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The emissivity from a stationary random rough surface is derived by taking into account the multiple
reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics
approximation is assumed to be valid, which means that the rough surface is modeled as a collection of
facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single,
and double reflections are analytically calculated, and each contribution is studied numerically by
considering a 1D sea surface observed in the near infrared band. The model is also compared with results
computed from a Monte Carlo ray-tracing method. © 2006 Optical Society of America
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1. Introduction

The emissivity of ocean surface in the atmospheric
transmission windows is an important parameter for
retrieving the sea surface temperature (SST) from
radiometric sensors, located either on satellites or a
platform close to the sea surface. It has been estab-
lished that for an accuracy of 0.3 K on the SST, the
error in the emissivity must be approximately 0.5%.1
Consequently, the sea surface emissivity needs to be
determined with accuracy.

Emissivity models developed in Refs. 1–4 ne-
glected the dependence on the wind direction (isotro-
pic surface), and the shadowing effect was ignored.
The model presented in this paper is based on Refs.
5–7, in which a 2D rough sea surface with Gaussian
and non-Gaussian statistics are considered, and in
which the shadowing effect is taken into account.
Nevertheless, unlike Ref. 5, Bourlier et al.6,7 used no

assumption on the derivation of the 2D illumination
function. In addition, the effect of the wind direction
on the emissivity is studied in detail.

As presented in Refs. 8–10, the emissivity can also
be derived from the hemispherical reflectivity, for
which the sea surface is assumed to be Gaussian,
anisotropic, and the shadowing effect is ignored, un-
like in Ref. 7. The hemispherical reflectivity is ob-
tained from integrating the reflectivity over the half
space above the sea surface. In this paper, this way is
not used because the formulation is more complicated
and the surface reflectivity is only necessary for the
calculation of the sun glint. Indeed, as shown in Refs.
7–9, by using the radiative transfer method involving
the atmospheric transmission coefficient, the surface
reflectivity, and the surface emissivity, the thermal
radiation received by the infrared sensor can be cal-
culated. In this paper, I focus only on the intrinsic
radiation of the sea surface related to its emissivity.

All quoted references ignored the multiple reflec-
tions. By considering a Gaussian rough sea surface,
this effect has been investigated by Henderson, Thei-
ler, and Villeneuve11 from a Monte Carlo ray-tracing
method. They showed for moderate wind speeds that
the multiple reflection phenomenon occurs for emis-
sion angles larger than 40° and smaller than 80°. In
this range, the difference between the emissivity with
multiple reflections and single reflection can reach
�0.03. Such a method requires a long computing
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time, because one needs to consider a great number of
rays and surface realizations to reproduce the surface
statistics and to average the emissivity. For any sur-
face statistics and from an analytical approach, the
purpose of this paper is to extend the previous works
of Bourlier6 by taking the multiple reflections into
account in the calculation of the emissivity. More-
over, by considering a 1D sea surface, the contribu-
tions of the first (single reflection) and the second
(double reflection) orders are analyzed against the
emissivity calculated from zero reflection.

Before proceeding, let us note that this study of the
rough sea surface emissivity is governed by several
assumptions and approximations. In particular, the
sea surface is assumed to be opaque for the infrared
wavelengths of interest. The sea surface is modeled
as being single valued and composed of a continuous
collection of smooth facets with continuous first de-
rivatives between adjacent facets. Each facet is as-
sumed to be large with respect to the radiation
wavelength, and geometrical optics is assumed to be
a valid approximation for describing the interaction
of radiation with any given facet. Atmospheric effects
such as transmission loss and refractive are com-
pletely ignored. The electromagnetic radiation is
taken to be unpolarized.

The paper is organized as follows: In Section 2, the
emissivity with multiple reflections is derived by in-
troducing the illumination function, and in Section 3
the illumination function is explicitly derived from
the works of Bourlier et al.12–14 Considering a 1D
Gaussian rough sea surface, numerical results of the
emissivity, and comparisons with a Monte Carlo ray-
tracing method are presented in Section 4 for infra-
red wavelengths (4 and 10 �m). In addition, in the
case where the first reflection is taken into account, to
obtain better agreement with the Monte Carlo
method, an empirical approach is presented.

2. Emissivity

In this section, the emissivity, ���, ��, with N reflec-
tions is derived for any 2D stationary random rough

surface. Let � � �0; ��2� be the emission angle with
respect to the nadir of the sensor (Fig. 1) and
� � �0; 2�� the azimuthal direction of the sensor. �
� 0° gives the nadir, whereas � � 90° gives the ho-
rizon (grazing angle). For instance, �� � 0, 90, 180�
degrees corresponds to the up-, cross-, and down-
wind directions for a sea surface, respectively. The
emissivity is defined as

���, �� � �
n�0

n�N

�n��, ��.

In the above equation, if no reflection occurs, then �
� �0, corresponding to the zero-order emissivity de-
rived in the Subsection 2.A. If a single reflection oc-
curs, then � � �0 � �1. In the Subsection 2.B, the
first-order emissivity, �1, is derived. Subsection 2.C
presents the n-order emissivity, �n��, ��.

A. Zero-Order Emissivity

The calculation of the zero-order emissivity, 	0��, ��,
is presented in Ref. 6 in detail and is summarized in
this subsection. One sets �0 � � and �0 � �.

For a horizontal plane, the emissivity is given by
1 
 |r���0��|

2, where �0 is the angle between the
normal to the plane and the direction of observation.
Since the electromagnetic radiation is taken to be
unpolarized, the reflection coefficient is |r|2 � ��rv�

2

� �rH�2��2. rV is the Fresnel coefficient defined in the
V polarization (the electric vector parallel to the in-
cidence plane), and rH is the Fresnel coefficient de-
fined in the H polarization (the electric vector
orthogonal to the incidence plane). They are ex-
pressed as follows:

rV��0� �
n cos �0 
 cos �0�

n cos �1 � cos �0�
,

rH��0� �
cos �0 
 n cos �0�

cos �1 � n cos �0�
, (1)

where n is the sea refraction index (the air refraction
index is assumed to be equal to 1), and �0� is the
refraction angle obtained from the Snell–Descartes
law, sin �0� � sin �0�n.

The incident power intercepted by a surface ele-
ment dS0 of rough surface, which is modeled as a
collection of facets, is unit intensity � the area ele-
ment projected onto the incident wavefront, i.e.,

n̂0 · m̂0 � cos �0 (Fig. 1) with m̂0 � M0M
→

. m̂0

� �cos �0 sin �0, sin �0 sin �0, cos �0� is the unitary
vector giving the direction of observation, and n̂0

� � 
 x, 0, 
 y, 0, 1���1 � x, 0
2 � y, 0

2�1�2 is the unitary
vector normal to dS0, in which �x,0, y,0� are the sur-
face slopes in the up ��0 � 0°� and cross ��0 � 90°�
directions, respectively. Thus

Fig. 1. Geometry used to calculate the zero- and the first-order
emissivities. In the calculation of the emissivity, one sets �0 � � and
�0 � �.
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cos��0��0, �0; x,0, y,0�� � n̂0 · m̂0

�
cos �0 
 �x,0 cos �0 � y,0 sin �0�sin �0

�1 � x,0
2 � y,0

2�1�2 .

