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Useful Analytical Formulae for Near-Field
Monostatic Radar Cross Section Under the Physical

Optics: Far-Field Criterion
Christophe Bourlier, Member, IEEE, and Philippe Pouliguen

Abstract—Radar cross section (RCS) is usually defined in the
far-field zone. In this case, RCS is independent of the range of
the radar from the object. However, in several scenarios, like for
military applications or measurements led in anechoic chambers,
the object is located in the near-field zone. From the physical op-
tics (PO) approximation and from some simplying assumptions,
this paper presents useful analytical formulae of the monostatic
RCS of canonical shape perfectly-conducting objects at oblique
incidence angles. The formulae are then compared with the PO
integral, which requires two-fold numerical integrations. Finally,
the authors also examine the far-field criterion using the resulting
expressions.

Index Terms—Electromagnetic scattering, far field, near field,
physical optics (PO), radar cross section (RCS).

I. INTRODUCTION

I N A RADAR scenario, the radar cross section (RCS) is
a normalized power, which quantifies the electromagnetic

scattering properties of an object. It is usually defined in the
far-field zone. In this case, the RCS is an intrinsic value of the
object under test, totally independent of the radar antenna ori-
entation and of the range of the radar from the target. This prop-
erty is valid if the radar is far enough from the target so that the
incident wave appears as locally planar on the object surface
and the scattered wave appears as locally planar at the receiver.
Thus, the object is seen as a scattering point by the radar. How-
ever, in several applications, like military scenarios or measure-
ments led in anechoic chambers, the object under test can be
located in the near-field zone, i.e., below the Fraunhofer limit.
For instance, in naval environment as in missile/target end-game
scenarios, seekers and radar are almost always located in the
near-field zone. As a consequence, below the Fraunhofer limit,
the near-field RCS depends on the distance of the target from
the radar, and needs to be evaluated with respect to this param-
eter. To our knowledge, very few works have been published on
this task.

Vogel [1] proposed a physical optics (PO) approximation in
the near-field region. The object surface is then approximated
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by flat sized patches, in such a way, that for each patch, the
far-field approximation is applied. Then, the integration over
each meshing element is carried out analytically. The reflection
from the entire object is calculated by a vectorial summation of
each elementary contribution.

More recently, Legault et al. [2] implemented such a tech-
nique to compute the RCS of vessels in realistic configurations.
In both of these works, the near-field RCS is defined as the
far-field RCS, by omitting the limit in the definition
of the RCS. To simulate the radar returns of an airborne target
from mid-course to end-game, the NcPTD and Npatch codes
[3] were developed, based on PO/physical theory of diffraction
(PTD) and shooting and bouncing rays methods.

Lee et al. [4] and Taylor et al. [5] proposed other expressions
of the near-field RCS, based on the range variations of the radar
equation. Instead of calculating the range of the antennas from
the object at an arbitrary point, they consider the range of the
antennas from the volume centroid of the object as the near-field
range.

Pouliguen et al. proposed a method [6] to calculate the near-
field RCS, based on the PO and the division of the target sur-
face in sub-surfaces (triangular meshes), in such a way that all
the elementary surfaces are located in the far-field zone of the
transmitter and the receiver. Also, a new definition of near-field
RCS was proposed, using the transmitter generator equivalent
voltage rather than the incident electric field on the scatterer.
This definition allows one to take into account the non uniform
magnitude and phase of the incident field on the scatterer. In
addition, as the range tends to infinity, it converges to the RCS
classical definition in the far-field zone.

To our knowledge, unlike the far-field region, no simple ana-
lytical formulae of the near-field RCS of canonical shape targets
such as plates, disks, cylinders, and so on, were published. From
an appropriate definition of the RCS in the near-field zone [6]
and under the PO approximation, this paper presents useful an-
alytical formulae of the monostatic near-field RCS at oblique
incidence angles of canonical shape perfectly-conducting flat
objects. The formulae are then compared with the PO approxi-
mation, which requires two-fold numerical integrations. In what
follows, the edge diffraction phenomenon is neglected. This
means that the present model can not be applied for grazing in-
cidence angles. Typically, the incidence angle does not exceed
50–60 degrees. The contribution of the edge diffractions can be
added separately by using, for instance, the works of Michaeli
[10], [11].

The paper is organized as follows. In Sections II and III, the
monostatic RCS are derived for a rectangular plate and a disk,
and numerical results are presented to test the validity of the
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Fig. 1. Description of the problem geometry. The object lies in the ��� �� plane
the normal to the surface is �� � ��.

closed-form expressions. In Section IV, the far-field condition
is investigated and the last section gives concluding remarks.

