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Abstract—In this paper, a fast method is presented to model the
forward propagation above Gaussian rough surfaces and taking into
account atmospheric refraction. The method is based on the Discrete
Mixed Fourier Transform (DMFT) solved by the Parabolic Wave
Equation, in which the Ament boundary condition with shadowing
effect is used at grazing angle. In this model, for a bistatic
configuration, the surface height PDF of the illuminated points is
derived and it is introduced in the boundary condition. Examples
demonstrate the capacities of the method to compute propagation
factor above rough surfaces following Gaussian statistics and Gaussian
height correlation and the proposed method is validated by comparison
to a Monte Carlo approach.
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1. INTRODUCTION

To model electromagnetic wave propagation in the troposphere and
above rough surfaces, it is necessary to take into account various
interaction phenomena of the wave with the propagation medium.
Indeed, absorption, diffusion, refraction or diffraction are able to
disturb the wave propagation above earth’s surface. To predict radar
detection and telecommunications connection range in operational
conditions, hybrid modeling techniques of the propagation have been
developed, e.g., AREPS [1], TERPEM [2]. These hybrid methods
use PWE resolution technique to model propagation at low altitudes.
Since many years, the Parabolic Wave Equation (PWE) has been
used to model the electromagnetic or acoustic wave propagation in
inhomogeneous medium. In all cases (above ocean or mountain for
example) the boundary conditions play an essential role and must be
modeled accurately. This point is the main advantage of the PWE,
because the method is “full wave” and takes into account intrinsically
the boundary conditions, modeling all the interaction phenomena of
the wave with the surrounding medium. In addition, it has been
observed that propagation modeling above rough sea can lead to an
over-estimation of the radar detection range. In order to reduce this
over-prediction, the introduction of shadowing effect is proposed here.

The goal of this paper is to propose a fast and efficient method
for operational use, predicting the forward propagation above rough
surfaces and taking into account the shadowing and refraction effects.
To solve rigorously the electromagnetic scattering problem from rough
surfaces, computational methods based on method of moments [3–5],
could be applied; but these techniques are very time consuming and it
is not the purpose of this paper.

The forward scattering process is computed from the asymptotic
theory based on the Ament model [6]. This leads to the main advantage
of our method that is fast and requires a computation time of the
amount of few seconds for any case. Freund et al. [7] showed that the
propagation factors obtained from a Monte Carlo process by method of
moments and the Ament model are shifted: the minima and maxima
positions of the interference figure are different at grazing angles. We
will show in this paper, that this phenomenon is due to the fact that
the shadowing effect is not taken into account. In this paper, the
rough surface reflection coefficient developed by Ament [6] is improved
by including the shadowing effect, which is very important especially
at low grazing angles.

In Section 2, the resolution of the PWE in two dimensions applying
the Split Step Fourier method (SSF) is presented. According to the



Progress In Electromagnetics Research, PIER 58, 2006 245

impedance boundary conditions, the Discrete Mixed Fourier Transform
(DMFT) developed by Dockery and Kuttler [8] is presented within a
short description of the irregular terrain modeling. In Section 3, the
shadowing effect at grazing angle is presented for Gaussian statistics,
and the height Probability Density Function (PDF) of the illuminated
points is derived analytically in the forward direction. This study leads
to a new height PDF of the illuminated points, in which the mean
value and the standard deviation of the illuminated surface heights
are calculated. In addition, the analytical approach is compared with
a Monte-Carlo method. In Section 4, a new reflection coefficient is
derived from the height PDF presented in Section 3. The interest of the
proposed approach is proven and discussed in Section 5 by comparison
with a statistical Monte Carlo approach on several examples. Finally,
Section 6 gives concluding remarks on the performances of the proposed
method, its applicability to different type of surfaces and further
improvements are also proposed.

2. PARABOLIC WAVE EQUATION RESOLUTION

2.1. Introduction

Numerous methods are available to model electromagnetic wave
propagation in the atmosphere, e.g., geometrical optics, and mode
theory. However, the complicated variations of the refractive index and
the presence of the ground limit the applications of these methods. An
alternative solution is to use a numerical method to solve the parabolic
approximation of the Helmholtz equation.

The Parabolic Wave Equation (PWE) is the most popular method
to compute electromagnetic propagation in the troposphere at low
altitudes. The PWE was originally developed by Fock [9] but was not
a practical solution until Hardin and Tappert [10] developed a simple
solution in acoustics based on the Fourier transform called Split-Step
Fourier method. Its robustness and accuracy for complicated problems
with vertical and horizontal index variation made it a computational
powerful method. The formulation of the PWE for electromagnetic
problems is summarized by Kuttler and Dockery [8, 11]. The theory of
the PWE has already been explained in detail [11–14] and will not be
reported here. Numerous approaches were developed to solve the PWE
with some differences in the approximation of the pseudo differential
operator. The wide angle PWE proposed by Donohue and Kuttler [13]
is used here:

∂Φ
∂x

= j

√
k2
o +

∂2

∂z2
Φ + jkom(x, z)Φ, (1)
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where x is the horizontal range, z the altitude, ko the free-space
wave number, m(x, z) the modified refractive index and Φ(x, z)
the scalar tangential electric or magnetic field for horizontal or
vertical polarization, respectively. Here, we assume exp(−jωt) time
dependency of the fields.

