and
the Fresnel coefficients can be applied locally, at any point of the
(upper) rough surface. This approach should be valid at mod-
erate incidence angles and for interfaces whose radii of cur-
vature are much larger than the incident wavelength A. More-
over, by neglecting the multiple scattering from the same inter-
face effect, it should be valid for moderate rms slopes and for
near-specular scattering geometries.

The formulation is further simplified by applying the method
of stationary phase (MSP) for each scattering point inside the
rough layer. The MSP is an approximation of the KA that as-
sumes that the major contribution of the scattered field comes
from regions of the rough surface in the vicinity of the (sta-
tionary phase) specular points of the rough surface, whose direc-
tion is given by the local normal to the surface and the incidence
angle. This approximation is valid for moderately rough to very
rough interfaces [14]. Using these two approximations, simpli-
fied expressions of E; 1 and E,. 2 can be obtained: in the case of
1D surfaces, with 1 integration for E, 1, and 3 fold integrations

for E, 2 [10]. Here, for the case of 2D surfaces, one will see that
the number of numerical integrations is doubled.
B. Fields Scattered by the Rough Layer

The fields scattered in reflection E, ; inside §}; and transmis-
sion E,; inside 5 by the upper interface Y. 4 at the point A
are obtained from the Kirchhoff-Helmholtz integral equations
[15], [16]. Under the KA, these expressions can be written as

E.1(R) = + 2ik (T - K, K,) - / / dz 4, dya,

Gl (RA1 ’ R) Fl‘ (7A1,a:7 ’7A1,y)
X b (RAI ) Er (RAI)

Eml(R) = — 2Lk2(i — Kleml) . //dZEAldyAl

G2 (RA1 s R) le (7A1,Z7 7A17?l)
x E; (Ra,)EZ: (Ra,)

(2a)

(2b)

where =, and =; are the illumination function in reflec-
tion and transmission, respectively (i.e., with =2, ; = 1 if
the rays emanating from both the incident and the scattered
waves do not cross the surface except from considered sur-
face point A, corresponding to Ra,; Z,; = 0 otherwise);
za, € [Lae/24Lax/2] and ya, € [=Lay/2i+1ay/2]
(the surface lengths L4, and L4, are assumed to be much
greater than their correlation length L4, Lcay, respectively,
and than the wavelength \). In the above equations, the Weyl
representation of the Green’s function is used to describe the
propagation of the scattered wave from a point Ra_ (with
n = 1 here) of the upper interface to the point R of considered
medium €2,,. Its expression is given by [8], [17], [18]

dk eik-(rfrAn)*i’if(k)IZiCAn I

Go (R,Ra,) = 5/ (27)2 f(k)

where k = k.x + k,¥ (k. and k, ranging | — oo; +00[) and
r = X + yy, with

(€)

f(k) — { V k‘g B ||k||2 if ki > ”k”2 (4)
iVIkl[? = k2 i EL <[k

If the point R is in the far-field zone of the surface X 4, corre-
sponding to inequality ||R|| > [|Ra,||, the Green’s function
can be approximated by

exp[i (ka R — Ks-Ra,)]

Ga (R7 RA,,) = ATR

(&)

with Ky = K, fora = 1.

Substituting the expression of the far-field Green’s function
(5) in (2a), in the far-field zone the first-order scattered field
E2° (R) can be expressed under the MSP by

ik1Fy gik1 R
2R

x / dra, i KiKORAZ (Ra.) (6)

< (R) =+ I-K.K,) F.(11,)
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where [dra, = [ [dza,dya,,and Fr(1] ) is given by [19,
Eq. (2.1.55a)], with v3 | = (74, .- 74, ,) given by

Vv EVX0 = (ke — ki) (ke = kiz) (D)
kiz)~ (8)

o(r
7211,1/ E’7'.4(1,)11 = _(kry - kiy)/(krz -
Similarly, the higher-order scattered fields (E, 2, E; 3, etc.)
are obtained from (2b) by first using the Weyl representation of
the Green function which describes the propagation of the wave
from R, to the point Ry, of the upper interface ¥ 4, after

reflection onto theiﬂat lower interface X p at the point B,, of
elevation zp = —H. It is given by [17], [20]

Ga, (Ra,,.,Ra,) = 3

[ g £ ) 0 2)
T
(2r)? 7(k)

with r(k) the Fresnel reflection coefficient of the lower
interface.

