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Comparison of Asymptotic Backscattering Models
(SSA, WCA, and LCA) From One-Dimensional

Gaussian Ocean-Like Surfaces
Christophe Bourlier, