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Fast method to compute scattering by a buried
object under a randomly rough surface:

PILE combined with FB-SA
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A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering
from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A 23, 359 (2006)] have re-
cently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional
rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in
which two impedance matrices of each interface and two coupling matrices are involved), this method allows
one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the in-
verses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for
an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral
acceleration (FB-SA) approach of complexity O�N� (N is the number of unknowns on the interface) proposed by
Chou and Johnson [Radio Sci. 33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is
tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying
a Gaussian process with Gaussian and exponential height autocorrelation functions. © 2008 Optical Society
of America
OCIS codes: 290.5880, 290.4210, 280.0280.
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. INTRODUCTION
he study of scattering from an object located below a
ough surface is a subject of great interest. The applica-
ions of such research include detection of land mines,
ipes, and other buried objects. When the surface is
mooth and the buried object is an infinite cylinder, and
y using a decomposition of the scattered fields as a sum
f cylindrical eigenfunctions, the problem can be solved
nalytically [1–3] by the introduction of Bessel functions.
or an object near a slightly rough surface, some
symptotic models can be found [4–9]. Exact numerical
ethods based on the extinction theorem combined with

he method of moments (MM) [10] have also been devel-
ped for two-dimensional [11–17] and three-dimensional
18–20] problems.

In numerical simulation of the scattering from a buried
bject, the length of the surface plays an important role:
t has to be large enough for the scattered field to vanish
t the surface extremities, that is, to avoid edge effects.
hus, it is interesting to investigate exact, fast numerical
ethods to treat a large problem. Such methods have

een developed for a single rough surface. For instance,
ne can cite the banded-matrix-iterative-approach/
anonical grid (BMIA-CAG) of Tsang et al. [21,22] of com-
lexity O�N log N�, the forward-backward (FB) method of
olliday et al. [23] of complexity O�N2�, and the acceler-
ted version forward-backward spectral acceleration (FB-
A) of Chou and Johnson [24] and Torrungrueng
1084-7529/08/040891-12/$15.00 © 2
t al. [25] of complexity O�N�, in which in all cases N is
he number of samples on the surface.

Recently, Déchamps et al. [26] have developed a fast
umerical method, propagation-inside-layer expansion
PILE), devoted to the scattering by a stack of two one-
imensional interfaces separating homogeneous media.
he main advantage of the PILE method is that the res-
lution of the linear system (obtained by the method of
oments) is broken down into different steps: (1) two

teps dedicated to solving for the local interactions, which
an be done by efficient methods valid for a single rough
nterface, such as FB-SA and BMIA/-CAG, and (2) two
edicated to solving for the coupling interactions, which
an be done by updating the previous efficient methods.
he latter has been recently investigated with BMIA-
AG [27] and FB-SA [28].
In this paper, the PILE method is applied to an object

ocated below a rough surface. In addition, to accelerate
ILE and to treat large problems, the local interactions
n the upper surface are computed by FB-SA. Since the
umber of unknowns on the surface is much greater than
n the object, the complexity of the method is then O�N�.

This paper is organized as follows. In Section 2, PILE
ombined with FB-SA for the calculation of the local in-
eractions on the upper dielectric rough interface is pre-
ented. In Section 3, the convergence of the accelerated
ILE method is investigated for perfectly conducting cir-
ular and elliptic cylinders located below a rough surface.
ection 4 presents our conclusions.
008 Optical Society of America
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. PILE METHOD
. Geometry of the Problem
s shown in Fig. 1, we consider an object �− of equation z−
uried below a rough surface �+ of equation z+. The prob-
em is assumed to be two-dimensional (invariant along ŷ),
nd the incident vector lies in the �x̂ , ẑ� plane. z+ is as-
umed to be a Gaussian stationary stochastic process
ith zero mean value ��z+�=0�. The surface height spec-

rum can be of any kind. z− is a deterministic function de-
ned with respect to its center �xc ,−hc� with hc�0

depth). One must pay special attention to avoid any in-
ersection between z+ and z−.

The random surface �+ can easily be generated by a
pectral method widely used in the calculation of wave
cattering [10]. If N+ represents the number of samples,
he discretized abscissa and heights of the rough surface
re given by x+

n=−L+/2+ �n−1/2��x+ and z+
n=z+�x+

n�, re-
pectively, with n� �1;N+�. �x+=L+/N+ is the sampling
tep and L+ the length of the surface. In the same man-
er, one defines for the object z−

m=z−�x−
m� with m� �1;N−�,

here N− is the number of samples. According to the ob-
ect shape, z− must be a bijective function. For example
or an elliptic cylinder of major and minor semiaxis �a ,b�,
he polar coordinates �a ,b ,�� �0;2��� are used to express

point location on the cylinder. This leads to �x−=xc
a cos � ,z−=−hc+b sin ��. For a circular cylinder a=b,
here a is the radius. A point of the plane �x̂ , ẑ� will be
enoted by r=xx̂+zẑ and a point belonging to �± by r±
x±x̂+z±ẑ. The random interface is separated by two non-
agnetic, semi-infinite, homogeneous media �1,2 of rela-

ive permittivity �r1,r2, and the relative permittivity of the
onmagnetic object is �r3.
To avoid edge limitations, the incident field �i is chosen

s a Thorsos’ tapered plane wave [29] defined as

�i�r� = exp�jki · r�exp	−
�x + z tan 	i�2

g2 
exp�jw�r�ki · r�,

�1�

n which w�r�= �2�x+z tan 	i�2 / g2 −1� / �K1g cos 	i�2, and
i=K1�x̂ sin 	i− ẑ cos 	i� is the incident wave vector. 	i is

he incident angle defined with respect to ẑ in the coun-
erclockwise direction (Fig. 1), K1 is the wave number in
he incident medium �1, and g stands for the tapering pa-
ameter, which has a dimension of length (controls the
patial extent of the incident wave). Since the paper is de-
oted to moderate incidence angles, this wave is appropri-

Fig. 1. (Color online) Geometry of the problem.
te and satisfies Maxwell’s equations with good accuracy.
n e−j
t time-harmonic convention is used. Furthermore,

he TE (electric field along ŷ direction) and TM (magnetic
eld along ŷ direction) polarizations are considered.

