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Scattering from very rough homogeneous layers is studied in the high-frequency limit (under the geometric
optics approximation) by taking the shadowing effect into account. To do so, the iterated Kirchhoff approxima-
tion, recently developed by Pinel et al. [Waves Random Complex Media 17, 283 (2007)] and reduced to the
geometric optics approximation, is used and investigated in more detail. The contributions from the higher
orders of scattering inside the rough layer are calculated under the iterated Kirchhoff approximation. The
method can be applied to rough layers of either very rough or perfectly flat lower interfaces, separating either
lossless or lossy media. The results are compared with the PILE (propagation-inside-layer expansion) method,
recently developed by Déchamps et al. [J. Opt. Soc. Am. A 23, 359 (2006)], and accelerated by the forward-
backward method with spectral acceleration. They highlight that there is very good agreement between the
developed method and the reference numerical method for all scattering orders and that the method can be
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applied to root-mean-square (RMS) heights at least down to 0.25N. © 2008 Optical Society of America

OCIS codes: 290.5880, 000.5490, 280.0280.

1. INTRODUCTION
First, let us define the following acronyms:

e KA: Kirchhoff approximation

e KA1l: First-order Kirchhoff approximation

e TKA: Iterated Kirchhoff approximation

e GOA: Geometric optics approximation

e PILE: Propagation-inside-layer expansion method

e FB-SA: Forward-backward method with spectral ac-
celeration

Bistatic electromagnetic scattering from dielectric ho-
mogeneous rough layers has many applications. In the re-
mote sensing domain, it can be used to detect ocean ice,
sand cover of arid regions, or oil slicks on the ocean. In
the optics domain, it can be useful, for instance, in optical
studies of thin films and coated surfaces and in treatment
of antireflection coatings. The use of fast asymptotic mod-
els can then be of practical interest to predict the scat-
tered signal of such systems.

The study focuses here on the case of very rough homo-
geneous layers, i.e., on layers for which the considered
rough surfaces are very rough compared to the wave-
length (we will refine this point later). As stated in the In-
troduction of [1], to our knowledge, no preceding
asymptotic method allowed one to present numerical re-
sults for very rough homogeneous layers. This recently
developed method [1], which we can call the iterated
Kirchhoff approximation (IKA), can deal with either per-
fectly flat or very rough lower interfaces, the upper inter-
face being very rough.

The objective of the IKA is to obtain a simple math-
ematical expression of the bistatic scattering coefficient in
the high-frequency limit (taking the shadowing effect into
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account) in order to get a fast method for solving the prob-
lem of very rough homogeneous layers: Then in this
model the Kirchhoff approximation (KA), which is used at
each scattering point inside the dielectric rough layer, is
reduced to the geometric optics approximation (GOA).

The starting point of the method is the KA [2-6], appli-
cable to surfaces with large radii of curvature compared
to the incident electromagnetic wavelength. The model
uses the widely used KA in reflection, but also the KA in
transmission [4—6], which allows one to obtain the fields
reflected onto and transmitted through a rough interface.
This paper presents the reflection and transmission scat-
tering coefficients associated with a stack of two rough in-
terfaces and a rough interface overlying a perfectly flat in-
terface, in which the KA is iterated for each successive
scattering in reflection or transmission on the rough in-
terface(s). The paper focuses on one-dimensional station-
ary random rough surfaces and takes the shadowing ef-
fect into account [7-9].

In Section 2 of the paper, the expressions of the first-
and second-order scattering coefficients of the method are
recalled in the high-frequency limit (using the GOA).
Then the higher-order scattering coefficients of the
method are derived. A detailed analysis of the validity do-
main of the method is to follow. Last, in Section 3 numeri-
cal results are presented and compared with a benchmark
numerical method based on the method of moments to
validate the asymptotic model and to check its validity
domain. The chosen reference method is the PILE
(propagation-inside-layer expansion) method [10,11] ac-
celerated by the forward-backward method [12] with spec-
tral acceleration (FB-SA) [13-16].

© 2008 Optical Society of America
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2. ITERATED KIRCHHOFF APPROXIMATION

The studied system (see Fig. 1) is composed of a stack of
two rough interfaces (3, for the upper interface; g for
the lower interface) separating homogeneous media
Q,(a={1,2,3}). The three media ,, with relative per-
mittivity €., are assumed to be nonmagnetic (relative
permeability wu,,=1).

A. First Two Contributions in Reflection and First
Contribution in Transmission

The calculation of the first-order reflection scattering co-
efficient o, ;, obtained from the statistical correlation of
E, ; and corresponding to the scattering in reflection from
the upper interface, is relatively simple. It is defined by

(1]

ps(')/?z)
|r12(X9i)f(ki,kr;n9i)|27511(ki’kr|YQi)a (1)

g, 1 =
' la, - i

0s 0;

N. Pinel and C. Bourlier

with y;=—(k,—k:)/(@,—q,); S11(k; k|7 is the average
bistatic reflection shadowing function expressed by Bour-
lier et al. [7]; r;; represents the Fresnel reflection coeffi-
cient from the medium (); onto the medium Q;
f(ki,k,;ngi) is a projection term onto the rough surface
with n’. the normal that reflects the incident wave of di-
rection k; specularly in the direction k,; and p; is the sur-
face slope probability density function (PDF). One can ob-
serve that this scattering coefficient is independent of
both the frequency and the surface height statistics and
can be applied for any given slope statistics.

In contrast, the calculation of the second-order reflec-
tion scattering coefficient o, 5 is much more complicated.
This nontrivial calculation was not presented before;
therefore it is reported here in Appendix A. Neglecting the
anticoincidental contribution that may contribute only
around the backscattering direction (for more details, see
Subsection 3.1.1 of [1]), one can obtain a simple expres-
sion of the second-order scattering coefficient o, 5, defined
by [1,17]

1 +7/2 +7/2 o oo ps('ygél) .
Or2= f f d0—,1d0+,1|t12(Xti)g12(ki’k—,l;nti)| fslz(kwk-,ﬂ)’ml)
cos '91' —m/2 J —7/2 |Q—,1 - (kl/kz)qi|
0 o ps('ygBl) 0
X ‘r23(/\/r—,1)f(k—,l’k+,l;nr—,1)|2 N N S2z(k-,1,k+,1|7r31)
|Q+,1 - Q-,1|
0
Ps(%ia,)

X ‘t21(X?+,1)g21(k+,1,kr§n?+,1)|2 SQl(k+,1’kr|ygAz)' 2)

|G, - (ko/k1)q. 1l

To obtain physical results for grazing angles for the
case with shadow, the configurations of 6, ; and 6, (see
Fig. 1) that induce local scattering angles greater than
7/2 in absolute values must be omitted. The slopes
y?Al, ySBl, ygAz are defined by [1]

Yoa, =~ (k1= k)g-1-qy), (3)
Wp, == (k1 —k_D/(q.1-q-1), (4)
Yo, = = (k= Ry /(@ - q. 1) (5)

tqp is the transmission Fresnel coefficient from the me-
dium (), into the medium Qg; f and g,z are projection
terms; and

S12(ki’k—,1| Y?Al), S22(k-,1,k+,1| 7931), S21(k+,1’kr| 7242)

are the bistatic shadowing functions in transmission from
the medium (); into the medium ()5, in reflection inside
the medium ()5 and onto the medium ()3, and in transmis-
sion from the medium , back into the medium Qq, re-
spectively [7,8].

