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Electromagnetic Scattering From a Rough Layer:
Propagation-Inside-Layer Expansion Method

Combined to an Updated BMIA/CAG Approach
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Abstract—An efficient method is developed to calculate the
bistatic scattering coefficient (BSC) from a stack of two one-di-
mensional rough interfaces separating homogeneous media. The
propagation-inside-layer expansion (PILE) method recently pub-
lished by Déchamps et al. was efficient with a complexity ( 2)
( being the number of samples per interface). To reduce this
complexity, a fast method valid for a single rough surface, the
banded matrix iterative approach/canonical grid (BMIA/CAG) is
combined to the PILE method. Furthermore, the calculation of the
coupling interactions between both interfaces are also accelerated
using a new method similar to the BMIA/CAG. The PILE method
reaches then a complexity of only ( log ). A study of the
convergence of the PILE is done and compared to another efficient
method, the forward-backward.

Index Terms—Banded matrix iterative approach (BMIA),
electromagnetic scattering from rough surfaces, layered surfaces,
method of moments (MoM), propagation-inside-layer expansion
(PILE) method.

I. INTRODUCTION

THE study of electromagnetic scattering from a stack of
two one-dimensional rough interfaces separating homoge-

neous media has a large number of applications: for example, in
optics for coated surfaces, [1]–[7], in near-field microscopy [8],
in remote sensing for the monitoring of oil spills [9]–[11] and
in the detection of buried interfaces (e.g., in sediments) using
ground-penetrating radar [12].

Both approximate and rigorous methods have been devel-
oped for 20 years to tackle this problem, but they are far less
numerous than for the single-interface problem. Among the
approximate methods some are based on a small perturbation
method [13], on the reduced Rayleigh equations [14], both
of them limited to small root-mean-square (rms) deviation of
heights of the interfaces, comparatively to the wavelength.
Other approximate methods are based on the geometrical optics
approximation [15] and thus require quite large rms heights.

The rigorous numerical approach is more recent, due to the
great number of unknowns in the double-interface configura-
tion. Thus, only a few methods have been devoted to obtain
a rigorous solution: one based on the propagation-inside-layer
expansion (PILE) approach [16], one based on the extended
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boundary condition method (EBCM) [17], another one based
on the forward-backward novel spectral acceleration (FBNSA),
[18] and a last one using the steeped descent fast multipole
method (SDFMM) [19]. Nevertheless, these methods have still
some constraints: the method in [17] is limited to small rms
heights; in the case of [19] “the depth of the underground in-
terface should be less than one free-space wavelength to satisfy
the quasiplanar structure constraint of the SDFMM.” In the case
of [18], the convergence domain of the method is still unclear, in
particular, concerning configurations where guided waves exist.
Eventually, the method in [16] is slow comparatively to the other
ones (complexity of versus and less, where

is the number of samples per interface).
To overcome this limitation, we propose a fast numerical

method improving PILE approach [16], which is devoted to
efficiently compute the scattering from a stack of two one-di-
mensional (1-D) rough interfaces, and with a complexity

. This method is not restricted to small rms heights
nor small thicknesses .

The main advantage of PILE method is that it breaks up the
resolution of the linear system (obtained from the method of mo-
ments [20], [21]) into different steps; two dedicated to solve for
the local interactions on the surfaces and two other ones focused
on the coupling. Thus it allows the use of efficient methods
valid for a single rough interface [22], [23] to calculate the local
interactions. In this paper PILE is improved by adapting one
fast method, the banded matrix iterative approach/canonical grid
(BMIA/CAG) to both the local interactions and the coupling
steps.

This paper is organized as follows: in Section II the PILE
algorithm is briefly reminded. Section III focuses on the
BMIA/CAG for a single interface, that is used to solve for the
local interactions on each interface; the notations introduced
here are helpful to clarify on the Section IV, where the coupling
step of PILE is accelerated with a new method. In Section V,
the convergence of the accelerated PILE method is investi-
gated, and last, comparisons with a rigorous [18] method of the
literature are presented.