Several methods can be used to solve the PWE. The more efficient
in term of computation time is based on the Fourier transform: it is the
Split-Step Fourier method (SSF). The principle is a recursive resolution
with range, following the formulation given below:

Φ(x + δx, z) = ej
ko
2
m(x,z)δxF−1

{
ejδx

√
k2o−p2F

[
ej

ko
2
m(x,z)δxΦ(x, z)

]}
.

(2)
F is the Fourier operator, p the dual of z in the spectral domain and
δx the horizontal step length.

2.2. Boundary Condition

To model the propagation above high-conducting surfaces, according to
the wave polarization, the boundary conditions of Dirichlet (horizontal
polarization) or Neumann (vertical polarization) have to be enforced.
However, for many problems, considering the ground as perfectly-
conducting is not a good approximation. The solution usually applied
in PWE approach is to introduce the Leontovitch boundary condition
[15].

The Leontovitch boundary condition [15] states that

∂Φ
∂z

∣∣∣∣
z=0

+ αH,V Φ|z=0 = 0, (3)

αH,V can be directly obtained from the Fresnel reflection coefficient R
and the grazing angle φ (defined from the horizontal direction) such
as:

αH,V = jko sin(φ)
1 −R(φ)
1 + R(φ)

. (4)

We will show in Section 4 that this expression allows to introduce
the roughness and the shadowing effect of the surface along the
propagation direction.

Expression (4) has a strong dependence with the local grazing
angle φ, which generally depends on the refractive index and on the
local geometry of the scene. Many approaches can be used to estimate
this angle, e.g., Geometrical Optics (GO) and Spectral Approximation
(SA) [14]. To obtain the most accurate grazing angle, it is necessary
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to use a combination of both approaches according to the specific
condition under which they are valid.

The SSF method is based on a Fourier transform of the field
along the z-axis (cf. Equation (2)). It could be noticed that a sine
Fourier transform of the field gives an exact solution of the Dirichlet
boundary condition (enforcing the field equal to zero on the ground)
and by analogy a cosine transform satisfies the boundary condition
of Neumann. The objective of the Discrete Mixed Fourier Transform
(DMFT), derived by Kuttler and Dockery [8], is to find a solution which
will apply the boundary condition of Leontovich (4), (5) by combining
the conditions of Neumann and Dirichlet. Thus, a matched function
ψ is introduced defined as

ψ =
∂Φ
∂z

+ αH,V Φ, (5)

where ψ is a function which satisfies both the Parabolic Wave Equation
and the boundary condition of Leontovich if ψ(x, 0) = 0. Then ψ can
be propagated using (2) and with a sine transform. To obtain ψ, the
above equation can be rewritten with finite difference expression of
the partial derivative. With this method, the impedance boundary
condition is automatically propagated and propagation above rough
surface can be studied.

2.3. Deterministic Irregular Terrain Modeling

Accurate modeling of radiowave propagation over deterministic
irregular terrain (relief) is crucial in this study to validate the results
above rough surfaces obtained using the modified impedance by
comparison with a Monte Carlo approach. The last one consists in
modeling the propagation above series of deterministic surfaces and
the average of the propagated fields is computed.

The “Staircase terrain approach” models the ground profile as
series of plane surfaces located at different heights. The propagation
above each flat surface is calculated by the DMFT dependent on the
boundary condition. The origin of the vertical sampling of the field is
shifted according to the height variation of the profile. This method
considers the field as zero inside the obstacle and above the calculation
domain. This technique is not based on any mathematical formulation
but on intuitive concept. Barrios [12] demonstrated the accuracy of
the staircase approach if the transmitter and the receiver are at low
altitude. However, cutting the relief in a series of staircases fails to
take into account the reflection of the field on the obstacles, so another
more accurate technique is to use a shift map in the iterative resolution
approach to model irregular terrain.
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The “Shift map approach”, applied by Donohue and Kuttler to the
PWE technique [13], assumes smooth terrain given by a simple change
of variable binding the profile of the ground with the resolution of the
Helmholtz equation. The result is a global equation, solved by the
DMFT, which directly propagates the field obeying to the Leontovitch
boundary condition and above the surface profile. The SSF recursive
resolution becomes:

Φ(x + δx, z) = ej
ko
2
m̃(x,z)δx+φ′

F−1
{
ejδx

√
k2o cos2 β−p2F

[
ej

ko
2
m̃(x,z)δx−φ′Φ(x, z)

]}
. (6)

In this process, at each iteration the slope β of the surface is taken
into account. In this formulation, a new modified refractive index is
introduced :

m̃ =
√
m2 − sin2 β, (7)

and a phase correction is applied at each iteration of the process :

φ′ = jkoz sinβ. (8)

This way, the boundary conditions becomes :

ψ =
∂Φ
∂z

+ γH,V Φ, (9)

with
γH,V = cosβ [αH,V + (1 − cosφ) tanβ] . (10)

Nevertheless, Donohue and Kuttler tested this approach above several
wedges and showed that this method is valid only if the slope of the
wedge is lower than 15 degrees. They explained that the sources of
this breakdown were clearly identified as split-step solution errors, due
to the paraxial limitation of the PWE resolution method. This is why
both approaches for modeling irregular terrain are coupled in order
to obtain a more accurate result, alternating the shift mapping if the
surface slope is less than 15 degrees and the staircase approach for
higher slope values.

3. SHADOWING MODELING AT GRAZING ANGLE

3.1. Introduction

In this section, the height Probality Density Function (PDF) of the
illuminated points is derived considering Gaussian statistics and the
case of the forward propagation. The mean value and the standard
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deviation of the surface illuminated heights are also derived and
numerical results are presented for small grazing incidence angle φ.
In addition, the model is compared with a Monte-Carlo method and
validated.

