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A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering
from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A 23, 359 (2006)] have re-
cently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional
rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in
which two impedance matrices of each interface and two coupling matrices are involved), this method allows
one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the in-
verses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for
an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral
acceleration (FB-SA) approach of complexity O(N) (V is the number of unknowns on the interface) proposed by
Chou and Johnson [Radio Sci. 33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is
tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying
a Gaussian process with Gaussian and exponential height autocorrelation functions. © 2008 Optical Society
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1. INTRODUCTION

The study of scattering from an object located below a
rough surface is a subject of great interest. The applica-
tions of such research include detection of land mines,
pipes, and other buried objects. When the surface is
smooth and the buried object is an infinite cylinder, and
by using a decomposition of the scattered fields as a sum
of cylindrical eigenfunctions, the problem can be solved
analytically [1-3] by the introduction of Bessel functions.
For an object near a slightly rough surface, some
asymptotic models can be found [4-9]. Exact numerical
methods based on the extinction theorem combined with
the method of moments (MM) [10] have also been devel-
oped for two-dimensional [11-17] and three-dimensional
[18—20] problems.

In numerical simulation of the scattering from a buried
object, the length of the surface plays an important role:
It has to be large enough for the scattered field to vanish
at the surface extremities, that is, to avoid edge effects.
Thus, it is interesting to investigate exact, fast numerical
methods to treat a large problem. Such methods have
been developed for a single rough surface. For instance,
one can cite the banded-matrix-iterative-approach/
canonical grid (BMIA-CAG) of Tsang et al. [21,22] of com-
plexity O(N log N), the forward-backward (FB) method of
Holliday et al. [23] of complexity O(N?), and the acceler-
ated version forward-backward spectral acceleration (FB-
SA) of Chou and dJohnson [24] and Torrungrueng
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et al. [25] of complexity O(N), in which in all cases N is
the number of samples on the surface.

Recently, Déchamps et al. [26] have developed a fast
numerical method, propagation-inside-layer expansion
(PILE), devoted to the scattering by a stack of two one-
dimensional interfaces separating homogeneous media.
The main advantage of the PILE method is that the res-
olution of the linear system (obtained by the method of
moments) is broken down into different steps: (1) two
steps dedicated to solving for the local interactions, which
can be done by efficient methods valid for a single rough
interface, such as FB-SA and BMIA/-CAG, and (2) two
dedicated to solving for the coupling interactions, which
can be done by updating the previous efficient methods.
The latter has been recently investigated with BMIA-
CAG [27] and FB-SA [28].

In this paper, the PILE method is applied to an object
located below a rough surface. In addition, to accelerate
PILE and to treat large problems, the local interactions
on the upper surface are computed by FB-SA. Since the
number of unknowns on the surface is much greater than
on the object, the complexity of the method is then O(N).

This paper is organized as follows. In Section 2, PILE
combined with FB-SA for the calculation of the local in-
teractions on the upper dielectric rough interface is pre-
sented. In Section 3, the convergence of the accelerated
PILE method is investigated for perfectly conducting cir-
cular and elliptic cylinders located below a rough surface.
Section 4 presents our conclusions.

© 2008 Optical Society of America
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2. PILE METHOD

A. Geometry of the Problem

As shown in Fig. 1, we consider an object 2_ of equation z_
buried below a rough surface 3, of equation z,. The prob-
lem is assumed to be two-dimensional (invariant along y),
and the incident vector lies in the (X,z) plane. z, is as-
sumed to be a Gaussian stationary stochastic process
with zero mean value ((z,)=0). The surface height spec-
trum can be of any kind. z_ is a deterministic function de-
fined with respect to its center {x.,-h., with A,>0
(depth). One must pay special attention to avoid any in-
tersection between z, and z_.

The random surface 3, can easily be generated by a
spectral method widely used in the calculation of wave
scattering [10]. If IV, represents the number of samples,
the discretized abscissa and heights of the rough surface
are given by x}=-L,/2+(n-1/2)Ax, and 2}=z,(x}), re-
spectively, with n e[1;N,]. Ax,=L,/N, is the sampling
step and L, the length of the surface. In the same man-
ner, one defines for the object 2" =z_(x™) with m e[1;N_],
where N_ is the number of samples. According to the ob-
ject shape, z_ must be a bijective function. For example
for an elliptic cylinder of major and minor semiaxis {a,b},
the polar coordinates (a,b, ¢ €[0;27]) are used to express
a point location on the cylinder. This leads to {x_=x,
+a cos ¢p,z_=-h,+b sin ¢}. For a circular cylinder a=b,
where a is the radius. A point of the plane (Xx,z) will be
denoted by r=xX+zZ and a point belonging to 3, by r.
=x,X+2z,Z. The random interface is separated by two non-
magnetic, semi-infinite, homogeneous media () 5 of rela-
tive permittivity €, ,9, and the relative permittivity of the
nonmagnetic object is €,3.

To avoid edge limitations, the incident field ¢; is chosen
as a Thorsos’ tapered plane wave [29] defined as

(x +z tan 6;)?

#i(r) = exp(ik; - r)exp(— T) expljw(r)k; - r],

1)

in which w(r)=[2(x+z tan 6,)%2/g%-1]/(K g cos 6,)%, and
k;=K;(x sin #,—Z cos 6;) is the incident wave vector. 6; is
the incident angle defined with respect to z in the coun-
terclockwise direction (Fig. 1), K; is the wave number in
the incident medium ()4, and g stands for the tapering pa-
rameter, which has a dimension of length (controls the
spatial extent of the incident wave). Since the paper is de-
voted to moderate incidence angles, this wave is appropri-
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Fig. 1. (Color online) Geometry of the problem.
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ate and satisfies Maxwell’s equations with good accuracy.
An e7* time-harmonic convention is used. Furthermore,
the TE (electric field along y direction) and TM (magnetic
field along y direction) polarizations are considered.