II. PILE METHOD

As a preliminary remark, it is worth noticing that the method
developed in Section IV is efficient to speed up the calculation
of the coupling between two interfaces, and therefore can be
used in conjunction with other methods than PILE, as for ex-
ample Jacobi methods, or conjugate gradient methods. As we
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Fig. 1. Scattering from two rough interfaces � and � separating homoge-
neous media.

originally programmed this method with PILE, next we will re-
call the basics of PILE method.

A. Geometry of the Problem

Let us assume that the rough layer is invariant along the
direction and that the incident wave vector lies in the
plane. Consequently, the problem is two-dimensional and the
layer is delimited by two one-dimensional surfaces: an upper
one, defined by the surface equation , and a lower
one, , defined by (Fig. 1). are assumed to be sto-
chastic, stationary, Gaussian processes, satisfying and

, where is the mean thickness of the layer;
the surface height spectrum can be of any kind. If the surfaces
are not identical, one must pay special attention to avoid any in-
tersection between them.

The random surfaces can easily be generated by a spec-
tral method, widely used in the calculation of wave scattering
[21]. If represents the number of samples for each surface,
the discreticized abscissa and heights of the surfaces are given
by

(1)
where is the sampling step and is the total
length of each surface. A point of the plane will be de-
noted by and a point belonging to by

. For the sake of clarity, we will let
.

The surfaces separate three homogeneous media: the upper
one, , considered as air, the intermediate one, filling the
layer, and the lower one, . will be considered as a lossy
dielectric or a perfect conductor, and we will denote the corre-
sponding configuration, for the sake of simplicity, dielectric case
or perfectly conducting case, respectively. The wave number in
the medium will be denoted .

To avoid edge limitations, the incident field is chosen as
a Thorsos’ tapered plane wave [24]. Since the paper is devoted

to moderate incidence angles, this wave is appropriate and satis-
fies Maxwell’s equations with good accuracy [21]. Let us denote

the incident angle, defined with respect to in the counter-
clockwise direction, and the tapering parameter, which has a
dimension of length and controls the spatial extent of the inci-
dent wave. Typically, is chosen to be some fraction of ; we
used or in numerical simulations. Further-
more, we consider both TE (or ) and TM (or ) polarizations.
An time-harmonic convention is used.

B. Propagation-Inside-Layer-Expansion (PILE) Method

This new method has been recently developed by Déchamps
et al. in [16] and was thoroughly studied in this paper. The main
equations are given.

An integral method combined to the method of moments
leads to a linear system expressed as [16], [20]

(2)

where is the impedance matrix. The unknown vector is
equal to

(3)

with and containing the unknown fields and their
normal derivatives on the upper and lower sur-
faces, respectively. For example

(4)
where denotes the transpose operator. has a similar ar-
rangement of terms. The source term contains information
about the incident field

(5)

with

(6)

and , because the incident field only illuminates the
upper surface.

To solve efficiently the linear system, we take advantage of
the block partitioning of the impedance matrix which has the
form [16]

(7)

exactly corresponds to the impedance matrix of a single-in-
terface problem, where the surface considered is the upper one,

. Likewise, is the impedance matrix of the single lower
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TABLE I
EXAMPLES OF METHODS THAT CAN BE USED TO SPEED UP THE OPERATION

(ZZZ) � vvv. COMPLEXITY WITH ZZZ OF DIMENSION N �N

surface, . Matrices and can be seen as cou-
pling matrices between the two interfaces and . The com-
plete expression of these matrices can be found in Appendix I.

As we usually compute the scattering field in the upper
medium, only the upper scattered field is needed. It is
approximated by [16]

(8)

in which

(9)

and is the characteristic matrix of the layer defined as

(10)

We define the norm of a complex matrix by its spectral
radius, i.e., the modulus of its eingenvalue which has the highest
modulus. Expansion (8) is accurate if is inferior to 1. The
physical interpretation of is shown in Fig. 2 of [16].

