
1
F

c

m
m
s
t
s
o
e
t

g
r
l
t
a
s
d
K
f
f

e
t

N. Pinel and C. Bourlier Vol. 25, No. 6 /June 2008/J. Opt. Soc. Am. A 1293
Scattering from very rough layers under
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Scattering from very rough homogeneous layers is studied in the high-frequency limit (under the geometric
optics approximation) by taking the shadowing effect into account. To do so, the iterated Kirchhoff approxima-
tion, recently developed by Pinel et al. [Waves Random Complex Media 17, 283 (2007)] and reduced to the
geometric optics approximation, is used and investigated in more detail. The contributions from the higher
orders of scattering inside the rough layer are calculated under the iterated Kirchhoff approximation. The
method can be applied to rough layers of either very rough or perfectly flat lower interfaces, separating either
lossless or lossy media. The results are compared with the PILE (propagation-inside-layer expansion) method,
recently developed by Déchamps et al. [J. Opt. Soc. Am. A 23, 359 (2006)], and accelerated by the forward-
backward method with spectral acceleration. They highlight that there is very good agreement between the
developed method and the reference numerical method for all scattering orders and that the method can be
applied to root-mean-square (RMS) heights at least down to 0.25�. © 2008 Optical Society of America
OCIS codes: 290.5880, 000.5490, 280.0280.
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. INTRODUCTION
irst, let us define the following acronyms:
• KA: Kirchhoff approximation
• KA1: First-order Kirchhoff approximation
• IKA: Iterated Kirchhoff approximation
• GOA: Geometric optics approximation
• PILE: Propagation-inside-layer expansion method
• FB-SA: Forward-backward method with spectral ac-

eleration
Bistatic electromagnetic scattering from dielectric ho-
ogeneous rough layers has many applications. In the re-
ote sensing domain, it can be used to detect ocean ice,

and cover of arid regions, or oil slicks on the ocean. In
he optics domain, it can be useful, for instance, in optical
tudies of thin films and coated surfaces and in treatment
f antireflection coatings. The use of fast asymptotic mod-
ls can then be of practical interest to predict the scat-
ered signal of such systems.

The study focuses here on the case of very rough homo-
eneous layers, i.e., on layers for which the considered
ough surfaces are very rough compared to the wave-
ength (we will refine this point later). As stated in the In-
roduction of [1], to our knowledge, no preceding
symptotic method allowed one to present numerical re-
ults for very rough homogeneous layers. This recently
eveloped method [1], which we can call the iterated
irchhoff approximation (IKA), can deal with either per-

ectly flat or very rough lower interfaces, the upper inter-
ace being very rough.

The objective of the IKA is to obtain a simple math-
matical expression of the bistatic scattering coefficient in
he high-frequency limit (taking the shadowing effect into
1084-7529/08/061293-14/$15.00 © 2
ccount) in order to get a fast method for solving the prob-
em of very rough homogeneous layers: Then in this

odel the Kirchhoff approximation (KA), which is used at
ach scattering point inside the dielectric rough layer, is
educed to the geometric optics approximation (GOA).

The starting point of the method is the KA [2–6], appli-
able to surfaces with large radii of curvature compared
o the incident electromagnetic wavelength. The model
ses the widely used KA in reflection, but also the KA in
ransmission [4–6], which allows one to obtain the fields
eflected onto and transmitted through a rough interface.
his paper presents the reflection and transmission scat-

ering coefficients associated with a stack of two rough in-
erfaces and a rough interface overlying a perfectly flat in-
erface, in which the KA is iterated for each successive
cattering in reflection or transmission on the rough in-
erface(s). The paper focuses on one-dimensional station-
ry random rough surfaces and takes the shadowing ef-
ect into account [7–9].

In Section 2 of the paper, the expressions of the first-
nd second-order scattering coefficients of the method are
ecalled in the high-frequency limit (using the GOA).
hen the higher-order scattering coefficients of the
ethod are derived. A detailed analysis of the validity do-
ain of the method is to follow. Last, in Section 3 numeri-

al results are presented and compared with a benchmark
umerical method based on the method of moments to
alidate the asymptotic model and to check its validity
omain. The chosen reference method is the PILE
propagation-inside-layer expansion) method [10,11] ac-
elerated by the forward-backward method [12] with spec-
ral acceleration (FB-SA) [13–16].
008 Optical Society of America
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. ITERATED KIRCHHOFF APPROXIMATION
he studied system (see Fig. 1) is composed of a stack of
wo rough interfaces (�A for the upper interface; �B for
he lower interface) separating homogeneous media

� ��= �1,2,3��. The three media ��, with relative per-
ittivity �r�, are assumed to be nonmagnetic (relative

ermeability �r�=1).

. First Two Contributions in Reflection and First
ontribution in Transmission
he calculation of the first-order reflection scattering co-
fficient �r,1, obtained from the statistical correlation of
r,1 and corresponding to the scattering in reflection from

he upper interface, is relatively simple. It is defined by
1]

r,1 =
1

cos �i
�r12�	ri

0 �f�ki,kr;nri
0 ��2

ps�
ri
0 �

�q̂ − q̂ �
S11�ki,kr�
ri

0 �, �1�

r i

g
O
b
d
(
s
a
a
o
f
c
s
fi

c
A
b

ith 
ri
0 =−�kr−ki� / �qr−qi�; S11�ki ,kr �
ri

0 � is the average
istatic reflection shadowing function expressed by Bour-
ier et al. [7]; rij represents the Fresnel reflection coeffi-
ient from the medium �i onto the medium �j;
�ki ,kr ;nri

0 � is a projection term onto the rough surface
ith nri

0 the normal that reflects the incident wave of di-
ection ki specularly in the direction kr; and ps is the sur-
ace slope probability density function (PDF). One can ob-
erve that this scattering coefficient is independent of
oth the frequency and the surface height statistics and
an be applied for any given slope statistics.

In contrast, the calculation of the second-order reflec-
ion scattering coefficient �r,2 is much more complicated.
his nontrivial calculation was not presented before;

herefore it is reported here in Appendix A. Neglecting the
nticoincidental contribution that may contribute only
round the backscattering direction (for more details, see
ubsection 3.1.1 of [1]), one can obtain a simple expres-
ion of the second-order scattering coefficient �r,2, defined
y [1,17]
�r,2 =
1

cos �i
�

−�/2

+�/2�
−�/2

+�/2

d�−,1d�+,1�t12�	ti
0 �g12�ki,k−,1;nti

0 ��2
ps�
tA1

0 �

�q̂−,1 − �k1/k2�q̂i�
S12�ki,k−,1�
tA1

0 �

� �r23�	r−,1
0 �f�k−,1,k+,1;nr−,1

0 ��2
ps�
rB1

0 �

�q̂+,1 − q̂−,1�
S22�k−,1,k+,1�
rB1

0 �

� �t21�	t+,1
0 �g21�k+,1,kr;nt+,1

0 ��2
ps�
tA2

0 �

�q̂r − �k2/k1�q̂+,1�
S21�k+,1,kr�
tA2

0 �. �2�
To obtain physical results for grazing angles for the
ase with shadow, the configurations of �+,1 and �r (see
ig. 1) that induce local scattering angles greater than
/2 in absolute values must be omitted. The slopes

tA1

0 ,
rB1

0 ,
tA2

0 are defined by [1]


tA1

0 = − �k−,1 − ki�/�q−,1 − qi�, �3�


rB1

0 = − �k+,1 − k−,1�/�q+,1 − q−,1�, �4�


tA2

0 = − �kr − k+,1�/�qr − q+,1�. �5�

�
 is the transmission Fresnel coefficient from the me-
ium �� into the medium �
; f and g�
 are projection
erms; and