Thus, the problem can be reduced to only twofold inte-
grations, which enables a fast numerical implementation.
One can observe that under the GOA, expression (2) can
be applied for any given slope statistics and is indepen-
dent of the frequency and of the surface height statistics
(within the validity domain of the model). Moreover, as-
suming that the points of successive scattering A;, By,
and A, (see Fig. 1; this assumption will be discussed later)
are uncorrelated, this expression appears as the product
of three elementary scattering coefficients of single inter-
faces (which we will denote 3‘2{2, sﬁ b3, and 3‘251), each one
corresponding to each scattering in reflection or transmis-
sion inside the rough dielectric waveguide. Indeed, the
first one, 32}2, defined by

ps(¥a)
-1 = (kea/k2)d
XS1a(keike_ 1|74 6)

A 0 0
Si12= [t1o(xg 12k k13m0

corresponds to the scattering in transmission from point
A; of 34 into the medium Q; the second one, sf}, b3, defined
by
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Fig. 1. Multiple scattering from a rough layer. The points on the upper surface 3, are denoted as {A,A,, ...,A,}, whereas the points on
the lower surface Xy are denoted as {B{,B,,...,B,}; 0, is the incidence angle, and 6,, 6, are the scattering angles in reflection and trans-
mission, respectively, measured with respect to the vertical axis z. The positive sense is defined as clockwise.

S, 93= |r23(X9—,1)f(k—,1,k+,1;ng—,1)|2

ps(YrB )

X —322(k k. 1\%3 ), (7
q- 1|

corresponds to the scattering in reflection from point By of
3p inside Qo; and the third one, 3‘251, defined by

S,01= |t21(X?+,1)g21(k+,1,kr;n?+,1)|2
ps(¥ia,) .
X Spik, kY ),  (8)

G, — (Rofky)d, | o0 T

corresponds to the scattering in transmission from point
A, of 3,4 back into the medium ;.
Thus, 0, 3 can be expressed as

A, B, A
d6_1d6, 15, 155, 535, 1 9)

1
o-r,2(0ra 01) =
co

The twofold integrals account for the energy spread by
the rough surfaces in all scattering directions.

Using the exact same method as for o, ; and o, 5, one
can obtain the expression of the first-order transmission
scattering coefficient oy ;. Thus, o0y ; is defined by [1]

€3 1 +71/2
Ut,l(atyei) = e_cos P) de_,
1 iJ _q/2

ps(%a)
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X ——————8 (k. k_ 1| Yin,)
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X ‘t23(X?—,1)g23(k—,17kt;n?—,1)|2
ps(y?Bl) | 0
st (k_, R,y ). (10)
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As for using elementary scattering coefficients, o, 9, 0,1
can be expressed as

1,1(6,,6) = —— f d6_ 150155040 (11)
with
S;93= |t23(X?—,1)g23(k—,1,kt;n?—,l)‘2

ps(¥p)

X Sosk_1kilys).  (12)
|(It—(k2/k3)(I—,1| LTS,

As for 0, 9, the same concluding remarks can be made on
the expression of oy ;.

B. Higher Orders of Reflection and Transmission
Scattering Coefficients
The preceding expressions of scattering coefficients can
easily be extended to any order of scattering from the
rough layer, in reflection as well as in transmission. This
step can be understood using elementary scattering coef-
ficients corresponding to each scattering point in reflec-
tion or transmission inside the rough layer.

Let us define the following general elementary scatter-
ing coefficients:

ps(7)
3;4,112 =cos 6,0, 1= |r12(X9i)f(k k,; n0)|2| ‘Sll(knk |7r),
(13)
S,93= ‘rZS(X(r)—,m)f(k—,m’k+,m;ng—,m)|2
ps(yrB )
SZ2(k— ,ms +m|7rB ) (14)
|q+,m q—,m|

8, 5= tas(X)- 823k _ o kiimy. )|
ps(')/)?B”)

X Sy(k_n k), (15)
G — (Rolkg)q_,| 20
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Then one obtains
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and so on, with all propagation angles 6.,
e [-m/2;+m/2]. Thus, one can express the general ex-
pression of o, ,,, Vn=3 as

1
g n(or’ 01) = _f e f de_ 1d0+n
’ cos 6; ’ ’
(A
2(n-1)
n-1
A,
x H (d6, jn-1d0_ 5, 218r 23)st 128r 2351 51>
m=2 (22)
and the general expression of 0, Vn=2 as
Otn (6,,6,) = d6‘
n-1
B, Amiy. A1 B,
x H (dO_ 0, 18, 558, 517)S, 195, 55
m=l (23)

For the case of a perfectly flat lower interface, the ex-
pressions of the scattering coefficients are similar and
much simpler, as the general term [ J_r:gd0+’ms§'2”3 is
replaced with |ro3(6_,,)[?8(6, ,—6_,,), and for o,
the last term 5. is replaced with
lto3(6_,)|? & sin 6,— (€:9/ €:3)2sin 6_ ). Then, for this sim-
pler case, o0, 4 is computed with only one numerical inte-
gration, allowing one to obtain results quasi-
instantaneously.

As a concluding remark, one can observe that the cal-
culation of the nth-order reflection scattering coefficient
0,, demands 2(n-1)-fold numerical integrations for a
very rough lower interface and (n —1)-fold numerical inte-
grations for a flat lower interface. Similarly, the calcula-
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tion of the nth-order transmission scattering coefficient
0;, demands (2n-1)-fold numerical integrations for a
rough lower interface and (n-1)-fold numerical integra-
tions for a flat lower interface.

In addition, it is similarly worth highlighting that the
expressions of the scattering coefficients in reflection or
transmission can easily be extended (at least from a
mathematical point of view) to any number of uncorre-
lated rough layers. Indeed, the principle is the same as
before: Using elementary scattering coefficients (in reflec-
tion or transmission from the considered rough surface),
one will be able to express the desired scattering coeffi-
cient.

C. Validity Domain and Advantages of the Method
Before presenting the numerical results, let us summa-
rize the assumptions behind the method and their associ-
ated validity domains, as well as the advantages of the
method.

The method is based on the iteration of the KA at each
scattering inside the rough layer. Then the hypothesis as-
sociated with the KA applies here on all the rough sur-
faces. That is to say, one has the following restriction for
an incident wave inside a medium (), onto a rough sur-
face 3/ [2,3,18,19]:

kapM C0S3 Xi,a > 1’ (24)

with &, the wavenumber inside Q) ,, pj; the local curvature
radius of 3y, and y; , the local incidence angle with re-
spect to the local normal to 3. This corresponds to the
fact that the surface can be assimilated, locally, to an in-
finite plane surface. Thus, this method is also called the
tangent plane approximation, and denoted TPA, or the
Kirchhoff tangent plane approximation, and denoted
KTPA (as shown in [20], the KA differs rigorously from
the TPA for dielectric surfaces; nevertheless, here this as-
similation is made as most authors do). This local crite-
rion is usually extended to a global criterion for the whole
surface as

kR cos30i’a >1, (25)

with R.j, the mean curvature radius of 3, and 6, , the in-
cidence angle inside (), with respect to the vertical axis z.
Then one obtains here

kiR s cos6;>>1, and kyR.scos® 6, ,>1, (26)

for a perfectly flat lower interface, plus
kyR pcos® 6_, > 1, (27)

for a rough lower interface. For Gaussian height PDF and
Gaussian height correlation, R, can be evaluated for
small slopes by the approximate expression [21]

R Lau w142 i 28)
~ — +——,
M2 160,y 2L%,

with oy, Loy the considered surface root-mean-square
(RMS) height and correlation length, respectively. Several
authors [21,22] presented more general expressions of the
statistical average of the surface curvature radius, R, ),
=(pyp in order to better evaluate the validity domain of
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the KA. One must rigorously study the statistical average
over the whole quantity pjs cos® x; ..