The advantage of the PILE method, [cf. (8)], is that the most
complex operations, which are and (where

is a vector), only concerns the local interactions on each sur-
face, respectively, upper and lower, and can be calculated by fast
numerical methods that already exist for a single rough surface,
like for instance the banded matrix iterative approach/canonical
grid (BMIA/CAG) [27]–[31], the fast multipole method (FMM)
[32], the method of multiple interactions (MOMI) [33], [34] or
the forward-backward/NSA method (FBNSA) [35]–[38]. Let us
recall that the advantage of all the above methods is that
is never explicitly calculated.

III. REMINDER OF THE BMIA/CAG FOR A SINGLE INTERFACE

Hence, applying one of the fast methods quoted before can
speed up the calculations and and can

Fig. 2. Illustration of the different notations used in the paper: (a) perfectly-
conducting (PC) single interface, (b) dielectric single interface, (c) PC layer, (d)
dielectric layer.

reduce the complexity of both steps to less than . Table I
summarizes the complexity of each available method.

The BMIA/CAG will be used in this paper because of its (rel-
ative) simplicity of programmation and its low complexity of
computation. It is based on the fact that performing is
equivalent to solve for ; this latter problem can
be solved iteratively by using a conjugate gradient scheme as
BICGStab. At each iteration, it is necessary to compute
where is an updated of .

The BMIA/CAG method is employed at this step to speed up
the product . It was originally developed for a single per-
fectly conducting interface (PC), in both TE and TM polariza-
tions [27], [28]. A quick reminder of the method will be given
hereafter for these configurations. The formulas presented here
are, to our knowledge, the more compact and exhaustive ones
devoted to the BMIA/CAG method, and thus will be useful to
anyone aiming to compute this method in an elegant manner.

Furthermore, the notations introduced here will be useful to
deduce the BMIA/CAG formulas for the dielectric single-in-
terface case and most of all, to develop the formulas for the
coupling step. Fig. 2 gathers all the configurations studied. The
BMIA/CAG method for the dielectric single-interface case (b)
can be derived from the PC single-interface case (a), because of
the particular structure of the impedance matrix for the dielec-
tric case. In the same way, the BMIA/CAG for the coupling step
(c) and (d) can be derived from case (a).

A. TE Single-Interface Perfectly Conducting Case

Let us consider two points belonging to the
same surface and let us denote and

. is the observation point, fixed, and the
source point, that moves on the surface. The impedance matrix

in this configuration has the same expression as in
Appendix 1. We consider the horizontal distance separating
the weak interactions from the strong. is chosen such that

; let be the integer part
of . Usually, we take where is the rms
height of the surface. Then, we can split up into

(11)
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where is a band matrix of half-bandwidth representing
the strong interactions, and a matrix denoting the weak
interactions defined by

(12)

where is the 2-D Green function in free space. By definition
of , , thus the elements of can be expanded
as series [21], [28]

(13)

with

(14)

denotes the waver number of the upper medium (the lower
medium being PC) and stands for the Hankel function of
the first kind of order . The coefficients can be ex-
pressed with the Hankel functions and through the
relation [39].

Equation (13) can be re-expressed taking into account that
with the bino-

mial coefficients .

Accordingly, the -th element of the column vector
is

(15)

From this expression it is relevant to express the impedance ma-
trix of the weak interactions by

(16)

where and where are diagonal matrices of pre-
and post-multiplication, respectively, and is a Toeplitz ma-
trix. These notations will be consistent throughout the paper.
The elements are given by

if
if

(17)

Fig. 3. Scheme of the FFT acceleration of the product ZZZ � vvv when ZZZ is
a Toeplitz matrix and vvv a vector.

The product is then performed in two steps: first,
is calculated without any approximation on the elements of
and second, is calculated from (16) and (17).

Actually, the BMIA/CAG efficiency is based on the fact that
is a Toeplitz matrix; all its elements are only

dependent of . Thus, the product
can be interpreted as a convolution, and consequently, it can be
accelerated by FFT (Fig. 3) [21], [28], [40]. This reduces its
complexity from to .

To sum up, the product is a sum of different products
that are performed in

Usually, so the product of order is
less time consuming than the one involving ; furthermore,

and accordingly, the complexity of the BMIA/CAG is
.