3.2. Illumination Height PDF

As depicted in Fig. 1 for grazing incidence angles φ, due to the
shadowing effect, only a portion of the total surface is illuminated.
The purpose of this section is to calculate the illumination height PDF
which is different of the height PDF.

Figure 1. Illustration of the mean height of a rough surface
illuminated by a plane wave of incidence φ.

The problem of wave scattering from a rough surface in the
presence of shadowing was first considered analytically by Bass and
Fuks [16, 17] by means of the theory of random function overshoots
developed in Ref. [18]. The statistical (this means that the averaging
over the surface slopes and heights is not performed) illumination
function was then expressed from an infinite Rice series (for more
details see Ref. [19]). The shadowing effect was rediscovered later,
seemingly independently, with the Wagner [20], Smith [21, 22] and
Beckman [23] formulations, who retained the first term of the
series. Moreover, Smith used the Wagner approach by introducing
a normalization function.

For monostatic and bistatic configurations, these authors assumed
a one–dimensional surface with an uncorrelated Gaussian process
of surface heights and slopes. This means that the statistical
illumination function is independent of the surface height correlation
function. Recently, for one- and two-dimensional surfaces with
Gaussian statistics, Bourlier et al. [19, 24] extended the Wagner and
the Smith formulations by taking into account the correlation. For
moderate incidence angles, they showed that the correlation could
be neglected. Moreover, they showed by comparing the Wagner and
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the Smith formulations with a Monte-Carlo method that the Smith
approach is more accurate than the Wagner is.

In this subsection, by considering Gaussian statistics and the
forward direction, the illumination height PDF is derived by using
the Wagner and the Smith approaches with and without correlation.
In order to keep the best formulation, these approaches are compared
with a Monte-Carlo method for small grazing angles.

When the shadowing effect is taken into account, the illumination
height PDF is written as

p̆(φ; ξ) =

∫ +∞

−∞
pγ(γ)S(φ; ξ, γ)dγ∫ +∞

−∞

∫ +∞

−∞
pξ,γ(ξ, γ)S(φ; ξ, γ)dξdγ

pξ(ξ), (11)

in which pγ and pξ are the slope and the height PDF, and pξ,γ is the
joint height PDF of the surface heights and slopes. S(φ; ξ, γ) is the
statistical illumination function of an arbitrary point of the surface of
height ξ and slope γ observed with a grazing incidence angle φ. At
the denominator, the double integral corresponds to the normalisation
function such as

∫ +∞
−∞ p̆(φ; ξ)dξ = 1. If the points of the surface are all

illuminated then S = 1 and the unshadowed height PDF if found such
as p̆(φ; ξ) = pξ(ξ).

3.2.1. Illumination Height PDF for Any Uncorrelated Process

In the forward direction and for any uncorrelated random process, the
use of the Wagner, SW , and the Smith, SS , formulations lead to [19]


SW (φ; ξ) = (exp {−Λ(φ, σs) [1 − F (ξ)]})2

SS(φ; ξ) =
{
[F (ξ)]Λ(φ,σs)

}2 . (12)

For a bistatic configuration, SW and SS are defined as the product
of two monostatic statistical illumination functions. In the forward
direction, since the incidence angles of the transmitter and the receiver
are equal in absolute value, the monostatic statistical illumination
function with respect to the transmitter and the receiver are equal.
This explains the power 2 in the above equation. We can note that
SW and SS do not depend on the surface slope γ. F stands for the
height cumulative function defined as

F (ξ′) =
∫ ξ′
−∞

pξ(ξ)dξ, (13)



Progress In Electromagnetics Research, PIER 58, 2006 251

where pξ is the height PDF. Λ is expressed as

Λ(φ, σs) =
1

tanφ

∫ +∞

+ tanφ
(γ − tanφ)pγ(γ)dγ, (14)

where pγ is the slope PDF. Substituting (12) into (11) and integrating
over the heights ξ and the slopes γ, we show for any uncorrelated
process that


p̆W (φ; ξ) = pξ(ξ)

2Λ
1 − exp(−2Λ)

exp {−2Λ [1 − F (ξ)]}

p̆S(φ; ξ) = pξ(ξ)(1 + 2Λ) [F (ξ)]2Λ
. (15)

For Gaussian statistics, we have pξ(ξ) = 1
σξ

√
2π

exp
(
− ξ2

2σ2
ξ

)
and

pγ(γ) = 1
σγ

√
2π

exp
(
− γ2

2σ2γ

)
with σξ and σγ the standard deviations

of the surface heights and slopes (the mean values are assumed to be
equal to zero), respectively. From (14) and (13), this leads to


Λ(φ, σs) = Λ(v) =

exp(−v2) − v
√
πerfc(v)

2v
√
π

v =
tanφ√

2σγ

F (ξ) = 1 − 1
2
erfc

(
ξ√
2σξ

) . (16)

In conclusion, the illumination height PDF for any uncorrelated
process, p̆W,S(φ; ξ) ≡ p̆W,S(v; ξ), depends on the surface height ξ and
on the parameter v.

3.2.2. Illumination Height PDF for a Correlated Gaussian Process

For a correlated Gaussian process, Bourlier et al. [19] showed that the
statistical illumination functions of Wagner, SW , and Smith, SS , are
expressed as

SW,S(φ; ξ, γ) =
{
GW,S(φ; ξ, xt) exp

[
−

∫ xt

0
gW,S(φ; ξ, γ, x)dx

]}2

.

