
This article was downloaded by:[Kubické, G.]
On: 21 July 2008
Access Details: [subscription number 794912711]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Waves in Random and Complex
Media
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t716100762

Scattering by an object above a randomly rough surface
from a fast numerical method: Extended PILE method
combined with FB-SA
G. Kubické a; C. Bourlier a; J. Saillard a

a La Chantrerie, IREENA, Ecole Polytechnique de l'Universit de Nantes, Nantes,
Cedex 3, France

Online Publication Date: 01 August 2008

To cite this Article: Kubické, G., Bourlier, C. and Saillard, J. (2008) 'Scattering by
an object above a randomly rough surface from a fast numerical method: Extended

PILE method combined with FB-SA', Waves in Random and Complex Media, 18:3, 495 — 519

To link to this article: DOI: 10.1080/17455030802087057
URL: http://dx.doi.org/10.1080/17455030802087057

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t716100762
http://dx.doi.org/10.1080/17455030802087057
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [K
ub

ic
ké

, G
.] 

A
t: 

10
:2

2 
21

 J
ul

y 
20

08
 

Waves in Random and Complex Media
Vol. 18, No. 3, August 2008, 495–519

Scattering by an object above a randomly rough surface from a fast
numerical method: Extended PILE method combined with FB-SA
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In this paper, a fast exact numerical method, based on the method of moments, is developed
to calculate the scattering by an object above a rough surface. N. Déchamps et al. have
recently developed the PILE (Propagation-Inside-Layer Expansion) method for a stack of two
one-dimensional rough interfaces separating homogeneous media. This method allows us to
calculate separately and exactly the multiple scattering contributions inside the layer. This is
done with a decomposition by block of the impedance matrix (the inverse of the impedance
matrix of each interface and two coupling matrices are involved). The purpose of this paper is
to extend the PILE method to the more general case of two illuminated surfaces and to apply
it to an object located above a rough surface. In addition, to invert a matrix of large size, the
Forward–Backward Spectral Acceleration (FB-SA) approach of complexity O(N ) proposed
by Chou and Johnson is applied. The new method, extended PILE combined with FB-SA,
is tested on Perfectly Conducting (PC) circular and elliptic cylinders located above a rough
surface (dielectric or PC) obeying a Gaussian process with Gaussian and exponential height
autocorrelation functions.

1. Introduction

The study of scattering by an object located in front of an interface is a subject of great interest.
The origin of this question dates back to the problem studied by Sommerfeld [1] concerning a
dipole in front of a conducting half-space.

In recent times there has been increasing interest in the scattering of an electromagnetic wave
by a cylinder or sphere near a smooth surface [2–6]. Many areas are concerned by these works,
such as the study of surfaces of contaminated particles for example. Moreover, in the more general
case of an object located above a rough surface, other applications are concerned, such as remote
sensing, radar surveillance, and so on. In this configuration, some asymptotic models and exact
numerical methods have been investigated [7–13].

But, in the numerical simulations of the scattering by an object above a rough surface,
the length of the surface plays an important role: it has to be large enough for the scattered
field to vanish at the surface extremities, that is, to avoid edge effect. Thus, it is interesting
to investigate exact fast numerical methods to treat a large problem. Such methods have been
developed for a single rough surface. For instance, one can quote the Banded-Matrix-Iterative-
Approach/CAnonical Grid (BMIA-CAG) of Tsang et al. [14, 15] of complexity O(N log N ), the
Forward–Backward (FB) method of Holliday et al. [16] of complexity O(N2), and the accelerated
version Forward–Backward Spectral Acceleration (FB-SA) of Chou et al. [17, 18] of complexity
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496 G. Kubické et al.

O(N ), in which N is the number of samples on the surface. Pino et al. [7] studied scattering by
an object located on a rough surface. In this study, the object surface is included in the surface
contour of the rough surface. The Forward–Backward method was generalized to this problem
and then the Spectral Acceleration was applied in [19]. For the problem of an object located
above a rough surface, this method cannot be applied since there are two different and distinct
surfaces.

Recently, N. Déchamps et al. [20] have developed a fast numerical method, PILE (Propagation-
Inside-Layer Expansion), devoted to the scattering by a stack of two one-dimensional interfaces
separating homogeneous media. More recently, C. Bourlier et al. [21] have applied the PILE
method for an object located below a rough surface. In these articles, only the upper surface was
illuminated. The main advantage of the PILE method is that the resolution of the linear system
(obtained from the method of moments) is broken up into different steps:

(i) Two steps are dedicated to solving for the local interactions, which can be done from efficient
methods valid for a single rough interface, such FB-SA and BMIA/CAG.

(ii) Two are dedicated to solving for the coupling interactions, which can be done by updating
the previous efficient methods. This has been recently investigated with BMIA/CAG [22]
and FB-SA [23].

The purpose of this paper is to extend the PILE method to the more general case of two
illuminated surfaces and to apply this extended PILE method to an object located above a rough
surface. In addition to accelerate the extended PILE and to treat a large problem, the local
interactions on the lower surface are computed from FB-SA. Since the unknown number on the
surface is much greater than that on the object, the method complexity is then O(N ).

This paper is organized as follows. In Section 2, the geometry of the problem is defined. In
Section 3, the extended PILE method is investigated and its convergence is studied for perfectly
conducting circular and elliptic cylinders located above a rough surface. In Section 4, the extended
PILE method combined with FB-SA for the calculation of the local interactions on the lower
rough interface is presented and its convergence is investigated.

2. Geometry of the problem

Let us assume that the object and the rough surface are invariant along the ŷ direction and that the
incident wavevector is lying in the (x̂, ẑ) plane. Consequently, the problem is two-dimensional.
As a result, the object and the surface are defined by one-dimensional surfaces: �+ and �− of
equation z+ and z−, respectively. The scene is depicted in Figure 1. The height z− is assumed to
be a Gaussian stationary stochastic process with zero mean value (〈z−〉 = 0). The surface height
spectrum can be of any kind. The height z+ is a deterministic function defined with respect to
its centre {xc, hc} with hc > 0 (height). Care must be taken to avoid any intersection between z+
and z−. By using a spectral method, widely used in the calculation of wave scattering [24], the
random surface �− can easily be generated. The discretized abscissa and heights of the rough
surface are given by xn

− = −L−
2 + (n − 1

2 )�x− and zn
− = z−(xn

−), respectively, with n ∈ [1; N−],
where N− represents the number of samples. �x− = L−/N− is the sampling step and L−
the length of the surface. In the same manner, one defines for the object zm

+ = z+(xm
+ ) with

m ∈ [1; N+], where N+ is the number of samples. According to the object shape, z+ must be
a bijective function. For example for an elliptic cylinder of major and minor semi-axis {a, b},
the polar coordinates (a, b, φ ∈ [0; 2π ]) are used to express a point location on the cylinder.
This leads to {x+ = xc + a cos φ, z+ = hc + b sin φ}. For a circular cylinder a = b, where a is
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Waves in Random and Complex Media 497

Figure 1. Geometry of the problem.

the radius. A point of the plane (x̂, ẑ) will be denoted by r = xx̂ + zẑ and a point belonging to
�± by r± = x±x̂ + z±ẑ. The random interface is separated by two non-magnetic semi-infinite
homogeneous media �1,2 of relative permittivity εr1,r2, and the relative permittivity of the non-
magnetic object is εr3.