To be specific on the KA, in this paper only single scat-
tering from the same interface is taken into account; i.e.,
multiple scattering from a single interface effect [23—25]
is not taken into account. Then only the first-order KA
(denoted as KA1) is considered here, which reduces the
validity domain to gentle rough surfaces, i.e., to small-to-
moderate RMS surface slopes, 0,=<0.3 [25-29].

Then, based on the iteration of KA1l (IKA1) for each
scattering inside the rough layer, the method is reduced
to the high-frequency limit, using the GOA for each scat-
tering. Therefore, this method can be denoted as IKA
+GOA in general. Under the GOA, it is usually said that
the rough surfaces are very rough as compared to the
wavelength. More precisely, this restrictive hypothesis is
related to the Rayleigh roughness criterion [3,30,31]

Ra}! 5=k 03 cos 6, ,> 7/C, (29)

with Ra%lg the Rayleigh roughness parameter expressed
in reflection from the surface ¥, inside the medium Q,
and onto the medium ()4, and C a constant, which is usu-
ally taken between 2 and 7. Indeed, for a Gaussian height
distribution, the coherent reflection power loss A, in the
KA is given by (see, for instance, Subsection 2.B of [32])

Acoh = exp(—gz), (30)
with g=2Ra

rap Which leads for C=m to A, <-17.4dB
and for C=2 to A,,;,<-42.9dB. Let us note that taking
C=1 and not considering the incidence angle 6;, which
corresponds in vacuum to the commonly written criterion
of validity of the GOA (i.e., g,=\/2), leads to A,y
<-171.5dB. This criterion is very restrictive. Indeed, as
confirmed by the numerical simulation results in [32], one
can reasonably take C=2 as a general limit of validity. As
a consequence, by taking C=2, the criterion of validity of
the GOA should rather be expressed as

NPP(6)
4 b

(31)

o-hM">‘

with NPP(6;)=\,/cos 6;, which can be seen as a wave-
length apparent along the normal to the mean surface
[33].

Nevertheless, even though calculating A,,;, can give an
idea of the validity of neglecting the coherent power, first
one must keep in mind that this remains a qualitative cri-
terion. Indeed, the GOA is valid if the coherent scattered
power is negligible in comparison with the incoherent
scattered power (one can find in Appendix B the calcula-
tion of the coherent scattering coefficient from a single
rough interface under the KA1). Then rigorously calculat-
ing the coherent scattered power and comparing it with
the incoherent scattered power allows one to determine
the effective validity domain of the method. Second, as
shown in [9,31], this classical Rayleigh roughness crite-
rion is valid only in the case of reflection onto the consid-
ered surface. Then, for the case of transmission through a
rough surface 3, from the medium (), into the medium
%Bi, g‘ﬁhe Rayleigh roughness parameter Ra%s becomes

Vol. 25, No. 6/June 2008/J. Opt. Soc. Am. A 1297

In, cos 6; ,— ngcos 6; 4
Ral = koo 5 E =P~ me, (32

with n, the refractive index of the incident medium Q,, ng
the refractive index of the transmission medium (4, and
6; 5 the angle of transmission inside (5. Here 6,z is re-
lated to 6;, by the Snell-Descartes law n;sin6;,
=ngy sin 6, 5 (corresponding to a perfectly flat surface).
This approach, valid for a single rough interface, can be
extended to the case of rough layers. Then, as shown in
Section 3 of [31], a Rayleigh roughness parameter in re-
flection Ra, , and in transmission Ra,, can be associated
to each order n of scattering from the rough layer (see Fig.
1) in order to define a qualitative criterion of applicability
of the IKA+GOA for each scattering order n. Thus, for
uncorrelated rough surfaces, one obtains Ra,,lzRaflz,
Ra},=(Ra}y,)*+(Rafyy)?, and Vn=>2:

Ra?, =2(Rajy,)* + (n - 1)(Raby)® + (n - 2)(Raly)?,
(33)

Ra}, = (Rajy,)* + (Rafs)? + (n - D[(Rabys)? + (Raly)?],

(34)

the angles of propagation being 6; inside ()4, 6y given by
nisin 6;=nqy sin 6, inside gy, and 63 given by ngsin 6,
=ng sin 63 inside 3. For the case of a flat lower interface,
the Rayleigh roughness parameters Ral,=Ra5;=0. For
a rough lower interface, one can notice for €.4>¢€,; that
RaB,>Ra%,. As a consequence, Ra, 9>Ra,;, and the
higher orders being superior to Ra, 5, one has

Vn=2, Ra,,.1>Ra,,>Ra,;. (35)

One must note that these results are obtained under the
hypothesis of uncorrelated surfaces, which is the hypoth-
esis under which the scattering coefficients were derived.
One can find in Appendix C the expressions of the coher-
ent scattering coefficients of%" and 0%, which give a
quantitative criterion of applicability of the IKA+GOA.

Considering uncorrelated surfaces implies a restriction

on the mean layer thickness H. Indeed, from a physical
point of view, the two surfaces do not have to cross each
other, which implies for a flat lower interface the follow-

ing statistical criterion (for Gaussian height PDF): H
=40y,4. Similarly, for a rough lower interface, it would im-

ply the statistical criterion H=4(oy4+ 03,5). Nevertheless,
as the two surfaces obey independent statistical pro-

cesses, the constraint can be reduced to, let us say, H
= 3(opa+0y,p). Moreover, the method assumes that the
points of successive scattering inside the rough layer are
uncorrelated between one another, which could reduce its
applicability for uncorrelated surfaces to slightly larger
thicknesses. Nevertheless, this supplementary restriction
on the layer thickness is not significant: The first condi-
tion implies in practice the second one.

Moreover, in the calculation of the second-order scatter-
ing coefficient (as well as for higher orders), the anticoin-
cidental contribution (which occurs only around the back-
scattering direction) was neglected, which restricts the
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applicability of the method to layer thicknesses H obeying
[1,34] (at least for a flat lower interface)

_ /€,
B<—"_R,, (36)

’/E_— | €,
V&2~ Vér1

with R.4 the mean curvature radius of the upper inter-
face.

As written previously, the model can take lossless as
well as lossy media into account. Still, one can notice that
the expressions of the scattering coefficients are indepen-

dent of the layer mean thickness H (neglecting the anti-
coincidental case), which means that the model itself can-
not determine a layer thickness. This corresponds to the
use of the GOA, in which the phase term is not taken into
account (the phase being uniformly distributed between
— and +). Thus, the model itself cannot deal with lossy
inner media (Qy, with €9=¢€.9eC\R). Nevertheless, it
was shown in Section 7 of [1] that making minor adjust-
ments to the model allows one to deal with lossy media
with good accuracy.

In particular, the propagation loss A, 5 of the second-
order scattering coefficient in reflection o, 5 can be evalu-
ated for a Gaussian height distribution and by consider-
ing flat interfaces, Affz. It is then given approximately by

[1]
A, g = AP = exp(- 4koqH/cos 7). (37)

Then the propagation loss A, , associated with the
nth-order scattering coefficient in reflection o, , is given
by A, ,=(A,2)"1, with n=2. Similarly, the propagation
loss A, ; associated with the first-order scattering coeffi-
cient in transmission oy ; is given by A, 1=(A, 5)V2. Thus,
the propagation loss A;, associated with the nth-order
scattering coefficient in transmission o, is given by
A; p=(A, )" V2, with n=1.