B. PILE Description

This new method has been recently developed by Dé-
champs et al. in [26] and was thoroughly studied there.
The main equations are given below.

Using the extinction theorem both on the rough inter-
face and object and on the boundary conditions, we obtain
four coupled integral equations (see, for instance,
[14,15,26-28]). It is important to note that the integral
equations for an object located below a rough surface or
for a stack of two rough interfaces are the same.

The use of the MM with point matching and pulse basis
functions leads to the linear system

ZX =s, (2)

where Z (the overbar stands for a matrix) is the imped-
ance matrix of size 2(N,+N_) X 2(N,+N_). The unknown
vector X of length 2(N,+N_) is equal to

X'=[x] XI], 3)

where superscript T stands for the transpose operator. X,
of length 2N, contains the unknown fields ¢, and their
normal derivatives dif./dn, on the upper surface and on
the object, so that

P L )

L= W) ) o T | @

N, times N.times

The source term s is defined as
s"=[s; sl]=[s] 0], (5)
with

sh=|g(rD) . y(Y)0... 0], (6)

% . N, times

N, times

and s_=0, because the incident field illuminates only the
upper surface.
To solve efficiently the linear system (2), the impedance

matrix Z is expressed from submatrices [26] as

Z, Z.

NI
1]

(7)

NI
NI

+ —

{Z_,} correspond exactly to the impedance matrices [size
(2N,) X (2N,)] of 3. Matrices Z- [size (2N,) X (2N_)] and

Z, [size (2N_) X (2N,)] can be interpreted as coupling ma-
trices between X, and 3_. The complete expression of
these matrices can be found in Appendix A.

First, the scattered field on the upper surface X, is de-
rived. It is approximated as follows [26]:



Bourlier et al.

p=PpiLE e p=Ppig
X+ = E Mg Z:15+ = 2 Y(f)r (8)
p=0 p=0
in which
YO =7Zs, forp=0
_ , 9
Y? =M YPV forp>0

and M, is the characteristic matrix of the “surface
+object” defined as

M.=Z;'Z.Z7'Z,. (10)

In addition, the scattered field on the object X_ is ex-
pressed from X, as

X =-7Z7'7.X,. (11)

We define the norm |M,| of a complex matrix by its
spectral radius, i.e., the modulus of its eingenvalue that
has the highest modulus. Expansion (9) is then valid if

IM,| is strictly smaller than one. The physical interpreta-
tion of M, is shown in Fig. 2 of [26]: In the zeroth order
term, 2;1 accounts for the local interactions on the upper

surface, so YErO) corresponds to the contribution of the di-
rect scattering on the upper surface, without interaction

with the object; in the first-order term, Yil)zﬁlchO), Z,
propagates the resulting upper field information YErO) to-
ward the lower interface (the buried object), Z-'accounts

for the local interactions on this object, and 2; repropa-
gates the resulting contribution toward the upper inter-

face; finally, 2;1 updates the field values on the upper in-
terface. In conclusion, the order Pppy of PILE
corresponds to the Ppyp reflections between the surface
and the object.

If the object dimension is of the order of the wavelength
and if Ax, is of the order of Ax_, then the number of
samples on the surface X, is much greater than that of
the object 3_, N.>N_. Thus, the most complex operation

in the calculation of M, is Z;'Y. One of the advantages of
the PILE method is the ability to apply fast exact meth-
ods that already exist for a single rough surface, like for
instance the BMIA-CAG of Tsang et al. [21,22] of complex-
ity O(N, log N,), the FB method of Holliday et al. [23] of
complexity (’)(Nf), and the accelerated version of FB-SA of
Chou and Johnson [24] and Torrungrueng et al. [25] of
complexity O(N,). The purpose of this paper is to imple-
ment PILE combined with the FB-SA algorithm for a bur-
ied object.

C. Forward-Backward Method

In this subsection, the FB method is applied to speed up
the calculation of Z;'u (u is the column vector of length
2N,) to reduce the complexity to (’)(Nf) instead of the
O(Nf) from a direct lower upper (LU) inversion. For a per-
fectly conducting surface, this method was developed by
Holliday [23] et al. and more recently, it has been ex-
tended to a dielectric surface by Iodice [30]. In what fol-
lows, the main equations are given in order to explain the
acceleration SA.
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We want to solve Z,u=veu=Zlv, where u (the un-
known) and v are column vectors of length 2N,. From Eq.

(A1), the Z+ matrix is expressed from four square subma-
trices of sizes N, XN, as

_ A B
Z+ = = - | (12)
C D

in which A=A,, B=B,, C=C,, and D=p,,D,. The FB al-
gorithm decomposes z+u=v as

:\dulf+ Edu2f= \ 4 I_Xful - Efuz (13)
édu1f+ ]_)du2f= Vg — (_jful - 1_)fu2

and

Adulb + Edu% =- Ablh - ]_31)112
_ _ _ _ . (14)
Cquyp, + Dyug, = - Cyuy - Dyuy

For instance, 1_\d is a diagonal matrix, l_\f a lower triangu-
lar matrix, and 1_81, an upper triangular matrix, all built

from A (K:Kﬁf\d +;&b). The subscripts {d,f,b} stand for
diagonal, forward, and backward matrices but are re-
ferred to, respectively, as diagonal, lower, and upper tri-
angular matrices. Moreover, uT=[u}‘ ug] and v7T
=[v’f vg], in which {u;,us,v;,vs} are column vectors of
length N.. Finally, the unknown vectors are decomposed
as w;=u;+u;, (i={1,2}), in which u; gives the forward
contribution (from the points on the left of the current
point) and w;;, gives the backward contribution (from the
right). The surface is oriented by assuming that the inci-
dent beam propagates from left to right.