S12�ki,k−,1�
tA1

0 �, S22�k−,1,k+,1�
rB1

0 �, S21�k+,1,kr�
tA2

0 �

re the bistatic shadowing functions in transmission from
he medium �1 into the medium �2, in reflection inside
he medium �2 and onto the medium �3, and in transmis-
ion from the medium �2 back into the medium �1, re-
pectively [7,8].
Thus, the problem can be reduced to only twofold inte-
rations, which enables a fast numerical implementation.
ne can observe that under the GOA, expression (2) can
e applied for any given slope statistics and is indepen-
ent of the frequency and of the surface height statistics
within the validity domain of the model). Moreover, as-
uming that the points of successive scattering A1, B1,
nd A2 (see Fig. 1; this assumption will be discussed later)
re uncorrelated, this expression appears as the product
f three elementary scattering coefficients of single inter-
aces (which we will denote st,12

A1 , sr,23
B1 , and st,21

A2 ), each one
orresponding to each scattering in reflection or transmis-
ion inside the rough dielectric waveguide. Indeed, the
rst one, st,12

A1 , defined by

st,12
A1 = �t12�	ti

0 �g12�ki,k−,1;nti
0 ��2

ps�
tA1

0 �

�q̂−,1 − �k1/k2�q̂i�

�S12�ki,k−,1�
tA1

0 �, �6�

orresponds to the scattering in transmission from point
1 of �A into the medium �2; the second one, sr,23

B1 , defined
y
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sr,23
B1 = �r23�	r−,1

0 �f�k−,1,k+,1;nr−,1
0 ��2

�

ps�
rB1

0 �

�q̂+,1 − q̂−,1�
S22�k−,1,k+,1�
rB1

0 �, �7�

orresponds to the scattering in reflection from point B1 of
B inside �2; and the third one, st,21

A2 , defined by

st,21
A2 = �t21�	t+,1

0 �g21�k+,1,kr;nt+,1
0 ��2

�

ps�
tA2

0 �

�q̂r − �k2/k1�q̂+,1�
S21�k+,1,kr�
tA2

0 �, �8�

orresponds to the scattering in transmission from point
2 of �A back into the medium �1.
Thus, �r,2 can be expressed as

�r,2��r,�i� =
1

cos �i
�� d�−,1d�+,1st,12

A1 sr,23
B1 st,21

A2 . �9�

he twofold integrals account for the energy spread by
he rough surfaces in all scattering directions.

Using the exact same method as for �r,1 and �r,2, one
an obtain the expression of the first-order transmission
cattering coefficient �t,1. Thus, �t,1 is defined by [1]

�t,1��t,�i� =��r3

�r1

1

cos �i
�

−�/2

+�/2

d�−,1�t12�	ti
0 �g12�ki,k−,1;nti

0 ��2

�

ps�
tA1

0 �

�q̂−,1 − �k1/k2�q̂i�
S12�ki,k−,1�
tA1

0 �

� �t23�	t−,1
0 �g23�k−,1,kt;nt−,1

0 ��2

�

ps�
tB1

0 �

�q̂t − �k2/k3�q̂−,1�
S23�k−,1,kt�
tB1

0 �. �10�

s for using elementary scattering coefficients, �r,2, �t,1
an be expressed as

ig. 1. Multiple scattering from a rough layer. The points on the
he lower surface �B are denoted as �B1 ,B2 , . . . ,Bn�; �i is the incid
ission, respectively, measured with respect to the vertical axis
�t,1��t,�i� =
1

cos �i
� d�−,1st,12

A1 st,23
B1 , �11�

ith

st,23
B1 = �t23�	t−,1

0 �g23�k−,1,kt;nt−,1
0 ��2

�

ps�
tB1

0 �

�q̂t − �k2/k3�q̂−,1�
S23�k−,1,kt�
tB1

0 �. �12�

s for �r,2, the same concluding remarks can be made on
he expression of �t,1.

. Higher Orders of Reflection and Transmission
cattering Coefficients
he preceding expressions of scattering coefficients can
asily be extended to any order of scattering from the
ough layer, in reflection as well as in transmission. This
tep can be understood using elementary scattering coef-
cients corresponding to each scattering point in reflec-
ion or transmission inside the rough layer.

Let us define the following general elementary scatter-
ng coefficients:

sr,12
A1 � cos �i�r,1 = �r12�	ri

0 �f�ki,kr;nri
0 ��2

ps�
ri
0 �

�q̂r − q̂i�
S11�ki,kr�
r

0�,

�13�

sr,23
Bm = �r23�	r−,m

0 �f�k−,m,k+,m;nr−,m
0 ��2

�

ps�
rBm

0 �

�q̂+,m − q̂−,m�
S22�k−,m,k+,m�
rBm

0 �, �14�

st,23
Bn = �t23�	t−,n

0 �g23�k−,n,kt;nt−,n
0 ��2

�

ps�
tBn

0 �

�q̂t − �k2/k3�q̂−,n�
S23�k−,n,kt�
tBn

0 �, �15�

surface �A are denoted as �A1 ,A2 , . . . ,An�, whereas the points on
ngle, and �r ,�t are the scattering angles in reflection and trans-
positive sense is defined as clockwise.
upper
ence a
ˆ
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sr,21
Am = �r21�	t+,m−1

0 �f�k+,m−1,k−,m;nr+,m−1
0 ��2

�

ps�
rAm

0 �

�q̂−,m − q̂+,m−1�
S22�k+,m−1,k−,m�
rAm

0 �, �16�

st,21
An = �t21�	t+,n−1

0 �g21�k+,n−1,kr;nt+,n−1
0 ��2

�

ps�
tAn

0 �

�q̂r − �k2/k1�q̂+,n−1�
S21�k+,n−1,kr�
tAn

0 �. �17�

hen one obtains

�r,1��r,�i� =
1

cos �i
sr,12

A1 , �18�

�t,1��t,�i� =
1

cos �i
� d�−,1st,12

A1 st,23
B1 , �19�

�r,2��r,�i� =
1

cos �i
�� d�−,1d�+,1st,12

A1 sr,23
B1 st,21

A2 , �20�

�t,2��t,�i� =
1

cos �i
��� d�−,1d�+,1d�−,2st,12

A1 sr,23
B1 sr,21

A2 st,23
B2 ,

�21�

nd so on, with all propagation angles �±,m
	−� /2 ; +� /2
. Thus, one can express the general ex-

ression of �r,n , ∀n�3 as

�22�

nd the general expression of �t,n , ∀n�2 as

�23�

For the case of a perfectly flat lower interface, the ex-
ressions of the scattering coefficients are similar and
uch simpler, as the general term �−�/2

+�/2d�+,msr,23
Bm is

eplaced with �r23��−,m��2���+,m−�−,m�, and for �t,n
he last term st,23

Bn is replaced with
t23��−,n��2�	sin �t− ��r2 /�r3�1/2sin �−,n
. Then, for this sim-
ler case, �r,2 is computed with only one numerical inte-
ration, allowing one to obtain results quasi-
nstantaneously.

As a concluding remark, one can observe that the cal-
ulation of the nth-order reflection scattering coefficient
r,n demands 2�n−1�-fold numerical integrations for a
ery rough lower interface and �n−1�-fold numerical inte-
rations for a flat lower interface. Similarly, the calcula-
ion of the nth-order transmission scattering coefficient
t,n demands �2n−1�-fold numerical integrations for a
ough lower interface and �n−1�-fold numerical integra-
ions for a flat lower interface.

In addition, it is similarly worth highlighting that the
xpressions of the scattering coefficients in reflection or
ransmission can easily be extended (at least from a
athematical point of view) to any number of uncorre-

ated rough layers. Indeed, the principle is the same as
efore: Using elementary scattering coefficients (in reflec-
ion or transmission from the considered rough surface),
ne will be able to express the desired scattering coeffi-
ient.

