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Many fast asymptotic models of electromagnetic scattering from a single rough interface have been
developed over the last few years, but only a few have been developed on stacks of rough interfaces. The
specific case of very rough surfaces, compared to the incident wavelength, has not been treated before,
which is the context of this paper. The model starts from the iteration of the Kirchhoff approximation
to calculate the fields scattered by a rough layer, and is reduced to the high-frequency limit in order
to rapidly obtain numerical results. The shadowing effect, important under grazing angles, is taken
into account. The model can be applied to any given slope statistics. Then, the model is compared
with a reference numerical method based on the method of moments, which validates the model in
the high-frequency limit for lossless and lossy inner media.

1. Introduction

Scattering from dielectric homogeneous layers has many applications, like remote sensing of
ocean ice, sand cover of arid regions, or oil slicks on the ocean, and also in optics, like optical
studies of thin films and coated surfaces, and treatment of antireflection coatings. The use of
fast asymptotic models can be very useful to predict the scattered signal of such systems.

Several models have been developed on rough films where only one surface scatters an
incident wave (for example, see [1] and references therein). Only a few asymptotic models
have been developed on scattering from stacks of rough interfaces, which is the context of
this paper. The first models on this subject were developed for optical applications, for stacks
of slightly rough surfaces compared to the incident wavelength [2–4]. One can also quote
the small perturbation method (SPM) extended to two interfaces [5], also valid for small
roughnesses. However, the mathematical formulation of this method is so complicated that
no numerical result has been presented. Soubret et al. [6] extended the reduced Rayleigh
equations to the case of two slightly rough interfaces. Fuks et al. [7–9] developed a model for
scattering from a slightly rough surface overlying a strongly rough surface compared to the
incident electromagnetic wavelength. Bahar et al. have developed the full wave model over
more than 30 years for a rough interface, and extended it to the case of two rough interfaces
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[10]. Simulations have been presented for the monostatic configuration, and for surfaces with
rms heights smaller than the wavelength [11]. Using the radiative transfer model, Tjuatja
et al. [12] presented numerical results of the monostatic scattering coefficient from a stack
of two rough interfaces separated by an inhomogeneous medium, modeled as a collection of
randomly distributed spheres. In addition, the scattering from each interface is calculated from
the asymptotic integral equation method of Fung et al. [13, 14]. Nevertheless, this approach
seems to be very difficult to implement numerically, and to demand extensive computing
time.

The objective of this paper is to obtain a simple mathematical expression of the bistatic
scattering coefficient in the high-frequency limit (taking the shadowing effect into account),
in order to get a fast method for solving the problem of rough homogeneous layers: it is an
extension of the classical geometric optics approximation for one rough interface to the case
of several rough interfaces. The starting point of the method is the Kirchhoff approximation
(KA) [14–18], applicable to surfaces with large radii of curvature compared to the incident
electromagnetic wavelength. The model uses the widely used KA in reflection, but also the
KA in transmission [14, 17, 18], which allows one to obtain the fields reflected onto and
transmitted through a rough interface. This paper describes the KA applied to a stack of two
rough interfaces, in which the KA is iterated for each successive reflection or transmission
on the two rough interfaces. To our knowledge, this is the first time that this problem has
been investigated: iterating the KA has only been done for multiple scattering from a single
rough interface [19–21], and only at order two (second-order scattering). It is applied to
strongly rough interfaces to obtain a simple mathematical expression of the bistatic radar
cross-section in the high-frequency limit, allowing easy numerical implementation and fast
numerical results. The paper focuses on one-dimensional stationary random rough surfaces,
and takes the shadowing effect into account [22, 23].

In the second part of the paper, the expressions of the first- and second-order scattered fields
are derived with the method of stationary phase (MSP). In the third part, the expressions of
the radar cross-sections are derived in the high-frequency limit (using the geometric optics
approximation). Then, numerical results are presented and compared with a benchmark method
[24, 25] based on the method of moments to validate the model. A comparison between a rough
and a plane lower interface is made, and the case of a lossy inner medium is studied.

2. First- and second-order scattered fields derived with the method of stationary phase

The studied system (see figure 1) is composed of a stack of two rough interfaces (�A for
the upper interface, �B for the lower interface), separated by an intermediate homogeneous
medium �2. The three media �α (α = {1, 2, 3}), with relative permittivity εrα , are supposed
to be non-magnetic (relative permeability µrα = 1). kα stands for the wavenumber inside �α

(kα = k0
√

εrα , with k0 the wavenumber in the vacuum). Let Ei be the incident field inside the
medium �1, of direction k̂i = (ki , qi )/|k1| = (k̂i , q̂i ), and of incidence angle θi . The incident
field on the upper surface at the point A1 is given by Ei (rA1 ) = E0 exp(i k1k̂i · rA1 ) (the term
exp(−i ωt) is omitted), rA1 = xA1 x̂ + z A1 ẑ, with xA1 and z A1 the abscissa and the elevation of
the point A1, respectively.

The field transmitted into the intermediate medium �2 along the downward propagation
direction k̂−,1 (angle θ−,1 with subscript − representing the downward direction) is reflected
onto the lower surface at the point B1 along the upward propagation direction k̂+,1 (angle θ+,1

with subscript + representing the upward direction), and then reflected onto the upper surface
at the point A2 and so on. Thus, multiple reflections of the field inside �2 occur, successively
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Bistatic scattering from one-dimensional layers 285

Figure 1. Multiple scattering from two rough interfaces �A and �B . The points on the upper surface �A are denoted
as {A1, A2, . . . , An}, whereas the points on the lower surface �B are denoted as {B1, B2, . . . , Bn}. θi is the incidence
angle, and θr , θt are the scattering angles in reflection and transmission, respectively, measured with respect to the
vertical axis ẑ. The positive sense is defined as clockwise.

on the lower interface �B at the point Bk (k ∈ {1, . . . , n−1}), and then on the upper interface
�A at the point Ak+1. This system can be seen as a rough dielectric waveguide. Only the
first two scattered fields in reflection, Er,1 and Er,2, and the first in transmission, Et,1, will be
treated in detail in this paper. Nevertheless, we will see that the higher orders can be calculated
at any order in reflection as well as in transmission.

Er,1 and Er,2 denote the first- and second-order scattered fields inside the incident medium
�1. They are observed in the reflection direction k̂r = (kr , qr )/|k1| = (k̂r , q̂r ), with a scat-
tering angle θr . Et,1 denotes the first-order scattered field inside the inner medium �3. It is
observed in the transmission direction k̂t = (kt , qt )/|k3| = (k̂t , q̂t ), with a scattering angle θt .
θi ∈ [−π/2; 0], and θ−,1, θt , θ+,1, θr ∈ [−π/2; +π/2], are measured with respect to the ver-
tical axis ẑ, where the positive sense is defined as clockwise. With k̂−,1 = (k−,1, q−,1)/|k2| =
(k̂−,1, q̂−,1) and k̂+,1 = (k+,1, q+,1)/|k2| = (k̂+,1, q̂+,1), we have{

k̂i = (− sin θi , − cos θi )

k̂r = (+ sin θr , + cos θr )

{
k̂−,1 = (− sin θ−,1, − cos θ−,1)

k̂+,1 = (+ sin θ+,1, + cos θ+,1).
(1)

In order to determine the fields Er,1, Et,1, and Er,2, the iteration of the Kirchhoff approxima-
tion (KA) is used for both interfaces at each scattering point (in reflection or transmission). It
is valid in the restrictive case of interfaces whose radii of curvature are larger than the incident
wavelength λ0. The field on every point of the considered surface can then be approximated
by the field that would be present on its tangent plane. Thus, the Snell–Descartes laws and the
Fresnel coefficients can be applied locally, on every point of the considered surface. Moreover,
the method of stationary phase (MSP) is used on the two interfaces, at each scattering point.
Based on the KA, it assumes that the major contribution of the scattered field comes from
regions of the rough surface in the vicinity of the (stationary phase) specular points of the
rough surface, whose direction is given by the local normal to the surface and the incidence
angle.
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In the first subsection, the general principle of the method is exposed from the case of the
first-order scattered field Er,1. In the second subsection, Et,1 and Er,2 are derived for a rough
lower interface, and in the last one they are derived for a plane lower interface.