II. NEAR-FIELD MONOSTATIC RCS

In this paper, the time factor is assumed. The mono-
static RCS in near field, defined from [6], is expressed for a
perfectly-conducting object and under the physical optics ap-
proximation as

(1)

where

(2)

As shown in Fig. 1, is the distance between a point on the
object and the receiver. The vector gives the position
of a point on the object, assumed to be plane . The
vector gives
the position of the receiver defined in polar coordinates from
the radial distance , the elevation incidence angle
(or elevation observation angle) and the azimuthal incidence
angle (or azimuthal observation angle) . The unitary vector
stands for the normal to the surface element and

. The boldface stands for a vector and the hat
indicates that the vector is unitary. is the wave number in the

incident medium, assumed to be vacuum.
The incident wave vector is defined as and the ob-

servation wave vector is defined as in the backscat-
tering direction (monostatic case). The vectors stand for
the state polarization of the incident and receiver fields, respec-
tively. For the receiver, , and for
the emitter, , which depends on the vector . In-
deed, since in the near-field zone, the vectors and are not
collinear, there is a depolarization effect quantified by the scalar
product in (2).

From Fig. 1, , leading
to

(3)

(4)

Furthermore, with

(5)

Thus, from the above expressions, the scalar product
can be derived with respect to , leading to the calculations
of and , corresponding to the
polarizations and , respectively.

To obtain closed-forms of (2) for canonical-shape objects,
like a rectangular plate or a disk, the distance in the phase
term and the factor term are approximated
by

(6)

and

(7)

respectively. In (6), a Taylor series expansion was applied on
around up to the orders two, and (7)

was obtained from a Taylor series expansion on around
up to the orders one. These expansions are valid

if the ratio of the largest dimension of the object to the distance
is small comparatively to unity. In addition, as in (7), using

a Taylor series expansion on around up to
the orders one for the scalar product , one can show that

(8)
Thus, from (1), and . In what fol-

lows, only the VV polarization is investigated and the cross-po-
larizations are not considered since their contributions are very
small comparatively to that of the co-polarizations. In addition,
the subscripts in (1) and (2) are omitted.

In [12], the angle and only the specific case
(observation along is analyzed. This allows us to simplify (6)
and (7) (reduced to ).

III. CASE OF A RECTANGULAR PLATE

A. Derivation of the RCS

In (6), for , one has , which
allows one to remove the dependence on in the phase term

[see (6) and (2)]. In what follows, this assumption is used.
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This permits to separate the double integral (2) over into
two independent integrals over and , respectively. Thus, for
a rectangular plate of dimensions (along and (along ,
the substitution of (6) and (7) into (2) yields

(9)

where

(10)

(11)

and

(12)

Thus, from (10) and (11), requires the computation of
the error function [7] with complex arguments owing to the

term. For this particular case, it is more convenient to
use the Fresnel integrals [7] defined from the error function as

(13)

with

(14)

where is a real number since are real and
are positive real numbers.

The substitution of (13), (11), (10), and (1) into (9), leads then
to

(15)

with

(16)

(17)

Fig. 2. Monostatic RCS versus the elevation angle � for � � � � � m, � �

�� GHz (� � � cm) and � � ��� with 	 � � m.

(18)

If , then and . Thus, one has

(19)

In addition, if and , then
, since .

This corresponds to the RCS of a sphere of radius illumi-
nated by a plane wave and derived in the far-field zone. We
can interpret this result by considering the reciprocal problem:
under the PO approximation, the field scattered by a plate
which is illumintated by a spherical wave in the near-field
zone is similar to that derived in the far-field zone by a sphere,
which is illuminated by a plane wave, because in this case the
sphericity of the wave is introduced via the object shape.

B. Numerical Results

In Fig. 2, the monostatic RCS of a square plate of dimensions
m is plotted versus the elevation angle for a

frequency GHz ( cm) and for an azimuthal angle
. The distance m. In the legend, the label

“(0,0)” means that the RCS is computed from (15), in which in
(7), , whereas for “(1,1)”, . They
refer to the order of the terms in and retained in (7).

In addition, the label “PO integral” means that the RCS de-
fined from (1) is computed from (2), for which, the double in-
tegral is computed numerically. In Fig. 3 the same variation as
in Fig. 2 is plotted but with m. Since the PO approxi-
mation is used, the dimensions and must be
large comparatively to the wavelength .