To avoid edge limitations, the incident field ψi is chosen as a Thorsos tapered plane wave [25]
defined as

ψi(r) = exp(jki · r) exp

(
− (x + z tan θi)2

g2

)
exp[jw(r)ki · r], (1)

in which w(r) = [ 2(x+z tan θi )2

g2 − 1]/(K1g cos θi)2 and ki = K1(x̂ sin θi − ẑ cos θi) is the incident
wavevector. θi is the incident angle defined with respect to ẑ in the counterclockwise direction
(Figure 1), K1 is the wavenumber in the incident medium �1, g stands for the tapering parameter
which has a dimension of length (controls the spatial extent of the incident wave). Since the
paper is devoted to moderate incidence angles, this wave is appropriate and satisfies Maxwell’s
equations with good accuracy. An e−jωt time-harmonic convention is used. Furthermore, the TE
(electric field along the ŷ direction) and TM (magnetic field along the ŷ direction) polarizations
are considered.

3. The extended PILE (Propagation-Inside-Layer-Expansion) method

3.1. Mathematical formulation

Déchamps et al. [20] have developed a new method to reduce complexity of the study of elec-
tromagnetic scattering from a stack of two one-dimensional rough interfaces separating homoge-
neous media. For this case, only the upper surface was excited by the incident field. In this paper,
the PILE method must be updated since the object and the rough surface are both excited by the
incident field. Consequently, the extended PILE method proposed in this paper is a generalization
of the PILE method, for the case of scattering by two illuminated surfaces. The main equations
are given hereafter. Using the extinction theorem both on the rough interface and object and the
boundary conditions, we obtain four coupled integral equations (see for instance [9,20,26]).

The use of the method of moments with point matching and pulse basis functions leads to the
following linear system

Z̄X = s, (2)
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498 G. Kubické et al.

where Z̄ (the over-bar stands for a matrix) is the impedance matrix of size 2(N+ + N−) × 2(N+ +
N−). The unknown vector X of length 2(N+ + N−) is equal to

XT = [XT
+XT

−], (3)

where T stands for the transpose operator. X± of length 2N± contains the unknown fields ψ± and
their normal derivatives ∂ψ±/∂n± on the object and on the lower surface

XT
± =


ψ(r1

±) . . . ψ(rN±
± )︸ ︷︷ ︸

N± times

∂ψ(r1
±)

∂n±
. . .

∂ψ(rN±
± )

∂n±︸ ︷︷ ︸
N± times


 . (4)

The source term s is defined as

sT = [sT
+sT

−], (5)

with

sT
± =


ψi(r

1
±) . . . ψi(r

N±
± )︸ ︷︷ ︸

N± times

0 . . . 0︸ ︷︷ ︸
N± times


 . (6)

To solve efficiently the linear system (2), the impedance matrix Z̄ is expressed from submatrices
[20] as

Z̄ =
[

Z̄+ Z̄∓
Z̄± Z̄−.

]
. (7)

{Z̄+, Z̄−} correspond exactly to the impedance matrices (size (2N±) × (2N±)) of �±. The ma-
trices Z̄∓ (size (2N−) × (2N+)) and Z̄± (size (2N+) × (2N−)) can be interpreted as coupling
matrices between �+ and �−. Complete expressions for these matrices can be found in Ap-
pendix A. In contrast to the case of a stack of two rough interfaces [20] (s+ �= 0, s− = 0), the
two surfaces are illuminated by the incident field (s+ �= 0, s− �= 0). The extended PILE method
proposed in this paper is then generalized in order to introduce the fact that s− �= 0. From [27]
we have

Z̄−1 =
[

T̄ Ū

V̄ W̄

]
, (8)

with 


T̄ = (Z̄+ − Z̄∓Z̄−1
− Z̄±)−1

Ū = −(Z̄+ − Z̄∓Z̄−1
− Z̄±)−1Z̄∓Z̄−1

−
V̄ = −Z̄−1

− Z̄±(Z̄+ − Z̄∓Z̄−1
− Z̄±)−1

W̄ = Z̄−1
− + Z̄−1

− Z̄±(Z̄+ − Z̄∓Z̄−1
− Z̄±)−1Z̄∓Z̄−1

−

(9)
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Waves in Random and Complex Media 499

and the unknown vector X is obtained as:[
X+
X−

]
= Z̄−1

[
s+
s−

]
=
[

T̄ · s+ + Ū · s−
V̄ · s+ + W̄ · s−

]
. (10)

By using Equations (9) and (10), the total field on the object X+ can be expressed as

X+ = (Z̄+ − Z̄∓Z̄−1
− Z̄±)−1s+ − (Z̄+ − Z̄∓Z̄−1

− Z̄±)−1Z̄∓Z̄−1
− s−, (11)

which leads to

X+ = (Z̄+ − Z̄∓Z̄−1
− Z̄±)−1(s+ − Z̄∓Z̄−1

− s−)

= (Ī − Z̄−1
+ Z̄∓Z̄−1

− Z̄±)−1Z̄−1
+ (s+ − Z̄∓Z̄−1

− s−), (12)

where Ī is the identity matrix. Let us introduce the characteristic matrix M̄c,+ as

M̄c,+ = Z̄−1
+ Z̄∓Z̄−1

− Z̄±. (13)

The first term in Equation (12) can be expanded as an infinite series over p

(
Ī − Z̄−1

+ Z̄∓Z̄−1
− Z̄±

)−1 =
p=∞∑
p=0

M̄p
c,+. (14)

For the numerical computation, the sum must be truncated at order PPILE. From Equations (12)
and (14), the total field on the object X+ is then expressed as

X+ =

p=PPILE∑

p=0

M̄p
c,+


 Z̄−1

+ (s+ − Z̄∓Z̄−1
− s−) =

p=PPILE∑
p=0

Y(p)
+ , (15)

in which {
Y(0)

+ = Z̄−1
+ (s+ − Z̄∓Z̄−1

− s−) for p = 0

Y(p)
+ = M̄c,+Y(p−1)

+ for p > 0
. (16)

The unknown vector X− is obtained by substituting in Equations (15), (16) and (13), subscripts
{+,−,±,∓} for subscripts {−,+,∓,±}, respectively.

We define the norm |M̄c,+| of a complex matrix by its spectral radius, i.e. the modulus of
its eigenvalue which has the highest modulus. Expansion (14) is then valid if |M̄c,+| is strictly
smaller than one. The physical interpretation of M̄c,+ is shown in Figure 2: in the zeroth order
term, Z̄−1

+ accounts for the local interactions on the upper surface, so Y(0)
+ corresponds to the

contribution of the scattering on the object when it is illuminated by the direct incident field
(s+) and the direct scattered field by the lower surface (−Z̄∓Z̄−1

− s−). Indeed, Z̄−1
− accounts for

the local interactions on the lower surface, and Z̄∓ propagates the field on the lower surface
toward the object. In the first order term, Y(1)

+ = M̄c,+Y(0)
+ , Z̄± propagates the resulting upper
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500 G. Kubické et al.