B. TM Single-Interface Perfectly Conducting Case

The impedance matrix in this case has a similar expression
than in Appendix 1. The corresponding series similar to
(13) is for the TM case, for

(18)
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where

(19)

The expression equivalent to (16) is more complex in the TM
case because is not symmetric with respect to and

(20)

where and are diagonal ma-

trices and is a full matrix. The elements are given by

if
if

(21)

where is given by (18). As is a Toeplitz matrix, the com-
plexity of the BMIA/CAG (TM and TE cases) is ,
although some more calculations are required for the TE case.

C. Local Interactions in PILE Method for the Dielectric Case

The BMIA/CAG is applied in the steps and

of the PILE method in the following way: for
example, with the notation

(22)
and are accelerated using the BMIA/CAG

for the single-interface TM PC case (Section III-B), and
and are accelerated using the BMIA/CAG for the

single-interface TE PC case (Section III-A). Care must be taken
of the diagonal coefficients of which differ from those of

, and the factor in front of which depends on the
polarization.

The validity domain of the BMIA/CAG is quite large: any
kind of permittivity is allowed but for large values though,
the physical-based two-grid BMIA/CAG method [30] is rec-
ommended; for even larger values, the Impedance Boundary
Condition is more adapted. Moreover, the BMIA/CAG is
efficient for surfaces with rms heights up to 2 or even
more (up to ) with the multigrid BMIA/CAG method [31]
and the Multilevel BMIA/CAG [29]. The efficiency decreases

Fig. 4. Different configurations coped with a coupling of the kind BMIA/CAG.
Case 1: (a) and (b), H < 2 or 3�. Case 2: (c), H > 2 or 3� andH � z .
Case 3: (d), H > 2 or 3� and H � z .

with larger values of , because to reach the same precision,
the number of terms in series (16) or (20) increases (
number of terms).

IV. IMPROVEMENT OF THE COUPLING STEP WITH BMIA/CAG

Applying one of the fast methods quoted before speeds up
the calculations and and reduces the
complexity of both steps to . Accordingly, the most
penalizing steps in the calculation of (9)

are now and , each one having a complexity
. In this section, a method similar to BMIA/CAG is de-

veloped to reduce the complexity of these products.
At this point it is important to notice that the coupling

between the surfaces and is the summation of the
interactions between all the couples of points be-
longing, respectively, to and . The interaction between
two of these points can be seen as the interaction between two
points of a same imaginary surface with an rms height of about

. Hence, we can apply the multigrid
BMIA/CAG method [31] or the multilevel BMIA/CAG method
[29]. These methods were developed for surfaces with high rms
heights (more than ). Nevertheless, because of their com-
plexity (of programming and of operations) an adaptation of
these methods for the coupling step would lead to an inefficient
method for high values of .

In the general case, developments similar to (16) and (20) can
be obtained by adapting the BMIA/CAG. They are quite more
complex for the coupling matrices; nevertheless, in some config-
urations, we can obtain some simple formulas, and interestingly
in the case of big values of . Actually, the main parameter that
is discriminant in the choice of the algorithm is the mean thick-
ness of the layer. In any case, the rms of heights of each inter-
face is assumed to be less than . All possible configurations
are represented in Fig. 4.

A. Case 1: or

When the mean thickness is less than 2 or , a classical
BMIA/CAG algorithm can be applied, as said previously, con-
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sidering that the couple of points belongs to a same
surface.

Let and ;
let . Then, let us consider for example the cou-
pling sub-matrix corresponding to the TE PC case; defining
similarly as (11)

(23)

we get the same decomposition for as (16); the corre-
sponding matrices , and are similar to (17),
substituting with and with .

The same method can easily be applied to the matrix and
also to the coupling matrices and , using for the two latter
the similarity with (22).