For m , a very good agree-
ment is obtained between the different formulations. One can
also notice that a Taylor series expansion of over
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Fig. 3. Same configuration as in Fig. 2 but with � � � m.

up to the order zero is enough. However, in the phase term,
it is necessary to make a Taylor series expansion over up
to the orders two.

For m , as the elevation
angle increases, the difference between the “PO integral” and
the “(1,1)” results increases, and the “(1,1)” results better match
the “PO integral” ones than the “(0,0)” ones. From (12) and for

, one has and , which implies that the ratio
. That is why, from (15), that the contribution

of “(1,1)” increases with . In addition, from (18), as is an
increasing function of increases when decreases,
and thus the contribution related to “(1,1)” increases when

decreases.
As expected, the agreement with the “PO integral” is better

in Fig. 3 than in Fig. 2, because the ratios and are
smaller in Fig. 3. Indeed, the Taylor series expansions used in
Section II are valid if the largest dimension of the object is much
smaller than the distance .

To obtain a better agreement with the “PO integral”, in (7) it
is possible to use a Taylor series expansion over up to the
order two, and to apply relations similar to (11), to derive ana-
lytically the integrations over and . Fig. 2 also presents
the “(2,2)” results. As one can see, as increases, better agree-
ment is obtained with the “PO integral” results. But the resulting
formula becomes much more complicated.

Since one of the purposes of this paper is to obtain simple
formulae of the RCS, Figs. 4 and 5 present the same variation
as in Figs. 2 and 3, respectively, in which the Fresnel integral,

, is expanded for as [7]

(20)

where if otherwise.

Fig. 4. Same configuration as in Fig. 3 but the Fresnel integral is computed
from (20).

Fig. 5. Same configuration as in Fig. 3 but the Fresnel integral is computed
from (20).

In Figs. 4 and 5, the label “Order ” means that in (20), the
expansion is applied up to the order , corresponding to the
terms with .

For angles close to zero, a good agreement is observed
between the different curves. For m, one has

, which explains that when
increases, the angular interval over , for which (20) is not sat-
isfied, is shifted toward the smaller angles . Furthermore, since

, for

(21)

the argument of the Fresnel integral vanishes, and thus
(20) cannot be applied. For m, ,
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which explains in Figs. 4 and 5 around the non-physical
enhancement of the RCS up to the orders 1 and 5. The vertical
solid-line indicates the value of . One also observes that the
higher-order terms do not improve the agreement with the “PO
integral” results.

In (20), if only the terms up to orders are retained, then
for the relative error between (20) and (14)
is smaller than 0.05. Thus, it is possible to derive a range

corresponding to , for
which (20) is not satisfied. It can be shown that

(22)

The lower limit, , and the upper limit ,
are shown in Figs. 4 and 5 with vertical dashed lines. For

m, and the difference between the
results obtained from (20) and (14) does not exceed
dB for .

Then, substituting (20) (by keeping only the first two terms)
into (19), one has

(23)

with

(24)

Equation (23) is valid for and for and larger
than , and shows in the near-field zone that the
monostatic RCS has a pseudo-periodical behavior with respect
to the distance and the wavelength .

This study was led for an azimuthal angle . For any
, it is easy to obtain formulae similar to (21) and (20), and to

define the validity domain of (20).

IV. CASE OF A DISK

A. Derivation of the RCS

In polar coordinates with
, in which is the disk radius, (6) and (7)

become

(25)

and

(26)

Reporting (25) and (26) into (1) and (2), using the variable
transformation and performing the integration over ,
it can be shown with that

(27)

where are expressed from (A4) and (A6), and and
are given by

(28)

For and from (A4) and (A6), and
since if otherwise .

Thus, (27) becomes

(29)

Equation (23) shows that the monostatic RCS has a periodical
behavior with respect to the distance and to the wavelength

.

B. Study of the Functions and

From (A4) and (A6), the functions and are expressed
from a summation over , with . Thus, to compute
this sum, it is necessary to truncate it at the order . For
the simulations, the frequency GHz cm) and the
radius . In the integral of (27), the functions

and depend on and . Since and
with .

In Fig. 6, for m, the moduli of the sums over of
the functions (top) and (bottom) are plotted versus
the parameter . As one can see, the plots show dis-
crepancies between different partial sums for the larger values
of , and the partial sums are decreasing functions of . In-
deed, for the smaller values of (smaller than 1), only the
zero-order term contributes, which means that

and . For
and , whereas .