One last condition deals with the applicability of the
geometric shadowing functions used (which, strictly
speaking, are valid only for monoscale rough surfaces).
They do not take the penumbra effect [35] into account,
which, in practice, contributes for very low grazing angles
[see Eq. (18) of [35]]. Indeed, for the typical applications
presented here, the geometric shadowing functions can be
applied with good approximations up to scattering angles
of the order of 85—87 deg in absolute value [1].

In summary, the validity domains of the method are
given by the following conditions:

1. KA: k1R 5 cos® 6;>>1 and kyR,4 cos® 6, ,,>>1 for a flat
lower interface, plus kyR.p cos? 0_,,>1 for a rough lower
interface.

2. KAl: 0,<0.3.

3. GOA: Great layer -electromagnetic roughness
{Ra, ,,Ra,,}>w/C, with C~=2, so that the incoherent
scattering coefficient equals the scattering coefficient (the
coherent scattering coefficient being neglected).

4. U-IKA (uncorrelated surfaces): H=40;, for a flat

lower interface, H=3(oj4+0p,p) for a rough lower inter-
face.

5. Neglecting the anticoincidental contribution: H
<=2 RCA'

VE2TNE
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6. Applicability of shadowing functions: scattering
angles |6,| =87°.

The main advantages of the method can be listed as fol-
lows:

e It is independent of the height distribution and of the
frequency (at least for lossless media and when the anti-
coincidental contribution can be neglected).

e It can deal with any given slope distribution.

e It can deal with lossless as well as lossy media.

e [t can treat very rough or perfectly flat lower inter-
faces.

e It is easy to implement, robust, and fast in computa-
tion.

3. IMPLEMENTATION AND NUMERICAL
RESULTS

A. Numerical Implementation

It is possible to optimize the method’s computing time,
which is directly related to the number of sampling points
in the numerical integrations to calculate. That is to say,
in general it is not necessary to integrate over the propa-
gation angles 6, , in the whole range [-7/2;+7/2], as
some values of propagation angles have a very low contri-
bution. Under the IKA+GOA, the scattering coefficient
appears as the product of elementary scattering coeffi-
cients corresponding to each scattering inside the rough
layer. Each scattering coefficient is proportional to the
considered surface slope distribution, which plays a major
role in the scattering coefficient o. Then, as a first ap-
proximation, one can consider only the slope distribution
in the expression of ¢ in order to delimit the effective con-
tributing range of the scattering coefficient over the
propagation angles 6, ,,.

By considering the limit angles B;”ifl, 0y, correspond-
ing to a surface slope yyr= +ny 04y, with oy, the RMS sur-
face slope of considered surface and ny; a real number to
be chosen (which is typically taken between 3 and 4 for a
Gaussian distribution), one can estimate the correspond-
ing limit propagation angles. Indeed, the local incidence
angle y; , is given by

Xi.a= 0; .+ arctan yy. (38)

Then the scattering angles in reflection 6, , and in trans-
mission 6, , are given by

6, == Xio— arctan yy =—- 6, ,— 2 arctan yy, (39)

€r1
b0 = arcsinl 1/ —sin )(i,a] — arctan vy, (40)
€2

respectively. Thus, 0;”;” and 0;”;” are given by 7y
=+ny0gy, and 677 and 6]°;" are given by yy=-nyogy.
In the next sui:)section, numerical results of the inco-
herent scattering coefficient from different rough layers,
with various configurations, are presented first for a
rough layer with a rough lower interface, and second for a
perfectly flat lower interface. The results are computed
for homogeneous media, with €,9=3 and €,3=i (the upper
medium being the air, assimilated to vacuum, so that €,
=1). The surface RMS slope is taken as o,4=0,5=0.1. The
incident wave has V polarization. The influence of the
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mean layer thickness H and of the surface RMS heights
0,4 and oy, will be studied in order to check whether they
influence the scattering coefficient and to check condi-
tions 4 and 5 on H and especially condition 3 on o}, and
OnB-

The results of the total scattering coefficient oﬁ"fl
=3}_,0,; from the IKA+GOA are plotted by comparison
with the reference numerical method, namely, the PILE
method [10] accelerated by the FB-SA [11], for different
orders of scattering. The numerical parameters of the
PILE method are the surface length Lo=L,=Lg=400\,
the number of sampling points of each interface n;=4000,
the number of realizations of the Monte Carlo process N
=70, and the attenuation parameter of the incident Thor-
sos wave g=Ly/6. The forward-backward method is used
at order 8 for the upper surface and at order 2 for the
lower interface, and the spectral acceleration is computed
with a distance of strong interactions equal to three times
the surface correlation length (which makes it at least 8.5
electromagnetic (EM) wavelengths in free space for all
simulations presented here for a rough lower interface,
and equal to 7.1 EM wavelengths in free space for the
simulation presented here for a flat lower interface).

B. Numerical Results for a Rough Lower

Interface

First, numerical results of the incoherent scattering coef-
ficient are presented for a rough lower interface. Figure 2

presents results for a mean layer thickness H=6\, and
the two surfaces 34 and 3p have the same statistical pa-
rameters: The surface RMS height oj,4=0,5=0.2\ (the
surface RMS slope being o,=0,=0.1). The incident
wave (of V polarization) has an incidence angle 6;=0°. The
results from the IKA+GOA are plotted by comparison
with the reference numerical method, namely, the PILE
+FB-SA, for different orders of scattering.

——1 PILE+FB-SA

—6—1 |IKA+GOA
1-2 PILE+FB-SA|

0 1-2 IKA+GOA

= = = 1-3 PILE+FB-SA

Incoherent Scattering coefficient ¢ (dB scale)
1
N
o

-90 -60 -30 0 30 60 90
Observation angle (deg.)

Fig. 2. (Color online) Simulations of the contributions of the
first three orders of the total incoherent scattering coefficient o’
(in decibel scale) versus the observation angle 6, (in degrees) for
V polarization and 6,=0°, with H=6\, for relative permittivities
€9=3 and €.3=i%, and the surface RMS slope o, =0,3=0.1. For
both surfaces, the surface RMS height o},4=07,5=0.2\. In the leg-
end, the numerical reference method is denoted as PILE
+FB-SA, and the asymptotic method as IKA+GOA.
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Concerning the first-order incoherent scattering coeffi-
cient, which corresponds to the scattering from only the
surface X4, there is a good agreement between the IKA
+GOA and the reference method. The differences for scat-
tering angles |6,| greater than 40°, which have low contri-
butions (less than —30 dB), can be attributed to the con-
tributions of multiple scattering (mainly double
scattering) from the interface. The contribution of the co-
herent first-order scattering coefficient of the reference
method is plotted in Fig. 3 for comparison. One can ob-
serve a sharp enhancement of its contribution in the
specular direction, whose level is approximately 5.6 dB
lower than the incoherent contribution. In this case, the
reflection Rayleigh roughness parameter Ra‘;‘12
=kiopa cos ;,=1.26, and thus the reflection Rayleigh
roughness (qualitative) criterion Ra?,>n/C, with C=2,
is not strictly valid. Nevertheless, it is close to the limit of
validity, which is confirmed by the numerical results. In-
deed, a 5.6 dB difference is not sufficient to consider that
the coherent component can be neglected, but its contri-
bution is low. Then, for a bit higher values of RMS
heights, the criterion will be valid: For instance, for o4
=0.25\, numerical results not presented here show that
the coherent component is at least 15 dB inferior to the
incoherent component.