. PILE Description
his new method has been recently developed by Dé-
hamps et al. in [26] and was thoroughly studied there.
he main equations are given below.
Using the extinction theorem both on the rough inter-

ace and object and on the boundary conditions, we obtain
our coupled integral equations (see, for instance,
14,15,26–28]). It is important to note that the integral
quations for an object located below a rough surface or
or a stack of two rough interfaces are the same.

The use of the MM with point matching and pulse basis
unctions leads to the linear system

Z̄X = s, �2�

here Z̄ (the overbar stands for a matrix) is the imped-
nce matrix of size 2�N++N−��2�N++N−�. The unknown
ector X of length 2�N++N−� is equal to

XT = �X+
T X−

T�, �3�

here superscript T stands for the transpose operator. X±
f length 2N± contains the unknown fields �± and their
ormal derivatives ��± / �n± on the upper surface and on
he object, so that

�4�

The source term s is defined as

sT = �s+
T s−

T� = �s+
T 0T�, �5�

ith

�6�

nd s−=0, because the incident field illuminates only the
pper surface.
To solve efficiently the linear system (2), the impedance
atrix Z̄ is expressed from submatrices [26] as

Z̄ =�Z̄+ Z̄�

Z̄± Z̄−
� . �7�

Z̄±� correspond exactly to the impedance matrices [size
2N±�� �2N±�] of �±. Matrices Z̄� [size �2N+�� �2N−�] and
¯

± [size �2N−�� �2N+�] can be interpreted as coupling ma-
rices between �+ and �−. The complete expression of
hese matrices can be found in Appendix A.

First, the scattered field on the upper surface X+ is de-
ived. It is approximated as follows [26]:



i

a


I
p

s
h
�
t
t
s
r
w
p
w
f
g
f
t
c
a

a
s
t
i
t
o
i
i
c
C
c
m
i

C
I
t
2
O
f
H
t
l
a

k
(
t

i
g

a

F
l
f
d
f
a
=
l
a
c
p
r
d

i
s
i
T
u
v
i
a
w

F
c
v
=
�
t
s
a
c
c

Bourlier et al. Vol. 25, No. 4 /April 2008 /J. Opt. Soc. Am. A 893
X+ = � 
p=0

p=PPILE

M̄c
p�Z̄+

−1s+ = 
p=0

p=PPILE

Y+
�p�, �8�

n which

�Y+
�0� = Z̄+

−1s+ for p = 0

Y+
�p� = M̄cY+

�p−1� for p � 0
, �9�

nd M̄c is the characteristic matrix of the “surface
object” defined as

M̄c = Z̄+
−1Z̄�Z̄−

−1Z̄±. �10�

n addition, the scattered field on the object X− is ex-
ressed from X+ as

X− = − Z̄−
−1Z̄±X+. �11�

We define the norm �M̄c� of a complex matrix by its
pectral radius, i.e., the modulus of its eingenvalue that
as the highest modulus. Expansion (9) is then valid if

M̄c� is strictly smaller than one. The physical interpreta-
ion of M̄c is shown in Fig. 2 of [26]: In the zeroth order
erm, Z̄+

−1 accounts for the local interactions on the upper
urface, so Y+

�0� corresponds to the contribution of the di-
ect scattering on the upper surface, without interaction
ith the object; in the first-order term, Y+

�1�=M̄cY+
�0�, Z̄±

ropagates the resulting upper field information Y+
�0� to-

ard the lower interface (the buried object), Z̄−
−1accounts

or the local interactions on this object, and Z̄� repropa-
ates the resulting contribution toward the upper inter-
ace; finally, Z̄+

−1 updates the field values on the upper in-
erface. In conclusion, the order PPILE of PILE
orresponds to the PPILE reflections between the surface
nd the object.
If the object dimension is of the order of the wavelength

nd if �x+ is of the order of �x−, then the number of
amples on the surface �+ is much greater than that of
he object �−, N+�N−. Thus, the most complex operation
n the calculation of M̄c is Z̄+

−1Y. One of the advantages of
he PILE method is the ability to apply fast exact meth-
ds that already exist for a single rough surface, like for
nstance the BMIA-CAG of Tsang et al. [21,22] of complex-
ty O�N+ log N+�, the FB method of Holliday et al. [23] of
omplexity O�N+

2�, and the accelerated version of FB-SA of
hou and Johnson [24] and Torrungrueng et al. [25] of
omplexity O�N+�. The purpose of this paper is to imple-
ent PILE combined with the FB-SA algorithm for a bur-

ed object.

. Forward-Backward Method
n this subsection, the FB method is applied to speed up
he calculation of Z̄+

−1u (u is the column vector of length
N+) to reduce the complexity to O�N+

2� instead of the
�N+

3� from a direct lower upper (LU) inversion. For a per-
ectly conducting surface, this method was developed by
olliday [23] et al. and more recently, it has been ex-

ended to a dielectric surface by Iodice [30]. In what fol-
ows, the main equations are given in order to explain the
cceleration SA.
We want to solve Z̄+u=v⇔u= Z̄+
−1v, where u (the un-

nown) and v are column vectors of length 2N+. From Eq.
A1), the Z̄+ matrix is expressed from four square subma-
rices of sizes N+�N+ as

Z̄+ =�Ā B̄

C̄ D̄
� , �12�

n which Ā=Ā+, B̄=B̄+, C̄=C̄+, and D̄=�21D̄+. The FB al-
orithm decomposes Z̄+u=v as

�Ādu1f + B̄du2f = v1 − Āfu1 − B̄fu2

C̄du1f + D̄du2f = v2 − C̄fu1 − D̄fu2

, �13�

nd

�Ādu1b + B̄du2b = − Ābu1 − B̄bu2

C̄du1b + D̄du2b = − C̄bu1 − D̄bu2

. �14�

or instance, Ād is a diagonal matrix, Āf a lower triangu-
ar matrix, and Āb an upper triangular matrix, all built
rom Ā �Ā=Āf+Ād+Āb�. The subscripts �d , f ,b� stand for
iagonal, forward, and backward matrices but are re-
erred to, respectively, as diagonal, lower, and upper tri-
ngular matrices. Moreover, uT= �u1