B. or

To derive the BMIA/CAG method in this case, the distance
(or similarly ) has to be approximated

by a distance which is only dependent on for
a given mean thickness

(24)

and are the elevation of the
points and with respect to the mean lines
and , respectively, (Fig. 5), hence and are
two Gaussian variables with zero mean value. Let us denote

. Care must be taken at this
point; the definition of is different from in the other sections.
Furthermore, the distance which is only dependent on is
the hypotenuse of the triangle (Fig. 5), with a length
of . Let us choose such that

(25)

This condition ensures that if
. This is useful, when in (24), to derive an approxi-

mation for the Green function and its normal derivate, used in
the coupling matrices , , and . For example, we can ap-
proximate the term , of , similarly to (13)

(26)

with

(27)

Fig. 5. Acceleration of coupling with BMIA/CAG. krrr � rrr k is approxi-
mated by kMMMMMM k.

In the same way, we obtain for the coupling matrix

(28)

where

(29)

and denotes the derivative of .
1) Case 2: or , and : The detailed

study of this case can be found in Appendix II.
2) Case 3: or , and : The limit case

leads to a simple result. In this case

(30)

Then, considering for example the matrix , defining similarly
as (11)

(31)

and introducing (30) into (26), we get

(32)

where and are diagonal matrices, and where
is a Toeplitz matrix. The elements are given by

if
if

(33)
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We get in the same way for the matrix by introducing (30)
into (28)

(34)

where and are diagonal ma-

trices and is a full matrix. There is a difference between
(16), (20), and (32), (34), respectively, in the fact that the upper
limit of the inner sum is and not . The elements of are
given by

if
if .

(35)

The other matrices and are also easily deduced from the
expressions of case 2 (52) and (48), respectively.

As a conclusion, the complexity of the coupling step is then
also , although some formulas are more complex in
the coupling step than in the local interaction step. Nevertheless,
it is worth noticing that for the calculation of

the products and are performed only once
for each order of PILE method. On the opposite, the matrix-
vector products and are performed many times in
order to iteratively find and .

As a conclusion, we call PILE-BMIA/CAG this method, in
order to differentiate it from the PILE method, using only exact
matrices inversions for the local interactions and exact matrix-
vector products for the coupling step.

V. COMPARISON WITH REFERENCES METHODS

The validity domain of the PILE method, relying on the con-
dition where the norm used is the spectral radius, has
been studied in [16]. It is quite large, the only limitation being
the poor convergence with very thin and very rough layers.

In this section the validity and the convergence of the PILE
combined to the BMIA/CAG is investigated. Different configu-
rations are considered, corresponding to case 1 ( or ),
case 2 ( or , and ) and case 3 ( or

, and ).
In order to find the good parameters to achieve a good conver-

gence of PILE-BMIA/CAG for each configuration, we work in

two steps: first, we look for the convergence of the exact PILE
method, comparing it to the reference results provided by a di-
rect inversion of the impedance matrix. More precisely, we seek
the minimum order (8) of PILE method for which the mean
absolute error over on the bistatic scattering
coefficient (BSC) is less than 0.1 dB; this order, , corre-
sponds to the number of prevailing reflections inside the layer.

Second, launching the PILE-BMIA/CAG at order , we
look for an acceptable order of truncation of the series of the
coupling step, following the same procedure as before (error less
than 0.1 dB on the BSC).

Besides, we compare the PILE-BMIA/CAG to the for-
ward-backward (FB) method developed for a layer by Moss et
al. [18]. Actually, in his article, Moss speeds up the FB method
with the Novel Spectral Acceleration [36], as we did using the
BMIA/CAG for the PILE. The FBNSA method is faster than
PILE-BMIA/CAG, with a complexity of only versus

. Nevertheless, the two methods rely on different
physical interpretations, and thus the validity domains are a
priori different. That is why, even if the direct comparison of
the PILE-BMIA/CAG to the FB-NSA is beyond the scope of
this paper, it seems interesting to compare PILE method to FB.

In all the configurations the lower medium is perfectly
conducting (case (c) of Fig. 2), and the relative permittivity of
the inner medium is . The corresponding
skin depth is quite large: . It is worth noticing that if
the losses are lower, the total length of the interfaces have to
be increased to avoid edge effects. Each interface, of total length

and with rms slopes , is sampled
at ; the surface height spectrum is Gaussian. The
illuminating beam is a Thorsos beam of attenuation parameter

, and an incidence angle of .