For the higher-order contributions of the scattering co-
efficient, first, the second-order contribution highlights a
very good agreement between the IKA + GOA and the ref-
erence method in all scattering directions. Only small dif-
ferences appear for grazing scattering angles |6,| =80°,
which can be attributed to the contribution of multiple
scattering from the same interface (moreover, for |6,|
=87° the IKA+GOA using geometrical shadowing func-
tions begins not to be valid any more). Furthermore, one
can see in Fig. 3 that the coherent contribution in the
specular direction is approximately 12 dB lower than the
incoherent contribution, which means that in this con-
figuration the coherent contribution can be neglected: The
IKA +GOA can be applied to determine the scattering co-
efficient, which can be assimilated to the incoherent scat-
tering coefficient. The latter result differs from that of the
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Incoherent Scattering coefficient ¢ (dB scale)
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Fig. 3. (Color online) Same simulation parameters as in Fig. 2:

Comparison of the incoherent and coherent contributions of the

PILE+FB-SA numerical reference method for the first- and

second-order contributions.
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first-order contribution, where the difference was not so
significant. This can be understood by the calculation of
the Rayleigh roughness parameter associated with this
scattering coefficient, Ra, y=[2(Ras},)?+(Raby)?1V2. Tt is
composed of twice the elementary Rayleigh parameter in
transmission from the upper interface, Ra‘?lz, and the el-
ementary Rayleigh parameter in reflection from the lower
interface, Ra®,,. Note that Ra®,; is in general superior to
Ra%, for o,p=03,4 and k2>k1 Here, as 6,=0, Rab,
—\aRarlz and equals Ra%;=2.18>7/2, which means
that the coherent contribution can be neglected. More-
over, as Ra’=(\es-1)/2XRa’, which equals Ra’,
=0.46, the Rayleigh roughness parameter associated
with the second-order scattering coefficient Ra, 5=2.27
>m/2. Because the first-order contribution o, ; is negli-
gible against the second-order contribution o, 5 in the to-
tal second-order contribution 07%=0,.1+ 0,5, this qualita-
tive criterion is then in agreement with the numerical
results. This is an interesting result, because for a rough
lower interface, it means that even though in the case of
the upper interface alone, the Rayleigh roughness crite-
rion Ra, ;=Ra’;, is not superior to 7/2 (which means that
the coherent contribution cannot be neglected in compari-
son with the incoherent contribution, corresponding to
the applicability of the GOA), it can be the case for the
whole system, because the higher-order Rayleigh param-
eters Ra, ,>Ra,; (with n=2). It is the case here, which
means that for such a configuration, the IKA+GOA can
be applied to lower RMS surface heights ¢y, than previ-
ously expected—at least down to 0.2\ when o4 =035.
The third-order scattering coefficient o, 3 contributes
very weakly to the total scattering coefficient %% 3_cr, 1
+0,9+0, 3, and only for grazing 6,. The results of from
the IKA+GOA differ from the second-order contrlbutlon
r,2 ! only for grazing scattering angles, and the same con-
clusions can be drawn. Then the higher-order contribu-
tions can be neglected. Similarly, because the coherent to-
tal contribution is of the same order as the one of the
second-order scattering coefficient, it can be neglected.
Thus, for this configuration, the calculation of the first
three orders of the scattering coefficient is sufficient in or-
der to quantify the scattering from such a system. The
IKA+GOA gives good agreement with the reference
method in such a case. This method is then an interesting
means to quickly compute the total scattering coefficient.
Indeed, by using the optimization described in Subsection
3.A, the results were obtained in only 4 ms for oj and in
1.5s for r3 for given 6; and 6, (with 6, 15, 31, and 21
sampling points for the numerical integrations over 6_;,
6,1, 0_9, and 6, o, respectively) with a standard personal
computer (2.33 GHz biprocessor, 1.96 GB RAM) using
MatLab. The computing time for the PILE + FB-SA refer-
ence method on the same computer is of the orders of 11,
14.5, and 21 min for PILE up to orders 3, 4, and 6, respec-
tively, for each realization, which makes 13, 17, and 25 h,
respectively, for 70 realizations. One property of the IKA
+GOA is that under the GOA, the phase of the total scat-
tered field on the upper surface is uniformly distributed
between —7 and +. For all configurations studied here,
results from the reference method allowed us to check
this property.

N. Pinel and C. Bourlier

Figure 4 presents results for the same parameters as in

Fig. 2, except for §;=—5°, H=5\ and different RMS sur-
face heights 0,4=0.35\, 0,5=0.25\. The results from the
first-order scattering coefficient ol{=0,; of the IKA
+GOA are in very good agreement with the reference
method, and the small differences (with very low levels)
that appear away from the specular direction can be at-
tributed to the multiple scattering effect. Moreover, the
coherent contribution is approximately 12 dB lower than
the incoherent one and can be neglected, which means
that the GOA is valid. This is confirmed by the first-order
Rayleigh roughness criterion Ra, ; =Ra‘f12 >m/2=1.57, as
Ra, 1= =2.19.

The results from o’% n2=0.1+0, 5 also highlight a very
good agreement between the IKA+GOA and the reference
method for all scattering angles 6,. The small differences
(with low levels) that appear for grazing 6, can be attrib-
uted to multiple scattering from the same interface effect.
The same observations and conclusions can be drawn for

The differences between o‘t and oj ’y are very small
and appear only for low contrlbutlons at angles |6.] =60°.
Moreover, the higher-order contributions, o}% (with
n=4), can be neglected. The coherent contrlbutlons (not
presented here) can be neglected in comparison with the
incoherent ones (as Ra,3=2.95>7/2 and Ra,,
>Ra, o Vn=3), which validates the IKA+GOA. Compar-
ing these results with the ones in Fig. 2, we conclude that
the method can be applied for different mean thicknesses

H and different RMS surface heights 0,4 and 0,5 (where
o4 and oy, can be different). This confirms the theoreti-
cal results, which predicted that under conditions 3, 4,

and 5, the numerical results are independent of H, a4,
and o, hB-

Figure 5 presents simulation results for the same pa-
rameters as in Fig. 2, except for 6,=-20°, H=3\, and dif-
ferent RMS surface heights oj,4=0.25\, 0;,5=0.35\. Simi-
lar to the preceding two configurations, the first-order
contribution tJ"“"1 o, highlights a good agreement be-
tween the IKA+GOA and the reference method, and the
same conclusions can be drawn. For the second-order con-

——1 PILE+FB-SA
—e—1  IKA+GOA
1-2 PILE+FB-SA
of 1-2 IKA+GOA
- = = 1-3 PILE+FB-SA )
6~ 1-3 IKA+GOA |

Incoherent Scattering coefficient ¢ (dB scale)
1
N
o

-60 30 0 60 90
Observation angle (deg )

Fig. 4. (Color online) Same simulation parameters as in Fig. 2,

but with 6,=-5°, H=5\ and different RMS surface heights oy,
=0.35\, 0,3=0.25\.
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Fig. 5. (Color online) Same simulation parameters as in Fig 2,

but with 6,=—-20°, H=3\, and different RMS surface heights
O'},A=025)\, O'hB=0.35)\.

tribution a{‘jé:o-r’1+(rr’2, one can also observe a very good
agreement, especially in forward directions (i.e., for 6,
>0). In backward directions 6,<0, differences appear for
0.<-40° and increase when 6. decreases. The IKA
+GOA underestimates the incoherent scattering coeffi-
cient, which can be attributed to multiple scattering from
the same interface effect (which is not taken into account
here in the model). The same observations and conclu-
sions can be drawn for the third-order contribution r"é
=0,1+0,9+0, 3. Then the higher-order scattering coeffi-
cients o, ,,Vn=4, do not contribute to the total scatter-
ing coefficient and can be neglected. Once more, the re-
sults confirm that in the validity domain of the IKA

+GOA, 0% is independent of H, 0,4, and oyp.