To compute u, an iterative procedure is applied. Assum-
ing first that u,=0=u=up+u,=w=u;=uy, Eq. (13) is
solved for ug=u;s+ugx. Then, introducing usin Eq. (14), u,
is found. The first iteration u® is then equal to up+up.
The scheme is repeated to calculate the next iterations
u® up to the order p=Pgg. Equations (13) and (14) are
very convenient to solve by substitution for us and u,. For
instance, from Eq. (13), since {Kf, ]_E:f, éf, f)f} are lower tri-
angular matrices with null diagonal coefficients, we get,
with m €[2;N,]

n=m-1
AU+ B ue= vl - ) (APul + B uy)
n=1
n=m-1
Ul D=0y — > (CPul + D ul)
n=1

(15)

For instance, A™" is the element of the matrix A for the
column m and the row n. u} is the nth component of the
vector u;. Thus, assuming first that u,=0=u=us+u,
=us=uw;=u; and by solving Eq. (15), the unknowns
{ulf,ust with m e[2;N,] are calculated from 4NE/ 2 mul-
tiplications. From Eq. (14), we obtain an equation system
similar to Eq. (15), but the sum over n is n e [m+1;N,],
and the unknowns {u7},ul;} with m €[1;N,-1] are also
calculated from 4N?/2 multiplications. In conclusion, the
complexity of the FB method is O(IV’ %). By combining the
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SA approach, only O(N,) multiplications are needed. In
Subsection 2.D, the basic concept of the SA is recalled. A
more detailed theory can be found in [24,25].

D. FB-SA Method

Let us consider two points (r}’,r}) belonging to the upper
surface ¥, and let us denote x;=x7"—x] and z4=27" 2.
r,, is the observation point, fixed, and r,, the source point

that moves on the surface. The impedance matrix Z, is
given by Eq. (Al). It is expressed from four submatrices,
two {A,=A,C,=C} corresponding to the Neumann
boundary condition (perfectly conducting surface for the
TM polarization), and two {B,=B,D,=D/py;} correspond-
ing to the Dirichlet boundary condition (perfectly conduct-
ing surface for the TE polarization). Thus, in Eq. (15), the
SA algorithm used to speed up the products Ay*"u7 and
C'" "u7 is the same (TM case). The same remark holds for
the products B""uy and D;*"uy (TE case).

1. TE Case

From Eq. (A4), the elements of the matrix B=B, are ex-
pressed from the 2D Green function as B™"
=Ax,g,(r],r}) JAx+/4H (K1||r -r7|), in which H(l) is
the Hankel function of the first kind and zero order. The
coefficient o is included in u3.

Let x40 be the horizontal distance separating the weak
interactions from the strong ones, and let N, be the inte-
ger part of x49/Ax,. Then, considering first the forward
case, the term 27771~ 1Bm’"ug in Eq. (15) can be written as

n=m-1 n=m-Ng—-1 n=m-1
mun, no_ m,n. n m,n. n
Bf Ug = E B/‘ Uy + E Bf Ug.

n=1 n=1 n=m-N,

m,(s} (16)
Ef : E;c" Aw)

In the above decomposition the term Em ) g performed

exactly for each m =N, +1, whereas E;” ‘W) is calculated

using the SA. The SA is based on the following decompo-

sition of the Green function, written here for x,,—x,>0

[24,25]:

g r +)-— J exp{jK, (e - x%)cos &

+ () - 2})sin ¢]}d ¢, (17)
where the integration contour C, (top of Fig. 2) is defined
as [-m/24j0;—m/2[Ul-7/2;+m/2]Ul+ 7/ 2;

+7/2—j]. The purpose of SA is to substitute for the
path C; a new path C, which permits us to calculate the
numerical integration over ¢ with few angles. The de-
tailed description of this path will be discussed below.
Thus E,’c”’(s) can be written as
m-Ng-1
E}'c"’(s)

uy | expEI [T —xecos ¢
Cs

+ (27 - 2zY)sin ¢l}d

JAx, ) ) JAx,
= f F,.(d)exp(jK,27 sin ¢)dp =
4 cs 4
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Fig. 2. (Color online) Top, illustration of the integration con-
tours of the 2D Green function C,, and of that used for the SA
algorithm C; Bottom, physical interpretation of Csin the spatial
domain.

p=+Q
Xexp(-jd) >, F,(¢,) exp(Ki2" sin ¢,)A¢
p=-Q

(18)
with

m-Ng-1

F()= 2 ujexp(K[(x7 -x7)cos -2} sin ¢]}.
n=1

(19)
In addition, F,,(¢) can be calculated from F,,_;(¢) as

Fu(¢) = Fu_y($)exp(KAx,cos ¢) +uy !

Xexp{JK [(INg + 1)Ax,cos ¢ — zm N

!sin b1}
(20)

When computing the forward steps in Eq. (15), the sum
is performed exactly for m €[1;N,] [elements (a) of Fig.
3]. For each m >N, the sum is split into two sums, Eq.
(16). E¢' ) is computed exactly [elements (c)] and E;"’(W)
computed from SA [elements (b)]. For this purpose,
F,(¢,) is found from F,,_;(¢,) for every p € [-Q;Q] using
Eq. (20) with A¢p=2¢.,/(2Q+1) e R, and then summed
over p. Initially, F,,(¢,)=0 for m e[1;N,+1].
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Forward propagation Z f Backward propagation Z"

Fig. 3. TIllustration of steps for the product ]_?;fvz (left) and B,v,
(right), where vy=vy+vy,. First, the elements of domain (a) are
multiplied by v, exactly. Then elements (b) and (c) are multiplied
by v, with those of (b) using the SA algorithm and those of (c)
exactly as for (a).

In Eq. (15), the sum ZZ;T‘ID}”’”u’ZL is computed in the
same manner as EZZT‘IB}”’”u’ZL by substituting K; for K,
in Eqgs. (18)—~(20).