Figure 2. Illustration of the physical interpretation of the extended PILE method.

field information, Y(0)
+ , toward the lower surface (the rough surface), Z̄−1

− accounts for the local
interactions on this surface, and Z̄∓ re-propagates the resulting contribution toward the upper
surface (the object); finally, Z̄−1

+ updates the field values on the object. So the characteristic
matrix M̄c,+ realizes a back and forth between the upper surface and the lower one. In conclusion,
the order PPILE of PILE, corresponds to the PPILE back and forth between the surface and the
object. In the same manner, M̄c,− realizes a back and forth between the lower surface and the
object.

3.2. Convergence of PILE

The purpose of this subsection is to study the convergence of PILE versus its order, PPILE. In what
follows, the abscissa of the object is xc = 0, a will denote the radius of a circular cylinder and
hc its height. To study the convergence, a criterion is introduced by using the Relative Residual
Error (RRE) defined as

RRE : re = norm (X − XLU)

norm (XLU)
. (17)

The norm of a vector of components Xi and of length N is expressed as norm(X) =∑i=N
i=1 |Xi |2. X represents either the field ψ or its normal derivative ∂ψ/∂n on the surface.

The subscript LU means that the vector is computed from a LU inversion (benchmark solution).
So, for a low RRE, the vector X obtained from the extended PILE method is close to XLU

computed from the benchmark method: the direct LU inversion. In what follows, the surface is
assumed to be a Gaussian process with a Gaussian height spectrum and the incident medium �1

is the vacuum (the incident wavelength is denoted as λ0).
In Figure 3, the scattering coefficient in the dB scale is compared with that obtained from a

direct LU inversion versus the scattering angle θs and for different orders PPILE. From a Thorsos
wave and for r ∈ �1, it is equal to [24]

σs(θi, θs) =
∣∣ψ∞

s+ + ψ∞
s−

∣∣2
8πK0g cos θi

[
1 − 1+2 tan2 θi

2K2
0 g2 cos2 θi

] , (18)
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Waves in Random and Complex Media 501

Figure 3. Comparison of the scattering coefficient in the dB scale with the one obtained from a direct LU
inversion versus the scattering angle θs . θi = 0◦, Lc = 2λ0, σz = λ0, N− = 1200, L− = 120λ0, g = L−/6,
N+ = 63, hc = 4λ0 and a = 1λ0. In each subfigure, the order of PILE and the corresponding RRE (largest
value of the RRE computed over the field and its normal derivative for both surfaces) are mentioned in
the legend. At the top, PC rough surface case (εr2 = j∞), and at the bottom dielectric rough surface case
(εr2 = 2 + 0.01j ).

with

ψ∞
sp

= +
∫

�p

{
jK0ψp[γp sin θs − cos θs] − ∂ψp

∂np

√
1 + γ 2

p

}
e−jks ·rdxp, (19)

where p equals + or −, ks = K0(x̂ sin θs + ẑ cos θs) (K0 = 2π/λ0) the scattering wavevector and
γp = ∂zp/∂xp. Care must be taken in Equation (19): the normal of the object must be oriented
toward the outside of the object (this comment also holds for the impedance matrix calculation,



D
ow

nl
oa

de
d 

B
y:

 [K
ub

ic
ké

, G
.] 

A
t: 

10
:2

2 
21

 J
ul

y 
20

08
 

502 G. Kubické et al.

Table 1. Order PPILE versus σz/λ0 for a circular cylinder above a rough surface and for the
TE and TM polarizations. Five cases are considered. Correlation length Lc = 2λ0, sampling
step λ0/10 for the rough surface of length L− = 120λ0 (N− = 1200), Thorsos wave parameter
g = L−/6, N+ = 63, hc = 4λ0 and a = 1λ0.

σz/λ0 0.5 1 1.5 2
θi in◦, εr2 TE-TM TE-TM TE-TM TE-TM

(a): 0, j∞ (PC) 2−2 4−4 5−5 5−4
(b): 60, j∞ (PC) 2−2 3−3 5−3 4−3
(c): 0, 2 + 0.01j 1−1 1−1 1−1 1−1
(d): 60, 2 + 0.01j 1−1 1−1 1−1 1−2
(e): 0, 10 + j 2−2 2−2 3−2 2−2

see Appendix A for more details). The parameters are θi = 0◦, Lc = 2λ0, σz = λ0, N− = 1200,
L− = 120λ0, g = L−/6, N+ = 63, hc = 4λ0 and a = 1λ0 and for TE polarization. In addition,
the scattering coefficient obtained from a direct LU inversion is plotted. Since the RRE decreases
when the order PPILE increases, one can conclude that good convergence is obtained.

Figure 4 presents, for different orders PPILE, the modulus of the total radiated field, ψrad(r),
computed from the fields on the rough surface and the object versus the normalized abscissa x/λ0

and the normalized height h/λ0 for the TE polarization. It is expressed as

ψrad(r) = s ′ψi(r) +
∑
p=±

sp

∫
�p

(
ψp(rp)

∂gp(rp, r)

∂np

− gp(rp, r)
∂ψp(rp)

∂np

)
d�p, (20)

with r /∈ (�+ ∪ �−) (and �3 if the object is a perfect conductor), {s± = +1, s ′ = +1} if r ∈ �1

else {s+ = 0, s− = −1, s ′ = 0}, gp(rp, r) = j

4 H
(1)
0 (K0

√
εrp‖rp − r‖), in which εrp = εri if r ∈

�i . The parameters are the same as in Figure 3(b), but σz = 0.5λ0, L− = 80λ0, θi = 20◦ and
g = L−/4. Figure 4 clearly shows that the PILE order is related to the number of reflections
between the surface and the cylinder.

In order to obtain the order PPILE which permits us to provide good convergence, the Relative
Residual Error (RRE) must be smaller than a threshold chosen equal to 10−2 in what follows. So,
the order PPILE is obtained when re becomes smaller than 10−2. Since re is determined for ψ and
∂ψ/∂n, we take the largest value of PPILE.

Table 1 presents the order PPILE for a circular cylinder above a rough surface (PC or dielectric)
and for the TE and TM polarizations. It is computed from one surface realization. The parameters
are Lc = 2λ0, σz ∈ [0.5; 2]λ0, sampling step λ0/10 for the rough surface of length L− = 120λ0

(N− = 1200), Thorsos wave parameter g = L−/6, N+ = 63, hc = 4λ0 and a = 1λ0. Five cases
are considered. Moreover, the energy conservation is given for the PC rough surface cases in
Table 2.

Table 2. Energy conservation versus σz/λ0 for a circular cylinder above a rough PC surface
and for the TE and TM polarizations. The parameters are the same as in Table 1 but only
cases (a) and (b) are considered.

σz/λ0 0.5 1 1.5 2
θi in◦, εr2 TE−TM TE−TM TE−TM TE−TM

(a): 0, j∞ (PC) 1.000−0.991 0.998−1.010 0.990−1.061 1.000−1.006
(b): 60, j∞ (PC) 0.990−0.994 0.996−1.007 0.997−1.026 0.997−1.032
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Table 3. Order PPILE versus a/λ0 for an elliptic cylinder above a rough
PC surface and for the TE and TM polarizations. The parameters are
Lc = 2λ0, σz = 0.5λ0, sampling step λ0/10 for the rough surface of
length L− = 120λ0 (N− = 1200), θi = 0◦, g = L−/6, hc = 4λ0, b = λ0

(semi-minor axis and a ≥ b).