. Validity Domain and Advantages of the Method
efore presenting the numerical results, let us summa-
ize the assumptions behind the method and their associ-
ted validity domains, as well as the advantages of the
ethod.
The method is based on the iteration of the KA at each

cattering inside the rough layer. Then the hypothesis as-
ociated with the KA applies here on all the rough sur-
aces. That is to say, one has the following restriction for
n incident wave inside a medium �� onto a rough sur-
ace �M [2,3,18,19]:

k�pM cos3 	i,� � 1, �24�

ith k� the wavenumber inside ��, pM the local curvature
adius of �M, and 	i,� the local incidence angle with re-
pect to the local normal to �M. This corresponds to the
act that the surface can be assimilated, locally, to an in-
nite plane surface. Thus, this method is also called the
angent plane approximation, and denoted TPA, or the
irchhoff tangent plane approximation, and denoted
TPA (as shown in [20], the KA differs rigorously from

he TPA for dielectric surfaces; nevertheless, here this as-
imilation is made as most authors do). This local crite-
ion is usually extended to a global criterion for the whole
urface as

k�RcM cos3�i,� � 1, �25�

ith RcM the mean curvature radius of �M and �i,� the in-
idence angle inside �� with respect to the vertical axis ẑ.
hen one obtains here

k1RcA cos3�i � 1, and k2RcA cos3 �+,m � 1, �26�

or a perfectly flat lower interface, plus

k2RcB cos3 �−,m � 1, �27�

or a rough lower interface. For Gaussian height PDF and
aussian height correlation, Rc can be evaluated for

mall slopes by the approximate expression [21]

RcM �
LcM

2

2.76�hM
� 
1 +

3

2

�hM
2

LcM
2 � , �28�

ith �hM, LcM the considered surface root-mean-square
RMS) height and correlation length, respectively. Several
uthors [21,22] presented more general expressions of the
tatistical average of the surface curvature radius, RcM
�p � in order to better evaluate the validity domain of
M
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he KA. One must rigorously study the statistical average
ver the whole quantity pM cos3 	i,�.

To be specific on the KA, in this paper only single scat-
ering from the same interface is taken into account; i.e.,
ultiple scattering from a single interface effect [23–25]

s not taken into account. Then only the first-order KA
denoted as KA1) is considered here, which reduces the
alidity domain to gentle rough surfaces, i.e., to small-to-
oderate RMS surface slopes, �s�0.3 [25–29].
Then, based on the iteration of KA1 (IKA1) for each

cattering inside the rough layer, the method is reduced
o the high-frequency limit, using the GOA for each scat-
ering. Therefore, this method can be denoted as IKA
GOA in general. Under the GOA, it is usually said that

he rough surfaces are very rough as compared to the
avelength. More precisely, this restrictive hypothesis is

elated to the Rayleigh roughness criterion [3,30,31]

Rar�

M = k��hM cos �i,� � �/C, �29�

ith Rar�

M the Rayleigh roughness parameter expressed

n reflection from the surface �M inside the medium ��

nd onto the medium �
, and C a constant, which is usu-
lly taken between 2 and �. Indeed, for a Gaussian height
istribution, the coherent reflection power loss Acoh in the
A is given by (see, for instance, Subsection 2.B of [32])

Acoh = exp�− g2�, �30�

ith g=2Rar�

M , which leads for C=� to Acoh�−17.4 dB

nd for C=2 to Acoh�−42.9 dB. Let us note that taking
=1 and not considering the incidence angle �i, which

orresponds in vacuum to the commonly written criterion
f validity of the GOA (i.e., �h�� /2), leads to Acoh
−171.5 dB. This criterion is very restrictive. Indeed, as

onfirmed by the numerical simulation results in [32], one
an reasonably take C=2 as a general limit of validity. As
consequence, by taking C=2, the criterion of validity of

he GOA should rather be expressed as

�hM �
��

app��i�

4
, �31�

ith ��
app��i�=�� / cos �i, which can be seen as a wave-

ength apparent along the normal to the mean surface
33].

Nevertheless, even though calculating Acoh can give an
dea of the validity of neglecting the coherent power, first
ne must keep in mind that this remains a qualitative cri-
erion. Indeed, the GOA is valid if the coherent scattered
ower is negligible in comparison with the incoherent
cattered power (one can find in Appendix B the calcula-
ion of the coherent scattering coefficient from a single
ough interface under the KA1). Then rigorously calculat-
ng the coherent scattered power and comparing it with
he incoherent scattered power allows one to determine
he effective validity domain of the method. Second, as
hown in [9,31], this classical Rayleigh roughness crite-
ion is valid only in the case of reflection onto the consid-
red surface. Then, for the case of transmission through a
ough surface �M from the medium �� into the medium

, the Rayleigh roughness parameter Rat�


M becomes
31,9]
Rat�

M = k0�hM

�n� cos �i,� − n
 cos �t,
�

2
� �/C, �32�

ith n� the refractive index of the incident medium ��, n


he refractive index of the transmission medium �
, and
t,
 the angle of transmission inside �
. Here �t,
 is re-
ated to �i,� by the Snell–Descartes law n1 sin �i,�
n2 sin �t,
 (corresponding to a perfectly flat surface).
This approach, valid for a single rough interface, can be

xtended to the case of rough layers. Then, as shown in
ection 3 of [31], a Rayleigh roughness parameter in re-
ection Rar,n and in transmission Rat,n can be associated
o each order n of scattering from the rough layer (see Fig.
) in order to define a qualitative criterion of applicability
f the IKA+GOA for each scattering order n. Thus, for
ncorrelated rough surfaces, one obtains Rar,1=Rar12

A ,
at,1

2 = �Rat12
A �2+ �Rat23

B �2, and ∀n�2:

Rar,n
2 = 2�Rat12

A �2 + �n − 1��Rar23
B �2 + �n − 2��Rar21

A �2,

�33�

Rat,n
2 = �Rat12

A �2 + �Rat23
B �2 + �n − 1�	�Rar23

B �2 + �Rar21
A �2
,

�34�

he angles of propagation being �i inside �1, �2 given by
1 sin �i=n2 sin �2 inside �2, and �3 given by n2 sin �2
n3 sin �3 inside �3. For the case of a flat lower interface,

he Rayleigh roughness parameters Rat23
B =Rar23

B =0. For
rough lower interface, one can notice for �r2��r1 that
ar23

B �Rar12
A . As a consequence, Rar,2�Rar,1, and the

igher orders being superior to Rar,2, one has

∀n � 2, Rar,n+1 � Rar,n � Rar,1. �35�

ne must note that these results are obtained under the
ypothesis of uncorrelated surfaces, which is the hypoth-
sis under which the scattering coefficients were derived.
ne can find in Appendix C the expressions of the coher-
nt scattering coefficients �t,1

coh and �r,2
coh, which give a

uantitative criterion of applicability of the IKA+GOA.
Considering uncorrelated surfaces implies a restriction

n the mean layer thickness H̄. Indeed, from a physical
oint of view, the two surfaces do not have to cross each
ther, which implies for a flat lower interface the follow-
ng statistical criterion (for Gaussian height PDF): H̄

4�hA. Similarly, for a rough lower interface, it would im-
ly the statistical criterion H̄�4��hA+�hB�. Nevertheless,
s the two surfaces obey independent statistical pro-
esses, the constraint can be reduced to, let us say, H̄
3��hA+�hB�. Moreover, the method assumes that the

oints of successive scattering inside the rough layer are
ncorrelated between one another, which could reduce its
pplicability for uncorrelated surfaces to slightly larger
hicknesses. Nevertheless, this supplementary restriction
n the layer thickness is not significant: The first condi-
ion implies in practice the second one.

Moreover, in the calculation of the second-order scatter-
ng coefficient (as well as for higher orders), the anticoin-
idental contribution (which occurs only around the back-
cattering direction) was neglected, which restricts the
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pplicability of the method to layer thicknesses H̄ obeying
1,34] (at least for a flat lower interface)

H̄ �
��r2

��r2 − ��r1

RcA, �36�

ith RcA the mean curvature radius of the upper inter-
ace.