For the backward steps, the sums ="'z B2 and
=N C7™"u? must be computed. The main difference is
that x,, —x,, <0 so the decomposition of the Green function
is the same as Eq. (17), but sin ¢ is replaced by —sin ¢. In
a practical way, the consequence on Eqgs. (18)—(20) is that
cos ¢ is unchanged, but sin ¢— —sin ¢. Furthermore, in
Eq. (19) the summation goes from m+N,;+1 to N,, and in
Eq. (20), F,, is obtained from F,, ..

2. TM Case
For the TM case, the products Af'»""u’{ and C}””u’l‘ are in-

volved. From Eq. (A3), the elements of the matrix A=A,
are expressed from the 2D Green function as A™"=

—Ax, dg1(r,x7)/dn, expressed from the Hankel function.
Thus, from Eq. (17), we have

3g1(r1n,r2)

=-—| exp{K;[(x}" -«{)cos ¢
on, 4w ).

+ (2 = 2)sin @J}(¥; cos ¢ - sin ¢)d ¢,
(21)

with y,=dz,/dx,. The same algorithm as in the previous
TE case can be applied for both forward and backward
steps. The differences are in the expressions of F,, in Eq.
(19) and in the recurrence relation Eq. (20). We have

m-Ng-1
F,(¢) = E u’ exp{K [ (x] —x7)cos ¢ + (2 — 27})sin @]}
n=1

X (9 cos ¢ —sin ¢), (22)
and

F,(¢)=F,,_1(¢p)exp(jK1Ax, cos ¢)
+ (')/T_NS_1 cos ¢ — sin ¢)ur1n—Ns—l
X exp{jK [ (N, + 1)Ax, cos ¢ —zT_NS"l sin ¢]}.
(23)

The same term (/} cos ¢—sin ¢) is also applied as a factor
for the backward step.
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3. New Contour Integration Cg
As shown at the top (frequency domain) of Fig. 2, the SA
method substitutes for the integration contour C, a steep-
est descent path C{™" going through the saddle point
¢ =arctan[ (27 -2/ (T -x)]el-7m/2;+7/2].  The
group of paths C'" associated with all pairs of points
(rl,r}) can be replaced by a unique path C; going
through the origin. Furthermore, close to the origin, Cgis
a straight line having a slope —tan 6. If § is correctly cho-
sen, the integrands of Eqgs. (17) and (21) decay rapidly
away from the origin and the phase has little variation.
Thus, as in a classical saddle-point technique, after re-
placing C'™" by Csin Egs. (17) and (21), the integration
over ¢ can be approximated by a sum over a limited num-
ber of complex angles ¢, exp(-jd)=pA¢ exp(-jd) with
Ap=2¢n./(2Q+1) eR and p e[-Q; Q] an integer.

The parameters {¢p,.x,tan 8} that define the integra-
tion contour Cs are then given by

. ¢s,max ¢§,max bs ™
Prmax = Min + + ;— | bg=86,
2 4 Klrdo tan 50 2

(24)
4aq
tan S=min| ————;1| a,=5, (25)
Klrd0¢s,max
Zinax _ Zinin
s max = arctan| ——— |, (26)
Xdo
rgo= \'/x¢210 + (7 - zf‘in)z, (27)

with z™*=max(z,) and z™"=min(z,). A detailed study of
the calculation of these parameters can be found in [25].
Physically, in the spatial domain (bottom of Fig. 2), ¢ max
corresponds to the maximum angle defined with respect
to X at which the current point sees the other points on
the surface. This corresponds to the illuminated zone or
the strong interaction zone. For this region, the angles
¢™" are close to the saddle point ¢,"", and the imaginary
part of ¢™™ is small. The associated waves are propa-
gated.

On the other hand, if ¢;"" > ¢ nax € R, the imaginary
part of ¢ becomes larger and the associated waves are
not propagated (evanescent waves). This corresponds to
the shadowed zone or the weak interaction zone. From
Eqgs. (26) and (27), the horizontal distance x4, separating
the weak from the strong interactions must be known.
From the bottom of Fig. 2, x4, corresponds to the distance
separating two points of the surface having, respectively,
a large and small height. Thus, statistically x40 must be of
the order of the surface height correlation length L..
Simulations done on the single rough interface showed
that x4 ranges from 2L, to 3L.. In addition @=16, which
means for the weak interactions that the Hankel function
can be approximated as 2Q +1=33 plane waves of propa-
gation angles ¢, exp(-j9).

4. Complexity and Memory Space for PILE+FB-SA
From Egs. (20) and (23), the number of multiplications
are, respectively, 2(2Q +1)(IV,-N,) and 3(2Q +1)(N,—-N,),
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and from Eq. (18), (2@ +1)(IN.—N,) for each polarization.
Thus, for an iteration number Pyg of the FB, the back-
ward and forward steps applied on the four submatrices
lead to (3+4)(2Q +1)(IN,—N,) X 2 X 2Pg for the weak in-
teractions, and 4N N, for the strong interactions. A direct

LU inversion of Z_ leads to N%/3 multiplications. So the
computation of the characteristic matrix (10) requires
8N, N_+2N_2N_ of the matrix-vector products, and
N3/3+[28(2Q +1)(N,-N,) +4N N, |Pgg of the inversions.

In conclusion, from Eq. (8), X, at the order Ppyr with
PILE combined with FB-SA needs

{8N,N_ + 4N?(matrix-vector products)
+[28(2Q +1)(N, - N,)
+4N,N,|Ppg(inversion of Z,)}Ppr
+[28(2Q +1)(N, - N,)
+4N,N,]Pgg(order 0, inversion of Z,)

+ (2N _)/3(initialization:inversion of 2_) (28)

operations, instead of (2N,)3/3+(2N_)3/3+4N%+(8N,N_
+4N 3+4N HPpyr from PILE. At the order 0, since
N,>N, and N,>1, PILE+FB-SA is fast compared to
PILE if (2N,)2/3>[28(2Q+1)+4N,]Pyp. Typically, N,
=100, Prg=8, @=16, thus N, >>22. At the order Ppj g, we
must have N,>>[28(2Q+1)+4N,]|Prp/4, which leads to

N, >2648. But the storage of the inverse of 2+ is not nec-
essary, unlike in PILE. Indeed with FB-SA, only the sub-

matrix elements of Z, of the strong interactions must be
stored. For a submatrix, the number of elements is
Ny(N;+1)/2+(N,-N,-1)N,, which leads to N_N, for
N, >N, instead ofo.