1 2 3 4 5
a/λ0 N+ = 63 N+ = 97 N+ = 134 N+ = 172 N+ = 210

TE 2 12 43 66 46
TM 2 12 39 56 40

As the modulus of the permittivity, |εr2|, increases, the order PPILE increases. Indeed, the
reflection by the surface is strong with a high value |εr2|, that increases the energy reflected
toward the cylinder. This implies that the number of reflections between the rough surface and
the object contributing to the scattering process increases. Table 1 reveals also that PPILE is quasi-
independent of the incidence angle θi and the polarization. The energy conservation, which is a
good criterion to test the validity of the approach, is equal to 1 ± 1% except for three cases. In TM
polarization, for σz/λ0 = 1.5, θi = 0◦, for σz/λ0 = 1.5, θi = 60◦ and for σz/λ0 = 2, θi = 60◦,
the energy conservation is not satisfied. This fact is also observed for the case without object.
Indeed, when σz is high, the field on the rough surface does not vanish on the edges. In fact, the
integral equations cannot be applied if the field does not vanish on the edge of the surface. It is
important to notice that this is not due to the use of the PILE method since this phenomenon is
also observed with the direct LU inversion. A solution could be to take a higher surface length,
which implies the need to investigate exact fast numerical methods to treat a large problem.

Tables 3 and 4 present, respectively, the order PPILE and the energy conservation, for an
elliptic cylinder above a PC rough surface and for the TE and TM polarizations. The parameters
are Lc = 2λ0, σz = 0.5λ0, sampling step λ0/10 for the rough surface of length L− = 120λ0

(N− = 1200), θi = 0◦, g = L−/6, hc = 4λ0, b = λ0 (semi-minor axis and a ≥ b).
As the semi-major axis a increases, the order PPILE increases, which means that the interactions

between the object and the rough surface are stronger. Indeed, as the elliptic cylinder is more
elongated, the region located between the object and the lower surface is comparable to an open
wave guide. The wave is guided between the two surfaces, which induces a lot of reflections and
so, a high order PPILE. For a/λ0 = 3 in TM polarization, the energy conservation is not satisfied.
In this case, the field on the rough surface does not vanish on the edges. This is due to the elliptic
cylinder which provides a diffracted field on the surface far away from the origin. This field
contribution attenuates in free space slower in TM polarization than in TE polarization. As seen
before, a solution could be to take a higher surface length.

If the object dimension is of the order of the wavelength and if �x− is of the order of �x+,
then the number of samples on the surface �− is much greater than that of the object �+,

Table 4. Energy conservation versus a/λ0 for an elliptic cylinder above
a rough PC surface and for the TE and TM polarizations. The parameters
are the same as in Table 3.

1 2 3 4 5
a/λ0 N+ = 63 N+ = 97 N+ = 134 N+ = 172 N+ = 210

TE 1.000 0.994 1.000 0.997 0.999
TM 0.991 0.994 1.040 0.993 1.001



D
ow

nl
oa

de
d 

B
y:

 [K
ub

ic
ké

, G
.] 

A
t: 

10
:2

2 
21

 J
ul

y 
20

08
 

504 G. Kubické et al.

N− � N+. Thus, the most complex operation in the calculation of X+ and X− is Z̄−1
− u, where

u is a vector. This calculation, which only concerns the local interactions on the lower surface,
can be computed by fast numerical methods that already exist for a single rough surface. So, the
next section explains how to proceed to speed up the matrix-vector product Z̄−1

− u in the extended
PILE method by using the Forward–Backward Spectral Acceleration.

4. Extended PILE method combined with the Forward–Backward Spectral
Acceleration

Several methods can be used to speed up the matrix-vector product Z̄−1
− u, like for instance

the Banded-Matrix-Iterative-Approach/CAnonical Grid (BMIA-CAG) of Tsang et al. [14, 15]
of complexity O(N− log N−), the Forward–Backward (FB) method of Holliday et al. [16] of
complexity O(N2

−), and the accelerated version Forward–Backward Spectral Acceleration (FB-
SA) of Chou et al. [17, 18] of complexity O(N−), what makes it the most attractive. This section
will summarize the FB method and its accelerated version. A more detailed theory can be found
in [17, 18, 21, 23].

4.1. FB (Forward–Backward) method

First, the FB method is applied to speed up the calculation of Z̄−1
− u (u is the column vector of

length 2N−) in order to reduce the complexity to O(N2
−) instead of O(N3

−) from a direct LU
inversion. This method was developed by Holliday et al. [16] for a perfectly-conducting surface.
More recently, Iodice has extended the method to a dielectric surface [28].

In the FB approach, the unknown vector X is split into forward and backward contributions.
By assuming that the incident beam propagates from left to right, at any given surface point, the
forward contribution Xf is due to the incident field and to the radiation of the surface points
on the left of the current point. And the backward contribution Xb is due to the radiation of the
surface points on the right of the current point. The equations governing the forward and backward
components are then obtained, and an iterative procedure is applied. This iterative computation
of the matrix-vector product Z̄−1

− u, permits us to reduce the complexity to O(N2
−). Nevertheless,

the convergence of this method depends on the choice of the order PFB which is involved in the
FB iterative scheme. More details can be found in [16, 21, 23, 28].

The parameter PFB is obtained by studying the scattering from a single rough dielectric surface
(without the object).

As for the study of the convergence of the extended PILE method (see Section 3.2), the order
PFB is obtained when the Relative Residual Error (RRE) is smaller than a threshold chosen equal
to 10−2. The RRE is given in Equation (17) in which X represents either the field or its normal
derivative, on the surface �−. Since re is determined for ψ−, and ∂ψ−/∂n−, we take the largest
value of PFB.

Table 5 presents the order PFB for a single rough surface (PC or dielectric) and for the TE
and TM polarizations. It is computed from one surface realization. The correlation length is
Lc = 2λ0, the RMS heights are σz ∈ [0.1; 2]λ0 (RMS slope σγ = √

2σz/Lc ∈ [0.0707; 1.4142]).
The sampling step is λ0/10, the surface length L− = 120λ0 (N− = 1200) and Thorsos wave
parameter g = L−/6.

First, we can notice that the FB method converges very rapidly for a PC rough surface in TM
polarization. The order PFB seems to be few sensitive to the RMS height and the incidence angle.
In addition, as |εr2| increases (except for j∞), the order FB increases for the TE polarization,
whereas it remains unchanged for the TM polarization.
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Waves in Random and Complex Media 505

Table 5. Order PFB versus σz/λ0 for a single rough surface (without object) and for the TE
and TM polarizations. Three cases are considered. Correlation length Lc = 2λ0, sampling step
λ0/10, surface length L− = 120λ0 (N− = 1200) and Thorsos wave parameter g = L−/6.