2.1. General principle of the method

First, the fields scattered in reflection and transmission from the upper interface �A at the
point A1 are expressed from the classical Kirchhoff–Helmholtz integral equations with the
use of the Kirchhoff approximation [23]. Then, using the Weyl representation of the Green
function, one can express the scattered fields at any point of the two media, that is to say �1

for the field scattered in reflection, and �2 for the field scattered in transmission. The scalar
two-dimensional Weyl representation of the Green function G M M ′

α = Gα(rM, rM′ ), for a wave
propagating from a point M to a point M ′ in the medium �α , is defined as

G M M ′
α = i

4
H (1)

0 (kα‖rM′ − rM‖) = i

4π

∫ +∞

−∞

d k̂M M ′

q̂M M ′
ei kα k̂MM′ · rMM′ , (2)

where k̂M M ′ = k̂MM′ . x̂, and q̂M M ′ = k̂MM′ . ẑ, with

q̂M M ′ =
{[

1 − k̂2
M M ′

]1/2
if ||k̂MM′ || ≤ 1

i
[
k̂2

M M ′ − 1
]1/2

if ||k̂MM′ || > 1,
(3)

where rM = xM x̂ + zM ẑ, with xM and zM the abscissa and the elevation of the point M ,
respectively. Let us note that the Weyl representation of the Green function is valid for far-
field as well as for near-field propagations. The formalism in equation (2), which uses the scalar
product k̂MM′ ·rMM′ inside the exponential (similar to the formalism expressed by Bahar et al.
[19]) is equivalent to the classical form using absolute values over the heights zM and zM ′ ,
|zM ′ − zM | in [26]. When the scattered field is observed in the far-field zone at the point P , the
two-dimensional scalar Green function can be expressed by the following asymptotic form:

G M P
α 	 i

4

(
2

πkαr

)1/2

exp{i[kα(r − k̂s · rM) − π/4]}, (4)

where r is the distance of P from an arbitrary origin. For our configuration, k̂s = k̂r if α = 1,
and k̂s = k̂t if α = 3.

Then, using the Kirchhoff–Helmholtz integral equation under the Kirchhoff approximation
and the asymptotic Green function in equation (4), and adding the surface illumination function
	(rA1 ), one can express the first-order scattered field Er,1 in the incident medium in the far-field
zone. Moreover, using the method of stationary phase, the expression can be simplified to

Er,1(rP ) =
(

k1

2πr

) 1
2

exp[i(k1r − π/4)] r12
(
χ0

ri

)
f (k̂i , k̂r , n0

ri )

×
∫ +L0/2

−L0/2
	(rA1 ) exp(−ik1k̂r · rA1 ) Ei (rA1 ) d xA1 (5)

with 	(rA1 ) = 1 if the point A1 corresponding to rA1 is illuminated, and the rays emanating
from both the transmitter and the receiver do not cross the surface; 	(rA1 ) = 0 otherwise.
L0 is the illuminated surface length, f (k̂i , k̂r , nri ) = nri . (k̂r − k̂i )/2 is obtained from the
projection of the incidence and reflection-scattering vectors onto the local normal to the
surface nri = −γri x̂ + ẑ (defined as being directed upward), with γri its associated slope.
r12 is the Fresnel reflection coefficient, with χri the local incidence angle.
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Bistatic scattering from one-dimensional layers 287

With the method of stationary phase, in a general way, let k̂1 represent the incidence unit wave
vector inside the medium �α , k̂2 the reflection unit wave vector inside �α , and nr1 = −γr1 x̂+ẑ
the local normal to the considered surface (defined as being directed upward), with γr1 its
associated slope. Then, one can write the projection term as f (k̂1, k̂2, nr1) ≡ f (k̂1, k̂2, n0

r1) =
[1− (k̂2k̂1 + q̂2q̂1)] / (q̂2 − q̂1), and the local incidence angle χr1 ≡ χ0

r1 = −(θ2 −θ1)/2 (θ1, θ2

are oriented angles). The latter is the argument of the Fresnel reflection coefficient rαβ , defined
in H and V polarizations as, respectively,

r H
αβ

(
χ0

r1

) =
√

εrα cos χ0
r1 −

√
εrβ − εrα sin2 χ0

r1

√
εrα cos χ0

r1 +
√

εrβ − εrα sin2 χ0
r1

, (6)

r V
αβ

(
χ0

r1

) = −
εrβ cos χ0

r1 − √
εrα

√
εrβ − εrα sin2 χ0

r1

εrβ cos χ0
r1 + √

εrα

√
εrβ − εrα sin2 χ0

r1

. (7)

2.2. Derivation of the scattered fields for a rough lower interface

To obtain the higher-order scattered fields (Et,1, Er,2, Et,2, Er,3, etc.), the principle to be used is
exactly the same, and one has to iterate this ‘procedure’. For example, to obtain the first-order
transmitted scattered field Et,1, one first determines the field scattered in transmission from
the upper interface at the point A1 using the Kirchhoff–Helmholtz integral equation under the
KA, and the field at the point B1 using the Weyl representation of the Green function. Then,
this procedure is iterated, that is to say the field at the point B1 can be considered as an
incident field on the lower interface at B1, and the scattered field in transmission at this point
can be derived using the Kirchhoff–Helmholtz integral equation under the KA, and then the
transmitted field Et,1 inside �3 in the far-field zone is derived using the asymptotic Green
function in equation (2).

Then, the field Et,1, scattered by the rough layer into the lower medium �3 in the far-field
zone, results from the scattering in transmission through the surface �A at the point A1 into
the medium �2, and the scattering in transmission through the surface �B at the point B1 into
the medium �3. Taking the surfaces illumination functions 	(rA1 ) and 	(rB1 ) into account
and using the MSP, it is expressed as

Et,1 = k2

2π

(
k3

2πr

) 1
2

E0ei(k3r−π/4)
∫

dk̂−,1

q̂−,1
dxA1 dxB1 	(rA1 )	(rB1 )

×t12
(
χ0

ti

)
g12

(
k̂i , k̂−,1, n0

ti

)
t23

(
χ0

t−,1

)
g23

(
k̂−, 1, k̂t , n0

t−,1

)
×eik1k̂i ·rA1 eik2k̂−,1·rA1 B1 e−ik3k̂t ·rB1 , (8)

where rMM′ = rM′ − rM = (xM ′ − xM )x̂ + (zM ′ − zM )ẑ. In a general way, let k̂1 represent the
incidence unit wave vector inside the medium �α , k̂3 the transmission unit wave vector inside
the medium �β , and nt1 = −γt1 x̂ + ẑ the local normal to the considered surface (defined as
being directed upward), with γt1 its associated slope. gαβ(k̂1, k̂3, nt1) = nt1 · k̂3 is obtained
from the projection of the incidence and transmission-scattering vectors onto nt1. tαβ is the
Fresnel transmission coefficient, with χt1 the local incidence angle.