A. Configuration of Case 1

First we study a configuration where the two interfaces fulfill
the conditions of applicability of the small perturbation method:
rms heights , rms slopes .
The mean thickness is less than (case 1 given in
Section IV-A).

The convergence of the exact PILE method is studied in the
TE polarization in Fig. 6 and Fig. 7. By exact, we mean that each
term of the product

is computed rigorously, using exact matrix-inversions and exact
matrix-products. The reference BSC in these figures is obtained
using an exact inversion of the impedance matrix of the whole
layer . The BSC obtained in TM polarization, very similar, is
not plotted here. From Fig. 7, PILE method converges rapidly,
and the BSC at order 15 is very close to the reference BSC; FB
BSC is not plotted because the method did not converge.

The mean error between the exact BSC and the PILE BSC
is shown for both polarizations on Fig. 8. The error for the FB
is also given. The trends in TE and TM for PILE are the same,
and also similar to the FB in TM. The FB in the TE polarization
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Fig. 6. Case 1. BSC plotted in a dB scale. Comparison of the BSC obtained ex-
actly (Reference), with exact PILE, and with FB. The parameters of the problem
are: � = � = 0:05�, � = � = 0:2; H = 0:5�, " = 2 + 0:01i,
� = 0 . TE polarization.

Fig. 7. Case 1. BSC plotted in a dB scale. Comparison of the BSC obtained
exactly (Reference) and with exact PILE, at different orders. Zoom of Fig. 6.

does not converge, even for a higher order of FB (not represented
here); this implies that the FBNSA in TE does not converge ei-
ther for this configuration. Concerning the BSC, the mean error
is less than 0.1 dB for PILE orders greater than in
TE and TM polarizations.

To choose now the parameters of the BMIA/CAG, the [21],
[27] are interesting. As a rule of thumb, for each interface

so ; actually we keep the bandwidth
in all simulations to get a satisfactory precision; more-

over, an order of truncation of or 6 is enough for rms
heights up to . Besides, in case 1, the coupling
step is based on the classical formulas of the BMIA/CAG for
a single surface, so the corresponding parameters can be found
assuming that the virtual surface has an rms height of about

Fig. 8. Case 1. Mean error (in decibels) between the BSC obtained from an
exact inversion and the exact PILE. A comparison with the exact FB method is
also shown. TE and TM polarizations. Each order of PILE method corresponds
to a downward-upward propagation and for FB method, to a FB (right-left) prop-
agation.

; with the given parameters,
.

Finally, for the simulations of case 1 we chose:
coefficients, the orders of truncation for

the upper and lower interfaces, and for the coupling
, and . With these parameters, the

BSC calculated at different orders with the PILE-BMIA/CAG is
very close to the one calculated with the exact PILE; even the
mean error in dB is indistinguishable. The results are hence not
shown here.

B. Configuration of Case 2

Hereafter we study a configuration where the two interfaces
fulfills the conditions of application of the geometrical optics
approximation: rms heights , rms slopes

. The mean thickness , is bigger than and
so and

have the same order of magnitude. In this case, we have
to use the formulas of case 2, that is (47), (48), (51) and (52).

First, the convergence of the exact PILE method is studied in
the TE polarization in Fig. 9. The BSC obtained in TM polariza-
tion, very similar, is not plotted here. FB method converges and
its BSC appears to be in very good agreement with the others.

Fig. 10 shows the mean error between the exact BSC and the
PILE BSC for both polarizations. The BSC for orders
is in very good agreement with the reference BSC, with a mean
error less than 0.1 dB. The BSC provided by PILE converges
faster than in the former configuration. This can be explained
physically: as the thickness is increased (from to ),
the number of reflections inside the layer that contributes sig-
nificantly to the total BSC decreases. As a last remark, the rate
of convergence of FB is twice slower than for PILE method, in
both configurations.
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Fig. 9. Case 2. BSC plotted in a dB scale. Comparison of the BSC obtained
exactly (Reference) and by exact PILE, at different orders. The parameters are:
� = � = 0:5�, � = � = 0:2; H = 5�, " = 2 + 0:01i, � = 0 .
TE polarization.