3. NUMERICAL RESULTS

In this section, the PILE method combined with FB-SA
and referred to as PILE+FB-SA is compared with the re-
sults obtained from a direct LU inversion of the imped-

ance matrix Z. The input parameter of PILE is its order
Pppi i [see Eq. (8)], which is related to the number of re-
flections between the object and the rough surface. The
input parameters of PILE+FB are Ppyr and the order
Pgp of the FB method for the inversion of the impedance
matrix of the rough surface. Eventually, the input param-
eters of PILE + FB-SA are Ppyy g, Prg, and x4q, which is the
distance of the strong interactions required for the calcu-
lation of the integration contour Cs One of the advan-
tages of the PILE method is the separation of the local in-

teractions of the rough surface [related to 2;1 in Eq. (10)]

and those of the object [related to Z'in Eq.(10)]. Thus, a
means to obtain the parameters Py and x4 is to study
the scattering from a single rough dielectric interface
(without the object); this is the purpose of Subsection 3.A.
In Subsections 3.B and 3.C, the convergences of PILE and
PILE+FB-SA are investigated, while Section 4 presents
the computation time of PILE + FB-SA.
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A. Determination of the Parameters Prp and xg4,
For all simulations, the order Pgpp is obtained when the
relative residual error (RRE) r,, defined as

RRE. norm(X - X;y) 29)
Te= norm(Xy)

is smaller than a threshold chosen as 1073 in what fol-
lows. The norm of a vector of components X; and of length
N is expressed as norm(X)= i:llv |X;|?. X represents either
the field ¢ or its normal derivative dis/ dn on the surface.
The subscript LU means that the vector is computed from
a LU inversion (benchmark solution). The order Ppg is
then obtained when r, becomes smaller than 1073, Since
r, is determined for ¢ and di/ dn, we take the largest
value of Pgg. In what follows, the surface is assumed to be
a Gaussian process with a Gaussian height spectrum, and
the incident medium (); is the vacuum (the incident
wavelength is denoted as \g).

Table 1 presents the order Pyg for a single rough dielec-
tric surface and for the TE and TM polarizations. It is
computed from one surface realization. The correlation
length is L.=2\,, the RMS heights are o, €[0.1;2]\,
(RMS slope o,=120,/L, €[0.0707;1.4142]). The sampling
step is \¢/10, the surface length L,=120\, (N,=1200),
and Thorsos’ wave parameter g=L/6. We can note that
the FB method converges fast for €,,=2+0.01; [(a) and (b)
cases], and the order Ppp is quite insensitive to the RMS
height and the incidence angle. In addition, as |e.| in-
creases, the order FB increases for the TE polarization,
whereas it remains unchanged for the TM polarization.

In Fig. 4, the scattering coefficient in dB scale is com-
pared with that obtained from a direct LU inversion ver-
sus the scattering angle 6,. From Thorsos’ wave and for
r e, it is equal to [10]

|yf?
Us(aia 0s) =

(30)

1+2tan?6, |’
8mKyg cos ;| 1

 2K2g%cos? 6,

Y. .
Y= j {f\” + 72— KoL, sin 6, - cos es]}e-fks'rdx+,
3,

(31)

with k,=K,(X sin 6,+Z cos 6,) (Ky=2m/\q) the scattering
wave vector and y,=dz,/dx,. At the top is the TE case
and at the bottom, the TM case. The parameters are the

Table 1. Order Pgg for a Single Rough Dielectric
Surface (without Object) and for the TE and TM

Polarizations”
o,/ 0.1 05 1 15 2
0.°), € TETM TETM TETM TETM TETM
(a) 0, 2+0.01j 7.6 7.6 77 8,7 10,9
(b) 60, 2+0.015 8,7 8,7 8,7 8,7 9,9
(c) 0, 10+j 12,8 12,7 13,7 15,8 14,8

“Three cases are considered. Correlation length L.=2\,, sampling step N/ 10,
surface length L, =120\, (N,=1200), and Thorsos’ wave parameter g=L,/6.
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Fig. 4. (Color online) Comparison of the scattering coefficient
(without object) in dB scale with that obtained from a direct LU
inversion versus the scattering angle 6,. Top, TE case; bottom,
TM case. In the legends, the order Prg and the RRE in linear
scale of the scattering coefficients are given. The parameters are
the same as in Table 1 with €,,=2+0.01j, 6,=0° and o0,=2\, [(a)
casel.

same as in Table 1 with €9=2+0.01;, 6;=0°, and o,
=2N=0,= \JE [in the (a) case]. As the order Ppp increases,
the RRE decreases and we can observe that the results
converge toward those obtained from a direct LU inver-
sion. The last order is taken from Table 1.