(17)
The functions GW,S and gW,S are expressed in Appendix A. x is

the horizontal distance between two points on the surface. xt is the
distance above which the correlation between two points on the surface
can be neglected. For a Gaussian surface height correlation, xt = 3Lc,
where Lc is the surface height correlation length. For the simulations,
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it is convenient to use the variable transformations given by (A1).
Substituting (17) into (11), one obtains the illumination height PDF

with correlation, in which pξ,γ(ξ, γ) = 1
2πσξσγ

exp
(
− ξ2

2σ2
ξ
− γ2

2σ2γ

)
. The

introduction of the correlation requires the computation of three fold
numerical integrations over {x, γ, ξ}.

3.2.3. Illumination Height PDF from a Monte-Carlo Method

To keep the formulation as accurate as possible, the different
approaches will be compared with a Monte-Carlo method. The
algorithm is based on the work of Brokelman and Hagfors [25]. It
is summarized in Table 5. of [19], in which it is extended to a bistatic
configuration. The method is briefly summarized. Firstly, for a given
surface height correlation function, the surface heights are generated by
using a spectral method. Secondly, for a given grazing incidence angle,
if a point of the surface of index p is illuminated by the transmitter,
then the boolean value of I1(p) = 1, I1(p) = 0 otherwise. Thirdly, the
same way is used for the receiver, in which the surface heights is flipped
because the ray emanates from the right; one obtains I2(p). Thus, a
point of the surface is illuminated if it is viewed both by the receiver
and the transmitter. Thus I = (I1 and I2). The illuminated heigths
correspond to the indexes, p, for which I(p) = 1.

3.3. Numerical Results

For the Monte-Carlo method, to obtain a number of points sufficient
to predict the illuminated height PDF, the number of samples is equal
to one million and the surface height correlation length is Lc = 200
units.

In Fig. 2, the illumination normalized height PDF p̆(h;φ) =√
2σξp̆(ξ;φ) is plotted versus the surface normalized heights, h =

ξ/(
√

2σξ), for φ = 3 degrees and σγ = 0.1 (Lc =
√

2σξ/σγ).
Five approaches are displayed: Monte-Carlo (MC), Smith without

correlation (Un smith), Smith with correlation (Co Smith), Wagner
without correlation (Un Wagner), Wagner with correlation (Co
Wagner). The unshadowed normalized height PDF, exp(−h2)/

√
π,

is also depicted. In the legend, the mean value, m̆h (dimensionless),
and the standard deviation, σ̆h (dimensionless), of the illuminated
normalized height are also reported. They are defined from p̆(h;φ)
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Figure 2. Illumination normalized height PDF p̆(h;φ) =
√

2σξp̆(ξ;φ)
versus the surface normalized heights, h = ξ/(

√
2σξ), for φ = 3 degrees

and σγ = 0.1.

as 


m̆h =
∫ +∞

−∞
hp̆(h;φ)dh

σ̆2
h =

∫ +∞

−∞
(h− m̆h)2p̆(h;φ)dh

. (18)

We can note that

m̆ξ =
√

2σξm̆h in m σ̆ξ =
√

2σξσ̆h in m. (19)

In Fig. 2, we observe that the Smith approach is better than
the Wagner approach, for which the mean value m̆h is slightly
underestimated and the standard deviation σ̆h is weakly overestimated.
The mean value predicted by the Smith approach is very close to the
one obtained with the Monte-Carlo method. In addition, since the
deviation between the correlated and the uncorrelated Smith results is
small, in the following of the paper, we will keep only the uncorrelated
Smith approach. Further simulations, not reported in this paper,
confirms this choice. Fig. 2 also shows that the shadowing effect
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Figure 3. Comparison of the illumination normalized height PDF
p̆(h;φ) witha Gaussian profile versus the surface normalized heights,
h = ξ/(

√
2σξ), for φ = {4, 3, 2, 1} degrees and σγ = 0.1.

strongly affects m̆h > 0 and σ̆h. Indeed, if the shadowing effect is
omitted then m̆h = 0 and σ̆h = 1/

√
2 since σ̆ξ =

√
2σξσ̆h = σξ for any

grazing incidence angle φ.
Fig. 2 reveals that the shape of the illumination normalized height

PDF is close to a Gaussian PDF. From this simple observation, p̆(h;φ)
can be fitted as

p̆(h;φ) =
1

σ̆h
√

2π
exp

[
−(h− m̆h)2

2σ̆2
h

]
, (20)

In Fig. 3, the illumination normalized height PDF p̆(h;φ) is compared
with the Gaussian profile versus the surface normalized heights, h =
ξ/(

√
2σξ), for φ = {4, 3, 2, 1} degrees and σγ = 0.1. A very good

agreement is observed between the Monte-Carlo and the uncorrelated
Smith results and the Gaussian profile. With the uncorrelated Smith
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Figure 4. Mean value, m̆h, and standard deviation σ̆h of
the illumination normalized heights versus the parameter v =
tanφ/(

√
2σγ).

formulation, substituting (15) into (18) and using (16), m̆h and σ̆h are
given by


m̆h(v) =

1 + 2Λ√
π

∫ +∞

−∞
he−h

2
[1 − erfc(h)/2]2Λ dh

σ̆2
h(v) =

1 + 2Λ√
π

∫ +∞

−∞
(h− m̆h)2e−h

2
[1 − erfc(h)/2]2Λ dh

. (21)