(2)

Then, if the local emissivity of a facet is 1

|r���0��|

2, the local emissivity of the surface ele-
ment dS0 � dxdy�1 � x,0

2 � y,0
2�1�2 in direction m̂0

and defined according to the plane �x, y� is �1

 �r���0���2�cos �0�1 � x,0

2 � y,0
2�1�2. In addition,

this emissivity must be divided by cos � because the
power emanating from the surface and measured by
the receiver with respect to the emission angle � is
divided by cos �. From Eq. (2), the zero-order local
emissivity is then given by

	l0��, �; x,0, y,0� � �1 
 �r���0���2�g0, (3)

where

g0 �
cos �0�1 � x,0

2 � y,0
2�1�2

cos �0

� 1 
 �x,0 cos �0 � y,0 sin �0�tan �0. (4)

The emissivity measured by a sensor is equal to the
local emissivity averaged over the statistical vari-
ables that depend on the local emissivity. For the
zero-order emissivity, these variables are the surface
slopes �x,0, y,0� defined at the point M0. Thus, by
taking the zero-order statistical illumination func-
tion, S0, into account the zero-order average emissiv-
ity, 	0��, ��, is given by

�0��, �� � 	�1 
 �r���0���2� � g0 � S� 0
0, (5)

where the ensemble average operator 	· · ·
0 is given
by

	 · · · 
0 ��

�

���

�

��

�· · ·�ps�x,0,y,0�dx,0dy,0. (6)

ps stands for the slope probability density function
(PDF), and S0 is the probability that the sensor illu-
minates the point M0. Since the local emissivity does
not depend on the surface height, the statistical illu-
mination function S0�x,0, y,0, z0� can be averaged
over the height z0 corresponding to S� 0�x,0, y,0� in Eq.
(5). It will be derived in Section 3.

B. First-Order Emissivity

Let M1 be an arbitrary point on the surface (Fig. 1).
The ray emanating from this point has an emission
angle �1 and an azimuthal direction �1. Let us sup-
pose that this ray intercepts the surface at the point
M0. This point is observed from a sensor with an
emission angle � � �0 and an azimuthal direction �
� �0. If the ray emanating from the point M1 does not

cross the surface, the emissivity is given by Eq. (5) in
which ��, �, �0� become ��1, �1, �1�. In this subsection,
it is proposed to derive the emissivity when a single
reflection occurs.

At the point M1, the local emissivity of the facet, 	l1,
is expressed as 	l1 � 1 
 |r���1��|

2, where �1 is the
angle between the local normal to the facet, n̂1, and
the ray �M1M0� (Fig. 1). At the point M0, the local
emissivity, 	l0, is then given by 	l0 � 	l1

� |r���0��|
2 � g0, where �0 is the angle between the

local normal to the facet n̂0 and the ray �M0M�, and g0
is the projection function (in other words, related to
the “effective area” of the local facet defined along the
emission angle �) expressed from Eq. (4). The emis-
sivity measured by a sensor is equal to the local emis-
sivity averaged over the statistical variables that
depend on the local emissivity. These variables are
the surface slopes �x,0, y,0� and �x,1, y,1� defined at
the points M0 and M1, respectively. In addition, to be
consistent with the geometric optics approximation,
the statistical correlation between M0 and M1 is omit-
ted. Thus by taking the first-order statistical illumi-
nation function, S1, into account, the first-order
average emissivity, 	1��, ��, is given by

	1��, �� � 	�1 
 �r���1���2� � �r���0���2 � g0 � S� 1
1,
(7)

where the ensemble average operator 	· · ·
1 is given
by

	 · · · 
1 ��

�

���

�

��

�· · ·�ps��0�ps��1�d�0d�1, (8)

with �i � ��x,i �y,i� and i � �0, 1�. S1 gives the prob-
ability that the ray �M1M0� intercepts the surface at
the point M0, and that the sensor illuminates the
point M0. Like the zero-order case, the statistical il-
lumination function, S1��, �, �1, �1; �0, �1, z0, z1�, can
be averaged over the surface heights �z0, z1� defined at
the points M0 and M1, corresponding to
S� 1��, �; �1, �1; �0, �1� in Eq. (7). It will be derived in
Section 3.

At the point M0 with m̂1 � M1M0

→

and m̂0 � M0M
→

,
the specular direction is defined as

m̂1 � m̂0 
 2�n̂0 · m̂0�n̂0 � m̂0 
 2�cos �0�n̂0, (9)

where cos �0 is given by Eq. (2), and the normal vector
to the facet at the point M0 is n̂0 � �
x,0,

y,0, 1���1 � x,0

2 � y,0
2�1�2. In addition, with i

� �0, 1� in spherical coordinates, one has m̂i

� �mx,i, my,i, mz,i� � �cos �i sin �i, sin �i sin �i, cos �i�.
Therefore from Eq. (2), Eq. (9) can be written as

m̂1 � �mx,0 � G0x,0, my,0 � G0y,0, mz,0 
 G0�, (10)

where
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G0 �
2g0 cos �0

1 � x,0
2 � y,0

2

�
2�cos �0 
 �x,0 cos �0 � y,0 sin �0�sin �0�

1 � x,0
2 � y,0

2 .

(11)

Thus the above equations allow us to calculate the
components of the vector m̂1 (or cos �1 � mz,1 and
tan �1 � my,1�mx,1) with respect to the slopes
�x,0, y,0�, and the angles ��0 � �, �0 � ��. Moreover,
the angle �1 is defined by using the same method as
for �0 given by Eq. (2), in which the subscript 0 is
substituted for the subscript 1. Therefore in Eq. (7),
the local emissivity depends only on the angles ��, ��
and the slopes �x,0, y,0, x,1, y,1�.

C. N-Order Emissivity

Using the same method as previously, the N-order
average emissivity �N � 0�, 	N��, ��, is given by

	N��, �� � 	�1 
 �r���N���2� � �r���N
1���2 � · · ·

� �r���0���2 � g0 � S� N
N. (12)

The N-order statistical illumination function, SN gives
the probability that the ray �MNMN
1� intercepts the
surface at the point MN
1, that the ray �MN
1MN
2�
intercepts the surface at the point MN
2, ..., that the
ray �M1M0� intercepts the surface at the point M0, and
that the sensor illuminates the point M0. Like the
first-order case, the statistical illumination func-
tion, SN��, �,�1, �1, . . . ,�N, �N; �0, �1, . . . , �N, z0,
z1, . . . zN� can be averaged over the surface heights
�z0, z1, . . . , zN� defined at the points �M0, M1,
. . . , MN�, corresponding to S� N��, �, �1, �1, . . . ,
�N, �N; �0, �1, . . . , �N� in Eq. (12). �n � �x,n y,n�
�n � 0, · · · , N�, and �n is the local angle between the
normal to the facet, n̂n, and the ray �MnMn
1�. It is
given by Eq. (2), in which the subscript 0 is substi-
tuted for the subscript n. The ensemble average op-
erator 	· · ·
N is given by

	 · · · 
N � �
n�0

n�N�

�

��

�· · ·�ps��n�d�n. (13)

In addition, the components of m̂n �
�mx,n, my,n, mz,n� (or cos �n � mz,n and tan �n

� my,n�mx,n) are expressed from the ones of m̂n
1 by
using the same method as Eq. (10),

m̂n � �mx,n
1 � Gn
1x,n
1, my,n
1 � Gn
1y,n
1,
mz,n
1 
 Gn
1�, (14)

where Gn
1 is expressed from Eq. (11), in which the
subscript 0 is substituted for n 
 1.