As written previously, the model can take lossless as
ell as lossy media into account. Still, one can notice that

he expressions of the scattering coefficients are indepen-
ent of the layer mean thickness H̄ (neglecting the anti-
oincidental case), which means that the model itself can-
ot determine a layer thickness. This corresponds to the
se of the GOA, in which the phase term is not taken into
ccount (the phase being uniformly distributed between
� and +�). Thus, the model itself cannot deal with lossy

nner media (�2, with �r2��r2�C\R). Nevertheless, it
as shown in Section 7 of [1] that making minor adjust-
ents to the model allows one to deal with lossy media
ith good accuracy.
In particular, the propagation loss Ar,2 of the second-

rder scattering coefficient in reflection �r,2 can be evalu-
ted for a Gaussian height distribution and by consider-
ng flat interfaces, Ar,2

pl . It is then given approximately by
1]

Ar,2 � Ar,2
pl = exp�− 4k0qH̄/cos �m,1

plane�. �37�

hen the propagation loss Ar,n associated with the
th-order scattering coefficient in reflection �r,n is given
y Ar,n= �Ar,2�n−1, with n�2. Similarly, the propagation
oss At,1 associated with the first-order scattering coeffi-
ient in transmission �t,1 is given by At,1= �Ar,2�1/2. Thus,
he propagation loss At,n associated with the nth-order
cattering coefficient in transmission �t,n is given by
t,n= �Ar,2�n−1/2, with n�1.
One last condition deals with the applicability of the

eometric shadowing functions used (which, strictly
peaking, are valid only for monoscale rough surfaces).
hey do not take the penumbra effect [35] into account,
hich, in practice, contributes for very low grazing angles

see Eq. (18) of [35]]. Indeed, for the typical applications
resented here, the geometric shadowing functions can be
pplied with good approximations up to scattering angles
f the order of 85–87 deg in absolute value [1].

In summary, the validity domains of the method are
iven by the following conditions:

1. KA: k1RcA cos3 �i�1 and k2RcA cos3 �+,m�1 for a flat
ower interface, plus k2RcB cos3 �−,m�1 for a rough lower
nterface.

2. KA1: �s�0.3.
3. GOA: Great layer electromagnetic roughness

Rar,n ,Rat,n��� /C, with C�2, so that the incoherent
cattering coefficient equals the scattering coefficient (the
oherent scattering coefficient being neglected).

4. U-IKA (uncorrelated surfaces): H̄�4�hA for a flat
ower interface, H̄�3��hA+�hB� for a rough lower inter-
ace.

5. Neglecting the anticoincidental contribution: H̄
��r2 R .
��r2−��r1

cA
6. Applicability of shadowing functions: scattering
ngles ��r � �87°.
The main advantages of the method can be listed as fol-

ows:
• It is independent of the height distribution and of the

requency (at least for lossless media and when the anti-
oincidental contribution can be neglected).

• It can deal with any given slope distribution.
• It can deal with lossless as well as lossy media.
• It can treat very rough or perfectly flat lower inter-

aces.
• It is easy to implement, robust, and fast in computa-

ion.

. IMPLEMENTATION AND NUMERICAL
ESULTS
. Numerical Implementation

t is possible to optimize the method’s computing time,
hich is directly related to the number of sampling points

n the numerical integrations to calculate. That is to say,
n general it is not necessary to integrate over the propa-
ation angles �±,m in the whole range 	−� /2 ; +� /2
, as
ome values of propagation angles have a very low contri-
ution. Under the IKA+GOA, the scattering coefficient
ppears as the product of elementary scattering coeffi-
ients corresponding to each scattering inside the rough
ayer. Each scattering coefficient is proportional to the
onsidered surface slope distribution, which plays a major
ole in the scattering coefficient �. Then, as a first ap-
roximation, one can consider only the slope distribution
n the expression of � in order to delimit the effective con-
ributing range of the scattering coefficient over the
ropagation angles �±,m.
By considering the limit angles �±,m

min, �±,m
max correspond-

ng to a surface slope 
M= ±nM�sM, with �sM the RMS sur-
ace slope of considered surface and nM a real number to
e chosen (which is typically taken between 3 and 4 for a
aussian distribution), one can estimate the correspond-

ng limit propagation angles. Indeed, the local incidence
ngle 	i,� is given by

	i,� = �i,� + arctan 
M. �38�

hen the scattering angles in reflection �r,� and in trans-
ission �t,� are given by

�r,� = − 	i,� − arctan 
M = − �i,� − 2 arctan 
M, �39�

�t,� = arcsin���r1

�r2
sin 	i,�� − arctan 
M, �40�

espectively. Thus, �r,�
min and �t,�

min are given by 
M
+nM�sM, and �r,�

max and �t,�
max are given by 
M=−nM�sM.

In the next subsection, numerical results of the inco-
erent scattering coefficient from different rough layers,
ith various configurations, are presented first for a

ough layer with a rough lower interface, and second for a
erfectly flat lower interface. The results are computed
or homogeneous media, with �r2=3 and �r3= i� (the upper

edium being the air, assimilated to vacuum, so that �r1
1). The surface RMS slope is taken as �sA=�sB=0.1. The

ncident wave has V polarization. The influence of the
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ean layer thickness H̄ and of the surface RMS heights
hA and �hB will be studied in order to check whether they

nfluence the scattering coefficient and to check condi-
ions 4 and 5 on H̄ and especially condition 3 on �hA and
hB.
The results of the total scattering coefficient �r,n

tot

�k=1
n �r,k from the IKA+GOA are plotted by comparison

ith the reference numerical method, namely, the PILE
ethod [10] accelerated by the FB-SA [11], for different

rders of scattering. The numerical parameters of the
ILE method are the surface length L0=LA=LB=400�,

he number of sampling points of each interface ni=4000,
he number of realizations of the Monte Carlo process N
70, and the attenuation parameter of the incident Thor-
os wave g=L0 /6. The forward-backward method is used
t order 8 for the upper surface and at order 2 for the
ower interface, and the spectral acceleration is computed
ith a distance of strong interactions equal to three times

he surface correlation length (which makes it at least 8.5
lectromagnetic (EM) wavelengths in free space for all
imulations presented here for a rough lower interface,
nd equal to 7.1 EM wavelengths in free space for the
imulation presented here for a flat lower interface).

. Numerical Results for a Rough Lower
nterface
irst, numerical results of the incoherent scattering coef-
cient are presented for a rough lower interface. Figure 2
resents results for a mean layer thickness H̄=6�, and
he two surfaces �A and �B have the same statistical pa-
ameters: The surface RMS height �hA=�hB=0.2� (the
urface RMS slope being �sA=�sB=0.1). The incident
ave (of V polarization) has an incidence angle �i=0°. The

esults from the IKA+GOA are plotted by comparison
ith the reference numerical method, namely, the PILE
FB-SA, for different orders of scattering.

ig. 2. (Color online) Simulations of the contributions of the
rst three orders of the total incoherent scattering coefficient �r,n

tot

in decibel scale) versus the observation angle �r (in degrees) for
polarization and �i=0°, with H̄=6�, for relative permittivities

r2=3 and �r3= i�, and the surface RMS slope �sA=�sB=0.1. For
oth surfaces, the surface RMS height �hA=�hB=0.2�. In the leg-
nd, the numerical reference method is denoted as PILE
FB-SA, and the asymptotic method as IKA+GOA.
Concerning the first-order incoherent scattering coeffi-
ient, which corresponds to the scattering from only the
urface �A, there is a good agreement between the IKA
GOA and the reference method. The differences for scat-

ering angles ��r� greater than 40°, which have low contri-
utions (less than −30 dB), can be attributed to the con-
ributions of multiple scattering (mainly double
cattering) from the interface. The contribution of the co-
erent first-order scattering coefficient of the reference
ethod is plotted in Fig. 3 for comparison. One can ob-

erve a sharp enhancement of its contribution in the
pecular direction, whose level is approximately 5.6 dB
ower than the incoherent contribution. In this case, the
eflection Rayleigh roughness parameter Rar12

A

k1�hA cos �i�1.26, and thus the reflection Rayleigh
oughness (qualitative) criterion Rar12

A �� /C, with C=2,
s not strictly valid. Nevertheless, it is close to the limit of
alidity, which is confirmed by the numerical results. In-
eed, a 5.6 dB difference is not sufficient to consider that
he coherent component can be neglected, but its contri-
ution is low. Then, for a bit higher values of RMS
eights, the criterion will be valid: For instance, for �hA
0.25�, numerical results not presented here show that

he coherent component is at least 15 dB inferior to the
ncoherent component.