σz/λ0

θi in◦, εr2

0.1
TE−TM

0.5
TE−TM

1
TE−TM

1.5
TE−TM

2
TE−TM

(a): 0, j∞ (PC) 5−1 5−1 6−2 6−2 7−3
(b): 60, j∞ (PC) 6−1 6−1 6−2 6−2 6−2
(c): 0, 2 + 0.01j 5−4 5−4 5−5 5−5 6−6
(d): 60, 2 + 0.01j 5−5 5−5 5−5 5−5 6−6
(e): 0, 10 + j 8−5 8−5 8−5 10−5 10−5

In Figure 5, the scattering coefficient in the dB scale is compared with the one obtained from
a direct LU inversion versus the scattering angle θs . From Thorsos wave and for r ∈ �1, it is
equal to [24]

σs(θi, θs) =
∣∣ψ∞

s−

∣∣2
8πK0g cos θi

[
1 − 1+2 tan2 θi

2K2
0 g2 cos2 θi

] , (21)

Figure 4. Modulus of the radiated field computed from the fields on the rough surface and the object versus
the normalized abscissa x/λ0 and the normalized height h/λ0 for the TE polarization and for different orders
PPILE. The parameters are the same as in Figure 3(b), but σz = 0.5λ0, L− = 80λ0, θi = 20◦ and g = L−/4.
In addition, the modulus of the radiated field computed from the fields on the cylinder, when it is considered
alone, is plotted.
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with ψ∞
s− given by Equation (19). At the top, PC case and at the bottom, dielectric case (εr2 =

2 + 0.01j ), for TE and TM polarizations. The parameters are the same as in Table 5 with θi = 0◦

and σz = 2λ0 ⇒ σγ = √
2 ((a) and (c) cases). Now, the RRE is computed over the scattering

coefficient, by using Equation (17) and by substituting X by σs (scattering coefficient of the FB)
and XLU by σs,LU (scattering coefficient from the direct LU inversion). In the legend, the RRE is
given in a linear scale. As the order PFB increases, the RRE decreases and we can observe that
the results converge toward the ones obtained from a direct LU inversion. The last order is given
from Table 5.

Like the PILE method, Déchamps et al. [23] have recently shown that the Forward–Backward
method converges if the norm (the modulus of its eigenvalue which has the highest modulus) of
the characteristic matrix M̄FB is smaller than one. The norm of M̄FB (norm (M̄FB)) is a relevant
criterion to study the validity of FB because it is independent of the incidence and scattering
angles. It depends only on the surface profile and the permittivity εr2. For a single dielectric rough
surface, Iodice [28] has studied in detail the convergence of the FB against the choice of the
Height Autocorrelation Function (HAF). For a Gaussian HAF, the FB always converges, whereas
for an exponential HAF with the same correlation length and RMS height as the Gaussian case,
the FB may fail for very rough surfaces. For example, with N− = 800, L− = 80λ0, Lc = 2λ0,
σz = λ0, εr2 = 2 + 0.01j , g = L−/6, (M̄FB) = 0.4114 < 1 for a Gaussian HAF, whereas (norm
M̄FB) = 2.7662 > 1 for an exponential HAF, which means that the FB method does not converge.
This is verified if we compute the scattering coefficient for different incidence and scattering
angles.

4.2. FB-SA (Spectral Acceleration) method

First, interactions between surface points are split into strong and weak interactions. Therefore a
parameter xd0 is introduced and defined as the horizontal distance separating the weak interactions
from the strong. In the iterative procedure of the FB method, and for both forward and backward
components, the strong interactions are computed exactly, whereas the weak interactions are
computed approximately by using a Spectral Acceleration. The SA is based on a decomposition
of the Green’s function (the Weyl representation), for which the contour of integration is deformed
into a steepest descent path going through the saddle point. Then, the integral in the Weyl
representation can be approximated by a sum over a limited number of complex angles with an
integrand modulus decaying rapidly away from the origin and a slight variation of its phase. As a
result, the computation is performed only once for each surface point in the iteration since, with
the appropriate contour deformation, contributions from large numbers of surface points to a
single point are evaluated simultaneously. Consequently, the complexity of the FB-SA is O(N−).
More details can be found in [17, 18, 21, 23, 29].

As a rule of thumb xd0 is chosen equal to αLc where α equals 2 or 3. A detailed study about
the optimal choice for this parameter (and also the parameters which define the new integration
contour) can be found in [18]. With an order PFB chosen in such manner that the FB satisfies
the RRE criterion given before, xd0 is chosen equal to 3Lc in order to test the convergence of
the FB-SA method. In Figures 6 and 7 the field |ψ−| and its normal derivative |∂ψ−/∂n−| on the
surface computed from FB-SA are compared with the ones obtained from a direct LU inversion
versus the normalized abscissa x/λ0. At the top, TE case and at the bottom, TM case. PC rough
surface in Figure 6, and dielectric rough surface in Figure 7. The parameters are the same as
in Figure 5 and the order PFB is given from Table 5. The distance of the strong interactions is
xd0 = 3Lc = 6λ0. We observe very good agreement. From the parameters of Table 5, similar
simulations with xd0 = 3Lc not reported in this paper, also showed very good agreement. In
conclusion, in what follows xd0 will be equal to 3Lc for the spectral acceleration.
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508 G. Kubické et al.

Figure 6. Comparison of the field |ψ−| and its normal derivative |∂ψ−/∂n−| (without object) on the PC
surface computed from FB-SA with the ones obtained from a direct LU inversion versus the normalized
abscissa x/λ0. At the top, TE case and at the bottom, TM case. The parameters are the same as in Figure 5
with xd0 = 3Lc and the order PFB is given from Table 5.

We can notice that the convergence of FB-SA seems to be not so good for the dielectric
rough surface. In fact, the deformation of the integration contour obtained from the literature was
evaluated only for the PC rough surface case. These slight differences show that for dielectric
case, the integration contour should be deformed differently. To our knowledge, no article has
been published for the SA for the single-interface dielectric case. This paper is not devoted to the
extension of the integration contour calculation of the SA to dielectric surface. We will see in
more detail the consequences on the results in Subsection 4.4.

4.3. Complexity and memory space for extended PILE + FB-SA

The number of multiplications involved in the FB-SA depends on the parameter Q which is
related to the number of complex angles used for the decomposition of the Green’s function. In
the general case, Q = 20, which means for the weak interactions that the Green’s function can
be represented as a superposition of 2Q + 1 = 41 plane waves.

For the complexity calculation, both the lower (the rough surface) and upper (the object)
surfaces are dielectric. One can show that for an iteration number PFB of the FB, the backward
and forward steps applied on the four submatrices lead to (3 + 4)(2Q + 1)(N−−Ns) × 2 × 2PFB

multiplications for the weak interactions, and 4N−Ns for the strong interactions (Ns is the integer
part of xdo/�x−). A direct LU inversion of Z̄+ leads to N3

+/3 multiplications. So the computation
of the characteristic matrix requires 8N+N− + 2N+2N+ for the matrix-vector products, and
N3

+/3 + [28(2Q + 1)(N−−Ns) + 4N−Ns] PFB for the inversions.
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Waves in Random and Complex Media 509

Figure 7. Comparison of the field |ψ−| and its normal derivative |∂ψ−/∂n−| (without object) on the
dielectric surface computed from FB-SA with the ones obtained from a direct LU inversion versus the
normalized abscissa x/λ0. At the top, TE case and at the bottom, TM case. The parameters are the same as
in Figure 5 with xd0 = 3Lc and the order PFB is given from Table 5.