C. Numerical Results for a Flat Lower Interface
Figure 6 presents results for the case of a perfectly flat
lower interface. The simulation parameters are identical

to the ones of Fig. 2, except that 6;=—5°, H=2\, oy
=0.25\, and 0,4=0.15. The contribution of the first-order
(incoherent) scattering coefficient %% ’1=0,1 highlights a
very good agreement between the IKA+ GOA and the ref-
erence method around the specular direction. The differ-
ences that appear for §,=<-45° and 6,=55° can be attrib-
uted to multiple scattering from the same interface effect.
This effect is a bit higher here than before: Indeed, the
multiple scattering effect increases as the surface RMS
slope 0,4 increases. In Fig. 7, one can observe that the co-
herent contribution is approximately 14 dB lower than
the incoherent one and can thus be neglected. This ob-
served difference is in rather good agreement with the
qualitative Rayleigh criterion Ra, ; > 7/2, as the Rayleigh
roughness parameter equals Ra, ;=1.56= /2.

The second-order contribution a‘t =0, 1+0, 9 highlights
a good agreement between the IKA+ GOA and the refer-
ence method only around the specular direction. This can
be attributed to multiple scattering from the same inter-
face effect. From Fig. 7, the coherent contribution in the
specular direction is approximately 6 dB lower than the
incoherent one. This difference is a bit higher than the
prediction from the qualitative criterion Ra, o> /2, as
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Fig. 6. (Color online) Same simulation parameters as in Fig. 2,

but for a perfectly flat lower interface, with 6,=-5°, H=2\, o4
=0.15, and 03,4=0.25\. The fourth-order contribution is plotted
here for both methods. Then, for the sake of clarity of the figure,
the third-order contribution is not represented.

here Ra, =0.81. This highlights limitations of this quali-
tative criterion, which is here a bit too restrictive. Never-
theless, for #,=0°, this qualitative criterion is valid, as the
observed difference is approximately 1dB, and Ra,
=0.81. The third-order contribution O'tOt (which is not rep-
resented here for the sake of clarity of the figure) high-
lights a good agreement between the IKA+GOA and the
reference method for all scattering angles. The small dif-
ferences that appear away from the specular direction can
be attributed to multiple scattering from the same inter-
face effect. The same observations and conclusions can be
drawn for o}’ %, which, compared to - % contributes very
weakly to the scattering process, and only for grazing ,.
The higher-order contributions can be neglected here.
Thus, the calculation of the first four orders of the scat-
tering coefficient is enough to quantify the scattering
from such a system. As for a rough lower interface, the re-

sults do not depend on either H or o4, which is in agree-

Inc. 1

------ Coh. 1
Inc. 1-2

0 = = = Coh. 1-2

Incoherent Scattering coefficient ¢ (dB scale)
1
N
o

% -60 -30 0 30 60 20
Observation angle (deg.)

Fig. 7. (Color online) Same simulation parameters as in Fig. 6:

Comparison of the incoherent and coherent contributions of the

PILE+FB-SA numerical reference method for the first- and

second-order contributions.
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ment with the predictions of the IKA+GOA. Compared to
the rough lower interface, for a flat lower interface the
condition of validity on o}, is a bit more restrictive, as one
must have o34 =0.25\ (for moderate 6;).

For lossy inner media, the numerical results (not pre-
sented here) highlight a good agreement between the
IKA+GOA and the reference method. As shown in Section
7 of [1], taking only the propagation loss [given by Eq. (37)
for the second-order contribution] into account allows a
good quantification of the losses from the lossy media. In
our model, the second-order contribution o, 5 is attenu-
ated by the propagation loss factor A’,’fz, and the higher-
order terms o,, (Vn=3) by the factor A‘r’fn=(A§’f2)”‘1.
Thus, the higher-order terms o, , will not contribute to
the total scattering coefficient, and only the first three or-
ders o, 1, 0, 9, and o, 3 (only the first two for a rough lower
interface) will be necessary to quantify the scattering
phenomenon.

4. CONCLUSION

In conclusion, by using the optimization expressed in
Subsection 3.A in the numerical implementation of the
IKA+GOA, it is possible to obtain numerical results of
the total scattering coefficient that are in very good agree-
ment with those of the reference method. The results are
obtained quickly, as the necessary computing time for
given 6; and 6, is at most 1.5 s with a standard personal
computer (2.33 GHz biprocessor, 1.96 GB RAM), using
MatLab. For a rough lower interface, as a general rule the
first three orders of the scattering coefficient are enough
to correctly quantify the scattering phenomenon from the
rough layer, and for a plane lower interface, the first four
orders are enough.

The numerical results confirmed that under hypotheses
4 and 5, in the validity domain of the IKA+GOA, the re-

sults are independent of the mean layer thickness H for
lossless media. Each scattering coefficient contribution
a";"fl is well quantified by the IKA + GOA. The observed dif-
ferences with the reference method can be attributed to
multiple scattering from the same interface effect. Then it
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could be interesting to calculate this contribution in the
model in order to quantify the contribution of each mul-
tiple scattering phenomenon. The contribution of double
scattering in reflection from the same interface could
rather easily be incorporated, as other papers present re-
sults for this specific contribution [23—-25].

In addition, in the validity domain of the IKA+GOA,
the numerical results confirmed that the scattering coef-
ficient is independent of the RMS surface heights 0,4 and
op,p (which can have different values). Moreover, the use
of the (qualitative) Rayleigh roughness criterion is a good
means to evaluate the validity of neglecting the coherent
component of the scattering coefficient (which corre-
sponds to the validity of using the GOA to quantify the
scattering coefficient). By defining a Rayleigh parameter
Ra, , associated with each scattering coefficient o, ,, from
the rough layer, it provided us an interesting means to
evaluate the validity domain of the GOA of the IKA
+GOA in a simple and fast way. It allowed us to observe
that for one rough interface, the GOA can be applied for
RMS surface height 0,4 down to approximately 0.25\ (for
moderate incidence angles 6;), which is in agreement with
results from [32]. For two rough interfaces, the same con-
dition applies, and when the first-order contribution can
be neglected in comparison with the second-order one
(like here where €9 is close to 1 and €,3 is much greater
than 1), it can be applied to even lower RMS surface
heights. For instance, when 0,4 = 0},3, it can be applied for
moderate 6; down to at least 0.20\ (and nearly 0.15)).
Thus, the IKA+GOA method provides an interesting
means to calculate scattering from rough layers, which
can be of moderate roughness oy,

APPENDIX A: CALCULATION OF THE
SECOND-ORDER REFLECTION SCATTERING
COEFFICIENT o, ,: COINCIDENTAL
CONTRIBUTION

In this appendix, to facilitate notation, we choose to sub-
stitute the subscripts —,1 for — and +,1 for +. Then the
second-order reflected scattered field E, 5 is written in the
far field as [1]

k2 2 kl 1/2 .
E,,2=< ) (_ Egei =4 f d0.d6,dxy dup dxg,Z(xa ) Exp ) E(xa)t12(xp)g 12k k)

Zr 27r

Xrog(X)f(k_ k0 )to(X0)go1 (R, kyinl, el KiTakeray) oithTa g thorp 0 (A1)

with XA, ,XB, XA, € [-Lo/2;+Ly/2], and 0_,06,
e [-m/2;+m/2]. The scattered field E: , is obtained from
taking the complex conjugate of Eq. (A1) and substituting
the variables {6_, 0+,k_,k+,xAl,xBl,xA2,zA1,zBl,zA2} for
{HL, GL,kl,k_:_,xA' »XB!',XA! ,ZA" ,ZB! ,ZA'}. Indeed, as the
- 178 AR AT Ay T

points of successive scattering are a priori different, the
propagation directions and angles are different.