For the higher-order contributions of the scattering co-
fficient, first, the second-order contribution highlights a
ery good agreement between the IKA+GOA and the ref-
rence method in all scattering directions. Only small dif-
erences appear for grazing scattering angles ��r � �80°,
hich can be attributed to the contribution of multiple

cattering from the same interface (moreover, for ��r �
87° the IKA+GOA using geometrical shadowing func-

ions begins not to be valid any more). Furthermore, one
an see in Fig. 3 that the coherent contribution in the
pecular direction is approximately 12 dB lower than the
ncoherent contribution, which means that in this con-
guration the coherent contribution can be neglected: The
KA+GOA can be applied to determine the scattering co-
fficient, which can be assimilated to the incoherent scat-
ering coefficient. The latter result differs from that of the

ig. 3. (Color online) Same simulation parameters as in Fig. 2:
omparison of the incoherent and coherent contributions of the
ILE+FB-SA numerical reference method for the first- and
econd-order contributions.
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rst-order contribution, where the difference was not so
ignificant. This can be understood by the calculation of
he Rayleigh roughness parameter associated with this
cattering coefficient, Rar,2= 	2�Rat12

A �2+ �Rar23
B �2
1/2. It is

omposed of twice the elementary Rayleigh parameter in
ransmission from the upper interface, Rat12

A , and the el-
mentary Rayleigh parameter in reflection from the lower
nterface, Rar23

B . Note that Rar23
B is in general superior to

ar12
A for �hB=�hA and k2�k1. Here, as �i=0, Rar23

B

��r2Rar12
A and equals Rar23

B �2.18�� /2, which means
hat the coherent contribution can be neglected. More-
ver, as Rat

A= ���r2−1� /2�Rar12
A , which equals Rat12

A

0.46, the Rayleigh roughness parameter associated
ith the second-order scattering coefficient Rar,2�2.27
� /2. Because the first-order contribution �r,1 is negli-

ible against the second-order contribution �r,2 in the to-
al second-order contribution �r,2

tot =�r,1+�r,2, this qualita-
ive criterion is then in agreement with the numerical
esults. This is an interesting result, because for a rough
ower interface, it means that even though in the case of
he upper interface alone, the Rayleigh roughness crite-
ion Rar,1=Rar12

A is not superior to � /2 (which means that
he coherent contribution cannot be neglected in compari-
on with the incoherent contribution, corresponding to
he applicability of the GOA), it can be the case for the
hole system, because the higher-order Rayleigh param-
ters Rar,n�Rar,1 (with n�2). It is the case here, which
eans that for such a configuration, the IKA+GOA can

e applied to lower RMS surface heights �h than previ-
usly expected—at least down to 0.2� when �hA=�hB.

The third-order scattering coefficient �r,3 contributes
ery weakly to the total scattering coefficient �r,3

tot =�r,1
�r,2+�r,3, and only for grazing �r. The results of �r,3

tot from
he IKA+GOA differ from the second-order contribution

r,2
tot only for grazing scattering angles, and the same con-
lusions can be drawn. Then the higher-order contribu-
ions can be neglected. Similarly, because the coherent to-
al contribution is of the same order as the one of the
econd-order scattering coefficient, it can be neglected.
hus, for this configuration, the calculation of the first
hree orders of the scattering coefficient is sufficient in or-
er to quantify the scattering from such a system. The
KA+GOA gives good agreement with the reference
ethod in such a case. This method is then an interesting
eans to quickly compute the total scattering coefficient.

ndeed, by using the optimization described in Subsection
.A, the results were obtained in only 4 ms for �r,2

tot and in
.5 s for �r,3

tot for given �i and �r (with 6, 15, 31, and 21
ampling points for the numerical integrations over �−,1,
+,1, �−,2, and �+,2, respectively) with a standard personal
omputer (2.33 GHz biprocessor, 1.96 GB RAM) using
atLab. The computing time for the PILE+FB-SA refer-

nce method on the same computer is of the orders of 11,
4.5, and 21 min for PILE up to orders 3, 4, and 6, respec-
ively, for each realization, which makes 13, 17, and 25 h,
espectively, for 70 realizations. One property of the IKA
GOA is that under the GOA, the phase of the total scat-

ered field on the upper surface is uniformly distributed
etween −� and +�. For all configurations studied here,
esults from the reference method allowed us to check
his property.
Figure 4 presents results for the same parameters as in
ig. 2, except for �i=−5°, H̄=5� and different RMS sur-

ace heights �hA=0.35�, �hB=0.25�. The results from the
rst-order scattering coefficient �r,1

tot =�r,1 of the IKA
GOA are in very good agreement with the reference
ethod, and the small differences (with very low levels)

hat appear away from the specular direction can be at-
ributed to the multiple scattering effect. Moreover, the
oherent contribution is approximately 12 dB lower than
he incoherent one and can be neglected, which means
hat the GOA is valid. This is confirmed by the first-order
ayleigh roughness criterion Rar,1=Rar12

A �� /2�1.57, as
ar,1�2.19.
The results from �r,2

tot =�r,1+�r,2 also highlight a very
ood agreement between the IKA+GOA and the reference
ethod for all scattering angles �r. The small differences

with low levels) that appear for grazing �r can be attrib-
ted to multiple scattering from the same interface effect.
he same observations and conclusions can be drawn for

r,3
tot. The differences between �r,2

tot and �r,3
tot are very small

nd appear only for low contributions at angles ��r � �60°.
oreover, the higher-order contributions, �r,n

tot (with
�4), can be neglected. The coherent contributions (not
resented here) can be neglected in comparison with the
ncoherent ones (as Rar,2�2.95�� /2 and Rar,n

Rar,2 ∀n�3), which validates the IKA+GOA. Compar-
ng these results with the ones in Fig. 2, we conclude that
he method can be applied for different mean thicknesses
¯ and different RMS surface heights �hA and �hB (where

hA and �hB can be different). This confirms the theoreti-
al results, which predicted that under conditions 3, 4,
nd 5, the numerical results are independent of H̄, �hA,
nd �hB.
Figure 5 presents simulation results for the same pa-

ameters as in Fig. 2, except for �i=−20°, H̄=3�, and dif-
erent RMS surface heights �hA=0.25�, �hB=0.35�. Simi-
ar to the preceding two configurations, the first-order
ontribution �r,1

tot =�r,1 highlights a good agreement be-
ween the IKA+GOA and the reference method, and the
ame conclusions can be drawn. For the second-order con-

ig. 4. (Color online) Same simulation parameters as in Fig. 2,
ut with �i=−5°, H̄=5� and different RMS surface heights �hA
0.35�, � =0.25�.
hB
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ribution �r,2
tot =�r,1+�r,2, one can also observe a very good

greement, especially in forward directions (i.e., for �r
0). In backward directions �r�0, differences appear for

r�−40° and increase when �r decreases. The IKA
GOA underestimates the incoherent scattering coeffi-
ient, which can be attributed to multiple scattering from
he same interface effect (which is not taken into account
ere in the model). The same observations and conclu-
ions can be drawn for the third-order contribution �r,3

tot

�r,1+�r,2+�r,3. Then the higher-order scattering coeffi-
ients �r,n , ∀n�4, do not contribute to the total scatter-
ng coefficient and can be neglected. Once more, the re-
ults confirm that in the validity domain of the IKA
GOA, �r,n

tot is independent of H̄, �hA, and �hB.

. Numerical Results for a Flat Lower Interface
igure 6 presents results for the case of a perfectly flat

ower interface. The simulation parameters are identical
o the ones of Fig. 2, except that �i=−5°, H̄=2�, �hA
0.25�, and �sA=0.15. The contribution of the first-order

incoherent) scattering coefficient �r,1
tot =�r,1 highlights a

ery good agreement between the IKA+GOA and the ref-
rence method around the specular direction. The differ-
nces that appear for �r�−45° and �r�55° can be attrib-
ted to multiple scattering from the same interface effect.
his effect is a bit higher here than before: Indeed, the
ultiple scattering effect increases as the surface RMS

lope �sA increases. In Fig. 7, one can observe that the co-
erent contribution is approximately 14 dB lower than
he incoherent one and can thus be neglected. This ob-
erved difference is in rather good agreement with the
ualitative Rayleigh criterion Rar,1�� /2, as the Rayleigh
oughness parameter equals Rar,1�1.56�� /2.