T u2
T� and vT

�v1
T v2

T�, in which �u1 ,u2 ,v1 ,v2� are column vectors of
ength N+. Finally, the unknown vectors are decomposed
s ui=uif+uib �i= �1,2��, in which uif gives the forward
ontribution (from the points on the left of the current
oint) and uib gives the backward contribution (from the
ight). The surface is oriented by assuming that the inci-
ent beam propagates from left to right.
To compute u, an iterative procedure is applied. Assum-

ng first that ub=0⇒u=uf+ub=uf⇒ui=uif, Eq. (13) is
olved for uf=u1f+u2f. Then, introducing uf in Eq. (14), ub
s found. The first iteration u�0� is then equal to uf+ub.
he scheme is repeated to calculate the next iterations
�p� up to the order p=PFB. Equations (13) and (14) are
ery convenient to solve by substitution for uf and ub. For
nstance, from Eq. (13), since �Āf ,B̄f ,C̄f ,D̄f� are lower tri-
ngular matrices with null diagonal coefficients, we get,
ith m� �2;N+�

�Ad
m,mu1f

m + Bd
m,mu2f

m = v1
m − 

n=1

n=m−1

�Af
m,nu1

n + Bf
m,nu2

n�

Cd
m,mu1f

m + Dd
m,mu2f

m = v2
m − 

n=1

n=m−1

�Cf
m,nu1

n + Df
m,nu2

n�

.

�15�

or instance, Am,n is the element of the matrix Ā for the
olumn m and the row n. ui

n is the nth component of the
ector ui. Thus, assuming first that ub=0⇒u=uf+ub
uf⇒ui=uif and by solving Eq. (15), the unknowns

u1f
m ,u2f

m� with m� �2;N+� are calculated from 4N+
2 /2 mul-

iplications. From Eq. (14), we obtain an equation system
imilar to Eq. (15), but the sum over n is n� �m+1;N+�,
nd the unknowns �u1b

m ,u1b
m � with m� �1;N+−1� are also

alculated from 4N+
2 /2 multiplications. In conclusion, the

omplexity of the FB method is O�N2�. By combining the
+
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A approach, only O�N+� multiplications are needed. In
ubsection 2.D, the basic concept of the SA is recalled. A
ore detailed theory can be found in [24,25].

. FB-SA Method
et us consider two points �r+

m ,r+
n� belonging to the upper

urface �+, and let us denote xd=x+
m−x+

n and zd=z+
m−z+

n.
m is the observation point, fixed, and rn the source point
hat moves on the surface. The impedance matrix Z̄+ is
iven by Eq. (A1). It is expressed from four submatrices,
wo �Ā+=Ā ,C̄+=C̄� corresponding to the Neumann
oundary condition (perfectly conducting surface for the
M polarization), and two �B̄+=B̄ ,D̄+=D̄ /�21� correspond-

ng to the Dirichlet boundary condition (perfectly conduct-
ng surface for the TE polarization). Thus, in Eq. (15), the
A algorithm used to speed up the products Af

m,nu1
n and

f
m,nu1

n is the same (TM case). The same remark holds for
he products Bf

m,nu2
n and Df

m,nu2
n (TE case).

. TE Case
rom Eq. (A4), the elements of the matrix B̄=B̄+ are ex-
ressed from the 2D Green function as Bm,n

�x+g1�r+
m ,r+

n�= j�x+ / 4H0
�1��K1 �r+

n−r+
m � �, in which H0

�1� is
he Hankel function of the first kind and zero order. The
oefficient �+

n is included in u2
n.

Let xd0 be the horizontal distance separating the weak
nteractions from the strong ones, and let Ns be the inte-
er part of xd0 /�x+. Then, considering first the forward
ase, the term n=1

n=m−1Bf
m,nu2

n in Eq. (15) can be written as

�16�

n the above decomposition the term Ef
m,�s� is performed

xactly for each m�Ns+1, whereas Ef
m,�w� is calculated

sing the SA. The SA is based on the following decompo-
ition of the Green function, written here for xm−xn�0
24,25]:

g1�r+
m,r+

n� =
j

4�
�

Cg

exp�jK1��x+
m − x+

n�cos �

+ �z+
m − z+

n�sin ���d�, �17�

here the integration contour Cg (top of Fig. 2) is defined
s �−� / 2 + j� ;−� / 2 ���−� / 2 ; + � / 2 �� �+ � / 2 ;
� / 2 − j� �. The purpose of SA is to substitute for the
ath Cg a new path C�, which permits us to calculate the
umerical integration over � with few angles. The de-
ailed description of this path will be discussed below.
hus Ef

m,�s� can be written as

Ef
m,�s� =

j�x+

4� 
n=1

m−Ns−1

u2
n�

C�

exp�jK1��x+
m − x+

n�cos �

+ �z+
m − z+

n�sin ���d�

=
j�x+

4�
�

C

Fm���exp�jK1z+
m sin ��d� =

j�x+

4�

�

�exp�− j�� 
p=−Q

p=+Q

Fm��p� exp�jK1z+
m sin �p���

�18�

ith

Fm��� = 
n=1

m−Ns−1

u2
n exp�jK1��x+

m − x+
n�cos � − z+

n sin ���.

�19�

In addition, Fm��� can be calculated from Fm−1��� as

Fm��� = Fm−1���exp�jK1�x+cos �� + u2
m−Ns−1

�exp�jK1��Ns + 1��x+cos � − z+
m−Ns−1 sin ���.