Fig. 10. Case 2. Mean error (in decibels) between the bistatic scattering coef-
ficient (BSC) obtained from an exact inversion and the exact PILE. The mean
error is plotted in a semilog-scale. TE and TM polarizations.

In a second step, we seek the values of the parameters of the
BMIA/CAG combined to PILE method. The parameters of the
BMIA/CAG for the local interactions are calculated using the
same rule of thumb as in the previous configuration:

; the chosen orders of truncation for the
upper and lower interfaces are . For the cou-
pling interactions, let choose the limit interaction distance
such that , hence for example

and then . To find the last parameter, the
order of truncation of the series in the coupling formulas (50)
and (46), we plot in Fig. 11 the mean error on the BSC versus
this parameter, for and 4. Only the TE polarization is
represented here, the TM being very similar.

Fig. 11. Case 2. Mean error (in decibels) for the PILE-BMIA/CAG versus the
order of truncation P of the series involved in the coupling step. PILE at order
3 and 4. TE polarization.

Fig. 12. Case 3. Mean error (in decibels) between the BSC obtained from an
exact inversion and the exact PILE. The parameters are: � = � = 0:05�,
� = � = 0:2; H = 5�, " = 2 + 0:01i, � = 0 . TE and TM
polarizations.

Fig. 11 shows how PILE-BMIA/CAG is as precise as exact
PILE once the correct parameters are chosen for the BMIA/
CAG. From Fig. 10, the mean error for the exact PILE is 0.7
dB and 0.01 dB for and 4, respectively. A same level
of precision is reached in Fig. 11 for .

C. Configuration of Case 3

Third, the purpose is to study a configuration leading to the
validity domain of case 3. Selecting , and rms
slopes , and , we get

. In this case, we have to use the formulas of case 3, that
is (33) and (35).

Fig. 12 plots the convergence of the exact PILE and the FB
method. Exact PILE method reaches the precision 0.1 dB and
less for . In this configuration, the rate of decrease of
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Fig. 13. Domain of convergence of PILE-BMIA/CAG corresponding to an
error in the BSC less than 0.1 dB for the following set of parameters: P less
than 20, orders of truncation P = P = 6 and P = 20 for the coupling; for
the bandwidth, R = R = 100 coefficients. Both surfaces are equal;
� = � and � = 0:2. � = 0 . L = 50�. Formulas of domain 1: cf
Section IV-A; domain 2: cf Section IV-B-1; domain 3: cf Section IV-B-2.

the FB is lower than for PILE; nevertheless, in the TM case, the
error of PILE method does not decrease below 0.03 dB at orders
4 and higher whereas the FB method reaches a better precision
than PILE for orders 7 and up.

The order of truncation of the coupling step is chosen as in
Section V-B studying the mean error on the BSC as a function of

. The convergence is faster than for case 2, probably because
the rms heights of the interfaces are lower. Actually, for the pa-
rameters and , we found
that for the precision of PILE-BMIA/CAG is excellent.

D. Validity Domain and Computation Time

All three previous configurations have been chosen to fit a
particular case studied in Section IV. From a practical point of
view, one has to pick the right formula and the right param-
eters to fit a given configuration. Hereafter a way to make a
first guess automatically is proposed. For this purpose we con-
sider a given set of parameters and study the convergence of
PILE-BMIA/CAG as a function of and (the sur-
faces are supposed equal and translated from each other). The
three formulas are used and convergence is established when a
mean error of 0.1 dB or less is reached for an order less
than 20. The fixed parameters are ,
and . For the incident beam
and ; the polarization has little effect on the conver-
gence. The surfaces have a total length , rms slopes

, and ; the relative permittivity
of the inner medium is . The convergence do-
main is shown in Fig. 13. Some domains are overlaid, and in
this case, any formula can be used. Formulas of cases 1 and 3
are always faster than the ones of case 2, but the latter ones are
more universal than the others. However, let us recall that the
PILE method is less accurate for very thin layers. Finally, in
order to get an efficient method with a minimum order,
the residual error can be considered. As a rule of thumb, for

, is enough.

