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Electromagnetic Scattering From a Rough Layer:
Propagation-Inside-Layer Expansion Method
Combined to the Forward-Backward Novel

Spectral Acceleration
Nicolas Déchamps and Christophe Bourlier, Member, IEEE

Abstract—In this paper, an efficient method is developed to cal-
culate the bistatic cross section (BSC) from a stack of two one-di-
mensional rough interfaces separating homogeneous media. The
PILE (propagation-inside-layer expansion) method recently devel-
oped by Déchamps et al. was efficient with a complexity ( 2)
( being the number of samples per interface). To reduce this
complexity, a fast method valid for a single rough surface, the for-
ward-backward with novel spectral acceleration (FBNSA) is com-
bined to the PILE method. Furthermore, the calculation of the
coupling interactions between both interfaces are also accelerated
using the NSA. The PILE-FBNSA method reaches then a com-
plexity of only ( ). A study of the convergence of the PILE is
done and compared to the FBNSA of Moss et al.

Index Terms—Electromagnetic scattering from rough surfaces,
forward-backward, layered surfaces, method of moments (MoM),
novel spectral acceleration (NSA), propagation-inside-layer expan-
sion (PILE) method.

I. INTRODUCTION

THE study of electromagnetic scattering from a stack of
two one-dimensional rough interfaces separating homoge-

neous media has a large number of applications: for example, in
optics for coated surfaces, [1]–[7], in near-field microscopy [8],
in remote sensing for the monitoring of oil spills [9]–[11] and
in the detection of buried interfaces (e.g., in sediments) using
ground-penetrating radar [12].

Both approximate and rigorous methods have been devel-
oped for 20 years to tackle this problem, but they are far less
numerous than for the single-interface problem. Among the
approximate methods some are based on a small perturbation
method [13], on the reduced Rayleigh equations [14], both of
them limited to small root-mean-square deviation of heights
(rms heights) of the interfaces, comparatively to the wave-
length. Recently, the geometrical optics approximation has
been extended to a rough layer [17] and requires quite large rms
heights. We can also quote the recent method [15], [16], which
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assumes “localized roughness” and devoted to cylindrical
bodies buried beneath a rough interface.

The rigorous numerical approach is more recent, due to the
great number of unknowns in the double-interface configura-
tion. Thus, only a few methods have been devoted to obtain
a rigorous solution: one based on the propagation-inside-layer
expansion (PILE) approach [18], one based on the extended
boundary condition method (EBCM) [19], another one based
on the forward-backward novel spectral acceleration (FBNSA)
[20] and a last one using the steeped descent fast multipole
method (SDFMM) [21]. Nevertheless, these methods have still
some constraints: the method in [19] is limited to small rms
heights; in the case of [21] “the depth of the underground in-
terface should be less than one free-space wavelength to satisfy
the quasiplanar structure constraint of the SDFMM.” In the case
of [20], the convergence domain of the method is still unclear, in
particular, concerning configurations where guided waves exist.
Finally, the method in [18] is slow comparatively to the other
ones (complexity of versus and less, where

is the number of samples per interface).
To overcome this limitation, we propose a fast numerical

method improving PILE approach [18], which is devoted to
efficiently compute the scattering from a stack of two one-di-
mensional (1-D) rough interfaces, and with a complexity .
This method is not restricted to small rms heights nor small
thicknesses . The main advantage of PILE, obtained from the
integral equations and the method of moments (MoM) [22],
[23], is that it breaks up the resolution of the linear system into
different steps; two dedicated to solve for the local interactions
on the surfaces and two other ones focused on the coupling.
Thus it allows the use of efficient methods valid for a single
rough interface [24], [25] to calculate the local interactions. In
this paper, PILE is improved by adapting one fast method, the
novel spectral acceleration (NSA) to both the local interactions
and the coupling steps.

This paper is organized as follows: in Section II the PILE al-
gorithm is briefly reminded. Section III focus on the NSA for
a single interface, that is used to solve for the local interactions
on each interface; the notations introduced there are helpful to
clarify in Section IV, where the coupling step of PILE is accel-
erated with a new method. In Section V, the convergence of the
accelerated PILE method is investigated, and next, comparisons
with a rigorous [20] method of the literature is presented.
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Fig. 1. Scattering from two rough interfaces � and � separating homoge-
neous media.