The second-order contribution �r,2
tot =�r,1+�r,2 highlights

good agreement between the IKA+GOA and the refer-
nce method only around the specular direction. This can
e attributed to multiple scattering from the same inter-
ace effect. From Fig. 7, the coherent contribution in the
pecular direction is approximately 6 dB lower than the
ncoherent one. This difference is a bit higher than the
rediction from the qualitative criterion Ra �� /2, as

ig. 5. (Color online) Same simulation parameters as in Fig 2,
ut with �i=−20°, H̄=3�, and different RMS surface heights
hA=0.25�, �hB=0.35�.
r,2
ere Rar,2�0.81. This highlights limitations of this quali-
ative criterion, which is here a bit too restrictive. Never-
heless, for �i=0°, this qualitative criterion is valid, as the
bserved difference is approximately 1 dB, and Rar,2
0.81. The third-order contribution �r,3

tot (which is not rep-
esented here for the sake of clarity of the figure) high-
ights a good agreement between the IKA+GOA and the
eference method for all scattering angles. The small dif-
erences that appear away from the specular direction can
e attributed to multiple scattering from the same inter-
ace effect. The same observations and conclusions can be
rawn for �r,4

tot, which, compared to �r,3
tot, contributes very

eakly to the scattering process, and only for grazing �r.
he higher-order contributions can be neglected here.
Thus, the calculation of the first four orders of the scat-

ering coefficient is enough to quantify the scattering
rom such a system. As for a rough lower interface, the re-
ults do not depend on either H̄ or �hA, which is in agree-

ig. 6. (Color online) Same simulation parameters as in Fig. 2,
ut for a perfectly flat lower interface, with �i=−5°, H̄=2�, �sA
0.15, and �hA=0.25�. The fourth-order contribution is plotted
ere for both methods. Then, for the sake of clarity of the figure,
he third-order contribution is not represented.

ig. 7. (Color online) Same simulation parameters as in Fig. 6:
omparison of the incoherent and coherent contributions of the
ILE+FB-SA numerical reference method for the first- and
econd-order contributions.
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ent with the predictions of the IKA+GOA. Compared to
he rough lower interface, for a flat lower interface the
ondition of validity on �hA is a bit more restrictive, as one
ust have �hA�0.25� (for moderate �i).
For lossy inner media, the numerical results (not pre-

ented here) highlight a good agreement between the
KA+GOA and the reference method. As shown in Section
of [1], taking only the propagation loss [given by Eq. (37)

or the second-order contribution] into account allows a
ood quantification of the losses from the lossy media. In
ur model, the second-order contribution �r,2 is attenu-
ted by the propagation loss factor Ar,2

pl , and the higher-
rder terms �r,n �∀n�3� by the factor Ar,n

pl = �Ar,2
pl �n−1.

hus, the higher-order terms �r,n will not contribute to
he total scattering coefficient, and only the first three or-
ers �r,1, �r,2, and �r,3 (only the first two for a rough lower
nterface) will be necessary to quantify the scattering
henomenon.

. CONCLUSION
n conclusion, by using the optimization expressed in
ubsection 3.A in the numerical implementation of the
KA+GOA, it is possible to obtain numerical results of
he total scattering coefficient that are in very good agree-
ent with those of the reference method. The results are

btained quickly, as the necessary computing time for
iven �i and �r is at most 1.5 s with a standard personal
omputer (2.33 GHz biprocessor, 1.96 GB RAM), using
atLab. For a rough lower interface, as a general rule the

rst three orders of the scattering coefficient are enough
o correctly quantify the scattering phenomenon from the
ough layer, and for a plane lower interface, the first four
rders are enough.

The numerical results confirmed that under hypotheses
and 5, in the validity domain of the IKA+GOA, the re-

ults are independent of the mean layer thickness H̄ for
ossless media. Each scattering coefficient contribution

r,n
tot is well quantified by the IKA+GOA. The observed dif-

erences with the reference method can be attributed to

ultiple scattering from the same interface effect. Then it f

o
A
c
c
t
t

ould be interesting to calculate this contribution in the
odel in order to quantify the contribution of each mul-

iple scattering phenomenon. The contribution of double
cattering in reflection from the same interface could
ather easily be incorporated, as other papers present re-
ults for this specific contribution [23–25].

In addition, in the validity domain of the IKA+GOA,
he numerical results confirmed that the scattering coef-
cient is independent of the RMS surface heights �hA and
hB (which can have different values). Moreover, the use
f the (qualitative) Rayleigh roughness criterion is a good
eans to evaluate the validity of neglecting the coherent

omponent of the scattering coefficient (which corre-
ponds to the validity of using the GOA to quantify the
cattering coefficient). By defining a Rayleigh parameter
ar,n associated with each scattering coefficient �r,n from

he rough layer, it provided us an interesting means to
valuate the validity domain of the GOA of the IKA
GOA in a simple and fast way. It allowed us to observe

hat for one rough interface, the GOA can be applied for
MS surface height �hA down to approximately 0.25� (for
oderate incidence angles �i), which is in agreement with

esults from [32]. For two rough interfaces, the same con-
ition applies, and when the first-order contribution can
e neglected in comparison with the second-order one
like here where �r2 is close to 1 and �r3 is much greater
han 1), it can be applied to even lower RMS surface
eights. For instance, when �hA=�hB, it can be applied for
oderate �i down to at least 0.20� (and nearly 0.15�).
hus, the IKA+GOA method provides an interesting
eans to calculate scattering from rough layers, which

an be of moderate roughness �h.

PPENDIX A: CALCULATION OF THE
ECOND-ORDER REFLECTION SCATTERING
OEFFICIENT �r,2: COINCIDENTAL
ONTRIBUTION

n this appendix, to facilitate notation, we choose to sub-
titute the subscripts −,1 for − and +,1 for +. Then the
econd-order reflected scattered field Er,2 is written in the

ar field as [1]
Er,2 = 
 k2

2�
�2
 k1

2�r�
1/2

E0ei�k1r−�/4� � d�−d�+dxA1
dxB1

dxA2
��xA1

���xB1
���xA2

�t12�	ti
0 �g12�ki,k−;nti

0 �

�r23�	r−
0 �f�k−,k+;nr−

0 �t21�	t+
0 �g21�k+,kr;nt+

0 �ei�ki·rA1
−kr·rA2

� ei�k−·rA1B1
+k+·rB1A2

�, �A1�
ith xA1
,xB1

,xA2
� 	−L0 /2 ; +L0 /2
, and �−,�+

	−� /2 ; +� /2
. The scattered field Er,2
* is obtained from

aking the complex conjugate of Eq. (A1) and substituting
he variables ��−,�+,k−,k+,xA1

,xB1
,xA2

,zA1
,zB1

,zA2
� for

�−� ,�+� ,k−� ,k+� ,xA1�
,xB1�

,xA2�
,zA1�

,zB1�
,zA2�

�. Indeed, as the
oints of successive scattering are a priori different, the
ropagation directions and angles are different.
To calculate the power pr,22= ��Er,2�2�, the GOA is used
n both interfaces, at each point of scattering A1, B1, and
2. It implies that only closely located correlated points

ontribute to the scattering power. Here two different
ases can be considered: First, the coincident case, where
he point A1� is close to A1, B1� is close to B1, and A2� is close
o A . Second, the anticoincident case, where the point A�
2 1
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s close to A2, B1� is close to B1, and A2� is close to A1.The
nticoincidental case contributes only around the anti-
pecular (backscattering) direction. Here we focus on the
oincidental case.