In Fig. 6, the functions and
(which is similar to taking are also

plotted. As one can see, the comparisons show that the impact
on is minor, because the curves with the label “ ” are
close to that with the label “ ”. We can conclude that

for .
For m, simulations (which are not reported in this

paper) show that the contributions of and of the
higher order terms in the sums are smaller than the
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Fig. 6. Moduli of the sums over � of the functions � (top) and �� � ��
(bottom) versus the parameter �� � � for � � � m.

Fig. 7. Monostatic RCS versus the observation angle � for 	 � �
� m, � �

�� GHz (� � � cm) and � � � m.

ones obtained for m. Indeed, for m,
and .

C. Numerical Results of the RCS

In Fig. 7, the monostatic RCS is plotted versus the observation
angle for a radius m, a frequency GHz
( cm) and a distance . In Fig. 8, the
same configuration is plotted, but for .

In the legend, the labels “(0,0)”, “(1,1)” and “PO Integral”
are the same as in Figs. 2–3. More precisely, in polar coordi-
nates, label “(0,0)” means that the RCS is computed from (27),
in which in (26), , whereas for “(1,1)”, . In ad-
dition, for the labels “(0,0)” and “(1,1)” the expressions of the
functions are given, respectively. They are
computed from (A4) and (A6), in which the sums are truncated
at the order zero .

Fig. 8. Same configuration as in Fig. 7, but for � � � m.

For m and when in the expressions of
and , a better agreement is obtained with the “PO Integral”
results. It is consistent with the observations made in Fig. 6. In
addition, the “(1,1)” results are similar to “(0,0)” results with
smaller local variations. Comparing with the results of Fig. 2
(case of a rectangular plate of dimensions with

), in (7) the effects of the terms over and are less
important for a disk of diameter with .
For m, all formulations give similar results and a very
good agreement is found with the “PO integral” results.

As a conclusion, from (27) and (28) with
and , the monostatic RCS of a disk can be
simplified as

(30)

The difficulty is to find a way to analytically derive the inte-
gration over . In optics domain, this type of integral is involved
in the problem of diffraction of converging spherical waves by
circular apertures (see for example [8, Ch. 8, Sec. 8]). First, the
exponential term is expanded as

(31)
Then, substituting (31) into (30), the integral can be derived in

terms of Lommel’s functions, which are expressed from an in-
finite series of Bessel functions. These functions are not easy to
compute numerically. More recently, Qing Cao [9] has derived
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an integral similar to (30) in an elegant manner by introducing
the function, which is

(32)

For example, one has

(33)

Thus, from (32) and using an integration by parts, it can be
shown that

(34)

On a numerical point of view, formulae (32) and (34) are very
useful, because the computation of the Bessel function
for is obtained from and by using the relation

. Thus, only and
are necessary.

The Substitution of (34), (32) and (31) into (30) and the cal-
culation of the integration over yield

(35)

with

(36)

If , then and since ,
(35) is found. In addition, Cao [9] showed that the sum over
of (35) can be truncated at the order with a relative error

if

(37)

Taking a relative error of 0.05 as for the rectangular plate,
from (37), can be computed, and thus the sum over of (35)
is reduced to .

In Fig. 9, is plotted versus for . In addition, the
values obtained from a linear regression, ,
are represented. For example, with the parameters of Figs. 7 and
8, if (giving the upper value of , for m,

, leading to . Thus, as decreases,
the number of terms increases. On the contrary, as increases,

Fig. 9. � versus � for � � ����. In addition, the values obtained from a
linear regression are plotted.

the number of terms decreases since is a decreasing function
of .

Figs. 10 and 11 compare (30) with the series (35) truncated
at the order . As one can see, the last order is enough to
approximate series (35) and as increases, the order de-
creases. For m, and then the dif-
ference between the results computed from (30) and (35) does
not exceed dB. In fact, this difference decreases as
the observation angle increases. Furthermore, in Fig. 10, for

, which leads from the chart of Fig. 9 to
. This value is consistent with the observations. When

, which corresponds to the diffrac-
tion by a circular aperture in the far-field zone.

V. FAR-FIELD CRITERION

From the closed-from expressions obtained in the preceding
sections, this section presents a criterion of the far-field condi-
tion which separates the Fresnel and Fraunhofer zones defined
from the well-known criterion , in which

is the “characteristic dimension” of the object. For practical
needs, it is more convenient to use the formulae established in
the far-field zone, because they are often more compact than the
ones obtained in the near-field zone. Thus, it is interesting to
know when the RCS derived under the far-field assumption can
be applied.