II. PILE METHOD

A. Geometry of the Problem

Let us assume that the rough layer is invariant along the
direction and that the incident wave vector is lying in the
plane. Consequently, the problem is two-dimensional and the
layer is delimited by two one-dimensional surfaces: an upper
one, defined by the surface equation , and a
lower one, , defined by (Fig. 1). are assumed to be
stochastic, stationary, Gaussian processes, satisfying
and , where is the mean thickness of the
layer; the surface height spectrum can be of any kind: Gaussian,
West-O’Donnell [26]. If the surfaces are not identical, one must
pay a special attention to avoid any intersection between them.

The random surfaces can easily be generated by a spec-
tral method, widely used in the calculation of wave scattering
[23]. If represents the number of samples for each surface,
discreticized abscissa and heights of the surfaces are given by

and (1)

where is the sampling step and is the total length
of each surface. A point of the plane will be denoted by

and a point belonging to by
. For sake of clarity, will let .

The surfaces separate three homogeneous media: the upper
one, , considered as air, the intermediate one, filling the layer,

, and the lower one, . will be considered as a lossy di-
electric or a perfect conductor, and we will denote the corre-
sponding configuration, for sake of simplicity, dielectric case or
perfectly conducting case, respectively. The wave number in the
medium will be denoted .

To avoid edge limitations, the incident field is chosen as
a Thorsos’ tapered plane wave [27]. Let us denote the incident
angle, defined with respect to in the counterclockwise direc-
tion, and the tapering parameter, which has a dimension of
length and controls the spatial extent of the incident wave. Typ-
ically, is chosen to be some fraction of ; we used or

in numerical simulations. Furthermore, we consider

both TE (or ) and TM (or ) polarizations. An time-har-
monic convention is used.

B. PILE Method

This new method has been recently developed by Déchamps
et al. in [18] and was thoroughly studied in this paper. The main
equations are given.

An integral method combined to the MoM leads to a linear
system expressed as [22], [18]

(2)

where is the impedance matrix. The unknown vector is
equal to

(3)

with and containing the unknown fields and their
normal derivatives on the upper and lower sur-
faces, respectively. For example

(4)

where denotes the transpose operator. has a similar ar-
rangement of terms. The source term contains information
about the incident field

(5)

with

(6)

and , because the incident field only illuminates the
upper surface.

To solve efficiently the linear system, we take advantage of
the block partitioning of the impedance matrix which has the
form [18]

(7)

exactly corresponds to the impedance matrix of a single-
interface problem, where the surface considered is the upper
one, . Likewise, is the impedance matrix of the single
lower surface, . Matrices and can be seen
as coupling matrices between the two interfaces and .
The complete expression of these matrices can be found in [43,
Appendix 1].
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Fig. 2. Physical interpretation of the PILE method; each factor of the product
YYY = (ZZZ ) �CCC �(ZZZ ) �CCC �YYY has a particular function
in the scheme. In the zeroth order term, (ZZZ ) accounts for the local inter-
actions on the upper interface, so YYY corresponds to the contribution of the
direct reflection on the upper surface, without entering inside the layer. In the
first order term,YYY =MMM �YYY ;CCC propagates the resulting upper field
information, YYY , toward the lower interface, (ZZZ ) accounts for the local
interactions on the lower interface, andCCC repropagates the resulting con-
tribution toward the upper interface; finally, (ZZZ ) updates the field values on
the upper interface.

As we usually compute the scattering field in the upper
medium, only the upper scattered field is needed. It is
approximated by [18]

(8)

in which

(9)

and is the characteristic matrix of the layer defined as

(10)

We define the norm of a complex matrix by its spectral
radius, i.e., the modulus of its eigenvalue which has the highest
modulus. Expansion (8) is accurate if is inferior to 1. The
physical interpretation of is shown in Fig. 2.