Using the MSP, one can write the projection term as gαβ(k̂1, k̂3, nt1) ≡ gαβ(k̂1, k̂3, n0
t1) =

[kβ − kα (k̂3k̂1 + q̂3q̂1)]/(kβ q̂3 − kαq̂1), and the local incidence angle as cos χt1 ≡ cos χ0
t1 =

sign[(−q̂1 n0
t1z

)(kβ q̂3 − kαq̂1)] × [kα − kβ(k̂3k̂1 + q̂3q̂1)] / [k2
α + k2

β − 2kαkβ(k̂3k̂1 + q̂3q̂1)]
1/2

,
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with n0
t1z

the projection of nt1 onto the ẑ axis. χ0
t1 is the argument of the Fresnel transmission

coefficient tαβ , defined in H and V polarizations as, respectively,

t H
αβ

(
χ0

t1

) = 1 + r H
αβ

(
χ0

t1

)
, (9)

t V
αβ

(
χ0

t1

) = [
1 − r V

αβ

(
χ0

t1

)]
(εrα/εrβ)1/2. (10)

The computation of Et,1 requires then three-fold integrations. k̂−,1 ∈] − ∞; +∞[ a priori,
but as Et,1 is calculated in the far-field zone, evanescent waves can be neglected (which is con-
sistent with the GO approximation). So k̂−,1 ∈ [−1; +1], leading to k̂−,1 = − sin θ−,1. Thus,
dk̂−,1/q̂−,1 can be reduced to dθ−,1, with θ−,1 ∈ [−π/2; +π/2]. xA1 , xB1 ∈ [−L0/2; +L0/2]
where L0 is the illuminated surface length.

The field Er,2, scattered by the rough layer into the incident medium �1 in the far-field
zone, results from the transmission through the surface �A into the medium �2, the reflection
onto the surface �B inside �2, and then the transmission through the surface �A back into
the medium �3. Taking the illumination functions 	(rA1 ), 	(rB1 ) and 	(rA2 ) into account and
using the MSP, it is defined as

Er,2 = −
(

k2

2π

)2( k1

2πr

) 1
2

E0ei(k1r−π/4)
∫

dk̂−,1

q̂−,1

dk̂+,1

q̂+,1
dxA1 dxB1 dxA2

×	(rA1 )	(rB1 )	(rA2 ) t12
(
χ0

ti

)
g12

(
k̂i , k̂−,1, n0

ti

)
×r23

(
χ0

r−,1

)
f
(
k̂−,1, k̂+,1, n0

r−,1

)
t21

(
χ0

t+,1

)
g21

(
k̂+,1, k̂r , n0

t+,1

)
×eik1(k̂i · rA1 −k̂r · rA2 ) eik2(k̂−,1 · rA1 B1 +k̂+,1 · rB1 A2 ). (11)

The computation of Er,2 requires then five-fold integrations. As Er,2 is calculated in the
far-field zone, evanescent waves can be neglected (which is consistent with the GO approx-
imation), so dk̂−,1, dk̂+,1 ∈ [−1; +1], leading to k̂±,1 = ± sin θ±,1. Thus, dk̂±,1/q̂±,1 can be
reduced to dθ±,1, with θ±,1 ∈ [−π/2; +π/2]. xA1 , xB1 , xA2 ∈ [−L0/2; +L0/2] where L0 is
the illuminated surface length.

Thus, using the same method for the higher orders, that is to say by iterating this ‘procedure’
for each scattering in reflection or transmission inside the dielectric waveguide, one can obtain
the expression of any order of transmitted scattered field Et,n and reflected scattered field Er,n

(this is not presented here).

2.3. Derivation of the scattered fields for a plane lower interface

When the lower interface �B , separating the media �2 and �3, is assumed to be plane (it is
then usually denoted as SB), the equations can easily be simplified. Indeed, the problem to be
solved is the same as the rough case, except that the scattering (in reflection or transmission)
from the lower interface is replaced by a simple reflection or transmission, expressed by the
corresponding Fresnel coefficient. Thus, in equations (8) and (11), there is no integration over
xB1 , and we have: 	(rB1 ) = 1, θ+,1 =−θ−,1, and

√
εr3 sin θt = √

εr2 sin θ−,1 (as the lower
interface is plane). By neglecting the evanescent waves, this leads to, respectively

Et,1 =
(

k2
2

2πk3r

) 1
2

E0ei(k3r−π/4)
∫

dθ−,1dxA1 	(rA1 ) δ

[
sin θt −

(
εr2

εr3

) 1
2

sin θ−,1

]

× t12
(
χ0

ti

)
g12

(
k̂i , k̂−,1, n0

ti

)
t23(θ−,1) eik1k̂i · rA1 eik2k̂−,1 · rA1 B1 e−ik3k̂t · rB1 , (12)
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Er,2 = k2

2π

(
k1

2πr

) 1
2

E0ei(k1r−π/4)
∫

dθ−,1dxA1 dxA2 	(rA1 )	(rA2 )δ(θ+,1 + θ−,1)

× t12
(
χ0

ti

)
g12

(
k̂i , k̂−,1, n0

ti

)
r23(θ−,1) t21(χ0

t+,1)g21
(
k̂+,1, k̂r , n0

t+,1

)
× eik1(k̂i · rA1 −k̂r · rA2 ) eik2(k̂−,1 · rA1 B1 +k̂+,1·rB1 A2 ). (13)

Thus, in this particular case of a plane lower interface, only two-fold integrations are required
for the calculation of Et,1 (instead of three), and only three for the calculation of Er,2 (instead
of five).

3. Incoherent scattering coefficients in the high-frequency limit

The total scattered field E tot
s,n (superscript ‘tot’ for total; s ≡ r for the reflection case, and s ≡ t

for the transmission case) for n-th multiple scattering is E tot
s,n = ∑n

m=1 Es,m . The average
scattered power is expressed as〈∣∣E tot

s,n

∣∣2〉
2ηα

=
n∑

m=1

〈|Es,m |2〉
2ηα

+ 1

ηα

e

(〈
n−1∑
m=1

Es,m

n∑
p=m+1

Es,p
∗
〉)

, (14)

with ηα the wave impedance of the considered medium: α ≡ 1 for s ≡ r and α ≡ 2 for s ≡ t .
For n = 2, we have E tot

s,2 = Es,1 + Es,2, then 〈|E tot
s,2|2〉/2ηα = 〈|Es,1|2〉/2ηα +〈|Es,2|2〉/2ηα +

e
(〈Es,1 Es,2

∗〉)/ηα , where e(. . .) is the real part operator, (. . .)∗ the complex conju-
gate operator, and 〈. . .〉 the ensemble average operator. To distinguish the conjugate Es,n