3. Illumination Function

A. Zero-Order Statistical Illumination Function

In this subsection, the zero-order statistical illumina-
tion function, S0, is reviewed from Subsection 2.A of
the paper of Bourlier6 (for more details, see Refs. 12
and 13). It gives the probability that the point M0 of
height z0 and slopes �x,0, y,0� is illuminated by the
sensor. It is given by

S0��, �; M0�X,0, z0�� � F�z0����,��. (15)

F is the cumulative function defined as

F�z0� ��

�

z0

pz�z�dz, (16)

in which pz is the height PDF �F�����1�. Equation
(15) shows that the illumination function modifies
the surface height due to the term F�z0�� (it will also
be shown that the illumination function carries a
restriction over the surface slopes). � is given by

���, �� �
1
��

��

��

�X,0 
 ��ps�X,0�dX,0, (17)

in which � � |cot �| is the slope of the incident beam
along the azimuthal direction �, and the slope mar-
ginal PDF ps�X,0� is expressed as

ps�X,0� ��

�

��

ps�X,0, Y,0�dY,0, (18)

where �X,0, Y,0� are the surface slopes along the �
direction and the orthogonal direction, respectively,
obtained from �x,0, y,0� by executing a rotation of an
angle �,

X,0 � x,0 cos � � y,0 sin �,
Y,0 � 
x,0 sin � � y,0 cos �. (19)

For instance, for Gaussian statistics

ps�x,0, y,0� �
1

2��sx�sy
exp


x,0
2

2�sx
2 


y,0
2

2�sy
2�, (20)

Eq. (18) becomes

ps�X,0� �
1

�2��sX���
exp�


X,0
2

2�sX
2����,

where �sX
2��� � ��sx cos ��2 � ��sy sin ��2 is the slope

variance along the � direction, and ��sx, �sy� are the
rms slope along the up and cross directions, respec-
tively. In addition, from Eq. (17)
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��v� �
exp�
v2� 
 v�� erfc�v�

2v��

v � v��, �� �
�cot ��

�2�sX���
. (21)

Inasmuch as the zero-order local emissivity does not
depend on the elevation z0, one can average the zero-
order statistical illumination function S0 over the el-
evation z0. From Eqs. (15) and (16), and for any
height PDF pz, one obtains

S0��, �; X,0� ��

�

��

S0pz�z0�dz0 � �1 � ���, ���
1.

(22)

The zero-order statistical illumination function also
carries a restriction over the surface slopes. Indeed,
M0 is illuminated by the sensor if the surface slope
X,0 along the direction � is smaller than the ray slope
of direction m̂0, i. e., X,0 � � � |cot �|. Thus the
substitution of Eqs. (22) and (19) into Eqs. (5) and (6)
yields

�0��,�� � �1 � ���, ���
1	�1 
 �r���0���2� � g0
0,
(23)

where

	 · · · 
0 ��

�

��

dX,0�

�

��

�· · ·�ps�X,0, Y,0�dY,0. (24)

One can note that dx,0dy,0 � dX,0dY,0 (the Jacobian
of the variable transformation is equal to 1).

For a sea surface with Gaussian and non-Gaussian
statistics, numerical results of Eq. (23) with respect
to the azimuthal direction �, the emission angle �, the
wavelengths � � �4, 10� �m, and for moderate wind
speeds, are reported in Ref. 6.

B. First-Order Statistical Illumination Function

The first-order statistical illumination function gives
the probability that the ray �M1M0� intercepts the
surface at the point M0, and that the sensor illumi-
nates the point M0 (Fig. 1). It is expressed as14

S1��, �, �1, �1; M1, M0� � S̃0b��1, �1; M1, M0�
� S0b��, �; M0, M� .

(25)

S0,b��1, �1; M1, M0� gives the probability that the ray
�M1M0� emanating from the point M1 of height z1 and
slopes �x,1, y,1� does not intercept the surface at the
point M0 of height z0 and slopes �x,0, y,0�, and S̃0b

� 1 
 S0b is the complementary probability that gives
the probability that the ray �M1M0� does intercept the

surface at the point M0. M is a point of the space with
an infinite height. S0b is expressed as

S0b��1, �1; M1, M0� � �F�z1��F�z0��s�s��1,�1�

s � sign�cos �1�. (26)

From Eq. (16), F���� � 1, and since the height of M
is the infinity, S0b��, �; M0, M� � F�z0�����,��, which
gives the probability that the point M0 is viewed by
the sensor, given by Eq. (15). According to the sign of
cos �1 given by s (see Fig. 2), the ray �M1M0� goes
either downward ��1 � ���2; �� ) s � 
1 and z1
� z0� or upward ��1 � �0; ��2� ) s � �1 and z1 � z0�.
For the upward direction, the starting point is M1,
and S0b��1, �1; M1, M0� � �F�z1��F�z0������1,�1�, whereas
for the downward direction, the starting point is M0

and S0b � �F�z0��F�z1���
��1,�1� � �F�z1��F�z0��
�
��1,�1�

� S0b��1, �1; M0, M1�. Thus S0b of the upward direc-
tion is obtained from the one of the downward direc-
tion by changing M1 with M0.