To calculate the power p, s=(|E, /%), the GOA is used
on both interfaces, at each point of scattering A;, By, and
Asy. It implies that only closely located correlated points
contribute to the scattering power. Here two different
cases can be considered: First, the coincident case, where
the point A] is close to A;, B is close to By, and A is close
to Ay. Second, the anticoincident case, where the point A]
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is close to Ay, Bj is close to By, and Aj is close to A;.The
anticoincidental case contributes only around the anti-
specular (backscattering) direction. Here we focus on the
coincidental case.

Both surfaces being stationary, the following variable
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transformations from
{24,,28,,24,,241,28] 24} 1010 {2,,41,2mA2,2pA1,2pB1,2pAs}
are used.

The GOA is used on both interfaces. Then only closely
located correlated points of the surface contribute to the

The same variable

scattering coefficient, and the following approximations
can be made: z,41=24;-24,~ ¥a,(¥a!~%4))=VA Xma1s
ZmB17~ ylemBl’ ZmA2™~ yAzxmAZ, XpA1=XA! +xA1z2xA1a ZpAl
=2a1+24, =224,  Xpp1~2Xp,  ZpB1~22p, Xpa2=Xa,
and zps2~z4,. This way, the real variable transform-
ations made are {xAl,xBl,xAZ,xAi,xBi,xAr} into
{xa 2B %A, XmA1,Xmaz}. Then the expression of the sta-
tistical correlation of E, 5 is given by

transformations from {xAl’xBl’xAz’xAi’xB{’xAé} into
{xmAlvxmA27pr1 »>XpB1 ,prZ} are used:

e

XmA1 = XA = XA, x4, = (Xpa1 — Xpa1)/2

XmB1=¥B! ~XB, xa1 = (Xpa1+ Xpa1)/2
) xp, = (x,B1 = Xpnp1)/2

= . (A2
xp! = (Xpp1 +Xpp1)/2 (42)

XmA2 = XA~ X4,
XpA1 =.’X7Ai +.?CA1

XpB1 =X +Xp, xa, = (Xpa2 = Xmag)/2

Xpaz =Xa) + T, 42 = (Xpaz + X;na2)/2

ks

4
ky L .
(E, o = ( %) Y- |Ef? f dxy dxg dx g Ao a10%,510%,,45d 0-d 0. 0,d 0, t15(x)E 1, (X, @12k ks g 12k,

7.0 0N.% (1 O\ L .20 71 1.1...0 0\ 10 . 7. ...0 . 7 ...0
Xk—inti)r23(Xr—)r23(X — )f(k—,k+’nr—)f(k_,k+’nr—)t21(Xt+)t21(Xt+ )g21(k+’kr’nt+)g21(k+’kr’n't+
. 7 71 7 *7 1 7 *7 1 7 ®7 1
Xefllbah bk o b b o i M (1) B ) B () B ) E ) B o)
s @ik kit v @)+ (ko _+h 3R+ y,a (kod +EA V2 a10-i/2 (kak_+k k! ~kok k5 )+, (kod_+k3G" ~hod,—k3 ) Womp1

s @itk1(yt 0,8, [ (ok +hsk ) ya (Rod +E5G L)]/2}xmAzei[—<kzé_—k;é’,)zA1+(kz<?_—k§éi—kzé++k§@i>ZB1+<kzé+—k§@i>ZA21>, (A3)

with {x,,41,%,81,%ma2} € [~Lo; +Lol. In the latter equation, the random variables are {z4,,2p,.24,, ¥4, ¥8,> Ya,, =}, With
E=[E(ra1)E(xp1)E(xg0)E(xa:1)E(xp11)E(xar2)]. The PDF p(z ,2B,,24,,VA,> ¥B,» YA,» =) is expressed in terms of the condi-
tional density p(E|z4,,28,,24,, ¥4, ¥B,> ¥a,) 28

P(24,,2B,,24,, YA, VB, YAy =) = D(24:2B,,24,, Ya s ¥B,> Ya,) X P(Bl2a,,28,,24,, Y, VB, Ya,)s (A4)
where the last term in Eq. (A4) is expressed by
P(Elza, 28,524, Ya,» VB Ya,) = S1201(0:5 0_, 0., 0.]24,,2 24, Va > VB> Ya,) OB ~ 1)
+[1-81991(6,,0_, 0., 6,|2a,,2,,24,, Va > VB, Ya,) JO(E), (A5)

with 2, I=[11 1 1 1 1] are vectors of length six; p(ZA1’231’ZA2’ YA, VB> YAZ) stands for the surface height and slope joint
distribution, whose covariance matrix is expressed as follows:

1A !
ozhA PAB, PALA, 0 PAB, Pa,aA,
’ !
PA,B, oip PB.A, = PA,B, 0 PB A,
4 7
PAA, PB A, ooa ~PaA, ~PB,A, 0
[C6] = 0 o 7 0_2 " U . (AG)
PA.B, Pa,A, SA PA,B, Pa,A,
! 7 U U
PA,B, 0 ~PB,A, PA.B, o’y PB.A,
’ ’ ’ U
PA LA, PB A, 0 PA LA, PB A, N

[
In addition, p(0)=07, p'(0)=0, and p"(0)=-0> (o is the
RMS slope of the surface considered). For a stationary
process, one can note that the covariance matrix is inde-
pendent of {x,,41,%,B1>%ma2}-

It must be noted that the height correlations p are even,
where pa 4,=p(xa,a,)=pxa,—x4,) is the height autocorre-
lation of 34, and PA,B,> PB,A, are height cross correlations
between 34 and Xp. As p is even, p’ is odd, and p” is even.
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Then the statistical averaging in Eq. (A3) over the illu-
mination functions yields

<E> = 81221(01'7 0—, 6+’ 0r|ZA1’ZB1’ZA21 7A17 7315 'yAz) . (A7)

Here the two surfaces are assumed to be uncorrelated,
and so are A; and Ay (x4,4,>L.a). Thus, as a general rule
in this method (for the coincidental case), all the points of
successive reflections are assumed to be uncorrelated be-
tween one another. Then the only term in Eq. (A3) that
depends on x, is the term inside the corresponding expo-
nential. As we assumed that the upper surface length
Loy> L4, the integration over xa, reduces to

+Lo/2 ) B 277_ k*
f expli(kok’ —kyk )xp ldxs, = Z k’ -k
—Ly/2 | 2|

(A8)

therefore, as £’ and k_ are both real, k; =ky (which means
that the inner medium ()4 is lossless, that is to say, €.9
eR) and k' =k_, 0/ =6_, and ' =§_. Then the integration
over 0’ can be suppressed. Using the same method for x Ay
we obtain

+Lo/2 ) ) A ) )
f explialh, - kg )y, = o, ~ ), (A9)

~Lo/2 |k

which implies that lé;:l%“ 0,=6,, and ¢;=g,. We also
have x,%=x%, x; %=x", x/ °=x", and x/,°=x?,. Then the
integration over ¢, can be suppressed. Using the same
method for xp , we obtain

+Ly/2
f eXp[LkZ(k— - ki - k+ + k;)xBl]del = LO'
-Ly/2

(A10)

Then one can notice that the term inside the exponen-
tial, which depends on the heights, equals zero. Thus, the
statistical averaging over the heights and slopes,
P(24,,2B,,24,, YA, ¥B,> YA,), reduces to the slopes only,
ps(yAl, YB,» YA, ). Moreover as the points A, B, and A, are
uncorrelated ~between one another, this reduces to

P(¥a Jps(7p )Ps(74,), and
Sl221(6i’ 6—, 6+7 6r|zA1’zBlazA2’ yAl, 7B1’ yAz)

=812(6;, '9—| 7241)822(9-, 9+| 7?31)821(9+, 0r| 7242)’

where each term is averaged over the heights.