∗

from the field expression Es,n , the points {Am, Bm} become {A′
m, B ′

m}, which means that
{xAm , xBm , z Am , zBm } → {xA′

m
, xB ′

m
, z A′

m
, zB ′

m
} and {θM M ′ } → {θ ′

M M ′ }. The incoherent power

P tot
s,n is obtained from P tot

s,n = 〈|E tot
s,n|2〉/2ηα − |〈E tot

s,n〉|2/2ηα .
To calculate the scattering coefficient of the layer in the high-frequency limit, the geometric

optics (GO) approximation (k0σh > 1, with σh being the rms height of the surface) is used
for both interfaces. It assumes that the scattering intensity contributes for only closely located
correlated points of the surface, M, M ′, compared to the surface correlation length Lc, such
that the coherent contribution |〈E tot

s,n〉|2/2ηα can be neglected. Moreover, the height difference
zM ′ − zM can be expanded as γM (xM ′ − xM ), with γM the surface slope at the point M . Then,
one can express the total scattering coefficient σ tot

s,n of a one-dimensional target, defined by
[27]

σ tot
s,n(θi , θs) = r P tot

s,n

L0 cos θi pi
, with pi = |Ei |2

2η1
, (15)

where r is the distance of the target, and L0 the illuminated surface length (L0 must be greater
than the surfaces correlation lengths LcA and LcB). In the above equation, for the specific
cases n = {1, 2}, we have

P tot
s,1 = ps,1 and P tot

s,2 = ps,1 + ps,2, with (16){
ps,1 = 1

2ηα
〈|Es,1|2〉

ps,2 = 1
2ηα

[〈|Es,2|2〉 + 2 e
(〈Es,1 Es,2

∗〉)]. (17)

In this model, the surface shadowing effects in reflection [22] and in transmission [23] are
taken into account. Indeed, for grazing incidence and/or scattering angles, a part of the surface
is not seen by the emitter and/or the receiver. This phenomenon has to be taken into account
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in order not to over-predict the scattering coefficient. The penumbra effect [28], which occurs
for grazing angles, is not taken into account in the model. Then, in theory the shadowing
functions used here are not valid for grazing angles; nevertheless, it was shown that in practice
they are valid if equation (18) of [28] (Bruce) holds. That is to say, for the typical applications
presented here, the geometric shadowing functions can be applied with good approximations
up to angles of the order of 85◦. Indeed, for the applications presented further (with σs = 0.1
and σh ≥ λ/2), the numerical application of equation (18) of [28] (Bruce) gives that the validity
domain of the GO shadowing function is φi > 3◦, that is to say θi < 87◦.

3.1. Scattering coefficients for a rough lower interface

3.1.1. First- and second-order reflection scattering coefficients. The calculation of the
first-order reflection scattering coefficient σr,1, obtained from the statistical correlation of Er,1,
is relatively simple [23, 29, 30]. It is defined by

σr,1 =
∣∣r12(χ0

ri )
∣∣2

cos θi
f 2

(
k̂i , k̂r , n0

ri

) ps
(
γ 0

ri

)
|q̂r − q̂i | S11

(
θi , θr |γ 0

ri

)
, (18)

with γ 0
ri = −(k̂r − k̂i )/(q̂r − q̂i ). S11(θi , θr |γ 0

ri ) is the average bistatic reflection shadowing
function expressed by Bourlier et al. [22]. One can observe that this scattering coefficient
does not depend on the frequency, is independent of the surface height statistics, and can be
applied for any given slope statistics.

The second-order contribution is given by pr,2 = pr,22 + pr,12, with pr,22 = 〈|Er,2|2〉/2η1

and pr,12 = e
(〈Er,1 Er,2

∗〉)/η1. This calculation is much more complicated, as it implies
16-fold integrations (12 random variables: six for the heights and six for the slopes, and four
surface variables) for two stationary surfaces (or spatially homogeneous). This number of
integrations is too high for a numerical implementation. That is why it is necessary to make
further approximations on the model, in order to get a simple mathematical expression of σr,2.

First, the stationary phase and the geometric optics approximations are used for both inter-
faces, at each scattering point. In the high-frequency limit, it is possible to demonstrate that the
term pr,12 = 0 owing to the shadow. Furthermore, to be consistent with the GO approximation,
the evanescent waves must be neglected, and it is necessary to suppose that the wavenumber
inside the intermediate medium k2 is real. Let us notice that the latter restrictive hypothesis
implies that the model itself cannot handle lossy dielectric media, yet, we will show later that
it is possible to consider it properly. Moreover, the former hypothesis does not mean that the
scattering points are in far field from one another. This principle is the same as the one used
for the double scattering from a single interface: the authors neglect the evanescent waves
[20, 21, 31].

Using the same approach as for the double scattering from a single rough interface [20, 21,
19], one can divide this problem into coincidental and anti-coincidental cases. The coincidental
case corresponds to A′

1 close to A1, B ′
1 close to B1, and A′

2 close to A2 (compared to the
surface correlation lengths LcA and LcB). This case contributes for all scattering angles. The
anti-coincidental case corresponds to A′

1 close to A2, B ′
1 close to B1, and A′

2 close to A1

(compared to the surface correlation lengths LcA and LcB). This case may contribute only
for scattering angles in and around the backscattering direction. For the coincidental case, the
points of successive reflections A1, B1, A2 can be considered as uncorrelated between one
another, which simplifies the final equation.

By contrast, for the anti-coincidental case, to quantify the backscattering enhancement
properly, one has to take the correlations between the points of successive reflections into ac-
count. Then, this complicates the problem to be solved a lot, implying an additional numerical
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integration by considering Gaussian statistics. After tedious calculations, one obtains for the
anti-coincidental contribution σr,2a

σr,2a = k1

2π cos θi
2e

( ∫ + π
2

− π
2

∫ 0

− π
2

dθ−,1dθ ′
−,1

t12
(
χ0

ti

)
t∗
12

(
χ0

ti
′)

| (q̂−,1+q̂ ′
−,1)

2 − k1
k2

(q̂i −q̂r )
2 |2

× g12
(
k̂i , k̂−,1, n0

tc1

)
g12

(
k̂i , k̂′

−,1, n0
tc2

)
r23(θ−,1)r∗

23

(
θ ′
−,1

)
t21

(
χ0

t+,1

)
t∗
21

(
χ0

t+,1
′)

× g21
(
k̂+,1, k̂r , n0

tc2

)
g21

(
k̂′
+,1, k̂r , n0

tc1

)
S1221

(
k̂i , k̂−,1, k̂′

−,1, k̂r |γ 0
tc1, γ

0
tc2

)
× e−2ik2(q̂−,1−q̂ ′

−,1)H̄
∫ xmax

xmin
dxmc ei(ki +kr −k−,1−k ′

−,1)xmc I1

)
(19)

where xmc = xc1 − xc2 with xc1 = (xA1 + xA′
2
)/2, xc2 = (xA2 + xA′

1
)/2, and xmc ∈ [xmin; xmax].

q1 = qi + qr − q−,1 + q ′
−,1, q2 = −qi − qr − q−,1 + q ′

−,1, n0
tc1 = −γ 0

tc1 x̂ + ẑ with γ 0
tc1 =

− (ki −kr )−(k−,1−k ′
−,1)

(qi −qr )−(q−,1+q ′
−,1) , and n0

tc2 = −γ 0
tc2 x̂ + ẑ with γ 0

tc2 = − (ki −kr )+(k−,1−k ′
−,1)

(qi −qr )−(q−,1+q ′
−,1) . I1 represents the

statistical averaging of eiq1zc1 eiq2zc2 over zc1 and zc2 (also called the characteristic function of
zc1 and zc2). For Gaussian slope statistics, after tedious calculations, one can express I1 as