For the upward direction, ����, �� � ���, �� is
given by Eq. (17), whereas for the downward direc-
tion, �
��, �� is expressed as15

�
��, �� �
1
� �


�

��

�X,0 � ��ps�X,0�dX,0 
 1. (27)

Fig. 2. Illustration of the first-order illumination function. At the
top (upward case), �1 � �0; ��2� )s � sgn�cos �1� � � 1 and z1

� z0. At the bottom (downward case), �1 � ���2; �� ) s �

sgn�cos �1� � 
1 and z1 � z0. zi stands for the height of the point Mi.
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One can show for an even slope marginal PDF
�ps�
X,0� � ps�X,0�� that �� � � � �
. This is why in
Ref. 13, no distinction is made between �� and �
,
because the surface is supposed to be statistically
even. One can note that this assumption holds for
Gaussian statistics. The substitution of Eq. (26) into
Eq. (25) leads to

S1��, �, �1, �1; M1, M0� ��1 
 �F�z1�
F�z0��

s�s��1,�1��
� F�z0����,��. (28)

The first-order average illumination function over the
heights �z1, z0�, S� 1��, �, �1, �1�, is defined by

S1��, �, �1, �1� ��

�

��

px�z0�

���
zl

s

zu
s

S1��, �, �1, �1; M1, M0�pz�z1��dz0, (29)

where

zu
� � z0 zl

� � 
� for s � �1,

zu

 � �� zl


 � z0 for s � 
1. (30)

For any surface statistics, after simple but tedious
manipulations, the substitution of Eqs. (28) and (30)
into Eq. (29) yields

S1��, �, �1, �1� �

��1���1 � �1���2 � ���
1 s � �1,
�1
��1 � � � �1
��1 � ���2 � ��
1� s � 
1,

(31)

with � � ���, �� and �1s � �s��1, �1�. For even sta-
tistics, for which � � �
 � �� � 0, the ratio
S� 1��S� 1
 � 1 ) ½ � S� 1� � S� 1
 � 0. This result is
consistent with the physical interpretation that S1�

� S1
 � 0 (see Fig. 2). The upper limit 1/2 is obtained
for �� � 0, �1 � ��2� ) �� → ��, �1 � 0� ) ��
�0, �1� →���, and comes from the fact that only the
heights z1 � z0 (the case where s � 
1) or z0 � z1 (the
case where s � �1) contribute in the calculation of
the average illumination function.

Like the zero-order case, the first-order statistical
illumination function carries a restriction over the
surface slopes. Indeed, as depicted in Fig. 2, the point
M0 is viewed by the sensor if the slope of the ray
emanating from M0, �, is greater than the surface
slope, X,0, at the point M0 along the azimuthal direc-
tion �. It is derived from Eq. (19). Using the same
approach for �1 � �0; ��2� �s � �1�, M1 is viewed
from M0 if the slope of the ray �M1M0�, �1
� |cot �1|, is greater than X,1. For �1 � ���2; �� �s

� 
1�, this condition becomes X,1 � 
�1 � s�1. Thus
the first-order average emissivity is given by Eq. (7),
in which S1 is given by Eq. (31). In addition, the
ensemble average expressed from Eq. (8) becomes

	 · · · 
1 ��

�

���
1l

1u�

�

���

�

��

�· · ·�ps��0�ps��1�

� dY,1dY,0dX,1dX,0, (32)

where �i � �X,i, Y,i� with i � �0, 1�, and the restric-
tion over the slopes �X,0, X,1� is absorbed in the limits
of integrations. Indeed, for s � �1, �1l � 
�, 1u

� �1�, whereas for s � 
1, �1l � 
�1, 1u � ��� with
�1 � |cot �1|. From Eq. (19), one can note that
dx,0dy,0dx,1dy,1 � dX,0dY,0dX,1dY,1 (the Jacobian
of the variable transformation is equal to 1).

C. N-Order Statistical Illumination Function

Using the same method as previously, the N-order
statistical illumination function is expressed as

SN��, �; Z, �X� � S0b��, �; M0, M�ϒ�� 
 X,0�

� �
n�1

n�N

ϒ��n 
 snX,n�

� S̃0b��n, �n; Mn
1, Mn�, (33)

where � � ��, �1, . . . , �N�, � � ��, �1, . . . , �N�, Z
� �z0, z1, . . . , zN�, �X � �,0, X,1, . . . , X,N�, and sn

� sign�cos �n� �� � �0, � � �0, �0 � ��. ϒ�x� � 1 if x
� 0, 0 otherwise and corresponds to the restriction
over the surface slopes. The average illumination
function over the heights Z is then defined by

S̃N��, �; �X� � S� N��, �� �
n�0

n�N

ϒ��n 
 snX,n�, (34)

where

S� N��, �� ��

�

��

pz�z0��
zl,1

s1

zu,1
s1

pz�z1� · · ·�
zl,N

sN

zu,N
sN

pz�zN�

� �F�z0�����,�� �
n�1

n�N�1


 � F�zn�
F�zn
1��

�n�sn��n,�n��dz0dz1, . . . , dzN,

(35)

and

zu,n
� � zn
1 zl,n

� � 
� for sn � � 1,
zu,n


 � � � zl,n

 � zn
1 for sn � 
1.

(36)
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For instance, for N � 2, after simple but tedious
manipulations, the second-order average illumina-
tion function S� 2��, �, �1, �1, �2, �2� is expressed as

For the case �s1 � �1, s2 � 
1�, the illumination
function is split up into as �1 
 F10

�1���1 
 F21
�2
�

� F10
�1�F21

�2
 � 1
F10
�1�
F21

�2
, where Fij � F�zi��

F�zj�, because the final expression is not simple. S̃
¯

2
corresponds then to the statistical average of
F10

�1�F21
�2
 given by

S̃
¯

2 �
4 � � � �1� � �2


�3 � ���2 � �1���2 � � � �2
��1 � �1� � �2
�
.

(38)

For �1 � �2 � ��2 ) �1 → �2 → �� [the probability
that the rays �M2M1� and �M1M0� emanating from the
points �M2, M1� intercept the surface at the points
�M1, M0�, respectively, is very strong] with even sta-
tistics and � � 0 (no shadowing), one has S� 2

� �1
6, 1

3, 1
3, 1

6� for �s1, s2� � ���1 � 1�, ��1 
 1�,
�
1 � 1�, �
1 
 1��. One can then observe that the
sum of S2 over �s1, s2� is equal to 1 like the case where
N � 1.

The N-order emissivity is then expressed from Eq.
(12), in which SN is given by Eq. (35) and the ensem-
ble average operator, expressed from Eq. (13), be-
comes

	 · · · 
N � �
n�0

n�N�

�

���

�

��

�· · ·�ps�X,n, Y,n�

� ϒ��n 
 snX,n�dX,ndY,n. (39)

4. Numerical Results

From Eqs. (12) and (39), the N-order emissivity re-
quires the computation of 2�N � 1�- fold numerical
integrations over the surface slopes �n � �X,n Y,n�
�n � 0, · · · N�. The purpose of this paper is to study
the contribution of the multiple reflections, which
does not much depend on the anisotropy of the sur-
face. Thus to reduce the number of integrations, the
rough surface is assumed to be 1D (in Ref. 6 and for

N � 0, a detailed study with respect to the azimuthal
wind direction � is reported for Gaussian and non-
Gaussian statistics, for moderate wind speeds, and in

the infrared near band). In addition, in this paper, a
rough sea surface with Gaussian statistics, ps��
� �1��2��s�exp�
�2�2�s

2��, is considered. The emis-
sivity is computed in the infrared near band by con-
sidering wavelengths � � �4, 10� �m, and the
corresponding sea refraction index is given by Hale
and Querry,16 nsea � �1.3510 � 0.0046i, 1.2180
� 0.0508i�, in which the sea is assumed to be a pure
water (no salt). The wind speeds, u12, defined at
12.5 m above the sea, are chosen as
�5, 10, 15, 20 m�s� corresponding to rms slopes equal
to �s � �0.126, 0.178, 0.218, 0.251� from the Cox–
Munk17 model (�s � 0.0562�u12 along the wind direc-
tion).