Then, the scattering in reflection and transmission at the point
A, is described by the Kirchhoff-Helmholtz integral equation
under the KA, expressed in reflection E,,5 inside (2 and in
transmission E,.  inside Q23 by

(€))

Em2(R) =+ 27/"/2(i - KmZKm2) . / /dxAz dyA2
G2 (Ra,; R)Fm2 (7a,)

X Epl (RAz) E’T (RAz) (loa)
Er’z(R) = — 2Lk1(i - KrKr) . //d(l?,,hdyA2

Gl (RAz ) R) Ft (7A2)

X Ep1 (Ra,)Ei (Ra,) (10b)

respectively, with 4, € [—Lax/2;+La,/2] and y4, €
[—Lay/2;+Lay/2], and the field inside Q2 incident on the
upper interface at the point Ay, E,;1(Ra,), being obtained
from the relation

(1)

Thus, under the MSP and by neglecting the evanescent wave
contribution, by using the far-field Green function (5) at the
point A,, = Az, ET is expressed by

E;’f’z(R)_iklkZeiklR " dkm1

Ey  (27)3R / —km1=
‘Fm1 (72,) X 723(0m1) X Fr (72,)

_ei(Ki-RA1 +Km1-Ra; B, +Kp1-Re, 2, —K:Ra,)

~ A~

- 0(kp1 — km1)Z: (Ra,)
B (RBI) St (RA2>

with Rg,a, = Ra, — Rag,. The calculation of E*, then
implies 2 X 3 fold numerical integrations.

By using the same principle for the higher orders, i.e. by it-
erating the KA at each scattering point among interfaces, and
using the MSP, it is possible to obtain the expressions of the
scattered fields in reflection E, at any order n € N*. Never-
theless, their expression is long and is consequently not given

here.

Epi (Ra,) = G2, (Ra,,Ra, ) Emi (Ra, ).

dI‘A1 dI’A2

(12)

III. NRCS IN THE HIGH-FREQUENCY LIMIT
Ptot —

(|Etot 2) /2m scattered by the rough layer is given by equation
(14) of [10], and the nth order incoherent total power Pf";fﬂm
is given by Pt = [{| B ) — [(E220)[) /20, with n the
wave impedance inside €2;.

In order to determine the NRCS in the high-frequency limit,
the geometric optics approximation (GOA) is applied on the
(upper) rough surface in order to simplify the calculation. Valid
for very rough surfaces, it assumes that the main contribution
to the power scattered by the rough surface >4 comes from
closely-located correlated surface points M and M’. Moreover,
the height difference (3 — (a7 can be expressed by the approx-
imate expression YM,x (.r]\/[ - .T]\/[/) + M,y (y]\,[ - y]\/jl), with
M = (Ya.x, Var,y) the rough surface slope at the point M.

Then, the incoherent total NRCS (equal to the total NRCS
oot under the GOA) of a 2D target (for a 3D problem) can be
determined more easily. It is given by

As for 1D surfaces, the nth order total power

2 ptot
o ) — oy
rn ’ LA:ELAZ/ COs 01,|Ez|2

(13)

where R is the distance of the target, and L 4., L 4, the upper
surface length along direction X and y, respectively. In the
above equation, for cases n = {1, 2}, one has the relations

P!S = praand PYY = pr1 + pro (14)
with
Pri1 = ﬁ (|Er1?) (1)
Pr2 = ﬁ [<|ET,2|2> + 2Re (<E7’,1E:,2>):| .

A NRCS corresponding to the contribution of each scattered
power can then be defined. Thus, for n = 1, 0. ; corresponds to
the contribution from p,. 1. For n = 2, 0,1 corresponds to the
contribution from p, 1 and o, » to the contribution from p, .
Under the GOA and with shadowing effect, one can show that
the interference term (E,. ; E ») equals zero, which is in agree-
ment with the latter approximation. In this model, the shadowing
and masking effects in reflection [12] and in transmission [13]
are taken into account. Indeed, for low grazing incidence and/or
scattering angles, a part of the (upper) rough surface is not illu-
minated by the local incident wave and/or not seen by the local
scattered wave. This phenomenon must be taken into account in
order not to overestimate the NRCS.