I1 ≡ I1(xmc) = ps
(
γ 0

tc1, γ
0
tc2; xmc

)
f
(
q1, q2, γ

0
tc1, γ

0
tc2; xmc

)
, (20)

with

ps
(
γ 0

tc1, γ
0
tc2

) = 1

2π

√
σ 4

s − W 2
2

exp

[
−

(
σ 2

s γ 0
tc1

2 + σ 2
s γ 0

tc2
2 + 2W2γ

0
tc1γ

0
tc2

)
2
(
σ 4

s − W 2
2

)
]

(21)

and

f
(
q1, q2, γ

0
tc1, γ

0
tc2

) = e
i W1

(σ4
s −W 2

2 )
[(q1σ

2
s −q2W2)γ 0

tc2−(q2σ
2
s −q1W2)γ 0

tc1]

× e
− 1

2(σ4
s −W 2

2 )
[2q1q2(W0σ

4
s +W1W2−W0W 2

2 )−(q2
1 +q2

2 )W 2
1 σ 2

s ]

× e− 1
2 (q2

1 +q2
2 )σ 2

h , (22)

with W0 the autocorrelation function between zc1 and zc2 (which is a function of the hor-
izontal distance xmc), W1 its first derivative, and W2 its second derivative. I1 in (20) is a
function of xmc, as ps and f implicitly depend on xmc through W0, W1, and W2. When
the slopes are uncorrelated, W0 = 0, W1 = 0, W2 = 0, leading to the uncorrelated formula
I1 = ps(γ 0

tc1)ps(γ 0
tc2) exp[−1/2(q2

1 + q2
2 )σ 2

h ]. The main difficulty is then to determine or at
least to evaluate the minimum and maximum values of xmc, xmin and xmax, which are random
variables depending on the heights and the slopes of these points. For typical applications
presented here (that is to say for slight surface slopes and moderate mean layer thicknesses
in the high-frequency limit) the numerical results of σr,2a showed that can be neglected. This
is in agreement with results from the literature [32, 33], which showed that for the scattering
from a rough layer, where the lower interface is plane, this case contributes only when the
mean layer thickness H̄ satisfies the condition

H̄ >

√
εr2√

εr2 − 1
RcA, (23)

with RcA the radius of curvature of the upper rough surface. For the simulations presented here,
H̄ is much smaller than RcA: this confirms that the anti-coincidental case does not contribute
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for the typical applications presented here. Therefore, this case will not be considered further
for the sake of simplicity.

Thus, neglecting the anti-coincidental contribution, one can obtain a simple expression of
the second-order scattering coefficient σr,2, defined by

σr,2 = 1

cos θi

∫ + π
2

− π
2

∫ + π
2

− π
2

dθ−,1 dθ+,1

× ∣∣t12
(
χ0

ti

)
g12

(
k̂i , k̂−,1, n0

ti

)∣∣2 ps
(
γ 0

t A1

)
∣∣q̂−,1 − k1

k2
q̂i

∣∣ S12
(
θi , θ−,1|γ 0

t A1

)

× ∣∣r23
(
χ0

r−,1

)
f
(
k̂−,1, k̂+,1, n0

r−,1

)∣∣2 ps(γ 0
r B1

)

|q̂+,1−q̂−,1| S22
(
θ−,1, θ+,1|γ 0

r B1

)

× ∣∣t21
(
χ0

t+,1

)
g21

(
k̂+,1, k̂r , n0

t+,1

)∣∣2 ps(γ 0
t A2

)

|q̂r − k2
k1

q̂+,1|
S21

(
θ+,1, θr |γ 0

t A2

)
. (24)

To obtain physical results for grazing angles for the case with shadow, the configurations
of θ+,1 and θr that induce local scattering angles greater than π/2 in absolute values must be
omitted. The slopes γ 0

t A1
, γ 0

r B1
, γ 0

t A2
are defined by

γ 0
t A1

= −(k2k̂−,1 − k1k̂i )/(k2q̂−,1 − k1q̂i ), (25)

γ 0
r B1

= −(k̂+,1 − k̂−,1)/(q̂+,1 − q̂−,1), (26)

γ 0
t A2

= −(k1k̂r − k2k̂+,1)/(k1q̂r − k2q̂+,1). (27)

S12(θi , θ−,1|γ 0
t A1

), S22(θ−,1, θ+,1|γ 0
r B1

), S21(θ+,1, θr |γ 0
t A2

) are the bistatic shadowing functions,
in transmission from the medium �1 into the medium �2, in reflection inside the medium �2

and onto the medium �3, and in transmission from the medium �2 back into the medium �1,
respectively. One can show, for any random process, that [34, 23]:

S12
(
θi , θ−,1|γ 0

t A1

) = B(1 + �(µi ), 1 + �(µ−,1)), (28)

S21
(
θ+,1, θr |γ 0

t A2

) = B(1 + �(µ+,1), 1 + �(µr )), (29)

where B is the beta function (also called the Eulerian integral of the first kind), � is the
function defined by �(µ) = 1/µ

∫ +∞
µ

(γ −µ) ps(γ ) dγ , with µ = | cot θ | the absolute slope
of the considered angle.

Thus, the problem can be reduced to only two-fold integrations, which enables a fast nu-
merical implementation. One can observe that expression (24) under the geometric optics
approximation can be applied for any given slope statistics, and is independent of the fre-
quency (within the domain of validity of the model). Moreover, assuming that the points of
successive reflections A1, B1 and A2 are uncorrelated, this expression appears as the product
of three elementary scattering coefficients of single interfaces, each one corresponding to each
scattering in reflection or transmission inside the rough dielectric waveguide. Indeed, the first
one corresponds to the scattering in transmission from the point A1 of �A into the medium
�2, the second one to the scattering in reflection from the point B1 of �B inside �2, and the
third one to the scattering in transmission from the point A2 of �A back into the medium �1.
The two-fold integrals account for the energy scattered by the rough surfaces in all scattering
directions.

Then, under the GO approximation, to obtain the total scattering coefficient σ tot
r,2, the single

σr,1 and double σr,2 contributions are incoherently added.
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3.1.2. First-order transmission scattering coefficient. Using exactly the same approach
as for σr,1 and σr,2, one can obtain the expression of the first-order transmission scattering
coefficient σt,1. Thus, σt,1 is defined by

σt,1 =
√

εr3

εr1

1

cos θi

∫ + π
2

− π
2

dθ−,1

× ∣∣t12
(
χ0

ti

)
g12

(
k̂i , k̂−,1, n0

ti

)∣∣2 ps
(
γ 0

t A1

)
∣∣q̂−,1− k1

k2
q̂i

∣∣ S12
(
θi , θ−,1|γ 0

t A1

)

× ∣∣t23
(
χ0

t−,1

)
g23

(
k̂−,1, k̂t , n0

t−,1

)∣∣2 ps(γ 0
t B1

)∣∣q̂t − k2
k3

q̂−,1

∣∣ S23
(
θ−,1, θt |γ 0

t B1

)
, (30)

with γ 0
t B1

= −(k3k̂t − k2k̂−,1)/(k3q̂t − k̂2q−,1), and S23(θ−,1, θt |γ 0
t B1

) = B
[
1 + �(µ−,1), 1 +

�(µt )
]
. The same concluding remarks on the expression of σt,1 can be made as for σr,2.