A. Emissivities for a One-Dimensional Random Rough
Surface

For a 1D rough sea surface, �n � 0, and the surface
slope n � �x,n y,n� at the point Mn becomes scalar
n � x,n � n. In addition, from Eq. (19), X,n � n and
Y,n � 0. From Eqs. (23) and (24), the zero-order emis-
sivity is

�0��� �
1

1 � ���� �

�

��

�1 
 �r���0���2�ps�0�g0d0,

(40)

in which [Eqs. (2) and (4)]

g0 � 1 
 0 tan �0, (41)

and

cos��0��0; 0�� � g0 cos �0�1 � 0
2�
1�2. (42)

For Gaussian statistics, ���� is expressed from Eq.
(17), in which v��� � |cot �|���2�s� with �s the sur-
face rms slope.

From Eqs. (7) and (32), the first-order average

�1��2�

2�3 � ���2 � �1���1 � �2��
s1 � � 1 s2 � � 1,

S̃
¯

2 � lim S̃
¯

2

�1� →��

�2
 →��

lim S̃
¯

2

�1� →��

lim S̃
¯

2
�2
 →��

s1 � � 1 s2 � 
1,

�1
�2�

�1 � ���3 � ���1 � � � �1
��1 � �2��
s1 � 
1 s2 � � 1,

�1
�2


�1 � ���2 � ���3 � ���1 � � � �1
��2 � � � �2
�
s1 � 
1 s2 � 
1.

(37)
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emissivity is

�1��� ��

�

��

d0�
1l

1u

�1 
 �r���1���2�

� �r���0���2S1��1, �2�ps�1�ps�0�g0d1.
(43)

The first-order average illumination function
S� 1��1, �2� is given by Eq. (31). For Gaussian statistics,
�n� � �n
 � ���n� �n � 0, · · · , N�. For s � �1, �1l

� 
�, 2u � �1�, whereas for s � 
1, �1l � 
�1, 1u

���� with �1 � |cot �1|. From Eqs. (10) and (11),
one has mz,1 � mz,0 
 G0, leading to

cos �1 � cos �0�1 
 2g0�1 � 0
2�
1�. (44)

In addition, cos �1 is given by Eq. (42), in which the
subscript 0 is substituted for the subscript 1.

For the second-order emissivity, �2���, one obtains
from Eqs. (12) and (35) a similar expression

�2��� ��

�

��

d0�
1l

1u

d1�
2l

2u

�1 
 �r���2���2�

� �r���1���2�r���0���2

� S2��, �1, �2�ps�2�ps�1�ps�0�g0d2,
(45)

in which

cos �2 � cos �1�1 
 2g0�1 � 0
2�
1��1 
 2g1�1 � 1

2�
1�,
(46)

and S2��, �1, �2� is expressed from Eqs. (37) and (38).

B. Simulations of the Emissivities

In Fig. 3, the zero-order emissivity �0,AN derived from
an analytical approach [Eq. (40)] is plotted versus the
emission angle �. The wind speed u12 � 5 m�s and the
wavelength � � 4 �m. In addition, this approach is
compared with a benchmark approach based on a
Monte Carlo ��0,MO� ray tracing method:

1. The surface height samples, z�i�, are computed
from z�i� � �
1�b̃�i���̃�i��, in which b̃�i� is a Gaussian
white noise in the Fourier domain with zero mean
value and unit standard deviation, and �̃�i� the sur-
face height spectral density, assumed to be Gaussian,
�̃�i� � �h

2Lc�� exp�
�2i2Lc
2�, where Lc is the surface

height correlation length and �h the surface rms
height (see Ref. 12 for more details). The slopes �i�
� �z�i � 1� 
 z�i����x, where �x is the sampling step.

2. From z�i�, the illumination function is com-
puted for each order. For the zero order, the method
is explained in detail in Ref. 12; only the indexes i
� i0 of the surface points illuminated by the sensor
are taken into account in the calculation of the sta-
tistical average. In other words, for the computation
of the statistical averaging over the surface heights
and slopes, one takes into account only z�i0� and �i0�.
For the first order, using the algorithm that calcu-
lates the zero-order illumination function, only the
surface points illuminated by the sensor are kept
[corresponding to the point M0 of height z�i0� � z0 and
slope �i0� � 0]; these points are kept if the rays
emanating from these points with an incidence angle
�1�0� given by Eq. (44) intercept the surface [corre-
sponding to the point M1 of height z�i1� � z1 and slope
�i1� � 1, where i1 is the sample index]. For the
N-order illumination function, one repeats the proce-
dure to obtain �z�i0� � z0, z�i1� � z1,. . . , z�iN� � zN�
� Z and ��i0� � 0, �i1� � 1,. . . , �iN� � N� � �.

3. From Z and �, the local emissivity is computed
for each order. For the zero order, from Eqs. (40) and
(41) one has 	l0 � �1 
 �r���0���2�g0, in which 0
� �i0� and �0��0; 0� is given by Eq. (42). For the first
order, from Eq. (43), the first-order local emissivity is
�1 
 �r���1���2�|r���0��|2g0, where �i is given by Eq.
(42) with i � �i� �i � �0, 1��, and so on.

4. For each order, the average emissivity, �n���, is
computed as �n��� � �1�Ns��i�1

i�Ns �ln�i,in, where Ns is
the number of surface samples, and �i,j is the Kro-
necker symbol defined as �i,j � 1 (the point is illumi-
nated) if i � j, 0 otherwise (the point is shaded).

5. To obtain a good convergence of the method
(i.e., the surface statistics are well reproduced), steps
1, 2, 3, and 4 are repeated Nr times.

Ns � 20,000 for each surface height sample z�i�,
which are statistically independent, and the surface
correlation length Lc � 100. The N-order average
emissivity is calculated from each surface and for a
number of realizations of Nr � 100.

In Fig. 3, very good agreement is observed between
both methods, which means that the model is accu-
rate to derive the zero-order illumination function. As
shown by Bourlier6 from the Monte Carlo results,11

Fig. 3. (Color online) Zero-order emissivities �0,AN and �0,MC com-
puted from an analytical approach [(Eq. 40)] and a Monte Carlo
ray-tracing method versus the emission angle �. The wind speed
u12 � 5 m�s and the wavelength � � 4 �m.
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this remark also holds for 2D rough anisotropic sea
surfaces.