�20�

When computing the forward steps in Eq. (15), the sum
s performed exactly for m� �1;Ns� [elements (a) of Fig.
]. For each m�Ns the sum is split into two sums, Eq.
16). Ef

m,�s� is computed exactly [elements (c)] and Ef
m,�w� is

omputed from SA [elements (b)]. For this purpose,
m��p� is found from Fm−1��p� for every p� �−Q ;Q� using
q. (20) with ��=2�max/ �2Q+1��R, and then summed
ver p. Initially, F �� �=0 for m� �1;N +1�.

ig. 2. (Color online) Top, illustration of the integration con-
ours of the 2D Green function Cg, and of that used for the SA
lgorithm C�. Bottom, physical interpretation of C� in the spatial
omain.
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In Eq. (15), the sum n=1
n=m−1Df

m,nu2
n is computed in the

ame manner as n=1
n=m−1Bf

m,nu2
n by substituting K1 for K2

n Eqs. (18)–(20).
For the backward steps, the sums n=m+1

n=N Bb
m,nu2

n and

n=m+1
n=N Cb

m,nu2
n must be computed. The main difference is

hat xm−xn�0 so the decomposition of the Green function
s the same as Eq. (17), but sin � is replaced by −sin �. In

practical way, the consequence on Eqs. (18)–(20) is that
os � is unchanged, but sin �→−sin �. Furthermore, in
q. (19) the summation goes from m+Ns+1 to N+, and in
q. (20), Fm is obtained from Fm+1.

. TM Case
or the TM case, the products Af

m,nu1
n and Cf

m,nu1
n are in-

olved. From Eq. (A3), the elements of the matrix Ā=Ā+
re expressed from the 2D Green function as Am,n=
�x+�g1�r+

m ,r+
n� / �n+ expressed from the Hankel function.

hus, from Eq. (17), we have

�g1�r+
m,r+

n�

�n+
= −

K1

4�
�

C

exp�jK1��x+
m − x+

n�cos �

+ �z+
m − z+

n�sin �����+
n cos � − sin ��d�,

�21�

ith �+= �z+ / �x+. The same algorithm as in the previous
E case can be applied for both forward and backward
teps. The differences are in the expressions of Fm in Eq.
19) and in the recurrence relation Eq. (20). We have

Fm��� = 
n=1

m−Ns−1

u1
n exp�jK1��x+

m − x+
n�cos � + �z+

m − z+
n�sin ���

� ��+
n cos � − sin ��, �22�

nd

Fm��� = Fm−1���exp�jK1�x+ cos ��

+ ��+
m−Ns−1 cos � − sin ��u1

m−Ns−1

�exp�jK1��Ns + 1��x+ cos � − z+
m−Ns−1 sin ���.

�23�

he same term ��+
n cos �−sin �� is also applied as a factor

or the backward step.

...

ig. 3. Illustration of steps for the product B̄fv2 (left) and B̄bv2
right), where v2=v2f+v2b. First, the elements of domain (a) are

ultiplied by v2 exactly. Then elements (b) and (c) are multiplied
y v2 with those of (b) using the SA algorithm and those of (c)
xactly as for (a).
. New Contour Integration C�
s shown at the top (frequency domain) of Fig. 2, the SA
ethod substitutes for the integration contour Cg a steep-

st descent path C�m,n� going through the saddle point

s
m,n=arctan��z+

m−z+
n� / �x+

m−x+
n��� �−� / 2 ; + � / 2 �. The

roup of paths C�m,n� associated with all pairs of points
r+

m ,r+
n� can be replaced by a unique path C� going

hrough the origin. Furthermore, close to the origin, C� is
straight line having a slope −tan �. If � is correctly cho-

en, the integrands of Eqs. (17) and (21) decay rapidly
way from the origin and the phase has little variation.
hus, as in a classical saddle-point technique, after re-
lacing C�m,n� by C� in Eqs. (17) and (21), the integration
ver � can be approximated by a sum over a limited num-
er of complex angles �p exp�−j��=p�� exp�−j�� with
�=2�max/ �2Q+1��R and p� �−Q ;Q� an integer.
The parameters ��max,tan �� that define the integra-

ion contour C� are then given by

�max = min	�s,max

2
+��s,max

2

4
+

bs

K1rd0 tan �0
;
�

2

 bs = 6,

�24�

tan � = min	 4as

K1rd0�s,max
2 ;1
 as = 5, �25�

�s,max = arctan� z+
max − z+

min

xd0
� , �26�

rd0 = �xd0
2 + �z+

max − z+
min�2, �27�

ith z+
max=max�z+� and z+

min=min�z+�. A detailed study of
he calculation of these parameters can be found in [25].
hysically, in the spatial domain (bottom of Fig. 2), �s,max
orresponds to the maximum angle defined with respect
o x̂ at which the current point sees the other points on
he surface. This corresponds to the illuminated zone or
he strong interaction zone. For this region, the angles
m,n are close to the saddle point �s

m,n, and the imaginary
art of �m,n is small. The associated waves are propa-
ated.

On the other hand, if �s
m,n��s,max�R, the imaginary

art of �m,n becomes larger and the associated waves are
ot propagated (evanescent waves). This corresponds to
he shadowed zone or the weak interaction zone. From
qs. (26) and (27), the horizontal distance xd0 separating

he weak from the strong interactions must be known.
rom the bottom of Fig. 2, xd0 corresponds to the distance
eparating two points of the surface having, respectively,
large and small height. Thus, statistically xd0 must be of

he order of the surface height correlation length Lc.
imulations done on the single rough interface showed
hat xd0 ranges from 2Lc to 3Lc. In addition Q=16, which
eans for the weak interactions that the Hankel function

an be approximated as 2Q+1=33 plane waves of propa-
ation angles �p exp�−j��.

. Complexity and Memory Space for PILE+FB-SA
rom Eqs. (20) and (23), the number of multiplications
re, respectively, 2�2Q+1��N −N � and 3�2Q+1��N −N �,
+ s + s
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nd from Eq. (18), �2Q+1��N+−Ns� for each polarization.
hus, for an iteration number PFB of the FB, the back-
ard and forward steps applied on the four submatrices

ead to �3+4��2Q+1��N+−Ns��2�2PFB for the weak in-
eractions, and 4N+Ns for the strong interactions. A direct
U inversion of Z̄− leads to N−

3 /3 multiplications. So the
omputation of the characteristic matrix (10) requires
N+N−+2N−2N− of the matrix-vector products, and

−
3 /3+ �28�2Q+1��N+−Ns�+4N+Ns�PFB of the inversions.
In conclusion, from Eq. (8), X+ at the order PPILE with