Both surfaces being stationary, the following variable
ransformations from �xA1

,xB1
,xA2

,xA1�
,xB1�

,xA2�
� into

xmA1 ,xmA2 ,xpA1 ,xpB1 ,xpA2� are used:

�
xmA1 = xA1�

− xA1

xmB1 = xB1�
− xB1

xmA2 = xA2�
− xA2

xpA1 = xA1�
+ xA1

xpB1 = xB1�
+ xB1

xpA2 = xA� + xA2

�⇒�
xA1

= �xpA1 − xmA1�/2

xA1�
= �xpA1 + xmA1�/2

xB1
= �xpB1 − xmB1�/2

xB1�
= �xpB1 + xmB1�/2

xA2
= �xpA2 − xmA2�/2

xA2�
= �xpA2 + xmA2�/2

. �A2�
2

A B � �

I
R
p
p

he same variable transformations from
zA1

,zB1
,zA2

,zA1�
,zB1�

,zA2�
� into �zmA1 ,zmA2 ,zpA1 ,zpB1 ,zpA2�

re used.
The GOA is used on both interfaces. Then only closely

ocated correlated points of the surface contribute to the
cattering coefficient, and the following approximations
an be made: zmA1=zA1�

−zA1
�
A1

�xA1�
−xA1

�=
A1
xmA1,

mB1�
B1
xmB1, zmA2�
A2

xmA2, xpA1=xA1�
+xA1

�2xA1
, zpA1

zA1�
+zA1

�2zA1
, xpB1�2xB1

, zpB1�2zB1
, xpA2�xA2

,
nd zpA2�zA2

. This way, the real variable transform-
tions made are �xA1

,xB1
,xA2

,xA1�
,xB1�

,xA2�
� into

xA1
,xB1

,xA2
,xmA1 ,xmA2�. Then the expression of the sta-

istical correlation of Er,2 is given by
��Er,2�2� = 
 k2

2�
�4 k1

2�r
�E0�2� dxA1

dxB1
dxA2

dxmA1dxmB1dxmA2d�−d�−�d�+d�+�t12�	ti
0 �t12

* �	ti�
0�g12�k̂i,k̂−;nti

0 �g12�k̂i,

�k̂−� ;nti
0 �r23�	r−

0 �r23
* �	r−�

0�f�k̂−,k̂+;nr−
0 �f�k̂−�,k̂+� ;nr−

0 �t21�	t+
0 �t21

* �	t+�
0�g21�k̂+,k̂r;nt+

0 �g21�k̂+�,k̂r;nt+
0 �

�ei	−�k2k̂−−k
2
*k̂−��xA1

+�k2k̂−−k
2
*k̂−�−k2k̂++k

2
*k̂+��xB1

+�k2k̂+−k
2
*k̂+��xA2


���xA1���xB1���xA2���xA�1���xB�1���xA�2�

�ei�−k1�ki+
tA1
q̂i�+	�k2k̂−+k

2
*k̂−��+
tA1

�k2q̂−+k
2
*q̂−��
/2�xmA1e−i/2	�k2k̂−+k

2
*k̂−�−k2k̂+−k

2
*k̂+��+
rB1

�k2q̂−+k
2
*q̂−�−k2q̂+−k

2
*q̂+��
xmB1

�ei�k1�kr+
tA2
q̂r�−	�k2k̂++k

2
*k̂+��+
tA2

�k2q̂++k
2
*q̂+��
/2�xmA2ei	−�k2q̂−−k

2
*q̂−��zA1

+�k2q̂−−k
2
*q̂−�−k2q̂++k

2
*q̂+��zB1

+�k2q̂+−k
2
*q̂+��zA2


�, �A3�

ith �xmA1 ,xmB1 ,xmA2�� 	−L0 ; +L0
. In the latter equation, the random variables are �zA1
,zB1

,zA2
,
A1

,
B1
,
A2

,��, with
= 	��xA1���xB1���xA2���xA�1���xB�1���xA�2�
. The PDF p�zA1

,zB1
,zA2

,
A1
,
B1

,
A2
,�� is expressed in terms of the condi-

ional density p�� �zA1
,zB1

,zA2
,
A1

,
B1
,
A2

� as

p�zA1
,zB1

,zA2
,
A1

,
B1
,
A2

,�� = p�zA1
,zB1

,zA2
,
A1

,
B1
,
A2

� � p���zA1
,zB1

,zA2
,
A1

,
B1
,
A2

�, �A4�

here the last term in Eq. (A4) is expressed by

p���zA1
,zB1

,zA2
,
A1

,
B1
,
A2

� = S1221��i,�−,�+,�r�zA1
,zB1

,zA2
,
A1

,
B1
,
A2

���� − 1�

+ 	1 − S1221��i,�−,�+,�r�zA1
,zB1

,zA2
,
A1

,
B1
,
A2

�
����, �A5�

ith �, 1= 	1 1 1 1 1 1
 are vectors of length six; p�zA1
,zB1

,zA2
,
A1

,
B1
,
A2

� stands for the surface height and slope joint
istribution, whose covariance matrix is expressed as follows:

	C6
 = �
�hA

2 �A1B1
�A1A2 0 �A1B1

� �A1A2
�

�A1B1 �hB
2 �B1A2

− �A1B1
� 0 �B1A2

�

�A1A2
�B1A2 �hA

2 − �A1A2
� − �B1A2

� 0

0 − �A1B1
� − �A1A2

� �sA
2 �A1B1

� �A1A2
�

�A1B1
� 0 − �B1A2

� �A1B1
� �sB

2 �B1A2
�

�A1A2
� �B1A2

� 0 �A1A2
� �B1A2

� �sA
2

� . �A6�
t must be noted that the height correlations � are even,
here �A1A2

=��xA1A2
�=��xA2

−xA1
� is the height autocorre-

ation of �A, and �A1B1
, �B1A2

are height cross correlations
etween � and � . As � is even, � is odd, and � is even.
n addition, ��0�=�h
2, ���0�=0, and ���0�=−�s

2 (�s is the
MS slope of the surface considered). For a stationary
rocess, one can note that the covariance matrix is inde-
endent of �x ,x ,x �.
mA1 mB1 mA2
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Then the statistical averaging in Eq. (A3) over the illu-
ination functions yields

��� = S1221��i,�−,�+,�r�zA1
,zB1

,zA2
,
A1

,
B1
,
A2

�. �A7�

Here the two surfaces are assumed to be uncorrelated,
nd so are A1 and A2 �xA1A2

�LcA�. Thus, as a general rule
n this method (for the coincidental case), all the points of
uccessive reflections are assumed to be uncorrelated be-
ween one another. Then the only term in Eq. (A3) that
epends on xA1

is the term inside the corresponding expo-
ential. As we assumed that the upper surface length
0�LcA, the integration over xA1

reduces to

�
−L0/2

+L0/2

exp	i�k2k̂−� − k2
*k̂−�xA1


dxA1
=

2�

�k2�
�
k2

*

k2

k̂−� − k̂−�;

�A8�

herefore, as k̂−� and k̂− are both real, k2
* =k2 (which means

hat the inner medium �2 is lossless, that is to say, �r2

R) and k̂−� = k̂−, �−� =�−, and q̂−� = q̂−. Then the integration
ver �−� can be suppressed. Using the same method for xA2

,
e obtain

�
−L0/2

+L0/2

exp	ik2�k̂+ − k̂+��xA2

dxA2

=
2�

�k2�
��k̂+ − k̂+��, �A9�

hich implies that k̂+� = k̂+, �+� =�+, and q̂+� = q̂+. We also
ave 	ti�

0=	ti
0 , 	t−�

0=	t−
0 , 	r−�

0=	r−
0 , and 	t+�

0=	t+
0 . Then the

ntegration over �+� can be suppressed. Using the same
ethod for xB1

, we obtain

�
−L0/2

+L0/2

exp	ik2�k̂− − k̂−� − k̂+ + k̂+��xB1

dxB1

= L0.