The advantage of the PILE method [cf. (8)], is that the most
complex operations, which are and
(where is a vector), only concerns the local interactions
on each surface, respectively upper and lower, and can be
calculated by fast numerical methods that already exist for a
single rough surface, like for instance the banded matrix itera-
tive approach/canonical grid (BMIA/CAG) [32]–[36], the fast
multipole method (FMM) [37] or the forward-backward/NSA
method (FBNSA) [38]–[41]. Let us recall that the advantage

TABLE I
EXAMPLES OF METHODS THAT CAN BE USED TO SPEED UP THE OPERATION

(ZZZ) � vvv. COMPLEXITY WITH ZZZ OF DIMENSION N � N

of all the above methods is that is never explicitly
calculated.

III. COMPUTATION OF THE LOCAL INTERACTIONS WITH THE

FBNSA

Hence, applying one of the fast methods quoted before can
speed up the calculations and and can
reduce the complexity of both steps to less than . Table I
summarizes the complexity of each available method.

Let us apply the NSA combined originally to the forward-
backward to reduce the complexity of these products. The NSA
is one of the most promising acceleration techniques to solve
diffraction from rough surfaces. What makes it attractive is its
complexity of only and its relatively simple algorithm,
easy to program. A detailed presentation can be found in [39],
[41].

The FBNSA was originally developed for a single perfectly
conducting interface (PC), in both TE and TM polarizations
[39], [41]. A quick reminder of the method will be given here-
after for these configurations. The FBNSA for a lower media
very conducting (impedance boundary condition) was also de-
rived [39]. The notations introduced here will be useful for the
reader to deduce the FBNSA formulas for the dielectric single-
interface case and most of all, to develop the formulas for the
coupling step. Fig. 3 gathers all the configurations studied. The
NSA method for the dielectric single-interface case (b) can be
derived from the PC single-interface case (a), because of the par-
ticular structure of the impedance matrix for the dielectric case.
In the same way, the NSA for the coupling step (c) and (d) can
be derived from case (a).

The FB algorithm is based on the following decomposition

(11)

where and are lower triangular, upper triangular and
diagonal matrices, respectively. and are two vectors
liked to the contributions forward (from the points on the left of
the current point) and backward (from the right), respectively.
The surface is oriented by assuming that the incident beam prop-
agates from the left to the right. Fig. 4 shows a physical inter-
pretation of the matrices and . and are the con-
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Fig. 3. Illustration if the different notations used in the paper: (a) perfectly-
conducting (PC) single interface, (b) dielectric single interface, (c) PC layer, (d)
dielectric layer.

Fig. 4. Physical interpretation of the multiplication by forward and backward
matricesZZZ andZZZ , respectively. rrr is the observation (current) point and rrr
the source point; Z propagates the field from rrr to rrr .

vergent solution of the following system, supposed equivalent
to :

(12)

where is the source term for a single PC interface

(13)

In (12), the resolution is done iteratively: assuming first ,
the first equation of (12) is solved for ; then introducing
in the second equation of (12), is found. The first iterate
is then calculated by . The scheme is repeated
again to find the next iterates .

Actually, the way (12) is cast is very convenient to solve
by substitution for and ; because is lower trian-
gular with null diagonal coefficients, we get ;

, and so on. The th coeffi-
cient is given by

(14)

Similarly , and
so on. For the th coefficient

(15)

The NSA is used to speed up the resolution of both equations of
(12) for and , respectively. More precisely, the NSA can
speed up the product and where is any vector. For
example, when performing the product with lower
or upper triangular, the number of multiplications to find the
elements in a row is .
With the NSA, only multiplications are needed. In the
next section the basic concept of the NSA is recalled. A more
detailed theory can be found in [39], [41].

A. TE Single-Interface Perfectly Conducting Case

Let us consider two points belonging to the same
surface and let us denote and .

is the observation point, fixed, and the source point, that
moves on the surface. The total impedance matrix as in (11)
in this configuration has the same expression than in [43,
Appendix I]. In the TE case, let , and let include
the coefficient of as a factor in the
unknown . Accordingly, the off-diagonal elements are

(16)

where is the 2-D Green
function in free space and is the Hankel function from
the first kind of order zero. Let be the horizontal distance
separating the weak interactions from the strong, and let
be the integer part of . Then, considering first the
forward case, the sum from (14) can be cast into, for

(17)

In the above decomposition the term is performed exactly
for each , whereas is calculated using the
NSA. The NSA is based on the following decomposition of the
Green function, written here for [39], [41]