As Λ depends only on v = tanφ/(
√

2σγ), m̆h and σ̆h depends also
only on v. Since m̆ξ =

√
2σξm̆h and σ̆ξ =

√
2σξσ̆h, {m̆ξ, σ̆ξ} depends

on {v(φ, σγ), σξ}. The advantage to use m̆h and σ̆h is to decrease the
degrees of freedom for the simulations. They are plotted in Fig. 4
versus v. We observe that m̆h is a decreasing function of v whereas
σ̆h is an increassing function of v. For very small grazing angles or
very high slope standard deviations, which corresponds to small values
of v, the illumination height PDF becomes narrow and it is shifted
towards high heights. In constrast, when v ≥ 2, m̆h and σ̆h become
independent of v and tends to 0 and 1/

√
2 = 0.707, respectively. This

means that m̆ξ =
√

2σξm̆h = 0 and σ̆ξ =
√

2σξσ̆h = σξ for any
{φ, σγ}. Thus, if v ≥ 2, corresponding to a limit grazing incidence
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angle φl = arctan(2
√

2σγ), the shadowing effect can be neglected.
For instance if σγ = 0.1, then φl = 15.8 degrees. For the numerical
results depicted in Section 5, σγ = 0.15 and σξ = 0.33 meter. Thus,
for φ = {0.1, 2} degrees, we have v = {0.008, 0.16}. From Fig. 4,
m̆h = {1.7, 0.7} and σ̆h = {0.3, 0.5}. Since σξ = 0.33 meter, from (19),
m̆ξ = {0.78, 0.32} meter and σ̆ξ = {0.15, 0.24} meter.

4. REFLECTION COEFFICIENT WITH SHADOW

As shown previously, for a rough surface illuminated by a plane wave
at grazing angles, the shadowing effect increases the height mean value
m̆ξ(v(φ, σγ), σξ) of the illuminated surface (see Fig. 1). This height is
function of the slope standard deviation, σγ , the grazing incident angle,
φ, and the height standard deviation, σξ.

The Ament reflection coefficient does not account for this
phenomenon. It only modifies the strength field dynamics in the
specular direction, and for the zone close to the ground it is equivalent
to propagation over a flat surface. To include the influence of the
shadowing effect, both approaches are developed here to suggest a
new reflection coefficient through an “intuitive” and a “rigorous”
approaches.

4.1. Intuitive Derivation of the Reflection Coefficient

The reflection coefficient defined by Ament [26] to take into account
the surface roughness in the specular direction is

RA(φ) = R0(φ)
∫ +∞

−∞
e−jQξpξ(ξ)dξ, (22)

where R0(φ) is the Fresnel reflection coefficient of a flat surface, and
Q = 2ko sinφ. Equation (22) can be seen as a phase correction in
presence of roughness. If the shadow is ignored, the integration over ξ,
corresponding to the derivation of the characteristic function, leading
to

RA(φ) = R0(φ) exp

(
−
Q2σ2

ξ

2

)
= R0(φ) exp

(
−2k2

oσ
2
ξ sin2 φ

)
. (23)

For Qσξ 	 1, the above equation is equal to the Fresnel reflection
coefficient. In this case and ignoring the shadowing effect, the optical
path correction can be neglected.

The increase of the surface mean level can be introduced in
propagation modeling as a phase change of the plane wave to correct
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the optical path. A simple solution is then to multiply the rough
surface coefficient of Ament RA [26] by a new phase term. This term
expresses the difference in optical path between the cases of a rough
and a smooth surface. The new reflection coefficient is then

RI(φ) = RA(φ)e−jQm̆ξ , (24)

m̆ξ = σξ
√

2m̆h is the height mean level given by (21) and plotted in
Fig. 4.

In Section 5, this approach will be compared with a Monte-Carlo
method.

4.2. Rigorous Derivation of the Reflection Coefficient

To include the shadowing effect, another more rigorous technique
consists in introducing the illumination height PDF p̆S(φ; ξ) given
by (15) (valid for any uncorrelated process) and (16) (valid for an
uncorrelated Gaussian process) into the derivation of the reflection
coefficient. The derivation of this new reflection coefficient is identical
to the method proposed by Ament [26, 6].

To obtain a reflection coefficient accounting for the shadowing
effect, the height distribution pξ(ξ) is substituted in (22) by the
illumination height PDF, p̆S(φ; ξ), given for Gaussian statistics by (15)
and (16). This leads to

RR(φ) = R0(φ)
∫ +∞

−∞
e−jQξpS(φ; ξ)dξ

= R0(φ)
1 + 2Λ√

π

∫ +∞

−∞
e−jQ

√
2σξh−h2

[
1 − erfc(h)

2

]2Λ

dh

. (25)

This integral is computed numerically. To overcome this numerical
computation, a last approach is proposed, fitting the rigorous
illumination normalised height PDF and following (20) and (21), a
new reflection coefficient is suggested:

R′
R(φ) = R0(φ) exp

(
−jQm̆ξ −

Q2σ̆2
ξ

2

)
. (26)

Unlike (23), (25) and (26) have a non-zero phase term, due to the fact
that the mean value of the illuminated height, m̆ξ, is non zero. If the
shadowing effect is omitted, then m̆ξ = 0 and σ̆ξ = σξ and (26) is equal
to (23). In addition, from Fig. 4, σ̆ξ ≤ σξ ⇒ |R′

R(φ)| ≥ |RA(φ)|.
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Both approaches that we called intuitive (24) and rigorous (25)
or (26), use the illumination height PDF allowing to include the mean
enhancement of the height of the illuminated surface.