Fig. 14. CPU time of convergence of PILE-BMIA/CAG for the following set of
parameters:P = 5, orders of truncationP = P = 6 andP = 20 for the
coupling; R = R = 100 coefficients. Formulas 1: cf Section IV-A;
formulas 2: cf Section IV-B-1; formulas 3: cf Section IV-B-2.

The CPU time of the PILE-BMIA/CAG method is shown
in Fig. 14, where the same parameters are used, and the order

is constant. The number of unknowns is equal to
where is the number of samples per interface, consid-

ering the layered PC case (Fig. 2). A 3 GHz personal computer
with 2 GB of RAM is used in this work. We can verify from a
linear regression that the complexity of the PILE-BMIA/CAG
is .

VI. CONCLUSION

In this paper, we presented a new efficient method to pre-
dict the field scattered from a 1-D stack of two rough inter-
faces. The method is based on the rigorous PILE method [16],
and it was accelerated using the fast method BMIA/CAG. The
BMIA/CAG for a single-interface was first reminded and cast
in a very simple and convenient way. Then the BMIA/CAG was
adapted to take into account the coupling between the two in-
terfaces, and different formulas where given for three different
kinds of configurations. The resulting method, the PILE-BMIA/
CAG, has a complexity of only .

Then a numerical validation of the PILE-BMIA/CAG was
undertaken comparing it to a reference method, and to the recent
FB for a layer [18].

The convergence of PILE-BMIA/CAG has been established
for layers with a thickness of and more; in some cases the
PILE method converged whereas the FB method did not. Nev-
ertheless this may be not a general rule; a more comprehensive
study should be carried out to explore the convergence proper-
ties of both methods. At this point, we can only note that the un-
derlying physical interpretation of the PILE method is different
from for the FB method [18], and the validity domains are thus
also different.

In conclusion, even if the PILE-BMIA/CAG is not the fastest
rigorous method available (as the FBNSA [18] for example), it
has in return a large validity domain, that makes it quite robust.
Furthermore, for some configurations, simpler formulas can be
used that reduced the computation time.
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APPENDIX I
BLOCK-MATRICES OF THE GLOBAL IMPEDANCE MATRIX

For the dielectric case, the block-matrices , , , ,
, , and of the impedance matrix have the following

expressions:

(36)
In the following expressions, stands for the wave number of
the medium , and where is the permittivity of
the medium . and are the upper and lower surfaces,
respectively

for

for

(37)
with and and

for

for

(38)

for

for

(39)

for

for

(40)

(41)

(42)

(43)

(44)

with and

; the superscript stands for the deriva-
tive; is Euler’s constant , , and are
very similar to , , and , respectively, where

is replaced by , by , by , by and by .
These expressions can also be used in the perfectly conducting
case.

APPENDIX II
CASE 2: OR , AND

When , no approximation can be done over
in (26) and in (28), so they

have to be expanded rigorously.
Let us consider first the elements of (26)

(45)

Consequently, introducing (27) and (45) into (26), the
impedance matrix of the weak interactions defined by
(23) can be written as:

(46)

where and are diagonal matrices, and is a
Toeplitz matrix. Substituting with and with
into (45) we get

if
if

(47)

where is given in (27).
The elements of are obtained by substituting in (24)
and by and , respectively. Hence, can be ex-

panded as (46), with the following expressions for the matrices:

if
if

(48)

where is given in (27).
Let us consider now the elements of matrix (28), and let us

make a variable change in (29), introducing and .
By definition of , we have for the derivatives , so
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and then

(49)

Thus

(50)

with

if
if

(51)

where the coefficients are given in (28).
In a similar way, the elements of are given by

if
if

(52)

whith the same coefficients from (28).
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