A. Expressions of the First Three Contributions

The first-order NRCS in reflection .1 (K., Kj;) corresponds
to the NRCS in reflection from a single rough interface. Under
the KA and the MSP, and reduced to the GOA, it is well-known
[8], [19] that the NRCS can be expressed by

1 _
o (K, Ki) = —— | Fo (Ko K|

(r)
x%&l (K Kel2D) - a16)
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with F.(K;, K;) = &, - Fb('yg(:)) being a 2 x 2 matrix which
depends on the polarlzatlons of the incident and the scattered
waves, and S11 (Kj, K, |7A )glven by

1 3 — . .
) it {6y = Gi+ 7.0 2 0:)
Su = AR if {¢r = di + 7,0, <0:} (17)

1 )
1+A(Ki)+A(Ky) it {¢r # i+ 7}

For the second-order contribution, the principle is the same
as for 1D surfaces (see [10, Sec. 3.1.1]). Extending the method
from 1D surfaces to 2D surfaces does not raise any major
problem in the calculation. However, this is true only for
the coincidental case. The anti-coincidental case, which may
contribute around the backscattering direction, was rather hard
to quantify for 1D surfaces. It is then complex to quantify for
2D surfaces. Thus, in this paper we will choose configurations
for which this contribution (which may occur only around the
backscattering direction) can be neglected: the condition of its
contribution is given by [11, Eq. (36)]. Thus, the second-order
NRCS 0,2 can be written as

JTQK K;

i)
/Sln9m1d9m1d¢m1|Ft 12(Ki, Km1) X723 (0:n1)
0059

Xthl(K )|

(R

’kmlz - k__kiz

DPs (’YA(;))

. ko i
krz - k_ikplz

S (K Kb )

551 (Kp1 Kel12Y) (18)

with 13" = (447,43 and q¥ = (157 75")) given
by
’721(117)1 y = - (kmlz,y - kiz,y)/(kmlz - kiz) (19)
Yoy = = (ke = hpre )/ (hre = prz). (20)

The bistatic shadowing functions in transmission are given
by S12(Ki, Kmiva?) = B[l + A(K;), 1 + A(Kym1)], and
Sa1(Kp1, Kr o) = BI1 + A(Kp1), 1 + A(K,)], where B
is the Beta function (also called the Eulerian integral of the first
kind). The second-order NRCS &, » is expressed in the form
of a square matrix of dimension 2, in which each term depends
on the polarization of the incident and the scattered waves.
The general polarization term F’S,a,g(KLKS) being also a
matrix, the NRCS cannot rigorously be split up into a product
of elementary NRCSs as for the 2D case (with 1D surfaces),
corresponding to each scattering point inside the dielectric
waveguide. As a general rule, &, 5 and F} ,5(K1,Ks) can be
expressed as

r,2 r,2
K, K; (K, K
5—7‘,2—|:0—? 2hl( ) O—’U h ( ):| (21)
U}L U4 (Kr Kl) 017 v; (KI‘7K )
| Fun, (K1, Ks)  Fon, (K1, Ks)
Fs op(Kq, KS)_|:Fth1 (K1, Ko) Fy o (K1, Ko) 22)

where the first subscript in the terms inside the matrix repre-
sents the polarization of the scattered wave, and the second sub-
script the polarization of the incident wave. The general po-
larization term in reflection (for s = r, implying Ky = Ko»)
Frop(K1,K2) = F.(Kq,K2) is defined by

K2 — Ky
1K1 A Ka|[?[k2. — k12|
rn (X1, » IS - . - S
X{#[(bl A Kl)K2i| [(a2 A K2)K1:|

(XD b woval LR
+T(b1 . Kz)(az . Kl)}

F’I‘(K17K2):

(23)

and the polarization general term in transmission (for s = ¢,
implying K5 = K3) F; o3(K1,Ks) is defined by

Fi o0p(K1,K3)
2||Ks — ko /ksKy| (N0<t> .Ks)
Ky A K2R3 — ka/kgks]
X {# [(b]_ N K]_) . K3i| [(a3 A\ K3) . Kl]

+—tv (2)((1))(61 -K3)(as - Kl)} (24)

with K the incident wave vector inside the medium €2, and K3
the scattered wave vector in transmission inside the medium €2 3.
The contribution of the third-order NRCS &,. 3 is given by

or3(Kr, Kj)
1
- / S0 s A1 b S0 By Al
cosb;
|Ft,12(Ki:Km1) X 723(0m1) X Fr(Kp1, Km2)
XT23(0m2) X Ft,?l(Kp27Kr)|2

()

. ky
‘kmlz - _lkzz

5512 (Ki. K 12

(25)

and so on for the higher orders.