(18)

where
. This path is usually replaced by a steepest

descent path , going through the saddle point
. The group of

paths associated to all couple of points can
be replaced by an unique path going through the origin;
furthermore, close to the origin, is a straight line having a
slope . If is correctly chosen, the integrand of (18)
decays rapidly away from the origin and the phase has little
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variations. Thus, as in a classical saddle-point technique, after
changing by in (18), the integration over can be ap-
proximated by a sum over a limited number of complex angles

. That is, introducing (16) and (18) into (17)
we get

(19)

with

(20)

The advantage is that can be calculated from
by

(21)

The parameters are given by [39]

(22)

and

(23)

where and . The
parameters rely on the choice of , and as a rule of thumb

with or 3 is sufficient. A detailed study about
the optimal choice for these coefficients can be found in [41].

Fig. 5. Different steps during the product ZZZ vvv (left) and ZZZ vvv (right), where
vvv = XXX +XXX . First, the elements of the domain (a) are multiplied to vvv in an
exact manner. Second, the elements (b) and (c) are multiplied to vvv, those of (b)
using the NSA and those of (c) exactly like for (a).

When computing the forward step (14), the sum is performed
exactly for (elements (a) of Fig. 5). For each

the sum is split up into two sums (17); is
performed exactly [elements (c)] and is calculated using
the NSA [elements (b)]. For this purpose, is found
from for every using (21), and then
summed over . Initially, for .

The algorithm is very similar for the backward step (Fig. 5);
the sum in (15) is split up into, for

(24)

is then rearranged as in (19). In the backward case, the
main difference is that so the decomposition of
the Green function is now

(25)

with a negative sign in front of . In a prac-
tical way, the consequence on (19), (20), and (21), is that
is unchanged but ; in (23),
is unchanged. Furthermore, in (20) the summation goes from

to , and in (21), is obtained from .
Because of the approximation of the integration in (18) by

the previous saddle point technique and the use of the recurrent
relation (21), the products can be computed with only

multiplications [39].

B. TM Single-Interface Perfectly Conducting Case

The off-diagonal elements of the impedance matrix are

(26)

and can be expressed with the Hankel function (see Appendix 1
of [43]; in this case has a similar expression than ). The
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decomposition of the normal derivative of the Green function is,
for

(27)

where is the derivate of the function defining the surface.
The same algorithm than in the previous TE case can be applied
for both forward and backward steps. The differences are in the
expression of (20) and in the recurrence relation (21)

(28)

and

(29)

The same term is also applied as a factor to
the backward expressions. The complexity of the NSA is also

in the TM polarization.

C. Dielectric Case

The FB method for the single-interface dielectric case has
been introduced by Iodice [42]. The decomposition (11) and
the basic (12) are unchanged. The differences are on the shape
of the matrices and , which have dimen-
sion, and are built up with block diagonal, block lower trian-
gular and block upper triangular matrices, respectively. The un-
knowns vectors and have a dimension of . (14)
and (15) are also slightly different: because in the dielectric case
both the field and its normal derivative on each current point
have to be found, each (14) and (15) is converted in a linear
system with two equations.

To our knowledge, no article has been published for the NSA
for the single-interface dielectric case, nevertheless, the task
is easy once the TE and TM cases for a single PC interface
have been computed, because of the particular structure of the
impedance matrix for the dielectric case. The impedance matrix

in this case is similar to the matrix given in Appendix 1
of [43]. In the product , done by blocks, the products
and where and are vectors, can be accelerated using
the NSA for the TM PC case. In the same way, the NSA for
the products and is directly inspired by the TE PC
case. Accordingly, the FBNSA for a dielectric interface has also
a complexity of .

In Section V, the number of iterations of the FBNSA method
used to speed up the local interactions in PILE, will be denoted

.

IV. NSA FOR THE COUPLING STEP

At this point, the most penalizing steps in the calculation of
(9)

are now and , each one having a complexity
. The FB method is not useful here, because there is no

matrix inversion in the coupling step. Nevertheless the NSA can
be applied to speed up the product , where is a vector of di-
mension . Recently, [43], the BMIA/CAG of complexity

method and referred to as
has been applied to accelerate the product .