3.2. Scattering coefficients for a plane lower interface

For the case of a plane lower interface, the expressions of the scattering coefficients are similar

and much simpler, as the general term
∫ + π

2
− π

2
dθ+,m s Bm

r,23 is replaced by |r23(θ−,m)|2 δ(θ+,m −
θ−,m), and the general term s Bm

t,23 is replaced by |t23(θ−,n)|2 δ[sin θt − ( εr2
εr3

)
1
2 sin θ−,n].

For m = 1, s B1
r,23 = |r23(χ0

r−,1) f (k̂−,1, k̂+,1, n0
r−,1)|2 ps (γ 0

r B1
)

|q̂+,1−q̂−,1
S22(θ−,1, θ+,1|γ 0

r B1
) and s B1

t,23 =
|t23(χ0

t−,1) g23(k̂−,1, k̂t , n0
t−,1)|2 ps (γ 0

t B1
)

|q̂t − k2
k3

q̂−,1|
S23(θ−,1, θt |γ 0

t B1
). For this simpler case, σr,2 is calcu-

lated with only one numerical integration, allowing us to obtain results quasi-instantaneously.

4. Numerical results

For the simulations, the considered system is a layer of permittivity εr2, with mean layer
thickness H̄ = 6λ, overlying a perfectly conducting medium of permittivity εr3 = i∞. We
choose to take a lower medium as being perfectly conducting, so that the contribution of the
second-order scattering coefficient σr,2 is the highest. The surface rms height of each interface
equals half the incident electromagnetic wavelength, σh = λ0/2, and the surface rms slope is
taken to be σs = 0.1. This corresponds to the validity domain of the model. The two random
rough surfaces are assumed to be stationary, and we will consider Gaussian slope statistics
for the simulations. Only the first reflection inside the layer is considered, and its contribution
is compared to the scattering from the upper interface. That is to say, one will study the
comparison between the second-order total reflection scattering coefficient σ tot

r,2 = σr,1 + σr,2

and the first-order one σ tot
r,1 = σr,1. Simulations are presented for θi = 0◦ and θi = −20◦.

Computer simulations for optics applications, with bistatic configuration, are presented to
validate the model, by comparison with a benchmark numerical method [24, 25] based on the
method of moments. The simulation parameters of this method used for each surface are the
surface length L = 150λ, the number of sampling points of the surface ni = 1500, the number
of realizations of the surface N = 50, and the attenuation parameter of the incident Thorsos
beam g = L/10. A comparison between a rough and a plane lower interfaces is made, and
the case of a lossy inner medium �2 is studied.
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Figure 2. Simulations of the contributions of the first- and second-order scattering coefficients, σr,1 and σr,2 in d B,
versus the reflection scattering angle θr (in ◦) for V polarization, for εr2 = 3 and εr3 = i∞, and for θi = 0◦. For the
first-order contribution, comparison of the model with shadow (circled line) with the reference numerical method
(dashdot line). For the second-order contribution, comparison of the model without shadow (full line) and the model
with shadow (crossed dotted line) with the reference numerical method (dashed line).

5. Model validation by comparison with a benchmark numerical method

To validate the results, an exact reference method is needed. A rigorous way to model the
scattering from rough interfaces is done numerically by means of integral methods [30],
where the fields and their normal derivative on both interfaces are unknowns. These unknowns
are sampled by applying a method of moments [35]; the bulk of the work is then to invert the
corresponding linear system. Nevertheless, for the case of two rough interfaces, this implies
a large number of unknowns. Then, a direct inversion (LU) is inappropriate. Thus, one uses
here an original numerical method, the recent Propagation-inside-Layer Expansion (PILE)
method [24, 25], in order to deal with this kind of problems on a standard office computer.

The studied model is compared to the PILE method, for θi = {0◦, −20◦}, for the op-
tics domain application. The configuration is bistatic, where the scattering angle θr lies in
[−90◦; +90◦]. Simulations of the contributions of the first- and second-order bistatic reflec-
tion scattering coefficients, σr,1 and σr,2 (that is to say, the total scattering coefficients σ tot

r,1 and
σ tot

r,2), are presented for θi = 0◦ in figure 2, and for θi = −20◦ in figure 3.
In both figures, for the first-order contribution σr,1, a comparison is made between the model

with shadow, plotted as the circled line, and the PILE method, plotted as the dashdot line. The
numerical results highlight good agreement of the model with the reference method, in both
V and H polarizations (only the V polarization is represented here), and for both incidence
angles, around the specular direction θr = −θi . The model without shadow is not represented
here as for this configuration, there is no difference with the model with shadow: indeed,
for slight slopes and moderate incidence angles, the surface is shadowed only for very high
grazing scattering angles, which have no effect on σr,1 in this case.

For the contribution of the second-order scattering coefficient σr,2 (that is to say the total
second-order scattering coefficient σ tot

r,2), a comparison is made between the model, plotted as
the full line for the model without shadow and in crossed dotted line for the model with shadow,
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Figure 3. Same simulations as figure 2, but with θi = −20◦.

and the PILE method, plotted as the dashed line. First, one can observe that this contribution
is significant, not only in and around the specular direction, but in all reflection scattering
directions. Indeed, as the permittivity of the inner medium is close to that of the upper medium,
the major part of the incident energy is transmitted into the inner medium towards the perfectly
conducting lower interface. Then, all this energy is scattered in reflection towards the upper
interface, which in major part is transmitted back into the incident medium. Thus, the second-
order scattering coefficient has a significant contribution to the total scattering coefficient by
comparison with the first-order. Second, the scattered intensity is not concentrated around the
specular direction, contrary to the first-order, but more widely spread around all scattering
angles. Indeed, the second-order scattered power underwent three successive scatterings: two
scatterings in transmission, which are less significant than the scattering in reflection by the
lower interface. The numerical results also highlight good agreement of the model with the
reference numerical (PILE) method, in both V and H polarizations (only the V polarization is
represented here), and for both incidence angles. The results confirm that for this configuration,
the shadowing effect contributes only for grazing scattering angles (over 75–80◦ here), but
is of importance for these angles to get physical numerical results, and consistent with the
numerical method. For both incidence angles, the differences between the studied model
and the PILE method are due to the difficulties in defining the simulation parameters of the
fast numerical method, which have a significant influence on the scattering coefficient. The
numerical method needs a great number of samples of the surface to be accurate, which is
very extensive in computing time and memory space compared to the GO approximation.
In addition, the configurations where the scattering coefficient of the GO approximation are
higher than the numerical method cannot be attributed to the multiple scattering on the same
interface. Indeed, when double scattering phenomena from a single interface occurs, there is
an increase in scattering (and not a decrease) since the GO approximation is an incoherent
approach. As a result, a decrease of the scattering coefficient (from the GO approximation to
the numerical method) at low grazing angles cannot be attributed to multiple scattering on
the same interface. Moreover, for typical cases presented here (i.e. surfaces with rms slope
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σs = 0.1, bistatic configuration, and θi ≤ 20◦), it is well known [36, 37] that multiple scattering
phenomena can be neglected.

Thus, the model with shadow is in good agreement with the reference numerical method.
One can find applications in advanced remote sensing, where the emitter and the receiver are
in different places, like for the remote sensing of sand over granite [38], ocean ice [39, 40]
(when the ice layer can be supposed as homogeneous), and oil slicks on the ocean. One may
also find applications to optical tomography of biological media [41, 42], as a basic fast model
when the media can be supposed as homogeneous.

6. Comparison between a rough and a plane lower interface

This section is devoted to the comparison of the model between the case of a rough lower
interface and a plane lower interface, and their influence on the contribution of the second-order
scattering coefficient σr,2.