B. Model Validity Domains and Properties

The validity domains of the model are similar to those in the
2D problem (with 1D surfaces): see [11, Sec. 2.C]. However,
slight differences appear, as conditions #1 and #5 on the mean
curvature radius R.4 hold here for both its x- and y- compo-
nents, Rc4 . and R.4 ,, respectively. The same remark holds
for condition #2 on the rms slope o4, which holds for both
0s4,z and 0,4 . Moreover, as we will see in the numerical re-
sults, the main difference with the 2D case holds for cross-po-
larizations, where the condition is more restrictive, of the order
of {0s4,2,054,4} < 0.2. Based on the iteration of the Kirchhoff
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approximation to compute scattering interactions among the in-
terfaces of the rough layer and the high frequency approxima-
tion, the overall approach has the validity domain of the Ge-
ometrical Optics Approximation. That is why this method is
called the Geometric Optics Approximation for a rough layer
and is denoted GOA.

One can notice that this asymptotic model, generalized to a
3D problem (with 2D surfaces), has the same general properties
as for the 2D case (with 1D surfaces). Indeed, it is independent
of the height statistics (when the anti-coincidental contribution
can be neglected), as well as of the frequency or of the mean
layer thickness (for lossless inner media). This was verified by
making numerical results for different values of the mean layer
thickness and the rough surface height rms. As for the 2D case,
the model in itself, as based on the GOA, cannot deal with lossy
media. Still, by using exactly the same approach as for the 2D
case (see [10, Sec. 7]), taking lossy media into account does not
raise any problem.

Some simulation results, not presented here, were used to val-
idate the first-order contribution ¢’/ = ¢, 1 (corresponding to
the scattering in reflection from a sihgle surface) by comparison
with results of the literature [21]. In the next section, asymp-
totic model predictions of the first two order contributions of
the NRCS oﬁf’f = 0,1 and 0% = 0,1 + 0, are compared
with a reference numerical method for validation.

IV. NUMERICAL RESULTS: ASYMPTOTIC MODEL VALIDATION

A. Numerical Reference Method

A numerical method based on the method of moments was
developed for the configuration of Fig. 1 with a perfectly con-
ducting region 3 following previous implementations for non-
layered, penetrable rough surfaces [22]-[24] and for objects in
the presence of a penetrable rough surface [25]-[27]. The latter
problem can be directly extended to the case of interest by re-
placing the penetrable object previously considered [25] with
a perfectly conducting surface. Although the code was imple-
mented to be able to incorporate rough lower boundaries, here
only flat lower interfaces were of interest.

The method discretizes both the upper and lower interfaces,
the former in terms of the vector induced electric and magnetic
current densities, while only induced electric current densities
are required on the lower interface. To allow direct comparisons
with the asymptotic approach, the combined matrix equation for
induced currents on both interfaces was solved by iterating on
successive couplings between the interfaces (i.e., the “orders”
of the asymptotic approach); the implementation is described
in detail in [25]. This requires that algorithms be implemented
for determining induced current densities on each interface indi-
vidually given an exciting field consisting of contributions from
the incident field as well as radiation from the current densities
found at lower orders. Solutions for the upper interface currents
were also performed iteratively, and the canonical grid method
[22]-[27] was used to accelerate the required matrix-vector mul-
tiply operations. No acceleration of computations of the cou-
pling between layers was performed, so that overall algorithm
is order N2 where N is the total number of unknowns on the

upper interface. Improvements in efficiency would be possible
if acceleration methods were adopted for this coupling.

Reduction of surface edge effects given finite surface size
were achieved by using the “tapered” incident field described
in [22], [23], as is common in rough surface scattering studies.
A half power spot diameter of 5.6 wavelengths was used, and
fields at surface edges were reduced by 54 dB. Comparisons of
scattering from the upper surface with standard asymptotic the-
ories was used to verify that this approach should provide rea-
sonable results for co-pol scattering within approximately 70
degrees scattering angle. These comparisons also showed the
tapered wave to increase cross-polarized scattered fields signifi-
cantly above the very small cross-sections predicted by standard
theories. However, the presence of the lower layer dramatically
increases cross-pol results, so that reasonable predictions are ap-
parently achieved for cross-polarization in the presence of the
lower layer.