This new reflection coefficient R′
R is then introduced in (4) instead

of the classical Fresnel coefficient R0. This way, the DMFT will
propagate the electromagnetic field taking into account the shadowing
effect.

5. COMPARISONS ON PROPAGATION COMPUTATION

5.1. Test Description

The shadowing effect presented in the previous section is described
for Gaussian statistics. With the aim to validate this approach,
simulations of the propagation above deterministic surfaces with
Gaussian statistics and Gaussian height correlation function are
presented in this section. To generate this kind of surface, the standard
deviations of the heights, σξ, and of the slopes, σγ , are required.
To obtain surfaces with characteristics close to a sea surface, the
ElFouhaily et al. spectrum [29] is used to compute σξ and σγ . For
a fully-developed sea, Bourlier et al. [30] showed

σξ ≈ 6.28 × 10−3u2.02
10 in m σγ ≈ 5.62 × 10−2u0.5

10 , (27)

where u10 is the wind speed at 10 meters above the sea. A sea state
of 4 on the Beaufort scale is chosen, giving a wind speed u10 = 7 m/s.
Thus, σξ = 0.33 meter, σγ = 0.15 and the height correlation length is
of the order of Lc =

√
2σξ/σγ ≈ 3 meters.

The propagation factor, for an horizontal polarization, is plotted
along the vertical observation axis at a distance of 5 kilometers from
the transmitter, which is located at 5 meters above the sea surface.
Following these geometrical parameters, the observation height is
growing from 0 to 200 meters, the grazing incidence angle ranges
from near 0 to 2.3 degrees. The atmosphere is assumed to be
homogeneous. The dielectric characteristics of the surface are 80.0
for the relative permittivity and 4.0 S/m for the conductivity. Four
configurations are studied, and summarized in Table 1, in which N
is the number of generated surfaces to obtain a good convergence of
the mean propagated field. The radar frequency ranges from 1 to
10 GHz, involving a ratio σξ

λ ranged from 1.1 to 11. This criterion
will allow to illustrate the influence of roughness on the propagation
factor. These four configurations have been chosen to simulate realistic
difficult propagation conditions at grazing angles where the shadowing
effect is strong.
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Table 1. Characteristics of the configurations.

Configurations σγ σξ in m Frequency (GHz) σξ/λ N
1 0.15 0.33 1.0 1.1 100
2 0.15 0.33 2.5 2.75 200
3 0.15 0.33 5.0 5.5 300
4 0.15 0.33 10 11 500

5.2. Study of the Illumination Height PDF Choice

The analysis presented in Section 3 showed that the Smith formulation
is the more accurate. The problem is to know if the correlation must
be taken into account or not in the computation of the propagation
factor. The formulation including the correlation in the illumination
height PDF is given by (11) and (17), and can be compared to
the uncorrelated one, (15) and (16). Both are introduced in the
computation of the propagation factor within the reflection coefficient.
The results presented here correspond to the configuration number 3
described in Table 1. Other cases have been tested and the conclusions
are similar. In Fig. 5, the variation of the propagation factor with
respect to the altitude is represented.

In the legend, the labels are defined as:

• “Rigorous Co Smith” means that in the computation of the
reflection coefficient (25), the illumination height PDF is
computed from the correlated Smith approach, (11) and (17).

• “Rigorous Un Smith” means that the reflection coefficient is
computed from (25): the illumination height PDF is computed
from the uncorrelated Smith approach.

• “Intuitive Un Smith” means that the reflection coefficient is
computed from (24), in which the height mean value is determined
from the uncorrelated Smith approach, (18) and (19).

• “Gaussian Un Smith” means that the reflection coefficient is given
by (26).

• “Rigorous Un Smith PWS” will be explained later.

In Fig. 5, no significant differences can be distinguished between
the results obtained with and without correlations. The only
significative difference appears between the intuitive method and the
others. The level difference observed when the propagation factor
reaches the extrema is due to the second term in the exponential of
(26) that is not taken into account in the intuitive method.
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Figure 5. Test of the influence of the correlation between heights and
slopes.

Indeed the propagation factor, PF , can be approximated as,
PF = 1+|R|2+2|R| cos(φR+Θ), in which R is the reflection coefficient,
φR = argR and Θ is the phase difference between the direct path and
the one reflected on the surface. It is then easy to show that the
difference between the maxima (φR + Θ = 2nπ with n an integer) and
the minima (φR+ Θ = 2nπ+π/2) of PF is given by ∆R = 4|R|. From
the intuitive approach, (24) plus (23), ∆R = 4|R0(φ)| exp(−Q2σ2

ξ/2)
and from (26), ∆R = 4|R0(φ)| exp(−Q2σ̆2

ξ/2). Since σ̆ξ ≤ σξ, ∆R of
the intuitive approach is smaller than the one of the rigorous approach.

The computation time induced by the processing of the correlated
approach is much higher than the uncorrelated approach, because a
triple integral computation is necessary. The conclusion of this test
is that the Smith uncorrelated approach gives similar results as the
correlated one and is preferred because of its computation time. The
two method kept for the end of the study are the “intuitive” and the
“Rigorous” approaches, in which the uncorrelated Smith formulation
is used.