In Fig. 4, the first- and second-order emissivities
��1,AN, �2,AN, �1,MC� computed from analytical ap-
proaches [Eqs. (43) and (45)] and from a Monte
Carlo method are compared versus the emission
angle �. The wind speed u12 � 5 m�s and the wave-
length � � 4 �m. The results of Henderson, Theiler,
and Villeneuve are also plotted. They considered a
Gaussian 2D anisotropic sea surface, a wind direc-
tion � � 0 (the rms slope is then given by �s

� 0.056�u12), the multiple reflections are taken into
account up to the order 10, and the emission angle
ranges from 0° to 85° in steps of 5°. One can observe
that the contribution of �2,AN is 20 times smaller
than the one of �1,AN. Unlike �0, a strong disagree-
ment of �1 is observed between the analytical and
the Monte Carlo results. The results of �1 computed
from a Monte Carlo method are consistent with the
ones of Ref. 11.

C. Simulations of the Illumination Functions

To understand the disagreement between �1,AN and
�1,MC, the zero-� �S0� order and first-� �S1� average illu-
mination functions over the heights and slopes are
calculated and compared with the ones obtained
from a Monte Carlo method (over S0 and S1, the first
bar corresponds to the averaging over the surface
slopes, and the second bar corresponds to the aver-
aging over the surface heights). Indeed, the only
difference between �n,MC and �n,AN is in the calcula-
tion of the n-order illumination function (the
n-order local emissivities without shadow are the
same).

The zero-order average illumination function,
�S0���, averaged over the heights, z0, and over the

slopes, 0, at the point M0 is defined as

�S0��� ���

�

��

�F�z0���pz�z0�dz0��

�

��

ps�0�d0

�
1

1 � � �

�

��

ps�0�d0. (47)

For Gaussian statistics, the above equation becomes

�S0��� � �1 � erf�v���2�1 � ��v���
1. (48)

In Fig. 5, �S0��� computed from a Monte Carlo method
and from Eq. (48) is plotted versus the emission angle
� and for a wind speed u12 � 5 m�s. The Monte Carlo
method is based on the steps 1 and 2 of Subsection
4.B. For instance, for the zero order, from the knowl-
edge of �i0�, corresponding to the indexes of the
surface points illuminated by the sensor, the zero-
order average illumination function is then
�1�Ns��i�1

i�Ns �i,i0 � 1, where �i,i � 1, 0 otherwise �i
� j�. The n-order average illumination function is
�1�Ns��i�1

i�Ns �i,in.
�S0��� with correlation12 is also plot-

ted. A good agreement among the three methods is
observed, and one can see that �S0��� computed from
the analytical method without correlation is slightly
overestimated. When the correlation is taken into
account, this overestimation decreases. This explains
in Fig. 3 that a very good agreement is obtained for
the zero-order emissivity.

The first-order average illumination function,
�S1���, averaged over the heights �z0, z1�, and over the
slopes �0, 1�, at the points �M0, M1� is expressed as

Fig. 4. (Color online) First- and second-order emissivities
��1,AN, �2,AN, �1,MC� computed from analytical approaches [Eqs. (43)
and (45)] and from a Monte Carlo method versus the emission
angle �. The results of Ref. 11 are also plotted. The wind speed
u12 � 5 m�s and the wavelength � � 4 �m.

Fig. 5. (Color online) Zero-order average illumination function
�S0��� computed from a Monte Carlo method, from Eq. (48) (without

correlation) and when the correlation is taken into account versus
the emission angle �. The wind speed u12 � 5 m�s.
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�S1��� ��

�

���

�

��

S1��,�1�ϒ�� 
 0�

� ϒ��1 
 s1�ps�0�ps�1�d0d1, (49)

where S1��, �1� is given by Eq. (31), in which �1 de-
pends on ��, 1� within Eq. (44). For Gaussian statis-
tics, ps�� � �1��2��s�exp�
�2�2�s

2��, the integration
over 1 leads to

�S1��� �
1

2�2��s
�


�

��

S1��, �1�0���1 � erf�v1��

� exp

0

2

2�s
2�d0. (50)

�S1��� is also computed from a Monte Carlo method:
Applying steps 1 and 2 of Subsection 4.B, from the
knowledge of �i1� (corresponding to the indexes of the
surface points M1 illuminated by the points M0, which
is illuminated by the sensor), the first-order average
illumination function is then �1�Ns��i�1

i�Ns �i,i1
� 1. Like �S0���, �S1��� is calculated when the statisti-
cal correlation between the points M1 and M0 is taken
into account. It is given by

S�̄ 1�����

�

��

d0�

�

��

d1�

�

��

dz0�
zl

s

zu
s

dz1

� �1 
 S0b��1; M1, M0��S0b��; M1, M0 → ��
� ϒ��1 
 s1�pz�z0�pz�z1�ps�0�ps�1�. (51)

For Gaussian surface statistics, the details of the
calculation of S0b��1; M1, M0� with correlation are re-
iterated in the appendix. Unlike the uncorrelated

case, for the downward direction S0b��1; M1, M0� de-
pends on the slope 1, which implies that the integra-
tion over 1 cannot be derived analytically. On the
other hand, the integration over 0 with Gaussian
statistics leads to �1 � erf�v���2. For the upward di-
rection, the points �M0, M1� are substituted for the
points �M1, M0�, which implies that the integration
over 1 with Gaussian statistics gives �1
� erf�v1���2, whereas the integration over the slope 0
is computed numerically. In both cases, the integra-
tions over the heights z0 and z1 are made numerically,
unlike in the uncorrelated case. In conclusion, four
numerical integrations �z0, z1, 0,1, u� are needed to
calculate �S1���.

In Fig. 6, �S1��� computed from a Monte Carlo
method and from Eq. (50) is plotted versus the emis-
sion angle �. The wind speed u12 � 5 m�s. �S1��� with
correlation given by the above equation is also plot-
ted. A disagreement between the Monte Carlo
method and the analytical approaches is observed.
This shows that the disagreement observed in Fig. 4
is because the calculation of the first-order illumina-
tion function is incorrect.

Other simulations of Figs. 3–6 obtained for wind
speeds ranging from 5 to 20 m�s and not reported in
this paper lead to the same conclusion.

D. Discussion and Description of the Empirical Approach

In this section, an empirical approach is proposed to
obtain better agreement between the Monte Carlo
and the analytical results of the first-order emissiv-
ity.

From Figs. 3 and 5, one can conclude that the an-
alytical approach used to derive the zero-order illu-
mination function is correct. The first-order
statistical illumination function is expressed from
Eq. (25), in which S0b��,�; M0, M� corresponds to the
zero-order statistical illumination function. Thus the
fact that S1 is underestimated is because in Eq. (25),
S̃0b��1, �1; M1, M0� is underestimated since
S0b��, �; M0, M� � F�z0�� can be considered as being
correct (Figs. 3 and 5). In addition,
S̃0b��1, �1; M1, M0� � 1 
 S0b��1, �1; M1, M0�, in which
S0b is expressed from Eq. (26). Consequently,
S0b��1, �1; M1, M0� is overestimated. To diminish this
quantity, several attempts have been studied: multi-
plying Eq. (26) by a constant a � |0; 1|; multiplying
Eq. (26) by a�s��s � 0�, a�1��1 � 0�, and a�s��1; sub-
stituting �s in Eq. (26) for b�s with b � 1. Indeed,
since the ratio 0 � F�z1��F�z0� � 1 ) �F�z1��F�z0��b�s

� �F�z1��F�z0���s. Unfortunately, this led to no suc-
cess.