The results to be illustrated consider a layer of relative per-
mittivity €, = 3, above a flat perfectly conducting boundary
(er3 = 100). Surface sizes of 24 by 24 free space wavelengths
were used, discretized into 256 by 256 points for a total of
393216 unknowns in the matrix equation (4 unknowns for each
point on the upper interface, 2 on the lower). The upper sur-
face profiles were generated as realizations of a Gaussian sto-
chastic process with an isotropic Gaussian correlation function.
Two roughness cases are considered: rms height 0.25\ and cor-
relation length 1.768\ or rms height 0.3\ and correlation length
2.12). Both cases have rms slope 0.2. A distance of 2.41 free
space wavelengths between the layers was used in the numer-
ical method; simulations using other distances showed only a
very weak dependence on this distance (likely due to tapered
wave issues), consistent with the asymptotic method which pre-
dicts an independence of this distance. While the asymptotic
method should be applicable for surfaces with even larger rms
heights, the canonical grid method acceleration technique used
in the numerical algorithm is best suited for moderate rms height
surfaces. A total of thirty-two surface realizations (sufficient to
achieve mean NRCS estimates accurate to within approximately
2 dB) were used in each simulation, with the required compu-
tations performed on parallel computing resources at the Maui
High Performance Computing Center. The parallel computing
algorithm was developed to use groups of 8 processors for a
single surface realization, so that required couplings between
the upper and lower interfaces could be computed more rapidly.
Results for a single surface realization using eight processors
were achieved in approximately 5 hours of CPU time. By com-
parison, the typical CPU time to compute the asymptotic GO
method is of the order of 5 seconds on a standard personal com-
puter using MATLAB.

In the comparisons to be shown, the incident wave is linearly
polarized with an incident elevation angle 6; of either O (normal
incidence) or 15 degrees, and the incident azimuth angle is al-
ways ¢; = 0°. The numerical results present the total NRCS
in reflection af,j’fl for HH, HV, VH, VV polarizations (the first
term representing the polarization of the scattered wave, and the
second term the polarization of the incident wave) and in either
the incident plane (¢, = 0) or in scattering planes rotated az-
imuthally with respect to the plane of incidence (¢, not zero).
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Fig. 2. Simulation of the first two total NRCSs ¢, and ¢°; in dB scale,
with respect to the observation angle 8. in the plane of 1n01dence (azimuth angle
¢, = 0°), for an incidence elevation angle 8, = 0°.

B. Simulation Results

Fig. 2 presents numerical results for scattering in the plane
of incidence (azimuth angle ¢, = 0°) for an incidence angle
f; = 0°. For the GOA, the first-order contribution 07 = 0,1
with shadowing effects is plotted as a black line with circles
(the case without shadowing effects is not presented as no differ-
ence appears). The second-order contribution at"zt =0,14+0.2
with shadowing effects is plotted as a green dotted line with plus
signs (the case without shadowing effects is not presented here
for the sake of clarity of the figures). For the numerical simu-
lations of the reference numerical method, results are presented
in HH and VH polarizations only for this case, using surfaces of
rms height 0.25)\ and correlation length 1.768 . The contribu-
tion from the upper interface alone obtained from the numerical
method, corresponding to o}/ = 0,1, is plotted as a black line.
The result after one iteration of the method, corresponding to
crff’Qt = 0,1 + 0,2, is plotted as a green dash-dot line, and the
result after many iterations, corresponding to okt ~ ol s
plotted as a blue dashed line.

In co-polarizations HH and VYV, the two first-order contribu-
tions ¢/°f and /% of the GOA have the same basic properties
as in the 2D problem (see [10, Sec. 6 ] and [11, Sec. 3.C]). The
second-order NRCS otOt contributes primarily around the spec-
ular direction, where the NRCS is much larger than that of the
first-order contribution ¢%°f. Similarly as for the 2D problem,
the case without shadowmg effects (which is not represented
here for the sake of clarity of the figure) diverges for observa-
tion angles |6,.] > 60°: this highlights the relevance of taking
shadowing into account. In cross-polarizations VH and HYV, as
expected by the first-order KA, the first-order NRCS o2 of
the GOA has a negligible contribution compared to the second-
order contribution o7%.