To study with respect to the incidence angle and the object
shape, let us define , in which is the largest
dimension of the object. For a rectangular plate of dimensions

and , and for a disk of radius
.
At the top of Fig. 12, the monostatic RCS of a square plate

[see (19)] of dimensions m is plotted versus the
normalized distance for and .
At the bottom, the same configuration [see (29)] is plotted for
a disk of same area (radius m). In addition,
in Fig. 12, the monostatic RCS (horizontal line) obtained for

, is plotted. For .
The vertical lines give the values of when the
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Fig. 10. Same configuration as in Fig. 7.

Fig. 11. Same configuration as in Fig. 8.

difference between the monostatic RCS and its asymptotic value
reaches 1 dB.

The values , and are collected in Table I for
a square plate and for a disk
with . One can then observe that depends on the
object shape and on the observation angle.

For an infinite distance and for , the monostatic
RCS are obtained from (19) and (29), in which the arguments
of the functions are close to zero. A means to derive is to
expand these functions around zero. Thus, since

and
, one has for

(38)

Fig. 12. Monostatic RCS of a square plate � � � � ���m (top) and a disk � �
����

�
� (bottom) versus the normalized distance � �� and for � � ��	 ��� .

The frequency 
 � �� GHz (� � � cm).

TABLE I
VALUES RELATED TO THE FAR-FIELD CRITERION

The far field distance can then be derived when the ratio
is greater than a threshold defined

as . Therefore, from (38), it can be shown
that

(39)

Since , the term after the ratio
is equal to . Thus, taking a difference of 1 dB
between and , the formulae lead to

, which is consistent with the values given
in Table I for . For a square plate and for a disk,
(39) show that is independent of and of the dimensions of
the object. Simulations, not reported in the paper, confirm this
remark.

For it is more difficult to obtain closed-form expres-
sions of the limit distance . Thus, in this paper only simula-
tions with respect to are presented. At the top of Fig. 13, the
normalized parameter is plotted versus the observation
angle with the same parameters as in Fig. 12. At the bottom,
the absolute difference is plotted versus the
incidence angle . As one can show, for a square plate, is not
very sensitive to the observation angle and ,
which means that the limit distance is a decreasing function
of the observation angle. In addition, as the observation angle in-
creases, the RCS absolute difference (bottom) slightly increases.
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Fig. 13. At the top, normalized parameter ��� versus the observation
angle � with the same parameters as in Fig. 12. At the bottom, the absolute
difference �� � � � versus the incidence angle � .

For a disk, the behaviors are different. Indeed, the final value ob-
tained for is approximately 8 times smaller than
that obtained for a square plate of same area. This implies that
the limit distance is smaller than that obtained for a square
plate. Furthermore, the RCS absolute difference decreases faster
than that of the square plate.

VI. CONCLUSION

In this paper, the monostatic RCS of a plate and a disk were
derived in near-field zone under the physical optics (PO) ap-
proximation and for oblique incidence angles (or observation
angles). The PO approximation requires the computation of a
double numerical integration. To avoid this integration and to
predict the behavior of the RCS in near zone, useful formulae
were derived.

For a rectangular plate, the monostatic RCS is expressed in
terms of Fresnel integrals. In addition, to avoid the calculation of
these functions, an approximation was proposed, which allows
one to obtain a simple expression of the RCS. A validity domain
of this approximation was also presented.

For the case of a disk, the monostatic RCS is expressed in
terms of infinite series of the and special func-
tions, which depend on Bessel functions of the first kind. To
obtain numerical results, the series must be truncated. The re-
sults showed that the number of the terms retained in the series,
which is obtained easily from a chart, decreases as the observa-
tion angle and the distance increase.

Last, the far-field condition was investigated from the well-
known criterion , in which

is the largest dimension of the object, and was derived
from closed-from expressions at normal incidence. The simula-
tions showed for a square plate and a disk of same area that is
of the order of 0.35 and 0.30, respectively, and that these values

are independent of the dimensions of the objects. In addition, as
the observation angle increases, the limit far-field distance de-
creases and it is smaller for the disk.

APPENDIX A

The following integral over must be derived

(A1)

The complex exponential can be expressed as [7]

(A2)
where is the Bessel function of the first kind and of order .
Substituting (A2) into (A1) and performing the integration over

, it can be shown that

(A3)

where is the Kronecker symbol defined as if
otherwise. The use of the following relations,

and ,
leads then to

(A4)

In addition, since

(A5)

from (A4), the resulting equation is

(A6)
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