ILE combined with FB-SA needs

�8N+N− + 4N−
2�matrix-vector products�

+ �28�2Q + 1��N+ − Ns�

+ 4N+Ns�PFB�inversion of Z̄+��PPILE

+ �28�2Q + 1��N+ − Ns�

+ 4N+Ns�PFB�order 0, inversion of Z̄+�

+ �2N−�3/3�initialization:inversion of Z̄−� �28�

perations, instead of �2N+�3 /3+ �2N−�3 /3+4N+
2 + �8N+N−

4N+
2 +4N−

2�PPILE from PILE. At the order 0, since
+�Ns and N+�1, PILE+FB-SA is fast compared to
ILE if �2N+�2 /3� �28�2Q+1�+4Ns�PFB. Typically, Ns
100, PFB=8, Q=16, thus N+�22. At the order PPILE, we
ust have N+� �28�2Q+1�+4Ns�PFB/4, which leads to

+�2648. But the storage of the inverse of Z̄+ is not nec-
ssary, unlike in PILE. Indeed with FB-SA, only the sub-
atrix elements of Z̄+ of the strong interactions must be

tored. For a submatrix, the number of elements is
s�Ns+1� /2+ �N+−Ns−1�Ns, which leads to N+Ns for
+�Ns instead of N+

2.

. NUMERICAL RESULTS
n this section, the PILE method combined with FB-SA
nd referred to as PILE+FB-SA is compared with the re-
ults obtained from a direct LU inversion of the imped-
nce matrix Z̄. The input parameter of PILE is its order
PILE [see Eq. (8)], which is related to the number of re-
ections between the object and the rough surface. The

nput parameters of PILEFB are PPILE and the order
FB of the FB method for the inversion of the impedance
atrix of the rough surface. Eventually, the input param-

ters of PILE+FB-SA are PPILE, PFB, and xd0, which is the
istance of the strong interactions required for the calcu-
ation of the integration contour C�. One of the advan-
ages of the PILE method is the separation of the local in-
eractions of the rough surface [related to Z̄+

−1 in Eq. (10)]
nd those of the object [related to Z̄−

−1 in Eq.(10)]. Thus, a
eans to obtain the parameters PFB and xd0 is to study

he scattering from a single rough dielectric interface
without the object); this is the purpose of Subsection 3.A.
n Subsections 3.B and 3.C, the convergences of PILE and
ILE+FB-SA are investigated, while Section 4 presents
he computation time of PILE+FB-SA.
. Determination of the Parameters PFB and xd0
or all simulations, the order PFB is obtained when the
elative residual error (RRE) re, defined as

RRE:re =
norm�X − XLU�

norm�XLU�
, �29�

s smaller than a threshold chosen as 10−3 in what fol-
ows. The norm of a vector of components Xi and of length

is expressed as norm�X�=i=1
i=N �Xi�2. X represents either

he field � or its normal derivative �� / �n on the surface.
he subscript LU means that the vector is computed from
LU inversion (benchmark solution). The order PFB is

hen obtained when re becomes smaller than 10−3. Since
e is determined for � and �� / �n , we take the largest
alue of PFB. In what follows, the surface is assumed to be
Gaussian process with a Gaussian height spectrum, and

he incident medium �1 is the vacuum (the incident
avelength is denoted as �0).
Table 1 presents the order PFB for a single rough dielec-

ric surface and for the TE and TM polarizations. It is
omputed from one surface realization. The correlation
ength is Lc=2�0, the RMS heights are �z� �0.1;2��0

RMS slope ��=�2�z /Lc� �0.0707;1.4142�). The sampling
tep is �0 /10, the surface length L+=120�0 �N+=1200�,
nd Thorsos’ wave parameter g=L /6. We can note that
he FB method converges fast for �r2=2+0.01j [(a) and (b)
ases], and the order PFB is quite insensitive to the RMS
eight and the incidence angle. In addition, as ��r2� in-
reases, the order FB increases for the TE polarization,
hereas it remains unchanged for the TM polarization.
In Fig. 4, the scattering coefficient in dB scale is com-

ared with that obtained from a direct LU inversion ver-
us the scattering angle 	s. From Thorsos’ wave and for
��1, it is equal to [10]

�s�	i,	s� =
����2

8�K0g cos 	i�1 −
1 + 2 tan2 	i

2K0
2g2 cos2 	i

� , �30�

ith

�� =�
�+

� ��+

�n+

�1 + �+
2 − jK0�+��+ sin 	s − cos 	s��e−jks·rdx+,

�31�

ith ks=K0�x̂ sin 	s+ ẑ cos 	s� �K0=2� /�0� the scattering
ave vector and �+= �z+ / �x+. At the top is the TE case
nd at the bottom, the TM case. The parameters are the

Table 1. Order PFB for a Single Rough Dielectric
Surface (without Object) and for the TE and TM

Polarizationsa

z /�0 0.1 0.5 1 1.5 2

i�°�, �r2 TE,TM TE,TM TE,TM TE,TM TE,TM

a) 0, 2+0.01j 7,6 7,6 7,7 8,7 10,9
b) 60, 2+0.01j 8,7 8,7 8,7 8,7 9,9
c) 0, 10+j 12,8 12,7 13,7 15,8 14,8

aThree cases are considered. Correlation length Lc=2�0, sampling step �0 /10,
urface length L =120� �N =1200�, and Thorsos’ wave parameter g=L /6.
+ 0 + +



s
=
t
c
s

c
(
l

i
b
A
�
l

t
+
c
d
o
s
d
h
H
t
h
r
=
�
f
d
p
s

�

F
(
i
T
s
t
c

F
d
f
s
r
P

Bourlier et al. Vol. 25, No. 4 /April 2008 /J. Opt. Soc. Am. A 897
ame as in Table 1 with �r2=2+0.01j, 	i=0°, and �z

2�0⇒��=�2 [in the (a) case]. As the order PFB increases,
he RRE decreases and we can observe that the results
onverge toward those obtained from a direct LU inver-
ion. The last order is taken from Table 1.