In the development of the reflection coefficient, the incident
wave is approximated as a plane wave in the computation of the
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modified impedance. This point seems to be a questionable hypothesis
but a simple test can prove that it is correct. The spherical
incident plane wave can be decomposed in its Plane Wave Spectrum
(PWS) by applying a Fourier Transform. From this decomposition,
each component of the spectrum is characterized by its direction
of propagation. Considering this physical characteristic, and only
computing the reflection within the specular component (so neglecting
the diffraction on the rough surface) each component of the incident
PWS can be reflected on the rough surface by considering image
theory and by multiplying the incident PWS by the modified reflection
coefficient. The complete reflected field can then be obtained by
applying an inverse Fourier transform [28]. In Fig. 5, denoted in the
legend as “Rigorous Un Smith PWS”, this approach is compared with
the others. The results are rigorously identical. This validates that the
approximation of the incident wave to a plane wave in the impedance
modeling is correct.

5.3. Monte Carlo Approach

For each realization of the surface, the propagation is computed
using a DMFT algorithm by considering the terrain as irregular and
deterministic, and then stored. An important remark is that the slope
values of the generated surfaces do not exceed 15 degrees, because
the slope standard deviation σγ = 0.15, corresponding to an angle of
8.5 degrees. Thus, the propagation above the generated surfaces is
computed by applying the shift mapping approach, which is the more
accurate. The propagation factor is then obtained by averaging those
computed for each realization.

5.4. Comparison for different roughnesses

In this section, four methods are presented and compared :
• The first one uses the boundary condition computed from the

Ament reflection coefficient without shadow expressed by (22).
• The second method is the reference based on a Monte Carlo

process described in previous subsection.
• The third and fourth are denotes as “Intuitive Un Smith” and

“Rigorous Un Smith”, already exposed. It can be noticed that
the “Rigorous Un Smith” approach could be substituted by the
“Gaussian Un Smith” one, which gives similar results for a
simplified formulation and a slightly smaller computation time.
Fig. 6 represents the average propagation factor with respect to the

height above series of surfaces generated following the characteristics of
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Figure 6. Propagation factor above Gaussian rough surface
corresponding to a sea state 4. Configurations 1 and 2, Table 1.

the configurations 1 and 2 of Table 1. A rather good agreement can be
observed between the Ament method without shadow and the others at
1GHz. This depicts the small influence of the shadowing effect when
the ratio σξ

λ is close or lower than unity. At 2.5 GHz, a quite good
agreement is obtained between the reference method (Monte Carlo)
and the two methods based on the introduction of the illumination
height PDF : the positions of maxima and minima of interference are
better than with the Ament approach. In Fig. 6, we also observe that
the dynamic of the propagation factor is different between Monte Carlo
method and the others: the level is lower for the minima.

In Fig. 7, the same layout is plotted as previously corresponding
to the configurations 3 and 4 of Table 1. A strong shift is observed
between the minima and the maxima positions obtained by the Ament
method and the others due to the influence of the shadowing effect.

The rigorous and intuitive methods give a good agreement with
the reference solution. Whereas the positions of the interference lobes
are very good, a problem on the level of the extreme values of the
propagated field is observed at low altitudes. We have shown that
the approximations made on the correlation of the illumination height
PDF and on the incident wave (assumed to be a plane wave) had no
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Figure 7. Propagation factor above Gaussian rough surface
corresponding to a sea state 4. Configurations 3 and 4, Table 1.

effect on the results. So the difference of levels can be explained by the
approximation of neglecting the diffraction that influences the dynamic
of the field at low altitudes. Indeed, our approach considers only the
specular direction of each facet of the surface.

In conclusion, the introduction of the shadowing effect into the
reflection coefficient given by the Ament model allows to improve the
results but it is not necessary when the standard deviation of the
surface height σξ is of the same order or lower than the wavelength.
For ratio σξ

λ approximately ranging from 1 to 11, the results showed
that the proposed method significantly improves the modeling of the
propagation factor in term of the positions of the extreme values. The
remaining problem with these approaches is that in the calculation of
the boundary condition the diffraction is not taken into account. This
phenomenon predicts a field level slightly higher for the maxima and
lower for the minima.

Some other computations have been carried out above determin-
istic surfaces generated from a sea spectrum. A Monte Carlo process
has been tested above these surfaces, and has given results very close
to the ones presented in this paper.
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5.5. Conclusion on Propagation Computation

In this section, the influence of the shadowing effect on the forward
propagation above rough Gaussian surfaces has been presented. The
modified reflection coefficient calculated in the previous section gives a
better agreement with the statistical approach of Monte Carlo than
the approach which neglects the shadowing effect. However, the
following limitations of our approach appear: neglecting the diffraction
influences the dynamic of the field. But for all the presented cases, the
propagation modeling with shadowing effect give more accurate results
than the Ament description and with very interesting computation
time.

For example, on a standard PC Pentium 4 with 1 GHz of RAM
the computation times obtained for the configuration 3 (see Table 1) is
lower than 5 seconds and the same computation realised by the Monte
Carlo process takes 70 minutes.

In operational conditions, the reflection coefficient used to model
the forward propagation above the sea surface is the Miller and Brown
model [26]. As the Ament reflection coefficient, the Miller and Brown
[26] one doesn’t take into account the shadowing effect, that creates a
misplacement of extreme values of the propagation factor at grazing
angles. So adding the shadow by using one of the proposed approaches
can lead to a more powerful reflection coefficient. This interesting
option is the way of further work.