For this purpose, each non-null block matrix of and
are split up into a diagonal, a lower (forward) and a

upper (backward) triangular matrices. For example, in
the dielectric layer case (see Appendix 1 of [43]) is written

(30)

Then the product is performed by blocks

(31)

with , and the inner products in the term on the right-
hand side of (31) can be broken up into products of the kind

(32)

where or , and , which has a dimension .
The -element of the product (32), can be written

(33)

and then the splittings (17) and (24) can be applied as in the PC
single interface case. More precisely, the products with and
are accelerated with the NSA for the TM PC case (Section III-B)
and and with the NSA for the TE PC case (Section III-A).
When applying the NSA, the only difference with equations of
Section III-B and Section III-A, is that

and and

(34)

To sum up, the NSA for the coupling matrices is derived as for a
single interface. The parameters of the NSA are chosen as pre-
viously, with similar formulas as (22). and are substi-
tuted by and .
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The main parameter is the limit interaction length , or equiv-
alently the integer .

V. COMPARISON WITH REFERENCES METHODS

The validity domain of the PILE method, relying on the con-
dition , where the used norm is the spectral ra-
dius, has been studied in [18]. It is quite large, the only lim-
itation being the poor convergence with very thin and rough
layers. In Section V-A, the convergence of the PILE combined
to the FBNSA (PILE-FBNSA) is investigated. To study the FB
method combined to PILE method, we introduce the PILE-FB.
If the NSA scheme is added, the resulting method is referred as
to PILE-FBNSA.

Next, in Section V-B, we compare the PILE-FBNSA to the
FBNSA developed for a layer by Moss et al. [20]. We call in
this paper the former method FBNSA-layer to avoid any confu-
sion. The FB-layer will denote the previous method but without
the NSA acceleration. Furthermore, we point out here that the
FBNSA used to speed up the PILE and the FBNSA-layer are
not the same methods; the FBNSA is applied to a single inter-
face, and the FBNSA-layer to a stack of two or more interfaces.
Besides, we discuss here about three different parameters that
are the orders of three different methods: for PILE,
for the inner FB of PILE, and for the FBNSA-layer.

Finally, in Section V-C, the computation time is studied.
In all the configurations the lower medium is perfectly

conducting (case (c) of Fig. 3), and the relative permittivity of
the inner medium is . Each interface, of total
length and with a rms slopes , is sampled
at ; the surface height spectrum is Gaussian. The
illuminating beam is a Thorsos beam of attenuating parameter

, and an incident angle of .

A. Convergence of Pile Method With FBNSA

In order to find the correct parameters to achieve a good con-
vergence of PILE-FBNSA, we work in two steps: first, we look
for the convergence of the exact PILE method, comparing it
to the reference results provided by a direct inversion of the
impedance matrix. More precisely we seek the minimum order

(8) of PILE method for which the mean absolute error over
on the bistatic scattering coefficient (BSC) is

less than 0.1 dB; this order, , corresponds to the number
of prevailing reflections inside the layer. Convergence is estab-
lished when a mean error of 0.1 dB or less is reached for an
order less than 20.

Fig. 6 shows the order of convergence of the exact PILE,
plotted versus the mean thickness for different values of the
rms heights , for the same rms slopes

. The surfaces are supposed equal and translated from
each other. The mean thickness is chosen greater than . to
ensure than there are enough sampling points in the layer in the
vertical direction; hence the field in the layer can be appropri-
ately modeled. The results in TM polarization are very similar.
From Fig. 6, PILE method converges for all configurations, in
less than four iterations for , and less than six iterations
for .

Second, we look for an acceptable order of iteration of
the inner FB method (used in the local interaction step of PILE).

Fig. 6. Order of convergence P of exact PILE to reach an error of 0.1 dB
on the BSC. L = 50�. Rms heights � = � = � , rms slopes � = � =

0:2. � = 0 . TE case. " = 2 + 0:01i.

We follow the same procedure as before (error less than 0.1
dB on the BSC). Fig. 7 shows the error on the BSC, for two
different configurations, case 1, when the convergence is slow,
case 2, when the convergence is fast. The error is plotted versus
both PILE order and inner FB order. For a given PILE order, the
error decreases as the inner FB order increases, until it reaches
a constant error value. Similarly, for a given inner FB order, the
error decreases as the PILE order increases, until it reaches an-
other constant error value. The optimal choices of and ,
marked by an arrow for a given error value, in Fig. 7, lie along a
line (the dashed lines); with this choice, the CPU time of compu-
tation is minimum for a given error. Hence, the two parameters,

and , are linked. As a rule of thumb, for all the con-
figurations studied, PILE-FBNSA reaches an error of less than
0.1 dB on the BSC with an inner FB order of 5. Simulations
not reported in this paper, showed also a good convergence of
PILE-FBNSA for other values of rms slopes and rms heights.