Like the PILE method, Déchamps et al. [28] have re-
cently shown that the FB method converges if the norm
(the modulus of its eigenvalue that has the highest modu-
lus) of the characteristic matrix

Mip=Z,4+Z, ) Z, (Z, 4+ Z,,)'Z,, (32)

is smaller than one. th is a matrix of size 2N, X 2N,
built from the diagonal of the matrices 1_\, f}, C and D (see
Appendix A) of sizes N,XN,. In the same manner,

{2+,f,2+,b} are matrices of sizes 2N, X 2N, built from the
lower and upper triangular matrices with zero values on
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Fig. 5. (Color online) Comparison of the field |,| and its normal
derivative |dy,/dn,| (without object) on the surface computed
from FB-SA with those obtained from a direct LU inversion ver-
sus the normalized abscissa x/\, and for the TE case. The pa-
rameters are the same as in Fig. 4 with x4,=3L, and the order
Py is taken from Table 1.

the diagonal of A, B, C, and D, respectively (Z+=Z+f
+2+’d+2+’b). The norm of Myg [norm(Myg)] is a relevant
criterion to study the validity of FB because it is indepen-
dent of the incidence and scattering angles. It depends
only on the surface profile and the permittivity €.o. For a
single dielectric rough surface, Iodice [30] has studied in
detail the convergence of the FB against the choice of the
height autocorrelation function (HAF). For a Gaussian
HAF, the FB always converges, whereas for an exponen-
tial HAF with the same correlation length and RMS
height as the Gaussian case, the FB may fail for very
rough surfaces. For example, with N, =800, L,=80)\, L,
=2\, 0,=\g, €9=2+0.01j, g=L,/6, norm(Myp)=0.4114
<1 for a Gaussian HAF, whereas norm(Mgg)=2.7662> 1
for an exponential HAF, which means that the FB method
does not converge in that case. This is verified if we com-
pute the scattering coefficient for different incidence and
scattering angles.

In Fig. 5 the field |¢,| and its normal derivative
|9/ dn,| on the surface computed from FB-SA are com-
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pared with those obtained from a direct LU inversion ver-
sus the normalized abscissa x/\, for the TE case. The pa-
rameters are the same as in Fig. 4 and the order Pgg is
taken from Table 1. The distance of the strong interaction
is x40=3L.=6\y. We observe a very good agreement. From
the parameters of Table 1, similar simulations with x4
=3L. and for TE and TM polarizations, not reported in
this paper, also showed very good agreement. In conclu-
sion, in what follows x4o will be set equal to 3L, for the
spectral acceleration.

B. Convergence of PILE

The purpose of this subsection is to study the convergence
of PILE versus its order Pprg. In what follows, the ab-
scissa of the object is x,=0, and a will denote the radius of
a circular cylinder and %, its depth.

In Fig. 6, for the TE case, the modulus of the field ¢, on
the rough surface is plotted versus the normalized ab-
scissa x/N\g. The parameters are 6;=0°, L.=2\g, 0,=M\,
€9=2+0.01j, sampling step Ay/10 (N,=1200) for the
rough surface of length L,=120\,, g=L,/6, N_=126
(Ar_=~aA¢=0.1Ny), h.=4Ny, and a=2\,. At the top is
shown the PILE method; middle, PILE +FB method with
Prppg=7 obtained from Table 1, bottom, PILE+FB-SA
method with x;,=3L.. In each subfigure, the order of
PILE and the corresponding RRE are noted in the legend.
In addition, the results computed from a direct LU inver-
sion are plotted.

At the top (see Subsection 3.C for a discussion of
PILE+FB and PILE+FB-SA), we can observe that the
PILE method converges after three iterations, which
means that the number of reflections between the surface
and the object in medium (), contributing to the scatter-
ing process is Ppiir=3. Pprrg=0 gives the contribution to
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the scattering from only the rough surface. In addition,
Fig. 6 reveals that the field vanishes on the edges of the
surface. This condition must be satisfied to apply the in-
tegral equations.

Figure 7 presents, for different orders Ppy g, the modu-
lus of the radiated field #.,q(r) computed from the fields
on the rough surface and the object versus the normalized
abscissa x/\y and the normalized height h/\, for the TE
polarization. It is expressed as

dg,(1r,,1)

P

Praa(r) == 2 Spf |:l/’p(rp)
p=x J3,

It ()
_gp(rpyr)%]dzp’ (33)

P

with r ¢ (3, UX_) (and Qg if the object is a perfect conduc-
tor); {s_=0,s,=1} if re,, otherwise {s,=+1}; and
g,(r,,v)=j/4H (Ky\e,|r,~r|), in which e,=¢; if r
€ );. The parameters are the same as in Fig. 6, but o,
=0.50g, L,=80N\q, 6,=30°, and g=L_/4. Figure 7 clearly
shows that the PILE order is related to the number of re-
flections into the medium (.

With the same parameters as in Fig. 6, except for a
={0.5,1,2,3\¢=>N_={31,63,126,188} and 0,=0.5\,
simulations showed that the order of PILE is Pprpg
={2,3,3,3} for the TE polarization, whereas for the TM
case, PPILE={2 ,2 s 3 5 3}

Table 2 presents the order Ppp g for a circular cylinder
below a rough dielectric surface and for the TE and TM
polarizations. It is computed from one surface realization.
The parameters are L,=2\g, o, € [0.1;2]\(, sampling step

PILE
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o .
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Fig. 6. (Color online) Modulus |¢,| of the rough surface versus the normalized abscissa x/\, for the TE case. 6,=0°, L.=2\, 0,=\,,
€9=2+0.01j, N,=1200, L,=120\,, g=L,/6, N_=126, h,=4\,, and a=2\,. Top, PILE method. Middle, PILE+FB method with Ppg="7.
Bottom, PILE + FB-SA method with x;,=3L,. In each subfigure, the order of PILE and the corresponding RRE are given in the legend. In

addition, the results computed from a direct LU inversion are plotted.
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0,=0.5\g, L, =80\, 6;=30°, and g=L,/4.

No/10 for the rough surface of length L,=120N, (V.
=1200), Thorsos’ wave parameter g=L./6, N_=126, h,
=4\g, and a=2\g. Three cases are considered. As the
modulus of the permittivity |€,o| increases, the order Ppy g
decreases. Indeed, the skin depth & decreases when |€,.
increases (€.9={2+0.01;,10+;}= 6={45,1})\(), which im-
plies that the number of reflections between the rough
surface and the object contributing to the scattering de-
creases. Table 2 reveals also that Ppy g is independent of
the incidence angle 6; and the polarization.