Like the PILE method, Déchamps et al. [28] have re-
ently shown that the FB method converges if the norm
the modulus of its eigenvalue that has the highest modu-
us) of the characteristic matrix

M̄FB = �Z̄+,d + Z̄+,f�−1Z̄+,f�Z̄+,d + Z̄+,b�−1Z̄+,b �32�

s smaller than one. Z̄+,d is a matrix of size 2N+�2N+

uilt from the diagonal of the matrices Ā, B̄, C̄ and D̄ (see
ppendix A) of sizes N+�N+. In the same manner,

Z̄+,f , Z̄+,b� are matrices of sizes 2N+�2N+ built from the
ower and upper triangular matrices with zero values on

ig. 4. (Color online) Comparison of the scattering coefficient
without object) in dB scale with that obtained from a direct LU
nversion versus the scattering angle 	s. Top, TE case; bottom,
M case. In the legends, the order PFB and the RRE in linear
cale of the scattering coefficients are given. The parameters are
he same as in Table 1 with �r2=2+0.01j, 	i=0° and �z=2�0 [(a)
ase].
he diagonal of Ā, B̄, C̄, and D̄, respectively �Z̄+= Z̄+,f

Z̄+,d+ Z̄+,b�. The norm of M̄FB �norm�M̄FB�� is a relevant
riterion to study the validity of FB because it is indepen-
ent of the incidence and scattering angles. It depends
nly on the surface profile and the permittivity �r2. For a
ingle dielectric rough surface, Iodice [30] has studied in
etail the convergence of the FB against the choice of the
eight autocorrelation function (HAF). For a Gaussian
AF, the FB always converges, whereas for an exponen-

ial HAF with the same correlation length and RMS
eight as the Gaussian case, the FB may fail for very
ough surfaces. For example, with N+=800, L+=80�0, Lc

2�0, �z=�0, �r2=2+0.01j, g=L+/6, norm�M̄FB�=0.4114
1 for a Gaussian HAF, whereas norm�M̄FB�=2.7662�1

or an exponential HAF, which means that the FB method
oes not converge in that case. This is verified if we com-
ute the scattering coefficient for different incidence and
cattering angles.

In Fig. 5 the field ��+� and its normal derivative
�� /�n � on the surface computed from FB-SA are com-

ig. 5. (Color online) Comparison of the field ��+� and its normal
erivative ���+/�n+� (without object) on the surface computed
rom FB-SA with those obtained from a direct LU inversion ver-
us the normalized abscissa x /�0 and for the TE case. The pa-
ameters are the same as in Fig. 4 with xd0=3Lc and the order
FB is taken from Table 1.
+ +
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ared with those obtained from a direct LU inversion ver-
us the normalized abscissa x /�0 for the TE case. The pa-
ameters are the same as in Fig. 4 and the order PFB is
aken from Table 1. The distance of the strong interaction
s xd0=3Lc=6�0. We observe a very good agreement. From
he parameters of Table 1, similar simulations with xd0
3Lc and for TE and TM polarizations, not reported in

his paper, also showed very good agreement. In conclu-
ion, in what follows xd0 will be set equal to 3Lc for the
pectral acceleration.

. Convergence of PILE
he purpose of this subsection is to study the convergence
f PILE versus its order PPILE. In what follows, the ab-
cissa of the object is xc=0, and a will denote the radius of
circular cylinder and hc its depth.
In Fig. 6, for the TE case, the modulus of the field �+ on

he rough surface is plotted versus the normalized ab-
cissa x /�0. The parameters are 	i=0°, Lc=2�0, �z=�0,
r2=2+0.01j, sampling step �0 /10 �N+=1200� for the
ough surface of length L+=120�0, g=L+/6, N−=126
�r−�a��=0.1�0�, hc=4�0, and a=2�0. At the top is
hown the PILE method; middle, PILE+FB method with
FB=7 obtained from Table 1, bottom, PILE+FB-SA
ethod with xd0=3Lc. In each subfigure, the order of
ILE and the corresponding RRE are noted in the legend.
n addition, the results computed from a direct LU inver-
ion are plotted.

At the top (see Subsection 3.C for a discussion of
ILE+FB and PILE+FB-SA), we can observe that the
ILE method converges after three iterations, which
eans that the number of reflections between the surface

nd the object in medium �2 contributing to the scatter-
ng process is PPILE=3. PPILE=0 gives the contribution to
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ig. 6. (Color online) Modulus ��+� of the rough surface versus
r2=2+0.01j, N+=1200, L+=120�0, g=L+/6, N−=126, hc=4�0, an
ottom, PILE+FB-SA method with xd0=3Lc. In each subfigure, th
he scattering from only the rough surface. In addition,
ig. 6 reveals that the field vanishes on the edges of the
urface. This condition must be satisfied to apply the in-
egral equations.

Figure 7 presents, for different orders PPILE, the modu-
us of the radiated field �rad�r� computed from the fields
n the rough surface and the object versus the normalized
bscissa x /�0 and the normalized height h /�0 for the TE
olarization. It is expressed as

�rad�r� = − 
p=±

sp�
�p

��p�rp�
�gp�rp,r�

�np

− gp�rp,r�
��p�rp�

�np
�d�p, �33�

ith r� ��+��−� (and �3 if the object is a perfect conduc-
or); �s−=0,s+=1� if r��1, otherwise �s±= +1�; and

p�rp ,r�= j /4H0
�1��K0��rp �rp−r � �, in which �rp=�ri if r

�i. The parameters are the same as in Fig. 6, but �z
0.5�0, L+=80�0, 	i=30°, and g=L+/4. Figure 7 clearly
hows that the PILE order is related to the number of re-
ections into the medium �2.
With the same parameters as in Fig. 6, except for a

�0.5,1,2,3��0⇒N−= �31,63,126,188� and �z=0.5�0,
imulations showed that the order of PILE is PPILE
�2,3,3,3� for the TE polarization, whereas for the TM
ase, PPILE= �2,2,3,3�.

Table 2 presents the order PPILE for a circular cylinder
elow a rough dielectric surface and for the TE and TM
olarizations. It is computed from one surface realization.
he parameters are Lc=2�0, �z� �0.1;2��0, sampling step
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ddition, the results computed from a direct LU inversion are plotted.
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0 /10 for the rough surface of length L+=120�0 �N+
1200�, Thorsos’ wave parameter g=L+/6, N−=126, hc
4�0, and a=2�0. Three cases are considered. As the
odulus of the permittivity ��r2� increases, the order PPILE

ecreases. Indeed, the skin depth � decreases when ��r2�
ncreases ��r2= �2+0.01j ,10+ j�⇒�= �45,1��0�, which im-
lies that the number of reflections between the rough
urface and the object contributing to the scattering de-
reases. Table 2 reveals also that PPILE is independent of
he incidence angle 	i and the polarization.