Rigorously, S0b��1, �1; M1, M0� is expressed from in-
finite series of Rice,12 in which 2P integrations are
involved, where P is the truncating order of the sum.
Bourlier et al.12 showed for any uncorrelated process
that these integrations can be done analytically. Un-
fortunately, this approximation leads to an overesti-
mation of the average illumination function. If the
correlation is taken into account, the problem can be
solve analytically only for P � 1 and by assuming

Fig. 6. (Color online) First-order average illumination function
�S1��� computed from a Monte Carlo method, from Eq. (50) (without

correlation) and when the correlation is taken into account versus
the emission angle �. The wind speed u12 � 5 m�s.
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Gaussian statistics (this corresponds to the illumina-
tion function with correlation). Thus it is proposed to
correct the first-order emissivity computed from the
analytical approach, �1,AN, from an empirical function
f defined as

f��� � A exp�

�� 
 m1�2

�1
2 �. (52)

The empirical first-order emissivity, �1,EM, is then de-
fined from �1,AN as

�1,EM � f � �1,AN. (53)

In addition, �A, m1, �1� are calculated from the ratio
R�1

� �1,MC��1,AN, where �1,MC is the emissivity calcu-
lated from the Monte Carlo method. From R�1

��� de-
fined for � � �40; 85� degrees, A is computed by
taking the maximum value of R�1

, m1 is equal to the
emission angle that gives A, and �1 is calculated from
the emission angle �10 for which R�1

��10��A
� 0.6 ) �1 � ��10 
 m1��
1�ln�0.6�.

In Fig. 7, the first-order emissivities ε1 computed
from analytical ��1,AN�, Monte Carlo ��1,MC� and empir-
ical ��1,EM� approaches are plotted versus the emission
angle �. The wind speeds u12 � �5, 10, 15, 20� m�s
and the wavelength � � 4 �m. For u12
� �5, 10, 15� m�s, the results of Ref. 11 are also re-
ported. One observes a good agreement between the
empirical and the Monte Carlo results, which means
that the choice of f is good. Similar simulations ob-
tained for � � 10 �m lead to the same conclusion. As
the wind speed increases, the angular repartition of
�1,MC is wider because the surface is rougher, and thus

the surface scatters energy in a wider angular lobe.
On the other hand, the maximum of �1.MC varies very
slightly when the wind speed increases. One notes
that the numerical results computed from a Monte
Carlo method are consistent with the ones of Ref. 11,
in which the multiple reflections are taken into ac-
count up to order 10. Therefore one can conclude that
the contributions of orders larger than 1 are negligi-
ble. This is in agreement with the observations of Fig.
4, where �2 �� �1.

In Fig. 8, the relative error |�0,MC � �1,MC 
 ��0,EM

� �1,EM�|���0,MC � �1,MC� in percent is plotted versus
the emission angle �. The wind speeds u12

� �5, 10, 15, 20� m�s and the wavelengths �
� �4, 10� �m. For emission angles smaller than 80°
and for wavelengths � � �4, 10� �m, the relative error
does not exceed �0.4, 0.15�%, and does not exceed
0.9% for any emission angle and wavelength. Bour-
lier6 showed that an accuracy in the sea surface tem-
perature of 0.1 K (which corresponds approximately
to the resolution of infrared cameras) implies accu-
racies in the relative error in emissivity of 0.42% for
a wavelength of 4 �m, and of 0.17% for a wavelength
of 10 �m. Hence for remote sensing applications ��1

� 80°�, the empirical model of �1 is accurate enough
with this constraint. If the contribution of �1 is ne-
glected, then the relative error is of the order of
�1,MC���0,MC � �1,MC� � �1,MC � �0; 3.5�%.

In Fig. 9, the parameters m1 (top) and �1 (bottom)
in degrees of the empirical function f [see Eq. (52)] are
plotted versus the rms slope �s. The label “Fit” in the
legend corresponds to the linear regression of �m1

� am1
� bm1

�, �1 � a�1
� b�1

��. For wavelengths �
� �4, 10� �m, am1

� �
114.9,
130.2� degrees, bm1

� �83.7, 87.2�, a�1
� �72.8, 81.1� degrees, and b�1

Fig. 7. (Color online) First-order emissivi-
ties computed from analytical �1,AN, Monte
Carlo �1,MC and empirical �1,EM approaches
versus the emission angle �. The results of
Ref. 11 are also reported. The wind speeds
u12 � �5, 10, 15, 20� m�s and the wave-
length � � 4 �m.
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� �11.1, 8.1�. One can observe that �m1, �1� weakly
depend on the wavelength (the difference is �2°),
that m2 decreases when the wind speed increases,
which means that the maximum of �2 shifts towards
lower emission angles; this is noticed in Fig. 7. On the
other hand, as the wind speed increases, �1 increases,
which means that the angular repartition of �1 is
wider. This is consistent with Fig. 7. For A, one finds
A � 10.4 for any wind speed and wavelength.

5. Conclusion

In this paper, from the geometric optics approxima-
tion, the unpolarized emissivity for a 2D stationary
random rough surface is derived by taking the multi-
ple reflections and the shadowing effect into account.
The N-order statistical illumination function is derived
and is included in the emissivity derivation. Closed-
form expressions of the zero-, first- and second-order
average illumination functions are given.

Numerical results of the zero-, first-, and second-
order emissivities are presented by considering a 1D
Gaussian sea surface, for wind speeds ranging from 5
to 20 m�s, for emission angles ranging from 0° to 90°,
and for wavelengths equal to 4 and 10 �m. The sim-
ulations showed then that the contribution of the
second-order emissivity is negligible in comparison to
the zero- and first-order emissivities.

The analytical model is also compared with a
Monte Carlo method. For the zero-order emissivity, a
very good agreement between the analytical and the
Monte Carlo methods is found, whereas for the
second-order emissivity, the agreement between both
models is poor. One then proved that this disagree-
ment is due to the modeling of the first-order statis-
tical illumination function, which underpredicts the
illumination by a factor of 6. Nevertheless, the pro-

files of the emissivity and the average illumination
function are similar for both models.

To obtain better agreement between the analytical
and the Monte Carlo methods, an empirical model of
the first-order emissivity is proposed. It consists in
multiplying the analytical emissivity by a simple em-
pirical function that depends on two parameters (the
third is constant, A � 10.4). These parameters are
obtained from the Monte Carlo approach. They de-
pend linearly on the rms slope and weakly depend on
the wavelength. A very good agreement is then found
between the empirical and the Monte Carlo ap-
proaches, for which the relative error does not exceed

Fig. 8. (Color online) Absolute relative er-
ror |�0,MC � �1,MC 
 ��0,EM � �1,EM�|���0,MC

� �1,MC� in percent versus the emission an-
gle �. The wind speeds u12

� �5, 10, 15, 20� m�s and the wavelengths
� � �4, 10� �m.