Table 3 presents the order Ppy i for an elliptic cylinder
below a rough dielectric surface and for the TE and TM
polarizations. The parameters are L.=2\;, o,=0.5\,
sampling step \y/10 for the rough surface of length L,
=120)\ (N,=1200), €9=2+0.01j, 6;=0°, g=L./6, h =4\,
and b=\, (semiminor axis and a=b). As the semimajor
axis a increases, the order Ppj; g increases slightly, which
means that the interactions between the object and the
rough surface are stronger.

Table 2. Order Ppy g for a Circular Cylinder below
a Rough Dielectric Surface and for the TE and TM

C. Convergence of PILE+FB-SA

The parameters of the FB-SA needed to calculate the local
interactions on the rough surface are given in Table 1. In
addition, the distance of the strong interactions is x g
=3L,.

Figure 6 reveals also that the PILE method combined
with FB exhibits a good convergence, which means that
the order Ppg is well chosen. Nervertheless, the conver-
gence of the PILE+FB-SA approach is not perfect, since
the RRE remains constant after 3 iterations. Although
the values of the RRE on the first iteration of PILE+FB
and PILE+FB-SA are very close, the values at the next
iterations differ. This implies that the error propagates
with Pprg. But, as displayed in Fig. 8, the impact of this
difference on the scattering coefficient is minor except at
grazing scattering angles. In the legend, the RRE is given
in linear scale.

Figures 9 and 10 compare the RRE over the scattering
coefficient against the normalized RMS height o,/\y for
the TE and TM polarizations, respectively. The order
Ppri g is obtained from Table 2, from which the (a) case is

Table 3. Order Ppy g for an Elliptic Cylinder below

Polarizations® a Rough Dielectric Surface and for the TE and TM
Polarizations
0./No 0.1 0.5 1 15 2
0,°), €9 TE,TM TETM TETM TETM TE,TM al\, 1 3 5 7 9
(a) 0, 2+0.01j 3,3 3,3 3,3 3,3 3,3 N 63 134 210 288 367
(b) 60, 2+0.01; 3,3 3,3 3,3 3,3 3,3 Ppyp TE 3 3 4 4 4
(c) 0, 10+j 1,1 1,1 1,1 2,2 3,3 Ppg TM 2 3 3 3 4

“Three cases are considered. Correlation length L,=2\,, sampling step N/ 10 for
the rough surface of length L,=120\, (N,=1200), Thorsos’ wave parameter g
=L,/6, N.=126, h,=4\,, and a=2\,.

“The parameters are L.=2\q, 0.=0.5\,, sampling step \o/10 for the rough sur-
face of length L,=150N, (N,=1200), €,=2+0.01j, 6,=0°, g=L,/6, h.=4\y, b
=\ (semiminor axis and a=b).
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Fig. 8. (Color online) Comparison of the scattering coefficient in
dB scale with that obtained from a direct LU inversion versus
the scattering angle 6,. The parameters are the same as in Fig. 6.

considered. As we can see, the RRE is of the order of 1073
for PILE, whereas it is proportional to the RMS height for
FB and FB-SA and it is quite insensitive to the polariza-
tion. In addition, the RRE is larger for FB-SA.

To study the effect of the distance x4, in Fig. 11 the
RRE over the scattering coefficient is plotted versus
xg40/L, for the TE and TM polarizations. The parameters
are the same as in Fig. 6 and the orders are {Ppp
=7’PPILE=3} and {PFB=6’PPILE=3} for the TE and TM
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Fig. 9. (Color online) Comparison of the RRE over the scatter-
ing coefficient versus the normalized RMS height o,/\, for the
TE polarization. The order Ppyy is obtained from Table 2, from
which the (a) case is considered.
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Fig. 10. (Color online) Same variation as in Fig. 9 but for the
TM polarization.
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polarizations, respectively. We can observe that the RRE
decreases slowly with x;¢ and reaches the value obtained
from PILE+FB for x;0=40L,.

D. Computation Time of PILE+FB-SA

In Fig. 12 the CPU time tcpy of the PILE + FB-SA is plot-
ted versus the number of samples N, on the rough sur-
face. The parameters are the same as in Fig. 6 with
{PFB=7sPPILE=3} and {PFB=65PPILE=3} for the TE and
TM polarizations (Tables 1 and 2), respectively. It should
be noted that the number of unknowns are 2N,+N_
=2N,+126. In addition, results obtained from a linear re-
gression (TE case: tcpy=-15.7741+0.0035N,; TM case:
tcpu=—14.8946+0.0032N,) are displayed. A 3.4 GHz per-
sonal computer with 2 GB of RAM with the MATLAB soft-
ware is used in this work. We can observe that the CPU
time of PILE+FB-SA is approximately proportional to
N,. Nevertheless, the CPU time for the TE polarization is
larger because the product PpgPpr g is larger than that
obtained from the TM polarization. In fact, the ratio of the
slope of the regression straight line for each polarization
is approximately equal to the ratio computed from
Ppp(Pprg+1). Thus, as expected, the CPU time is of the
order of PFB(PPILE+ 1)0(N+)
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Fig. 11. (Color online) RRE over the scattering coefficient of
PILE +FB-SA versus the normalized distance x,,/L, for the TE
and TM polarizations. The parameters are the same as in Fig. 6.
The horizontal lines indicate the values of RRE of PILE+FB ob-
tained from Figs. 9 and 10 with o,=X\,.
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Fig. 12. (Color online) CPU time versus the number of samples
N, on the rough surface. The parameters are the same as in Fig.
6 with {PFB=7?PPILE=3} and {PFB=6’PPILE=3} for the TE and
TM polarizations (Tables 1 and 2), respectively. The number of
unknowns is 2N, +N_=2N, +126.
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One of the advantages of PILE + FB-SA is the capability
of treating large problems with a personal computer. For
instance, for N,=20,000 and N_=126, the number of un-
knowns is 40,126. In this case, the PILE + FB-SA requires

storing 1262 (for Z) plus 3 X126 x20,000 (coupling ma-
trices) plus 4X2Xx1,198,170 (8N [(N,+1)/2+(N,-N,

—1)] strong interactions for 2+ (with N,=60) = 17,161,236
complex values, which corresponds to 2X16
%X 17,161,236/8/1024% ~ 66 megabytes of memory.