Table 3 presents the order PPILE for an elliptic cylinder
elow a rough dielectric surface and for the TE and TM
olarizations. The parameters are Lc=2�0, �z=0.5�0,
ampling step �0 /10 for the rough surface of length L+
120�0 �N+=1200�, �r2=2+0.01j, 	i=0°, g=L+/6, hc=4�0,
nd b=�0 (semiminor axis and a�b). As the semimajor
xis a increases, the order PPILE increases slightly, which
eans that the interactions between the object and the

ough surface are stronger.

Table 2. Order PPILE for a Circular Cylinder below
a Rough Dielectric Surface and for the TE and TM

Polarizationsa

z /�0 0.1 0.5 1 1.5 2

i�°�, �r2 TE,TM TE,TM TE,TM TE,TM TE,TM

a) 0, 2+0.01j 3,3 3,3 3,3 3,3 3,3
b) 60, 2+0.01j 3,3 3,3 3,3 3,3 3,3
c) 0, 10+j 1,1 1,1 1,1 2,2 3,3

aThree cases are considered. Correlation length Lc=2�0, sampling step �0 /10 for
he rough surface of length L+=120�0 �N+=1200�, Thorsos’ wave parameter g
L /6, N =126, h =4� , and a=2� .

ig. 7. Modulus of the radiated field computed from the fields o
nd the normalized height h /�0 for the TE polarization and for
z=0.5�0, L+=80�0, 	i=30°, and g=L+/4.
+ − c 0 0
. Convergence of PILE+FB-SA
he parameters of the FB-SA needed to calculate the local

nteractions on the rough surface are given in Table 1. In
ddition, the distance of the strong interactions is xd0
3Lc.
Figure 6 reveals also that the PILE method combined

ith FB exhibits a good convergence, which means that
he order PFB is well chosen. Nervertheless, the conver-
ence of the PILE+FB-SA approach is not perfect, since
he RRE remains constant after 3 iterations. Although
he values of the RRE on the first iteration of PILE+FB
nd PILE+FB-SA are very close, the values at the next
terations differ. This implies that the error propagates
ith PPILE. But, as displayed in Fig. 8, the impact of this
ifference on the scattering coefficient is minor except at
razing scattering angles. In the legend, the RRE is given
n linear scale.

Figures 9 and 10 compare the RRE over the scattering
oefficient against the normalized RMS height �z /�0 for
he TE and TM polarizations, respectively. The order
PILE is obtained from Table 2, from which the (a) case is

Table 3. Order PPILE for an Elliptic Cylinder below
a Rough Dielectric Surface and for the TE and TM

Polarizations

/�0 1 3 5 7 9

− 63 134 210 288 367

PILE TE 3 3 4 4 4

PILE TM 2 3 3 3 4

aThe parameters are Lc=2�0, �z=0.5�0, sampling step �0 /10 for the rough sur-
ace of length L+=150�0 �N+=1200�, �r2=2+0.01j, 	i=0°, g=L+ /6, hc=4�0, b
� �semiminor axis and a�b�.

ough surface and the object versus the normalized abscissa x /�0
nt orders PPILE. The parameters are the same as in Fig. 6, but
n the r
differe
0
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onsidered. As we can see, the RRE is of the order of 10−3

or PILE, whereas it is proportional to the RMS height for
B and FB-SA and it is quite insensitive to the polariza-
ion. In addition, the RRE is larger for FB-SA.

To study the effect of the distance xd0, in Fig. 11 the
RE over the scattering coefficient is plotted versus

d0 /Lc for the TE and TM polarizations. The parameters
re the same as in Fig. 6 and the orders are �PFB
7,PPILE=3� and �PFB=6,PPILE=3� for the TE and TM
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ig. 8. (Color online) Comparison of the scattering coefficient in
B scale with that obtained from a direct LU inversion versus
he scattering angle 	s. The parameters are the same as in Fig. 6.
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ig. 9. (Color online) Comparison of the RRE over the scatter-
ng coefficient versus the normalized RMS height �z /�0 for the
E polarization. The order PPILE is obtained from Table 2, from
hich the (a) case is considered.
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ig. 10. (Color online) Same variation as in Fig. 9 but for the
M polarization.
olarizations, respectively. We can observe that the RRE
ecreases slowly with xd0 and reaches the value obtained
rom PILE+FB for xd0�40Lc.

. Computation Time of PILE+FB-SA
n Fig. 12 the CPU time tCPU of the PILE+FB-SA is plot-
ed versus the number of samples N+ on the rough sur-
ace. The parameters are the same as in Fig. 6 with
PFB=7,PPILE=3� and �PFB=6,PPILE=3� for the TE and
M polarizations (Tables 1 and 2), respectively. It should
e noted that the number of unknowns are 2N++N−
2N++126. In addition, results obtained from a linear re-
ression (TE case: tCPU=−15.7741+0.0035N+; TM case:
CPU=−14.8946+0.0032N+) are displayed. A 3.4 GHz per-
onal computer with 2 GB of RAM with the MATLAB soft-
are is used in this work. We can observe that the CPU

ime of PILE+FB-SA is approximately proportional to
+. Nevertheless, the CPU time for the TE polarization is

arger because the product PFBPPILE is larger than that
btained from the TM polarization. In fact, the ratio of the
lope of the regression straight line for each polarization
s approximately equal to the ratio computed from
FB�PPILE+1�. Thus, as expected, the CPU time is of the
rder of PFB�PPILE+1�O�N+�.
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One of the advantages of PILE+FB-SA is the capability
f treating large problems with a personal computer. For
nstance, for N+=20,000 and N−=126, the number of un-
nowns is 40,126. In this case, the PILE+FB-SA requires
toring 1262 (for Z̄−) plus 3�126�20,000 (coupling ma-
rices) plus 4�2�1,198,170 (8Ns��Ns+1� /2+ �N+−Ns

1�� strong interactions for Z̄+ (with Ns=60) � 17,161,236
omplex values, which corresponds to 2�16
17,161,236/8/10242�66 megabytes of memory.