In conclusion, from Equation (15), the computation of X+ and X− at the order PPILE with
extended PILE combined with FB-SA needs

2
{

8N+N− + 4N2
+ (matrix-vector products)

+ [
28(2Q + 1)(N− − Ns) + 4N−Ns

]
PFB (inversion of Z̄−)

}
PPILE

+ 2
{[

28(2Q + 1)(N− − Ns) + 4N−Ns

]
PFB + 4N+N− + 4N2

+
}

(order 0, inversion of Z̄− and matrix-vector products)

+ 8N3
+/3 (initialization: inversion of Z̄+) (22)

operations, instead of 8N3
+/3 + 8N3

−/3 + 2(4N2
+ + 4N2

− + 4N+N−) + 2(8N+N− + 4N2
+ +

4N2
−)PPILE from PILE. At order 0, since N−�Ns and N−�1, PILE+FB-SA is fast com-

pared to PILE if 8N2
−/3 � [28(2Q + 1) + 4Ns] PFB. Typically, Ns = 100, PFB = 5, Q = 20,

thus N−�54. At the order PPILE, we must have 4N−� [28(2Q + 1) + 4Ns] PFB, which leads to
N− � 1935. But, the storage of the inverse of Z̄− is not necessary unlike PILE. Indeed with FB-
SA, only the submatrix elements of Z̄− of the strong interactions must be stored. For a submatrix,
the number of elements is Ns(Ns + 1)/2 + (N−−Ns − 1)Ns , which leads to N−Ns for N− � Ns

instead of N2
−.
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510 G. Kubické et al.

In order to obtain the complexity and the memory space for PILE+FB-SA with a PC elliptic
cylinder and/or a PC rough surface, the number of unknowns N+ and/or N− must be divided
by 2.

4.4. Numerical results

In this section, the extended PILE method combined with FB-SA and referred to as PILE+FB-SA
is compared with the results obtained from a direct LU inversion of the impedance matrix Z̄.
The input parameter of PILE is its order PPILE (see Equation 15), which is related to the number
of reflections between the object and the rough surface. The order PFB of the FB method for
the inversion of the impedance matrix of the rough surface is an input parameter, with the order
PPILE, of PILE+FB. For PILE+FB-SA, the input parameters are PPILE, PFB and xd0, which is the
distance of the strong interactions required for the calculation of the integration contour. First,
the convergence of PILE+FB-SA is investigated. Finally, the computation time of PILE+FB-SA
is presented.

4.4.1. Convergence of PILE+FB-SA

The parameters of the FB-SA, needed to calculate the local interactions on the rough surface, are
given in Table 5. In addition, the distance of the strong interactions is xd0 = 3Lc.

In Figure 8, for the TE case, the modulus of the field ψ+ on the rough surface is plotted
versus the normalized abscissa x/λ0: the PC rough surface case (εr2 = j∞) in Figure 8(a)
and the dielectric rough surface case (εr2 = 2 + 0.01j ) in Figure 8(b). The parameters are
θi = 0◦, Lc = 2λ0, σz = λ0, sampling step λ0/10 (N− = 1200) for the rough surface of length
L− = 120λ0, g = L−/6, N+ = 63, hc = 4λ0 and a = 1λ0. Top, PILE method. Middle, PILE+FB
method with PFB obtained from Table 5 (6 for the PC surface and 5 for the dielectric one). Bottom,
PILE+FB-SA method with xd0 = 3Lc. In each subfigure, the order of PILE and the corresponding
RRE are mentioned in the legend. In addition, the results computed from a direct LU inversion are
plotted. At the top, we can observe that the PILE method converges after three iterations in PC case
and only 1 iteration for the dielectric case, which means that the number of back and forth between
the object and the surface in medium �1 contributing to the scattering process is PPILE = 3 for
the PC case. In addition, Figure 8 reveals that the field vanishes on the surface edges. As seen in
Subsection 3.2, this condition must be satisfied to apply the integral equations. Moreover, Figure
8 shows also that the PILE method combined with FB presents good convergence, which means
that the order PFB is well chosen. One can see that there is no differences between the PILE+FB
method and PILE+FB-SA for the PC surface case. So, the SA is well used in this approach.
Nevertheless, for the dielectric surface case, the PILE+FB-SA approach is not perfect. Although
the observation of the curve seems to indicate good convergence, the RRE remains constant after
the PILE method converged. Indeed, the SA in the dielectric case does not converge at the order
0 when the local interactions are calculated on the rough surface. As seen before in Subsection
4.2, the integration contour of the SA, for dielectric case, should be deformed differently. But,
as displayed in Figure 9, the impact on the scattering coefficient is minor except for grazing
scattering angles. Now, the RRE is computed over the scattering coefficient, by using Equation
(17) and by substituting X by σs (scattering coefficient) and XLU by σs,LU (scattering coefficient
from the direct LU inversion). In the legend, the RRE is given in a linear scale.

Figures 10(a) and 10(b) compare the RRE over the scattering coefficient versus the normalized
RMS height σz/λ0 for the TE and TM polarizations, respectively. The orders PFB and PPILE are
obtained from Tables 1 and 5, in which the (a) case is considered (PC rough surface). As we can
see, the RRE is of the order of 10−2 for PILE, whereas it is slightly higher for FB and FB-SA.



D
ow

nl
oa

de
d 

B
y:

 [K
ub

ic
ké

, G
.] 

A
t: 

10
:2

2 
21

 J
ul

y 
20

08
 

Waves in Random and Complex Media 511

Figure 8. Modulus |ψ−| on the rough surface versus the normalized abscissa x/λ0 for the TE case. θi = 0◦,
Lc = 2λ0, σz = λ0, N− = 1200, L− = 120λ0, g = L−/6, N+ = 63, hc = 4λ0 and a = 1λ0. Top, PILE
method. Middle, PILE+FB method with PFB chosen from Table 5. Bottom, PILE+FB-SA method with
xd0 = 3Lc. In each subfigure, the order of PILE and the corresponding RRE are mentioned in the legend.
In addition, the results computed from a direct LU inversion are plotted. At the top, PC rough surface case
(εr2 = j∞), and at the bottom dielectric rough surface case (εr2 = 2 + 0.01j ).
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512 G. Kubické et al.

Figure 9. Comparison of the scattering coefficient in the dB scale with the one obtained from a direct LU
inversion versus the scattering angle θs . In addition the RRE computed over the scattering coefficient are
given. The parameters are the same as in Figure 8. At the top, PC rough surface case (εr2 = j∞), and at the
bottom dielectric rough surface case (εr2 = 2 + 0.01j ).

The RRE for the FB and the FB-SA are equal, which shows the good convergence of the SA. In
the same manner, Figures 11(a) and 11(b) compare the RRE over the scattering coefficient versus
the normalized RMS height σz/λ0 for the TE and TM polarizations, respectively. The orders PFB

and PPILE are obtained from Tables 5 and 1, in which the (c) case is considered (dielectric rough
surface). As we can see, the RRE is of the order of 10−2 for PILE, whereas it is proportional to
the RMS height for FB and FB-SA and it is few sensible to the polarization. In addition, the RRE
is larger for FB-SA.
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Waves in Random and Complex Media 513

Figure 10. Comparison of the RRE over the scattering coefficient versus the normalized RMS height σz/λ0.
The orders PFB and PPILE are obtained from Tables 5 and 1, in which the (a) case is considered (PC rough
surface). At the top, TE polarization and at the bottom, TM polarization.