4. CONCLUSION

We have presented a new efficient method to predict the
field scattered from a homogeneous object located below a
one-dimensional (1-D) dielectric rough surface. The
method is based on the rigorous PILE method, originally
developed for a stack of two 1-D rough interfaces separat-
ing homogeneous media and updated in this work to an
object beneath a surface. In addition, for the calculation of
the local interactions of the rough surface, the PILE
method was accelerated using the fast method of forward-
backward (FB), combined with a spectral acceleration
(SA). The resulting method, the PILE+ FB-SA, has then a
complexity of O(N,), in which N, is the number of
samples on the rough surface, if N,>>N_ (number of the
samples on the object).

The numerical results showed that the PILE method
converges fast. Indeed, the PILE order corresponds to the
number of reflections between the object and the rough
surface contributing to the scattering process. Combined
with FB, the PILE +FB also converges quickly for the FB
step (after 7-8 iterations for €,,=2+0.01j and 12-15 itera-
tions for €,9=10+/; see Table 1). One of the advantages of
PILE +FB is that the order Pgrg of the FB step can be ob-
tained from the study of the scattering from a single
rough surface. PILE+FB combined with SA exhibits good
convergence for a quite rough surface with a distance of
strong interactions of the order of 3L, (height correlation
length). As the surface roughness increases (RMS height),
this distance must be increased.

Instead of using the FB-SA approach to accelerate the
calculation of the local interactions on the rough surface,
the banded-matrix-iterative-approach/canonical  grid
(BMIA-CAG) developed by Tsang et al. [21,22] could be
applied. This method, of complexity O(N, logN,) is at-
tractive for RMS heights approximately smaller than 3\.
Moreover, as prospects for further research, it could be in-
teresting to study the PILE + FB-SA for an object above a
rough surface [31] and for several objects above and below
a rough surface.

APPENDIX A: SUBMATRIX EXPRESSIONS
OF THE IMPEDANCE MATRIX

For a dielectric object located below a dielectric surface,

the submatrices {2+,2_,21,Z;} are expressed from el-
ementary submatrices as

— A, B, _ A_ B_
Z+ = 5 Z_= ) (Al)

C, P211_)+ C. ps2D_
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—_ Ai pZIEt — 0 0
— — ’ ZI = _ —_ ’
0 0 A. B

(A2)

in which {ps;=€9/€1,p30= €3/ €9 for TM polarization,
and {py;=psa=1} for TE polarization.

The elementary square matrix 1_\+ (size N, XN,) corre-
sponds to the matrix of a perfectly conducting surface for
TM polarization (Neumann boundary condition). The ele-
ments are given by

)
JK Ax, HY(K e - 27

4 ey = x|

[Vl = o) = (@ = 20)]

e < form #n,
o Ax, ()
4 1+()/+")2

form=n,

1
+—_
2

(A3)

with y,=dz,/ox,, (y,) =dy,/dx,, and H(ll) the Hankel
function of first order and first kind. K1=K0\s‘; is the
wavenumber in the incident medium 4, and K, stands
for the wavenumber in vacuum.

The elementary square matrix B, (size N, X N,) corre-
sponds to the matrix of a perfectly conducting surface for
TE polarization (Dirichlet boundary condition). The ele-
ments are given by

2j
JAx,a) |1+ —1In(0.164K,a"Ax,) forn=m
B™" = T ,

m
HP & |- 7))

forn #m

(A4)

with o=[1+(y")?]V2. The elementary matrices {C,,D,}

are obtained from {A,,B,} by substituting in Egs. (A3)
and (A4), K; for K,. In addition, the diagonal elements of

C,.=-1/2-Ax, /47 (Y /[1+(¥H2. L
The elementary matrices of the object {A_,B_,C_,D_}

of size N_X N_ are obtained from {A,,B,,C,,D,} by sub-
stituting in Eqs. (A3) and (A4), (K, Ky, subscript +) for (
K,, K3, subscript -), respectively. For a buried elliptic cyl-
inder of parametric equations {x_=x.+a cos ¢,x_=-h,
+b sin ¢}(h.>0), we must take the absolute values on
|&*Ax_| =\Ja? sin®¢+b2 cos? G| Ad)| and v|Ax_
=v|a sin pA¢|, in which v=+1 for ¢ €[0; 7], v=-1 other-
wise, in order that the normal to the cylinder is always
oriented toward the outside of the object. Moreover, '=
-b/a cot ¢.

The coupling matrix ;&J_, (size N_XN,) is similar to ;&Jr
and its elements are expressed as

o JEabx, HY (K|} - x)

+

- 4

[YHx™ = x™) = (2" = 2™)].
Hrz_rTH L’}/-:-( + ) ( + )]

(A5)

The coupling matrix l_?u_, (size N_XN,) is similar to ]_3+
and its elements are expressed as
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JolAx,

B =- THB”(Kﬂlrﬁ -r7). (A6)

The elementary matrices {A-,B-} of size N, X N_ are
obtained from {A,,B,} by substituting in Eqs. (A5) and
(A6) the subscripts (+,—) for the subscripts (-, +), respec-
tively.

If the object is assumed to be a perfect conductor, then
Z.=[A, pyB.]. Moreover, the submatrices {Z_,Z-} and
the unknown vector X_ become

—_ _ 0 AP
TE case: Z_=B_,Z-=|_ |, X.=—
B. on_
_ . (A7)
_ — 0
TMcase: Z_=A_Z-=|_ |, X_. =i
A
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