Simulations are presented in the bistatic configuration θr ∈ [−90◦; +90◦], for θi = 0◦ in
figure 4 and θi = −20◦ in figure 5. The first-order contribution σr,1 is plotted as the circled
line for comparison. The second-order contribution σr,2 for a rough lower interface is plotted
as the crossed dotted line, and the one for a plane lower interface is plotted as the dashed line.
The typical CPU time to calculate σr,1 and σr,2 for the case of a plane lower interface is about
34 ms for given θi and θr , with 40 sampling points of θ−,1 for the numerical integration (in
comparison with 190 ms for a rough lower interface).

For θi = 0◦, the difference on the second-order contribution σr,2 between a rough and a
plane lower interface is clear. For a plane lower interface, the second-order contribution is
concentrated around the specular direction θr = −θi . Indeed, as the lower interface is plane,
the energy incident on the lower interface is not scattered in all directions like for the rough
case but reflected in the specular direction. On the contrary, for a rough lower interface, the

Figure 4. Simulations of the contribution of the second-order scattering coefficient, σr,2 in d B, versus the reflection
scattering angle θr (in ◦) for V polarization, for εr2 = 3 and εr3 = i∞, and for θi = 0◦: comparison of the case of
a rough lower interface (crossed dotted line) with the case of a plane lower interface (dashed line). The first-order
contribution is also plotted (circled line) for comparison.
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Figure 5. Same simulations as figure 4, but with θi = −20◦.

second-order contribution is lower in and around the specular direction, and is more uniformly
distributed in all scattering angles. Indeed, the rough lower interface scatters energy in all
directions. This significant difference in the spread of the scattered energy confirms that the
scattering in reflection is much more significant than the two scatterings in transmission.
The same observation can be made for θi = −20◦. Then, it is easy to discriminate such a
system with a rough lower interface from the one with a plane lower interface. One can find
applications to the characterization of optical materials, where one interface of the glass is
rough, and the other one is smooth [43–47], for cases where the surface roughness is larger
than, or at least of the order of, half the electromagnetic wavelength.

7. Study of a lossy inner medium

One can notice that the expressions of the scattering coefficients are independent of the layer
mean thickness H̄ (neglecting the anti-coincidental case), which means that the model itself
cannot determine a layer thickness. This corresponds to the use of the GO approximation, in
which the phase term is not taken into account. Thus, the model itself cannot deal with lossy
inner media (�2, with εr2 ≡ εr2 ∈ C\R). Still, we will see in this section that it is easy to take
this case into account: using minor adjustments to the model, one has a good estimate of the
scattering coefficients of the lossy layer.

7.1. Theoretical analysis of losses from a lossy dielectric inner medium

For the first-order scattering coefficient σr,1, the only modification is that the Fresnel reflection
coefficient r12 becomes complex owing to εr2. Then, in equation (18), in |r12(χ0

ri )|2, | . . . | does
not represent an absolute value any more, but a modulus. By contrast, for the second-order
scattering coefficient σr,2, there are several minor modifications.
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First, there is a problem in defining the physical propagation angles inside the lossy inner
medium �2, θ−,1 and θ+,1. Indeed, with lossless media, the latter are usually obtained using
the refraction and reflection Snell–Descartes laws

√
εr2 sin χt = √

εr1 sin χi , (31)

χr = −χi , (32)

with χi the local incidence angle, χt the local transmission angle, and χr the local reflection
angle from the local normal to the considered surface. Then, with the knowledge of the local
surface slope and the incidence angle θi , one can easily obtain θ−,1 with the use of the refraction
Snell–Descartes law (31) at the upper interface, and then θ+,1 with the use of the reflection
Snell–Descartes law (32) at the lower interface. The trouble is, with εr2 ≡ εr2 ∈ C, as the term
of the right hand-side of equation (31) is real, the product

√
εr2 sin χ

t
of the left hand-side of

equation (31) must be real, which implies that χ
t

is complex (as εr2 is complex). However, we
need to determine the physical (with then a real value) local propagation angle χ

phys
t inside �2

(so as to determine θ−,1 with the knowledge of the local surface slope), which is not simply
the real part of χ

t
. It is given by [48, 49]

tan χ
phys
t = sin χi

p
, with (33)

p = 1√
2

[√
(ε′

r2 − sin2 χi )
2 + ε′′

r2
2 + (ε′

r2 − sin2 χi )
] 1

2

, (34)

where εr2 = ε′
r2 + i ε′′

r2, and p = e(
√

εr2 − sin2 χ
t
). Then, this allows one to determine θ−,1,

and then θ+,1 using equation (32) on the lower surface, with the knowledge of the local surface
slope.

Second, in equation (24), the reflection and transmission Fresnel coefficients become com-
plex, and | . . . | represents a modulus, and not an absolute value any more. Let us note that
the Fresnel reflection coefficient r23(χ0

r−,1), and the Fresnel transmission coefficient t21(χ0
t+,1)

use local incidence angles, χ0
r−,1 and χ0

t+,1, that are defined with the physical angles θ−,1 and
θ+,1, respectively, and the local slope of the surface considered.

Third, with the knowledge of the physical propagation angles θ−,1 and θ+,1 inside �2, the
mean layer thickness H̄ , and the slope probability density function (PDF) of the two surfaces,
one can determine the field path from the point A1 to the point B1, and from the point B1 to
the point A2. Thus, it is possible to determine the propagation loss A of the power inside the
lossy inner medium �2 (from A1 to B1, and from B1 to A2).

7.2. Estimation of the losses for numerical implementation

In order to numerically implement the model for the specific case of a lossy inner medium �2

in a fast and easy way, minor changes to the initial model can be made.
First, to evaluate the propagation loss A, we will only consider here the simple case of plane

interfaces (indeed, even if the rough case can be calculated, considering only the plane case
will be satisfactory). Then, the propagation loss can easily be evaluated with the knowledge
of θi , θ−,1, and H . Then, this power propagation loss A is evaluated for plane interfaces by
the expression Apl (called the planar power propagation loss) as

A 	 Apl = exp
( − 4k0 Hq / cos θ

plane
t

)
, with (35)

q = 1√
2

[√(
ε′

r2 − sin2 θi
)2 + ε′′

r2
2 − (

ε′
r2 − sin2 θi

)] 1
2

, (36)
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where θ
plane
t is defined by the refraction Snell–Descartes law (31) at the upper inter-

face, for the case of a plane interface where the local incidence angle χi equals θi , and

q = � m(
√

εr2 − sin2 χ
t
). Then, the physical local refraction angle χ

phys
t equals θ−,1 ≡ θ

plane
t

(as the lower interface is also plane, one also obtains θ+,1 = −θ
plane
t ).