Fig. 9. (Color online) Parameters m1 �top� and �1 �bottom� in de-
grees of the empirical function f versus the rms slope �s. The label
“Fit” in the legend cor-responds to the linear regression of �m1, �1�.
The wavelengths � � �4, 10� �m.
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0.4% for emission angles smaller than 80°, and 0.9%
for any emission angle. For remote sensing applica-
tions, this is sufficient to have an accuracy of 0.1 K in
the sea surface temperature.

The single reflection occurs for emission angles
larger than 50° (this value decreases when the wind
speed increases; see Fig. 7). This contribution is max-
imum for emission angles ranging from 60° to 80° and
decreases above 80°. The first-order emissivity
reaches a maximum of the order of 0.035, which
weakly depends on the wind speed. From a Monte
Carlo method, a good agreement is also observed be-
tween our emissivity model and the results of Hen-
derson, Theiler, and Villeneuve,11 in which they
considered a 2D Gaussian anisotropic sea surface.
This means that the contribution of the first-order
unpolarized emissivity is similar for 1D and 2D sea
surfaces.

From the analytical model, for a given emission
angle, the computations of the zero-, first-, and
second-order emissivities require a computing time of
0.7 �s, 44 �s, and 3.3 s, respectively. For the integra-
tions over the surface slopes, the number of samples
is Ns � 80, and one uses a personal computer (Pen-
tium 4, CPU 3 GHz, 2 Gbytes of RAM) and Matlab
software. For a 2D sea surface, for each order, the
number of integrations is double, which implies that
the computing time could be approximatively equal to
0.7 � Ns �s � 56 �s and 44 � Ns

2 �s � 0.3 s for the
zero- and first-order emissivities, respectively.

Appendix A: Expression of the First-Order Statistical
Illumination Function of a Correlated Gaussian Process

In the downward direction �z0 � z1� and for a Gauss-
ian correlated process of the surface heights and
slopes at the points M0 and M1, the first-order statis-
tical illumination function S1��1, �1; M1, M0� is ex-
pressed as12

S0b��1, �1; M1, M0� �

�exp
�
0

uL

gdu� if 0 �
h0 
 h1

�v1
� uL � ut

exp
�
0

uL

gdu�G�v1; h1� otherwise

,

(A1)

in which

g�v1; h1, �1, h0, u� �
�

�

�f11f33 
 f13
2

f33

�
e
A
B
h1

2
�1
2�1 
 ���e�2 erfc����

eB1
2
C1�1 � erf��A1h0 � B1��

.

(A2)

The functions A�v1; h1, �1, h0, u�, B�h1, �1, h0, u�,

��v1; h1, �1, h0, u�, which appear in the numerator of g,
are expressed as

A � �f33v1
2 � 2v1�f34�1 � f14h1 
 f13h0��fM


1,
(A3a)

B �

f11�h1
2 � h0

2� � 2f12h1h0 � 2�1�f13h1 
 f14h0� � f33h1
2

fM


 h1
2 
 �1

2, (A3b)

� �
f14h1 
 f13h0 � f34�1 � f33v1

�f33fM

. (A3c)

The functions A1�u�, B1�h1, �1, u�, C1�v1; h1, �1, u�,
which appear in the denominator of g, are expressed
as

A1 � �f11f33 
 f13
2���f33fM� � 0, (A4a)

B1 �
h1�f12f33 � f13f14� � �1�f13f34 
 f14f33�

�f33fM�f11f33 
 f13
2�

, (A4b)

C1 � h1
2

f11f33 
 f14
2

f33fM
� �1

2
f33

2 
 f34
2

f33fM

� 2h1�1

f11f33 
 f14f34

f33fM
. (A4c)

In the above equations, the functions �fij�u��, which
depend only on u, are expressed as

f11 � 1 
 f2
2 
 f1

2,
f33 � 1 
 f0

2 
 f1
2,

f12 � f0f2
2 � f2f1

2 
 f0,
f34 � f2f0

2 � f0f1
2 
 f2,

f13 � f1�f0 
 f2�,
f14 � f1�1 
 f1

2 
 f0f2�,
fM � �f33

2 
 f34
2���1 
 f0

2�, (A5)

in which �f0�u�, f1�u�, f2�u�� are given by

f0 � C0��h
2, f1 � 
C���h�s�, f2 � 
C2��s

2 .
(A6)

�s and �h are the surface slope and height rms, re-
spectively. C0�x� denotes the surface height correla-
tion function and �C1,2�x�� its first and second
derivatives with respect to x � uLc. Lc is the surface
height correlation length. In Eq. (A1), � � �sLc��h.
For instance, for a Gaussian correlation function, one
has C0�x� � �h

2 exp�
x2�Lc
2�, which implies that
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�s � �
C2�0� � �2�h�Lc,

� � �2,
f0 � exp�
u2�,
f1 � u�2 exp�
u2�,
f2 � �1 
 2u2�exp�
u2�.

(A7)

In fact, the use of the variable transformations

u � x�Lc, h0,1 � z0,1���2�h�, �0 � 0���2�s�, (A8)

allows the function g not to depend on �Lc, �h, �s�. In
Eq. (A1), ut corresponds to the lower value of u for
which the correlation can be neglected, which occurs
for f0�u� → 0. For a Gaussian correlation function, ut

� 3. Above this limit, �f0, f1, f2� � �0, 0, 0�, which im-
plies from Eq. (A5) that fij � 1 for i � j, 0 otherwise,
and fM � 1. The function g can then be simplified as

g �
2�v1�1e


h0
2

���1 � erf�h0��
� g�v1; h0� for u � ut. (A9)

In addition, z0 � z1 � �1�x1 
 x0�, in which �1
� |cot �1|, and x1 and x0 are the abscissa of the points
M1 and M0, respectively. With the variable transfor-
mations of Eq. (A8) and x � x1 
 x0 � 0, this leads to
h0 � h1 � uv1�. For the case where u � ut, the
function G in Eq. (A1) is equal to exp�
sut

�� gdu�. Thus
the use of the above equation leads to

G�v1; h1� � �1 � erf�h1 � utv1��
2 ��1

for u � ut.

(A10)

If one assumes that the above equation is valid for
any u, for ut � 0, G�v1; h1� � ��1 � erf�h1���2��1 given
by Eqs. (26) and (16) for an uncorrelated Gaussian
process.

In the downward direction �z1 � z0�, the first-order
statistical illumination function is expressed from
Eq. (A2) by substituting the variables �z1, �1, z0� for
�z0, �0, z1�.

For M ) z → � ) u → �, and S��1, �1; M0, M� is
then given by Eq. (A1), in which uL � ut. Moreover, in
Eq. (A2), h1 � h0 � uv1�.

The author thanks the reviewers for their relevant
comments, which will influence the final appearance
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