�A10�

Then one can notice that the term inside the exponen-
ial, which depends on the heights, equals zero. Thus, the
tatistical averaging over the heights and slopes,
�zA1

,zB1
,zA2

,
A1
,
B1

,
A2
�, reduces to the slopes only,

s�
A1

0 ,
B1

0 ,
A2

0 �. Moreover, as the points A1, B1, and A2 are
ncorrelated between one another, this reduces to
s�
tA1

0 �ps�
rB1

0 �ps�
tA2

0 �, and

S1221��i,�−,�+,�r�zA1
,zB1

,zA2
,
A1

,
B1
,
A2

�

= S12��i,�−�
tA1

0 �S22��−,�+�
tB1

0 �S21��+,�r�
tA2

0 �,

here each term is averaged over the heights.
In Eq. (A3), the only term that depends on xmA1 is the

erm inside the corresponding exponential. Assuming
hat L0�LcA, the integration over xmA1 leads to

�
−L0

+L0

exp�i	�− k1k̂i + k2k̂−� + 
tA1
�− k1q̂i + k2q̂−�
xmA1�dxmA1

=
2�

�k2��q̂− − �k1/k2�q̂i�
�

tA1

+
k2k̂− − k1k̂i

k2q̂− − k1q̂i
� . �A11�

sing the same method for xmB1, assuming that L0 is
uch greater than the lower surface correlation length

, one obtains
cB
�
−L0

+L0

exp�− ik2	�k̂− − k̂+� + 
rB1
�q̂− − q̂+�
xmB1�dxmB1

=
2�

�k2��q̂+ − q̂−�
�

rB1

+
k̂+ − k̂−

q̂+ − q̂−
� . �A12�

sing the same method for xmA2, as we assumed L0�LcA,
ne obtains

�
−L0

+L0

exp�i	�k1k̂r − k2k̂+� + 
tA2
�k1q̂r − k2q̂+�
xmA2�dxmA2

=
2�

�k1��q̂r − �k2/k1�q̂+�
�

tA2

+
k1k̂r − k2k̂+

k1q̂r − k2q̂+
� . �A13�

hus, one obtains the expressions of the slopes given by
qs. (3)–(5).
The calculus of pr,12=2 Re��Er,1Er,2

* �� uses the same ap-
roximations and is consequently not presented here. The
pproximations used imply in the calculus of pr,12 that

ˆ _ =0, that is to say, �_ = ±� /2, which implies that pr,12
0 owing to the shadow. Let us note that this means there

s no correlation between Er,1 and Er,2. Eventually, using
he general relation for the scattering coefficient �r
rpr / ��Ei�2L0 cos �i�, with pr,2=pr,22, we obtain the expres-
ion of Eq. (2).

PPENDIX B: CALCULATION OF THE
OHERENT CONTRIBUTION �r,1

coh

rom the expression of the first-order reflection scattered
eld Er,1 [see Eq. 5 of [1]], the coherent reflection scatter-

ng coefficient �r,1
coh can be expressed as follows:

�r,1
coh�kr,ki� =

1

cos �i

k1

2�LA
�r12�	ri

0 �f�ki,kr;nri
0 ��2

� ��ei�qi−qr��AS11�ki,kr��A���2

�LA
2 sinc2��k̂r − k̂i�

LA

2 � , �B1�

ith sinc�x�=sin�x� /x. Under the assumption that the up-
er surface length LA is large compared to the incident
avelength �, LA��, �r,1

coh becomes

�r,1
coh�kr,ki� �

1

cos �i

k1

2�LA
�r12�	ri

0 �f�ki,kr;nri
0 ��2

� ��ei�qi−qr��AS11�ki,kr��A���2
 k1

2�LA
�2

��2�k̂r − k̂i� �B2�

y assuming that the shadowing function S11 and the
erm exp	i�qi−qr��A
 are uncorrelated, the statistical av-
rage over the heights �A becomes

�ei�qi−qr��AS11�ki,kr��A�� = �ei�qi−qr��A�S11�ki,kr�, �B3�

here S11�kikr� is the shadowing function averaged over
he surface heights.
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The statistical average �exp	i�qi−qr��A
� is equal to the
haracteristic function 	h�qi−qr� such that

	h�qi − qr� � �ei�qi−qr��A� =�
−�

+�

ei�qi−qr��Aph��A�d�A. �B4�

he result depends then on the surface statistics: The
eight PDF ph��A� is in general equal to a Gaussian with
ero-mean value

ph��A� =
1

�h�2�
exp�− 
 �A

�2�h
�2� . �B5�

hen the characteristic function is given by

	h�qi − qr� � �ei�qi−qr��A� = e−2Rar12
A 2

, �B6�

ith

Rar12
A =

�qi − qr�

2
�hA �B7�

eing the general Rayleigh roughness parameter ex-
ressed for the case of reflection from the upper interface
A.
Thus, the coherent reflection scattering coefficient is

iven by

�r,1
coh�kr,ki� =

1

cos �i

2�

k1LA
�r12�	ri

0 �f�ki,kr;nri
0 ��2

� Ar,1S11
2 �ki,kr���k̂r − k̂i�, �B8�

ith Ar,1= �	h�qi−qr��2 the power loss parameter, ex-

ressed for Gaussian statistics by l

�

	

w
p
m

r,1 = e−gr,1, where gr,1 = 4Rar12
A 2 = �qi − qr�2�hA

2 . �B9�

he Dirac delta function accounts for the fact that for a
urface length LA much greater than the wavelength �,
he coherent power scattered by the rough surface occurs
nly in the specular direction.

For a surface of Lorentzian or exponential height PDF,
he coherent power loss due to the roughness takes a dif-
erent form. For instance, for exponential statistics with
ero average,

ph��A� =
1

�2�hA

exp�−
�2��A�

�hA
� , �B10�

he power loss parameter is given by

Ar,1 =
1

�1 + Rar12
A �2

=
1

�1 + gr,1/2�2 . �B11�

PPENDIX C: CALCULATION OF �t,1
coh AND

r,2
coh

sing the same method as for �r,1
coh, the coherent scatter-

ng coefficients �t,1
coh and �r,2

coh can easily be obtained from
he expressions of the corresponding scattered fields,
amely, Et,1 given by Eq. (8) of [1], and Er,2 given by Eq.

A1), respectively.
Then, under the hypothesis that the length L0 of both

urfaces, L0=LA=LB, is much greater than the wave-
ength �, the coherent contributions occur only in the
pecular direction, and they are expressed for uncorre-

ated shadowing functions by
�t,1
coh�kt

sp,ki� =
�1

�3

1

cos �i

2�

k3LA

� �t12��i�g12�ki,k−,1
sp ;z�t23��−,1�g23�k−,1

sp ,kt
sp;z��2

� At,1S12
2 �ki,k−,1

sp �S23
2 �k−,1

sp ,kt
sp�, �C1�

�r,2
coh�kr

sp,ki� =
1

cos �i

2�

k1LA
�t12��i�g12�ki,k−,1

sp ;z��2

� �r23��−,1�f�k−,1
sp ,k+,1

sp ;z�t21��+,1�g21�k+,1
sp ,kr

sp;z��2

� Ar,2S12
2 �ki,k−,1

sp �S22
2 �k−,1

sp ,k+,1
sp �S21

2 �k+,1
sp ,kt

sp�, �C2�
here At,1= �	h�qi−q−,1
sp �	h�q−,1

sp −qt
sp��2, and Ar,2= �	h�qi

q−,1
sp �	h�q−,1

sp −q+,1
sp �	h�q+,1

sp −qr
sp��2. The local normal to the

onsidered surface n0 is equal to the vertical direction z.
he specular terms, denoted in superscript as sp, are
iven by the Snell–Descartes laws ��r2sin �−,1

sp =��r1sin �i,
�r3sin �t

sp=��r2sin �−,1
sp , �+,1

sp =−�−,1
sp , and ��r1sin �r

sp

��r2sin �+,1
sp (with �r� the relative permittivity of medium

). For a Gaussian height PDF, the general term
h�q�−q
� is given by

	h�q� − q
� = e−gs�
/2, where gs�
 = 4Ras�

M 2

= �q� − q
�2�hM
2 , �C3�

ith M�A at the upper interface �A and M�B at the up-
er interface �B, and the subscript 
 corresponding to the
edium � of the scattered wave, for which s�r for the
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ase of scattering in reflection and s� t for the case of
cattering in transmission.

By comparison, for L0��, �r,1
coh, which in consequence

lso occurs only in the specular direction, is expressed by

�r,1
coh�kr

sp,ki� =
1

cos �i

2�

k1LA
�r12��i�f�ki,kr

sp;z��2

� Ar,1S11
2 �ki,kr

sp�. �C4�

he specular terms, denoted in superscript as sp, are
iven by the Snell–Descartes law �r

sp=−�i.
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