Second, although θ−,1 and θ+,1 can be calculated rigorously, it can be interesting to evaluate
them with few modifications to the initial model. Then, one can use the following approxima-
tion: in the refraction Snell–Descartes law (31), instead of using the complex permittivity εr2,
one can use either the real part of εr2, ε′

r2, or the real part of the root square of εr2, e(
√

εr2).
Then, the refraction Snell–Descartes law (31) becomes, respectively√

ε′
r2 sin χ

(1)
t 	 √

εr1 sin χi , (37)

e(
√

εr2) sin χ
(2)
t 	 √

εr1 sin χi . (38)

In the case of plane interfaces, the local angles χ can be denoted as θ . Here, for the numerical
simulations, it is simpler to use the first approximation of the propagation angle, θ (1)

t 	 θ
plane
t ,

by replacing the complex permittivity εr2 with its real part ε′
r2. This approximation is less

precise than the second one, but it is correct for weakly lossy media (more precisely, the
precision depends on the incidence angle, the real part of the permittivity, ε′

r2, and the imaginary
part of the permittivity; in general, even if ε′

r2 tends to 1, for moderate incidence angles and
weakly lossy media, the approximation is valid, and it is all the more precise as ε′

r2 increases).
For example, for a complex permittivity εr2 = 3 + 0.1i at an incidence angle θi = −20◦,
the physical propagation angle is θ

plane
t = −11.3871◦, the first approximation obtained from

equation (37) is θ
(1)
t = −11.3888◦, and the second approximation obtained from equation (38)

is θ
(2)
t = −11.3872◦: both approximations are valid and precise. For εr2 = 3+ i at θi = −20◦,

θ
plane
t = −11.230◦, θ (1)

t = −11.389◦, and θ
(2)
t = −11.236◦: both approximations are valid, but

only the second one remains precise.
For the numerical simulations, the studied system is the same as in the first section, but

with a layer of permittivity εr2 = 3+0.1i . We consider two incidence angles θi = {0◦; −20◦}.
Then, the first approximation of the propagation angle, which replaces εr2 = 3 + 0.1i with its
real part ε′

r2 = 3, can be used. With this approximation, one can obtain that the power prop-
agation loss A 	 Apl = 0.046 = −13.4 dB for θi = 0◦, and A 	 Apl = 0.041 = −13.9 dB
for θi = −20◦. The numerical simulations present a comparison of the lossy case (εr2 =
3 + 0.1i), with the lossless case (εr2 = 3), and a comparison between the model with
shadow, modified in order to take losses into account as described above, and the (refer-
ence numerical) PILE method. The simulations of the first-order contribution σr,1 for the
lossy case are not plotted here. Indeed, for this configuration of weakly lossy medium,
the difference with the lossless case can be ignored, as the modulus of the Fresnel reflec-
tion coefficient varies very slightly (the maximum of relative difference does not exceed
0.03%!).

Simulations of the contribution ofσr,2 are presented for θi = 0◦ in figure 6, and for θi = −20◦

in figure 7. For the lossy case, the model with shadow is plotted as the dotted line, and the
reference method in dashed line. Here, for these simulations, only the propagation loss A need
to be considered in the model to quantify the lossy case. The lossless case is also plotted for
comparison, together with the first-order contribution of the model with shadow (the lossless
case, which is practically equal to the lossy case). For both incidence angles, for the two
curves of the model with shadow (taking into account only the propagation loss) and of the
reference numerical method, in both cases the difference between the lossy and the lossless
case of the contribution of σr,2 is mainly constant, and is of the order of the planar propagation
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Figure 6. Simulations of the influence of a lossy inner medium of permittivity εr2 = 3 + 0.1i on the contribution
of the second-order scattering coefficient σr,2 in d B, versus the reflection scattering angle θr (in ◦) for V polarization,
for εr3 = i∞, and for θi = 0◦: comparison of the case of a lossless inner medium of permittivity ε′

r2 = e(εr2) = 3
(plotted as the crossed line for the model with shadow, and in dashdot line for the numerical model) with the case of a
lossy inner medium of permittivity εr2 = 3+0.1i (plotted as the dotted line for the model with shadow, in which only
the propagation loss is taken into account, and in dashed line for the numerical model). The first-order contribution
is also plotted (circled line) for comparison.

loss (Apl = 0.046 = −13.4 dB for θi = 0◦, and Apl = 0.041 = −13.9 dB for θi = −20◦),
calculated using equation (35). Moreover, for the lossy case, one can observe that the curves
of the model with shadow (taking into account only the propagation loss) and the reference
numerical model coincide around the specular direction θr = −θi , and the differences in other

Figure 7. Same simulations as figure 6, but with θi = −20◦.
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configurations are the same as the ones observed for the lossless case, and can be attributed
to the limitations of the numerical method.

Simulations for different values of εr2, with slight losses (3+0.02i for example) have been
done. They lead to the same results and conclusions, that is to say there is good agreement
between the model with shadow (taking into account only the planar propagation loss) and
the numerical method. This allows us to consider that for a configuration of slightly lossy
media, the propagation loss is the main factor of losses, and quantitatively describes lossy
inner media.

Thus, even though the studied model in itself cannot deal with lossy media, simple minor
modifications to the model (mainly the addition of a propagation loss A into σr,2, which can
be evaluated by considering plane interfaces) allow us to take this particular case into account,
with good results.

8. Conclusion and discussion

The iteration of the KA is used to evaluate the electromagnetic scattering (in reflection and
transmission) with shadow from a rough one-dimensional layer, for which successive reflec-
tions inside the rough layer are taken into account. The use of the shadowing function allows
this method to be more precise at grazing angles, especially for high surface slope variances.
The iterated KA is reduced to the high-frequency limit (which corresponds to very rough
surfaces compared to the electromagnetic wavelength) to obtain numerical results. To our
knowledge, it is the first time scattering coefficients are derived under the GO approximation
for the case of several interfaces. The expressions of the scattering coefficients are given in
closed-forms. Assuming that the points of successive reflections or transmission are uncor-
related between one another, they appear as the product of elementary scattering coefficients
of single interfaces, corresponding to each reflection or transmission of the scattered wave
inside the dielectric waveguide. The integrals account for the scattering directions from one
scattering point to another. Under the GO approximation, the total scattering coefficient is ob-
tained by incoherently adding the contributions of all orders. This model allows fast numerical
results, as the calculation of the second-order contribution in reflection implies only two-fold
integrations.

One can observe that the scattering coefficient can be applied for any given slope statistics,
and is independent of the frequency (within the domain of validity of the model). The interest
of this model is that the scattering coefficient in reflection, as well as in transmission, can be
derived at any order for either a very rough or a plane lower interface. Indeed, expressions were
given above for σr,1, σt,1 and σr,2, but they were also derived for any order of the scattering
coefficient in reflection σr,n or in transmission σt,n: for a rough lower interface and for a plane
lower interface using the remark in subsection 3.2. (they are not presented here). Moreover,
using the same approach, it is extendable to the superimposition of any number of very rough
surfaces.

The studied model is validated by comparison with a benchmark numerical model [24, 25],
based on the method of moments. The model can deal with a system made up of either a
rough or a plane lower interface, with either a lossless or a lossy inner medium, for which
simulations were presented. Moreover, slightly lossy inner media can be treated very simply
by taking only the planar propagation loss into account. The model allows fast numerical
results. Indeed, for given θi and θr , and with 40 sampling points for the numerical integrations
over θ−,1 and θ+,1, the CPU time to calculate σr,1 and σr,2 is about 190 ms with a standard
personal computer (500 MHz processor, 670 MB RAM), using MATLAB. The limitations of
the model correspond to the limits of the Kirchhoff approximation in the high-frequency limit,
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that is to say it is not valid for very small grazing angles, and it can only deal with surfaces
with σh >∼ 0.5λ (let us note that the simulations were lead for σh = 0.5λ and allowed us to
validate the model). With further investigations, it could be interesting to extend the model to
the three-dimensional case to deal with general two-dimensional rough surfaces, using dyadic
Green functions.
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