6. CONCLUSION

A new reflection coefficient modelling rough surfaces forward scattering
has been proposed. This one is derived from the Ament approach
where the shadowing effect can be introduced statistically by different
ways, giving intuitive and more rigorous models. It has been compared
with the Ament coefficient and with a Monte Carlo approach as
reference. This new reflection coefficient appeared to accurately
represent electromagnetic propagation above rough surfaces. Indeed,
the extreme value positions of the propagation factor are more
accurately represented by our new approach.

Let us recall that the main point of interest of the proposed
approach by comparison to more rigorous methods based on the
method of moments [3–5], is the computing time and the memory
space. The technique presented in this paper is useful for those who
are trying to model long range radar propagation above rough ocean
surfaces by taking into account the refraction atmosphere effects and
the surface roughness.
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APPENDIX A. EXPRESSIONS OF THE STATISTICAL
ILLUMINATION FUNCTIONS FOR A CORRELATED
GAUSSIAN PROCESS

For the expression of gW,S and GW,S it is convenient to use the following
variable transformations

h =
ξ√
2σξ

ζ =
γ√
2σγ

u =
x

Lc
v =

tanφ√
2σγ

, (A1)

where σξ and σγ are the standard deviations of the surface heights and
slopes, and Lc is the surface height correlation length.

With the Wagner formulation, gW (φ; ξ, γ, x)dx ≡ LcgW (v;h, ζ, u)du
is expressed as [19]

LcgW (v;h, ζ, u) =
η
√
fM

2πf33
e−A−B

[
1 − κ

√
πeκ

2
erfc(κ)

]
. (A2)

The functions {A(v;h, ζ, u), B(v;h, ζ, u), κ(v;h, ζ, u)} are expressed as


A =
[
f33v

2 + 2v(f34ζ + f14h− f13h1)
]
f−1
M

B =
f11(h2 + h2

1) + 2f12hh1 + 2ζ(f13h− f14h1) + f33h
2

fM
−h2 − ζ2

κ =
f14h− f13h1 + f34ζ + f33v√

f33fM

. (A3)

Moreover
h1 = h + vηu. (A4)

With the Smith formulation, gS(φ; ξ, γ, x)dx ≡ LcgS(v;h, ζ, u)du is
expressed as

LcgS(v;h, ζ, u) =
η

π

√
f11f33 − f2

13

f33

e−A−B−h
2−ζ2

[
1 − κ

√
πeκ

2
erfc(κ)

]
eB

2
1−C1

[
1 + erf

(√
A1h1 + B1

)] .

(A5)
The functions A1(u), B1(h, ζ, u), C1(h, ζ, u), which appear in the
denominator, are expressed as [19]



A1 = (f11f33 − f2
13)/(f33fM ) > 0

B1 =
h(f12f33 + f13f14) + ζ(f13f34 − f14f33)√

f33fM (f11f33 − f2
13)

C1 = h2 f11f33 − f2
14

f33fM
+ ζ2 f

2
33 − f2

34

f33fM
+ 2hζ

f11f33 − f14f34

f33fM

. (A6)
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In the above equations, the functions {fij(u)} which depend only on
u, are expressed as



f11 = 1 − f2
2 − f2

1

f33 = 1 − f2
0 − f2

1

f12 = f0f
2
2 + f2f

2
1 − f0

f34 = f2f
2
0 + f0f

2
1 − f2

f13 = f1(f0 − f2)
f14 = f1(1 − f2

1 − f0f2)
fM = (f2

33 − f2
34)/(1 − f2

0 )

, (A7)

in which {f0(u), f1(u), f2(u)} are given by

f0 = C0/σ
2
ξ , f1 = −C1/(σξσγ), f2 = −C2/σ

2
γ . (A8)

C0(x) denotes the surface height correlation function and {C1,2(x)} its
first and second derivatives with respect to x = uLc. In (A2) and (A5),
η = σγLc/σξ. For instance, for a Gaussian height correlation function,
we have C0(x) = σ2

ξ exp(−x2/L2
c), which implies that




σs =
√
−C2(0) =

√
2σξ/Lc

η =
√

2
f0 = exp(−u2)
f1 = u

√
2 exp(−u2)

f2 = (1 − 2u2) exp(−u2)

. (A9)

In Eq. (17), xt = utLc corresponds to the lower value of u where
the correlation can be neglected, which occurs for f0(u) → 0. For a
Gaussian correlation function, ut = 3. Above this limit, {f0, f1, f2} ≈
{0, 0, 0}, which implies from Eq. (A7) that fij = 1 for i = j, 0 otherwise
and fM = 1. The function gW and gS can then be simplified as


LcgW =

ηvΛe−(h+vηu)2

√
π

= LcgW (v;h, u)

LcgS =
2gW

[1 + erf(h + vηu)]
= LcgS(v;h, u)

for u > ut. (A10)

In Eq. (17), GW,S = exp
[
−

∫ +∞
ut

gW,Sdu
]
. Thus, the use of the above
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equation leads to


GW (v;h, ut) = exp
[
−Λ

2
erfc(h + vηut)

]

GS(v;h, ut) =
[
1 − erfc(h + vηut)

2

]Λ for u > ut. (A11)

If we assume that the above equation is valid for any u, which is
similar to neglecting the correlation (ut = 0), for ut = 0, GW (v;h) =
exp

[
−Λ

2 erfc(h)
]

and GS(v;h) = [1 − erfc(h)/2]Λ. As SW,S = G2
W,S in

the forward direction, (12) (valid for any uncorrelated process) is found
from (16), in which F (ξ) = [1 − erfc(h)/2] with h = ξ√

2σξ
.
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