. CONCLUSION
e have presented a new efficient method to predict the

eld scattered from a homogeneous object located below a
ne-dimensional (1-D) dielectric rough surface. The
ethod is based on the rigorous PILE method, originally

eveloped for a stack of two 1-D rough interfaces separat-
ng homogeneous media and updated in this work to an
bject beneath a surface. In addition, for the calculation of
he local interactions of the rough surface, the PILE
ethod was accelerated using the fast method of forward-

ackward (FB), combined with a spectral acceleration
SA). The resulting method, the PILE+FB-SA, has then a
omplexity of O�N+�, in which N+ is the number of
amples on the rough surface, if N+�N− (number of the
amples on the object).

The numerical results showed that the PILE method
onverges fast. Indeed, the PILE order corresponds to the
umber of reflections between the object and the rough
urface contributing to the scattering process. Combined
ith FB, the PILE+FB also converges quickly for the FB

tep (after 7–8 iterations for �r2=2+0.01j and 12–15 itera-
ions for �r2=10+ j; see Table 1). One of the advantages of
ILE+FB is that the order PFB of the FB step can be ob-

ained from the study of the scattering from a single
ough surface. PILE+FB combined with SA exhibits good
onvergence for a quite rough surface with a distance of
trong interactions of the order of 3Lc (height correlation
ength). As the surface roughness increases (RMS height),
his distance must be increased.

Instead of using the FB-SA approach to accelerate the
alculation of the local interactions on the rough surface,
he banded-matrix-iterative-approach/canonical grid
BMIA-CAG) developed by Tsang et al. [21,22] could be
pplied. This method, of complexity O�N+ log N+� is at-
ractive for RMS heights approximately smaller than 3�0.
oreover, as prospects for further research, it could be in-

eresting to study the PILE+FB-SA for an object above a
ough surface [31] and for several objects above and below
rough surface.

PPENDIX A: SUBMATRIX EXPRESSIONS
F THE IMPEDANCE MATRIX

or a dielectric object located below a dielectric surface,
he submatrices �Z̄+, Z̄−, Z̄±, Z̄�� are expressed from el-
mentary submatrices as

Z̄+ =�Ā+ B̄+

C̄+ �21D̄+
�, Z̄− =�Ā− B̄−

C̄− �32D̄−
� , �A1�
Z̄± =�Ā± �21B̄±

0̄ 0̄
�, Z̄� =� 0̄ 0̄

Ā� B̄�

� , �A2�

n which ��21= �r2 / �r1 ,�32= �r3 / �r2 � for TM polarization,
nd ��21=�32=1� for TE polarization.
The elementary square matrix Ā+ (size N+�N+) corre-

ponds to the matrix of a perfectly conducting surface for
M polarization (Neumann boundary condition). The ele-
ents are given by

A+
m,n =�

−
jK1�x+

4

H1
�1��K1�r+

n − r+
m��

�r+
n − rm

+ �
��+

n�x+
n − x+

m� − �z+
n − z+

m��

for m � n,

+
1

2
−

�x+

4�

��+
m��

1 + ��+
m�2

for m = n,

�A3�

ith �+= �z+ / �x+, ��+��= ��+ / �x+, and H1
�1� the Hankel

unction of first order and first kind. K1=K0��r1 is the
avenumber in the incident medium �1, and K0 stands

or the wavenumber in vacuum.
The elementary square matrix B̄+ (size N+�N+) corre-

ponds to the matrix of a perfectly conducting surface for
E polarization (Dirichlet boundary condition). The ele-
ents are given by

B+
m,n =

j�x+�+
n

4 �1 +
2j

�
ln�0.164K1�+

m�x+� for n = m

H0
�1��K1�r+

n − r+
m�� for n � m

,

�A4�

ith �+
n= �1+ ��+

n�2�1/2. The elementary matrices �C̄+,D̄+�
re obtained from �Ā+,B̄+� by substituting in Eqs. (A3)
nd (A4), K1 for K2. In addition, the diagonal elements of

¯
+=−1 / 2 − �x+ / 4� ��+

m�� / �1+ ��+
m�2� .

The elementary matrices of the object �Ā−,B̄−,C̄−,D̄−�
f size N−�N− are obtained from �Ā+,B̄+,C̄+,D̄+� by sub-
tituting in Eqs. (A3) and (A4), (K1, K2, subscript +) for (
2, K3, subscript −), respectively. For a buried elliptic cyl-

nder of parametric equations �x−=xc+a cos � ,x−=−hc
b sin ���hc�0�, we must take the absolute values on

�−
n�x− � =�a2 sin2�+b2 cos2� ���� and v ��x− �
v �a sin ����, in which v= +1 for �� �0;��, v=−1 other-
ise, in order that the normal to the cylinder is always
riented toward the outside of the object. Moreover, �−

n=
b / a cot �.
The coupling matrix Ā± (size N−�N+) is similar to Ā+

nd its elements are expressed as

A±
m,n =

jK2�x+

4

H1
�1��K2�r+

n − r−
m��

�r+
n − r−

m�
��+

n�x+
n − x−

m� − �z+
n − z−

m��.

�A5�

The coupling matrix B̄± (size N−�N+) is similar to B̄+
nd its elements are expressed as
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B±
m,n = −

j�+
n�x+

4
H0

�1��K2�r+
n − r−

m��. �A6�

The elementary matrices �Ā� ,B̄�� of size N+�N− are
btained from �Ā±,B̄±� by substituting in Eqs. (A5) and
A6) the subscripts �+,−� for the subscripts �−, + �, respec-
ively.

If the object is assumed to be a perfect conductor, then

±= �Ā± �21B̄±�. Moreover, the submatrices �Z̄−, Z̄�� and
he unknown vector X− become

�TE case: Z̄− = B̄−,Z̄� =� 0̄

B̄�

�, X− �
��−

�n−

TM case: Z̄− = Ā−,Z̄� =� 0̄

Ā�

�, X− � �−
� . �A7�
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