We plotted in Fig. 8 and example of BSC obtained with an
exact MoM method, the PILE-FBNSA and the FBNSA-layer
method. The agreement is very good, the mean error is less than
0.1 dB.

B. Convergence of FB Method for a Layer

Because the convergence of PILE-FBNSA and FBNSA-layer
is dependent on the convergence of the exact PILE and FB-layer,
respectively, we focus first on a direct comparison of PILE and
FB-layer methods.

Fig. 9 shows the order of convergence of the
FB-layer, plotted versus the mean thickness for different
values of the rms heights , for the same rms
slopes . The surfaces are supposed equal and
translated from each other. The results in TM polarization are
very similar. From Fig. 9, FB-layer method converges in less
than 20 iterations for , but does not always converge for
thinner layers. Moreover, by comparison to the PILE in Fig. 6,
the FB-layer needs more iterations to reach the same precision.

Let us consider now the differences between the PILE and
the FB-layer methods. The two methods have different physical
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Fig. 7. Error on the bistatic scattering of the PILE-FBNSA versus the order
P of PILE method order and the orderP of FB used to speed up PILE. The
parameters are: (top, case 1): � = � = 0:4�; � = � = 0:2;H = 1�.
" = 2 + 0:01i; � = 0 ; L = 50�; g = L=4, TE polarization; (bottom,
case 2): same as case 1, except: � = � = 0:1�;H = 3�. For both methods,
N = 50 and N = 50. The optimal choices of P and P for a
given error, are shown with an arrow.

Fig. 8. Bistatic scattering coefficient from the PILE-FBNSA and the FBNSA-
layer methods. The parameters are: � = � = 0:5�;� = � = 0:2.
P = 3 and inner FB at order P = 5; for FBNSA, P = 10. For
both methods, N = 50 and N = 150. � = 0 ; g = L=6 and
L = 50�. " = 2 + 0:01i. Mean thickness H = 5�.

interpretations, and thus the validity domains are a priori dif-
ferent.

Fig. 9. Order of convergence of exact FB to reach an error of 0.1 dB on the
BSC. L = 50�. Rms heights � = � = � , rms slopes � = � = 0:2.
� = 0 . TE case. " = 2 + 0:01i.

Fig. 10. Physical scheme of the FB method for a layer. Forward propagation
(left), Backward propagation (right). M and M are the current points; the
impedance matrices corresponding to the steps are: step a),ZZZ ; step b),CCC ;
step c), CCC ; step d), ZZZ .

The physical interpretation of the FB is shown in Fig. 10 for
the dielectric layer case. This interpretation can be deduced from
the block partitioning of the total impedance matrix of the layer
(7). Let denote and the current points on and ,
respectively. On the forward step, the field on is deduced
from the incident field on and from the field on the points
on its left, from both the upper and the lower interfaces. The
difference with the PILE method is that the local interactions on
each interface and the coupling between interfaces are derived
at the same time. Hence, the FB for a layer seems able to take
into account the multiple reflexions in the layer in few sweeps
forward and backward across the surface.

However, system (12) on which FB is based was not derived
rigorously, to our knowledge. Only a proof with a physical basis
can be found in [44, Sec. 3], valid for a single interface and for
grazing angles. Thus, the validity domain of FB method is still
unclear; some criterion has to be found from which one would
know if the FB will converge for a particular configuration. For
this purpose, let us recall the original system of the FB (12)

(35)

(36)
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Initially, . Hence, from (35)

(37)

and then from (36)

(38)

so

(39)

By recurrence, from (35)–(36), for

(40)

(41)

Introducing the expressions of and in (40) and
(41), we deduce and , for . can
be cast into an expression similar than (8). At order for
example

(42)

where

(43)

and

(44)

is the characteristic matrix of the layer for the FB al-
gorithm. As for the characteristic matrix of PILE method
(10), the product by requires 2 inversions and 2 multi-
plications.