In order to see how the FB-SA converges to the FB according to the distance xd0, in Figure 12
the RRE over the scattering coefficient is plotted versus xd0/Lc for the TE and TM polarizations.
The parameters are the same as in Figure 8(b) and the orders {PFB = 5, PPILE = 1} for the TE and
TM polarizations. We can observe that the RRE decreases slowly with xd0 and reaches the value
obtained from PILE+FB for xd0 ≥ 40Lc. As expected, the same study for a PC rough surface
case, not presented here, shows very good convergence of the FB-SA from xd0 ≥ 3Lc.
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514 G. Kubické et al.

Figure 11. Same variations as in Figure 10 but for a dielectric surface ((c) case in Table 1) (a) TE case (b)
TM case.

4.4.2. Computation time of PILE + FB-SA

In Figure 13 the CPU time tCPU of the PILE+FB−SA is plotted versus the number of samples
N− on the rough surface. The parameters are the same as in Figure 8(a) but σz = 0.5λ0, with
{PFB = 5, PPILE = 2} and {PFB = 1, PPILE = 2} for the TE and TM polarizations (Tables 5 and
1), respectively. It should be noted that the number of unknowns are N− + N+ = N− + 63. In
addition, results obtained from a linear regression (TE case: tCPU = −155.8847 + 0.00490N−;
TM case: tCPU = −30.1158 + 0.00096N−) are displayed. A 3.4 GHz personal computer with
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Waves in Random and Complex Media 515

Figure 12. RRE over the scattering coefficient of PILE+FB-SA versus the normalized distance xd0/Lc for
the TE and TM polarizations. The parameters are the same as in Figure 8(b). The horizontal lines indicate
the values of RRE of PILE+FB obtained from Figures 11(a) and 11(b) with σz = λ0.

2 GB of RAM with the MATLAB software is used in this work. We can observe that the
CPU time of PILE+FB-SA is approximately proportional to N−. Nevertheless, the CPU time
for the TE polarization is larger because the product PFBPPILE is larger than the one ob-
tained from the TM polarization. In fact, the ratio of the slope of the regression straight

Figure 13. CPU time versus the number of samples N− on the PC rough surface. The parameters are the
same as Figure 8(a) but σz = 0.5λ0, with {PFB = 5, PPILE = 2} and {PFB = 1, PPILE = 2} for the TE and
TM polarizations (Tables 1 and 5), respectively. The number of unknowns is N− + N+ = N− + 63.
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line for each polarization is approximately equal to the ratio computed from PFB(PPILE + 1).
Thus, as expected, the CPU time is of the order of PFB(PPILE + 1)O(N−). One of the ad-
vantages of PILE+FB-SA is to be able to treat large problem from a personal computer. For
instance, for N− = 100, 000 and N+ = 63, the number of unknowns is 100,063. In this case,
the PILE+FB-SA requires to store 632 (for Z̄+) + 2 × 63 × 100, 000 (coupling matrices) + 2 ×
9, 994, 950 (strong interactions for Z̄−) = 32, 593, 869 complex values, which corresponds to
2 × 16 × 32, 593, 869/8/10242 ≈ 124 Mo of memory.

5. Conclusion

In this paper, a new efficient method to predict the field scattered from a homogeneous object
located above a one-dimensional dielectric rough surface has been presented. The method is
based on the rigorous PILE method, originally developed for a stack of two one-dimensional
rough interfaces separating homogeneous media, and extended in this work to two illuminated
surfaces. This extended PILE method was applied to the case of an elliptic cylinder above a
surface. In addition, for the calculation of the local interactions of the rough surface, the extended
PILE method was accelerated using the fast method, Forward–Backward (FB), combined with
a Spectral Acceleration (SA). The resulting method, the extended PILE+FB-SA, has then a
complexity of O(N−), in which N− is the number of samples on the rough surface, if N− � N+
(number of the samples on the object).

The numerical results showed that the PILE method converges rapidly. Indeed, the PILE order
is linked to the number of reflections between the object and the rough surface contributing to
the scattering process. Combined with FB, the PILE+FB converges also rapidly for the FB step
(about six iterations for εr2 = j∞ and εr2 = 2 + 0.01j and about 10 iterations for εr2 = 10 + j ,
see Table 5). One of the advantages of PILE+FB, is that the order PFB of the FB step, can be
obtained from the study of the scattering from a single rough surface. PILE+FB combined with
SA presents good convergence for a quite rough surface with a distance of strong interactions of
the order of 3Lc (height correlation length). As the surface roughness increases (RMS height),
this distance must be increased.

Instead of using the FB-SA approach to accelerate the calculation of the local interactions on
the rough surface, the Banded-Matrix-Iterative-Approach/CAnonical Grid (BMIA-CAG) devel-
oped by Tsang et al. could be applied. This method of complexity O(N− log N−) is interesting for
RMS heights approximately smaller than 3λ0. Moreover, as prospects of this paper, it could be
interesting to apply the PILE+FB-SA to several objects above a rough surface and to improve the
calculation of the integration contour for the SA when a dielectric rough surface is considered.

References
[1] A. Sommerfeld, Lectures on Theoretical Physics, Vol. 6, Academic, New York, 1964.
[2] G. Videen, Light scattering from a sphere on or near a surface, J. Opt. Soc. Amer. A 8 (1991),

pp. 483–489.
[3] G.Videen and D. Ngo, Light scattering from a cylinder near a plane interface: Theory and comparison

with experimental data, J. Opt. Soc. Amer. A 14 (1997), pp. 70–78.
[4] P.J. Valle, F. Gonzalez, and F. Moreno, Electromagnetic wave scattering from conducting cylindrical

structures on flat substrates: Study by means of the extinction theorem, Appl. Opt. 33 (1994), pp. 512–
523.

[5] A. Madrazo and M. Nieto-Vesperinas, Scattering of electromagnetic waves from a cylinder in front of
a conducting plane, J. Opt. Soc. Amer. A 12 (1995), pp. 1298–1309.

[6] J.T. Johnson, A study of the four-path model for scattering from an object above a half space, Microwave
Opt. Technol. Lett. 30 (2001), pp. 130–134.



D
ow

nl
oa

de
d 

B
y:

 [K
ub

ic
ké

, G
.] 

A
t: 

10
:2

2 
21

 J
ul

y 
20

08
 

Waves in Random and Complex Media 517

[7] M.R. Pino, L. Landesa, J.L. Rodriguez, F. Obelleiro, and R. Burkholder, The generalized Forward–
Backward method for analyzing the scattering from targets on ocean-like rough surfaces, IEEE Trans.
Antennas Propagat. 47 (1999), pp. 961–969.

[8] J.T. Johnson, A numerical study of scattering from an object above a rough surface, IEEE Trans.
Antennas Propagat. 50 (2002), pp. 1361–1367.

[9] X. Wang, C.-F. Wang, Y.-B. Gan, and L.-W. Li, Electromagnetic scattering from a circular target
above or below rough surface, Prog. Electromag. Res. 40 (2003), pp. 207–227.

[10] P. Liu and Y.Q. Jin, The Finite-Element Method with domain decomposition for electromagnetic
bistatic scattering from the comprehensive model of a ship on and a target above a large scale rough
sea surface, IEEE Trans. Geosci. Remote Sens. 42 (2004), pp. 950–956.