For HH polarization, the comparison with the reference nu-
merical method shows a very good agreement for o?%, which
corresponds to the scattering from the upper surface when no

lower layer is present. The differences that appear for grazing

angles, |6,.| = 75°, are likely impacted by the finite surface size
as well as the limitations of the KA theory (more precisely, the
neglect of the multiple scattering from the rough interface ef-
fect) for this region. Very good agreement is also observed for
the second-order contribution o}%; significant differences are
observed only for grazing angles, |6,.| = 60°, also are likely
impacted by the finite surface size as well as limitations of the
GO theory. More complete numerical simulations would be re-
quired to clarify these differences. Nevertheless, the observed
differences in co-polarizations are very similar to the ones ob-
tained for a 2D problem: for instance, see [11, Fig 6] for a sim-
ilar configuration. Thus, it is more likely that the GOA limita-
tions, and in particular the neglect of multiple scattering effects,
rather than the finite surface size of the numerical model, ex-
plains these differences. The result of the numerical method for
many iterations highlights that around the specular direction for
these surfaces, there is no significant difference with the first it-
eration ¢/%, which means that o1% is sufficient to quantify the
scattering process. This resultis in agreement with observations
made for a 2D problem (see [11, Sec 3.C]). Thus, in co-polar-
ization, the second-order contribution o"” of the GOA model
can correctly quantify the scattering process around the spec-
ular direction, for observation angles |6,.| < 60°.

For cross-polarization VH, the comparison of the GOA
with the reference method highlights a good agreement for
the second-order contribution o/% near the specular direction,
|6-] < 20°. The differences that appear for higher |,.| may be
attributed to multiple scattering from the same interface effect
or possibly to finite surface size effects, although such effects
would likely not be major contributors for angles within 30
degrees scattering angle. The total scattering coefficient com-
puted from the reference method shows larger contributions
away from the specular direction. Thus, in cross-polarization,
the second-order contribution owt of the GOA model appears
sufficient for these statistics to describe the scattering process
near the specular direction, for observation angles |6,.| < 15°
Note the low level first order (i.e. upper surface only with no
interface) cross-polarization response obtained by the numer-
ical reference method, which is likely an overestimate of the
true value due to the impact of the tapered incidence field.
However the much larger values for in-plane cross-polarized
NRCS values in the presence of the layer reduces the impact of
tapered wave effects.

Fig. 3 presents results for the same parameters as in Fig. 2, but
for out-of-plane scattering at azimuth angle ¢,. = 75°. As ¢,. =
75° is close to the quadrature angle (= 90°), the numerical re-
sults for co-polarizations are rather similar to those for cross-po-
larization obtained in Fig. 2 and vice-versa. Therefore, co-pol
and cross-pol results here can largely be interpreted in the same
manner as used for cross-pol and co-pol results, respectively, in
the in-plane scattering case. The main distinctions of such an
approach appear in co-polarization: due to the difference of 15°
with respect to a perpendicular scattering plane, the first-order
contribution at"t of the GOA cannot be neglected. Moreover,
the second-order contribution crfff increases and reaches ap-
proximately —7 dB in the specular direction #,. = 0°. The agree-
ment of the GOA with the reference method is somewhat im-
proved in this comparison compared to that for the plane-of-in-
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Fig. 3. Same simulations as in Fig. 2, but with an azimuth angle ¢, = 75°.

cidence, since first-order scattering effects are more important
in both polarizations, leading to a lower relative contribution of
the multiple scattering effects.

Other comparisons (not presented here) for various rotations
of the scattering plane (i.e. ¢, values) allowed a check on the
symmetry of the NRCS of the GOA around ¢, = 90° and its
180°-periodicity (owing to the isotropy of the rough surface).
For example, NRCS values for ¢, = 180° and ¢,. = 360° are
similar to those for ¢, = 0°, and the results for ¢, = 105°,
¢, = 220° and ¢,. = 250° are similar to those for ¢,. = 75°. As
the azimuth angle ¢,. moves away from 0° or 90°, the lower po-
larization contribution (VH or HH, respectively) increases and
shows an increasingly good agreement of the GOA with the ref-
erence method around and away from the specular direction.