It is interesting to calculate the spectral radius of .
If this norm is bigger than 1, the sum in (42) is likely to diverge.
Fig. 11 shows the values of and versus the
mean thickness of the layer, for the following parameters:
rms heights, , rms slopes ,
total length of both interfaces ; TE case. The norm is
independent of the incident angle.

From Fig. 11, the norm of both matrices increases when the
thickness is small. However, the norm of PILE matrix is smaller
than the one of FB, and this is is always verified, whatever the
parameters of the surfaces. This explains why PILE converges
faster than FB.

To verify that the FB method diverges if , or
equivalently, if has a eigenvalue bigger than 1 in mod-
ulus, we plotted and an other criterion in Fig. 12.

Fig. 11. Norm of the characteristic matrices M and M for
the FB-layer and PILE methods, respectively. The parameters are:
� = � = 0:01�; � = � = 0:2. L = 50�. " = 2 + 0:01i.
TE case.

Fig. 12. Integral of the Bistatic Scattering Coefficient and norm of the charac-
teristic matrix MMM of the FB-layer method, order 3. The parameters are:
� = � = 0:01�;� = � = 0:2. L = 50�. TE case. " = 2+ 0:01i.

This criterion is based on the energy conservation, and more pre-
cisely on the integral of the bistatic scattering coefficient. This
integral has to be equal or less than 1. The parameters consid-
ered are the same as in Fig. 11, and . The incident beam
is a Thorsos beam, with .

After 3 iterations of FB, the integral reaches high values, and
this effect is even more marked when the number of iterations
increases. That means that for the corresponding values of the
mean thickness , the FB does not converge. It is worth noticing
that these peaks on the value of the criterion corresponds to the
value peaks of the norm . Hence, according to Fig. 12
and to other studies with different configurations, not shown
here, the condition

(45)
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Fig. 13. CPU time of PILE-FBNSA and FBNSA and for the given set of param-
eters: P = 4 and inner FB at order P = 5; for FBNSA, P = 10.
For both methods, N = 50 and N = 50.

is a condition of convergence of the FB method, where is
the spectral radius.

Thus, considering Fig. 11, the norm of is bigger than
1 when ; this explains why the FB method diverges
for small values of in Fig. 9: the solid line, corresponding to

, and is not defined for .
In fact, for the FB converges in more than 20
iterations. In comparison, for PILE, for , and
accordingly, PILE method converges (solid line of Fig. 6), for
all these values of .

C. Computation Time

Simulations have been made for a typical configuration,
where PILE method converges faster than the FB, that is for
PILE-FBNSA, and inner FB at order ; for
FBNSA-layer, . For both methods,
and . The CPU time spent for each method is
shown in Fig. 13. The number of unknowns is equal to
where is the number of samples per interface, considering
the layered PC case (Fig. 3). A 3 GHz personal computer
with 2 GB of RAM is used in this work. We can verify from
a linear regression that the CPU time of the PILE-FBNSA is
approximately proportional to . The slight discrepancy
comes from the extra time needed to store the band matrices of
strong interactions.

VI. CONCLUSION

We presented in this paper a new efficient method to predict
the field scattered from a 1-D stack of two rough interfaces.
The method is based on the rigorous PILE method [18], and it
was accelerated using the fast method FBNSA of a single inter-
face. Then the NSA was used to speed up the calculation of the
coupling interactions between the two interfaces. The resulting
method, the PILE-FBNSA, has a complexity of only .

Then a numerical validation of the PILE-FBNSA was under-
taken comparing it to a reference method, and to the recent FB
for a layer [20]. The underlying physical interpretation of the

PILE method is different than for the FB method [20], and the
validity domains are also different. A criterion on the conver-
gence of FB was found.

The convergence of PILE-FBNSA has been established for
layers with a thickness of and up; in some cases the PILE
method converged whereas the FB method did not. Hence, the
two methods PILE-FBNSA and FBNSA-layer are equivalent in
time computation, but PILE-FBNSA is more robust when the
layer is about one wavelength thick, and when guided waves
exist. However, FBNSA has been derived for several layers, but
no convergence study has been made for more than two inter-
faces.
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