[11] H. Ye and Y. Jin, Fast iterative approach to difference electromagnetic scattering from the target above
a rough surface, IEEE Trans. Geosci. Remote Sens. 44 (2006), pp. 108–115.

[12] C. Dong, C. Wang, X. Wei, and H.Yin, EM scattering from complex targets above a slightly rough
surface, PIERS Online 3 (2007), pp. 685–688.

[13] H. Ye and Y.-Q. Jin, A hybrid analytic-numerical algorithm of scattering from an object above a rough
surface, IEEE Trans. Antennas Propagat. 45 (2007), pp. 1174–1180.

[14] L. Tsang, C.H. Chang, and H. Sangani, A Banded Matrix Iterative Approach to Monte Carlo simulations
of scattering of waves by large scale random rough surface problems: TM case, Electron. Lett. 29
(1993), pp. 1666–1667.

[15] L. Tsang, C.H. Chang, H. Sangani, A. Ishimaru, and P. Phu, A Banded Matrix Iterative Approach
to Monte Carlo simulations of large scale random rough surface scattering: TE case, J. Electromag.
Waves Appl. 29 (1993), pp. 1185–1200.

[16] D. Holliday, L.L. DeRaad Jr., and G.J. St-Cyr, Forward–Backward: A new method for computing
low-grazing angle scattering, IEEE Trans. Antennas Propagat. 44 (1995), pp. 1199–1206.

[17] H.T. Chou and J.T. Johnson, A novel acceleration algorithm for the computation of scatter-
ing from rough surfaces with the Forward–Backward method, Radio Sci. 33 (1998), pp. 1277–
1287.

[18] D. Torrungrueng, J.T. Johnson, and H.T. Chou, Some issues related to the Novel Spectral Acceleration
method for the fast computation of radiation/scattering from one-dimensional extremely large scale
quasi-planar structures, Radio Sci. 37 (2002), pp. 1–20.

[19] M.R. Pino, R. Burkholder, and F. Obelleiro, Spectral acceleration of the generalized Forward–
Backward method, IEEE Trans. Antennas Propagat. 50 (2002), pp. 785–797.
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Appendix A: Submatrix expressions of the impedance matrix
For a dielectric object located above a dielectric surface, the submatrices {Z̄+, Z̄−, Z̄±, Z̄±} are expressed
from elementary submatrices as

Z̄+ =
[

Ā+ B̄+
C̄+ ρ31D̄+

]
Z̄− =

[
Ā− B̄−
C̄− ρ21D̄−

]
, (A1)

and

Z̄± =
[

Ā± B̄±
0̄ 0̄

]
Z̄∓ =

[
Ā∓ B̄∓
0̄ 0̄

]
(A2)

in which {ρ31 = εr3/εr1, ρ21 = εr2/εr1} for TM polarization, and {ρ31 = ρ21 = 1} for TE polarization.
The elementary square matrix Ā− (size N− × N−) corresponds to the matrix of a perfectly conducting

surface for TM polarization (Neumann boundary condition). The elements are given by

Am,n
− =




− jK1�x−
4

H
(1)
1

(
K1‖rn

− − rm
−‖)

‖rn− − r−
m‖ [γ n

−(xn
− − xm

− ) − (zn
− − zm

−)] for m �= n

,

+1

2
− �x−

4π

(γ m
− )′

1 + (γ m− )2
for m = n

(A3)

with γ− = ∂z−/∂x−, (γ−)′ = ∂γ−/∂x−, and H
(1)
1 the Hankel function of first order and first kind. K1 =

K0
√

εr1 is the wavenumber in the incident medium �1, and K0 stands for the wavenumber in the vacuum.
The elementary square matrix B̄− (size N− × N−) corresponds to the matrix of a perfectly conducting

surface for TE polarization (Dirichlet boundary condition). The elements are given by

Bm,n
− = j�x−αn

−
4




1 + 2j

π
ln(0.164K1α

m
−�x−) for n = m

,

H
(1)
0 (K1‖rn

− − rm
−‖) for n �= m

(A4)

with αn
− = [1 + (γ n

−)2]1/2. The elementary matrices {C̄−, D̄−} are obtained from {Ā−, B̄−} by substituting

in Equations (A3) and (A4), K1 for K2. In addition, the diagonal elements of C̄− equal − 1
2 − �x−

4π

(γ m− )′
1+(γ m− )2 .

The elementary matrices of the object {Ā+, B̄+, C̄+, D̄+} of size N+ × N+ are obtained from
{Ā−, B̄−, C̄−, D̄−} by substituting in Equations (A3) and (A4), (K2, subscript −) for (K3, subscript +),
respectively. For an elliptic cylinder of parametric equations {x+ = xc + a cos φ, z+ = hc + b sin φ},
γ n

+ = − b

a
cot φ. Moreover, in (A3), the normal of the object must be oriented toward the external

of the object, so �x+ is replaced by v |�x+| in which v = +1 for φ ∈ [0; π ], v = −1 otherwise.
Like for the lower surface, the surface elements must be always positive. So, v�x+ is replaced by
v |�x+| = −�x+ = +a sin φ�φ. In the same manner and for same reasons, in (A4), we must take the
absolute values on |αn

+�x+| =
√

a2 sin2 φ + b2 cos2 φ |�φ|.
The coupling matrix Ā∓ (size N− × N+) is similar to Ā− and its elements are expressed as

Am,n
∓ = − jK1�x−

4

H
(1)
1 (K1‖rn

− − rm
+‖)

‖rn− − rm+‖ [γ n
−(xn

− − xm
+ ) − (zn

− − zm
+)]. (A5)

The coupling matrix B̄∓ (size N− × N+) is similar to B̄− and its elements are expressed as

Bm,n
∓ = + jαn

−�x−
4

H
(1)
0 (K1‖rn

− − rm
+‖). (A6)
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The elementary matrices {Ā±, B̄±} of size N+ × N− are obtained from {Ā∓, B̄∓} by substituting in
Equations (A5) and (A6) the subscripts (+,−) for the subscripts (−, +), respectively. Moreover, and like
for the matrices {Ā+, B̄+, C̄+, D̄+}, �x+ is replaced by −�x+ in Equation (A5), and αn

+�x+ is replaced by
|αn

+�x+| in Equation (A6).
If the object is assumed to be a perfect conductor whereas the rough surface is dielectric, then Z̄∓ =

[Ā∓ B̄∓]. Moreover, the submatrices {Z̄+, Z̄±} and the unknown vector X+ become




TE case: Z̄+ = B̄+ Z̄± =
[

B̄±
0̄

]
X+ ≡ ∂ψ+

∂n+
.

TM case: Z̄+ = Ā+ Z̄± =
[

Ā±
0̄

]
X+ ≡ ψ+

(A7)

If the object and the rough surface are assumed to be perfect conductors, then the submatrices
{Z̄+, Z̄±, Z̄−, Z̄±} and the unknown vectors X+ and X− become


TE case:Z̄+ = B̄+ Z̄± = B̄± Z̄− = B̄− Z̄∓ = B̄∓ X+ ≡ ∂ψ+

∂n+
X− ≡ ∂ψ

∂n−
TM case:Z̄+ = Ā+ Z̄± = Ā± Z̄− = Ā− Z̄∓ = Ā∓ X+ ≡ ψ+ X− ≡ ψ−

. (A8)