In Eq. (A3), the only term that depends on x,,41 is the
term inside the corresponding exponential. Assuming
that Ly> L4, the integration over x,,41 leads to

+L
f expl{il(= kik; + kok ) + yia, (= R1q; + koq ) I martdxar

-L,
277 kzl;_ - kléi

T Yea, v 7 A |- (A11)
|k2||q_— (k1/k2)(Ii| koG- —k1q;

Using the same method for x,,51, assuming that L, is
much greater than the lower surface correlation length
L.p, one obtains
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+Ly
f eXp{— lkZ[(k— - k+) + 'YrBl(é— - C}+):|xmBl}dxmB1

_LO
2 ( l%+—1%_> (A12)
=0\ Vg, * T |- 12
kallg, — G| Yga-g-

+

Using the same method for x,,49, as we assumed Ly>> L4,
one obtains

+Ly
f eXP{l[(k lkr - k2k+) + 'ytAZ(k lér - k2@+)]xmA2}dxmA2

-L,
2 ( klér_kZI;%) (A13)
= o O\ Yt |
|k1||Qr—(k2/k1)Q+| 2 qur—k2q+

Thus, one obtains the expressions of the slopes given by
Eqgs. (3)-(5).

The calculus of p, 12=2 Re((E,, 1E ,)) uses the same ap-
proximations and is consequently not presented here. The
approximations used imply in the calculus of p, ;5 that
q_=0, that is to say, _=+x/2, which implies that p, 19
=0 owing to the shadow. Let us note that this means there
is no correlation between E, ; and E, 5. Eventually, using
the general relation for the scattering coefficient o,
=rp,/(|E;|*L cos 6;), with p, 3=p, 20, we obtain the expres-
sion of Eq. (2).

APPENDIX B: CALCULATION OF THE
COHERENT CONTRIBUTION of”lh

From the expression of the first-order reflection scattered
field E, ; [see Eq. 5 of [1]], the coherent reflection scatter-
ing coefficient oc ’l can be expressed as follows:

Ui?lh(kr’ki) |r12 sz)f(kl’k n0)|2

cos ;2 LA
X [(e"@mara S (k;, ke, £0))|?

~ . Ly
X L3 sinc? (k,—ki)? , (B1)

with sinc(x)=sin(x)/x. Under the assumption that the up-
per surface length L, is large compared to the incident
wavelength \, Ly >\, aﬁf’lh becomes

ok, k) = Ir1o()f(R, Rysn)[?

cos 6;2 LA
k 2
UCELRITY SN 5 2
X (e (kiR 00)))| 2oL

X &k, - k) (B2)

By assuming that the shadowing function S;; and the
term expli(q;—q,){4] are uncorrelated, the statistical av-
erage over the heights {4 becomes

("U1a8 ) (R, k.| Ly)) = ("%794)S | (R k,), (B3)

where S1;(k;k,) is the shadowing function averaged over
the surface heights.
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The statistical average (exp[i(q;—q,){4]) is equal to the
characteristic function y;(g;-¢q,) such that

xn(q; — q,) = (") = J e!@i®lap, (£,)dLs. (B4)

The result depends then on the surface statistics: The
height PDF p,({4) is in general equal to a Gaussian with

zero-mean value
1 L \? (B5)
= eXp - .
gy, \J/ZT \/50’ h

Then the characteristic function is given by

Dpr(a)

Xn(@i — q,) = (9 14a) = g2Rans’, (B6)
with

lg; - q,|

Rar12 = TpA (B7)
being the general Rayleigh roughness parameter ex-
pressed for the case of reflection from the upper interface
SA.

Thus, the coherent reflection scattering coefficient is
given by

COh(kr’kz) |r12(Xrl)f(kz’k nO )|2

s 6, k1L
X A,,ISi(ki,kr)a(l%r - k), (B8)

with A, 1=[x4(g;—g,)|* the power loss parameter, ex-
pressed for Gaussian statistics by

1 27

coh(k )
773 cos 0; k3L,
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A,1=e*r1, where g,1=4Ra},*=lg;-q, o, (B9)

The Dirac delta function accounts for the fact that for a
surface length L, much greater than the wavelength X\,
the coherent power scattered by the rough surface occurs
only in the specular direction.

For a surface of Lorentzian or exponential height PDF,
the coherent power loss due to the roughness takes a dif-
ferent form. For instance, for exponential statistics with

zero average,
1 V2l 24l
exp| — )
\/EU' hA OhA

pr(da) = (B10)
the power loss parameter is given by
1 1
A= (B11)

(1+Ra%,)?  (L+g,./27°

APPENDIX C: CALCULATION OF 0'”01' AND
O_coh

Using the same method as for af 1> the coherent scatter-
ing coefficients of%" and 0%’ can easily be obtained from
the expressions of the corresponding scattered fields,
namely, E, ; given by Eq. (8) of [1], and E, 5 given by Eq.
(A1), respectively.

Then, under the hypothesis that the length L, of both
surfaces, Lo=Ls=Lp, is much greater than the wave-
length N, the coherent contributions occur only in the
specular direction, and they are expressed for uncorre-
lated shadowing functions by

X [t12(6)8 12k, k132)t25(0_ 1)g 23R kY ;2)|?
X A, 18T5(k; k1) S55 (R KT, (C1)

27

oL kP ;) =
cos 0; k1L,

|t12(0 ng(kukspl ,2)|2

X |rog(6_ (R kP 52)t01(0, 1)801 (kP B 2)?
X A, 5855k k) S5 (), k) S5, (B, k), (C2)

where A, ;= Ixh(q, 9T xnay —gP))?, and  A,5=|x(g;
—q* 1))(h(q 1= q+ 1))(h(q+ 1—9q; )|2 The local normal to the
considered surface n® is equal to the vertical direction z.
The specular terms, denoted in superscrlpt as_sp, are
glven by the Snell Descartes laws er2sm o* = v e,lsm 0;,
N e,3s1n 63p= Jeosin or, 6P=-6", and l€,1sin 67
=\€&gsin 67 (with €., the relative permittivity of medium
Q,). For a Gaussian height PDF, the general term

|

Xn(@a—qp) is given by
Xn(@u—ap) = e 8saf? where 8sap = 4Ralslﬁﬁ2

=1q.- g4’y (C3)

with M =A at the upper interface 4 and M =B at the up-
per interface X g, and the subscript 8 corresponding to the
medium Q4 of the scattered wave, for which s=r for the
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case of scattering in reflection and s=t¢ for the case of
scattering in transmission.

By comparison, for Ly>>\, aﬁf’lh, which in consequence
also occurs only in the specular direction, is expressed by

RN G k; kP:2)2
(R, 7 — 0; i i 5
a1 (R, k;) s 6, leA|r12( Vit z)|

X A, 18%(k;,kP). (C4)

The specular terms, denoted in superscript as sp, are
given by the Snell-Descartes law 67 =-6;.
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