Fig. 4 presents comparisons for the parameters of Fig. 2, but
with an incidence angle §; = 15°. While the upper surface RMS
slope o5 remains unchanged, the reference numerical method
used a surface RMS height o5, = 0.3\, and L. = 2.12\. The
results show the same general behavior of the GOA as in the
preceding configuration. The results for the case without shad-
owing effects (not presented here for the sake of clarity of the
figure) again diverge for grazing 6,.. The results of the GOA
are compared with the reference numerical method for all po-
larizations (HH, VH, HV, VV). In co-polarizations HH and VV,
the first-order contribution aﬁf’f highlights a good agreement of
the GOA with the reference method. Again differences that ap-
pear for larger 6, values, and in particular for 6, < 0, can
be attributed to the limitations of the GOA as well as tapered
wave effects at the larger angles. The second-order contribution
af{’f highlights a good agreement of the GOA with the reference
method in and around the specular direction, and in HH polar-
ization for f,. up to approximately positive 80°. The differences
that appear away from the specular direction, in particular for
backward configuration 6, < 0, are likely primarily due to lim-
itations of the GOA, owing to the neglect of the multiple scat-
tering effect. As in Fig. 2, results from the reference numerical
method highlight that in and around the specular direction, the

higher orders are negligible: the second-order Uf"f is enough
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Fig. 4. Same simulations as in Fig. 2, but with an incidence elevation angle
0; = 15°.

to quantify the scattering phenomenon. A comparison (not pre-
sented here) between the in-plane co-polarized 3D results and
the 2D results of the GOA model was made for the same rough-
ness statistics and layer dielectric properties. The comparison
showed that for the first-order contribution o, 1, the ratio C, ;
of the 3D case to the 2D case is weak (less than 1 dB) for mod-
erate incidence angles and moderate scattering angles. It can
be shown that this ratio is given for a Gaussian height pdf and
without shadowing effects by

1 1
CT 1= X .
’ cosf, +cosb; g,/ 2r1
Nevertheless, for the second-order contribution o, 2, the ratio
cannot be expressed from a simple formula, and the difference is
much more significant (of the order of 4 dB around the specular
direction), and significantly varies at other angles.

In cross-polarizations VH and HYV, as in Fig. 2, results from
the GOA confirm that o7% has a negligible contribution, while
oﬁ’ozt which has a moderate contribution around the specular di-
rection. The reference method again shows appreciable contri-
butions for % that are impacted by the tapered wave and are
likely to be overestimates of the true scattering. In contrast to
Fig. 2 where a good agreement was found for second order
cross-polarized NRCS values in and near around the specular
direction, the GOA here underestimates cross-polarized scat-
tering. This is likely due to the impact of multiple scattering
on the upper interface, which plays a significant role gener-
ally in cross-polarized scattering. The results of the reference
method for higher orders confirm that the second-order con-
tribution when computed exactly yields sufficient accuracy for
these surface statistics around the specular direction.

Fig. 5 presents numerical results for the same parameters as
in Fig. 4, but for a rotated scattering plane at azimuth angle ¢,. =
105°. As for the first case, ¢, = 105° is close to the quadrature
angle (= 90°), and an interchange of co- and cross-polarized
results can be used to help interpret NRCS properties. The main

(26)
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Fig. 5. Same simulations as in Fig. 4, but with an azimuth angle ¢,. = 105°.

distinctions from such an interchange appear in co-polarization,
again since the first order contribution is appreciable for this ge-
ometry. Overall, a good agreement is found with the reference
method because multiple scattering effects are less important
when compared to first order scattering processes. Moreover,
the second-order contribution crfff of the GOA increases, so
that the multiple scattering from the same interface effect has a
less important relative contribution. Thus, there is a good agree-
ment of the GOA with the reference method in and around the
specular direction. Other comparisons (not presented here) for
various values of ¢, provide similar conclusions. Overall, these
comparisons validate the GOA in its validity domain, and help to
quantify limitations of the approach for scattering angles away
from the specular direction and for cross-polarized predictions
in the plane of incidence at non-normal incidence angles.

V. CONCLUSION

In conclusion, the GOA for a rough layer has been extended
to a general 3D problem with 2D surfaces, allowing it to model
more realistic problems and to study the influence of cross-po-
larizations. Comparisons with a reference numerical method
validated the GOA in its validity domain. The two different
configurations used confirmed that the model is independent of
the RMS surface height. Results showed that in and around the
specular direction, the second-order contribution aﬁfzt is suffi-
cient to quantify the scattering process. Observed differences of
the GOA with the reference method can be attributed primarily
to multiple scattering effects on the upper interface.
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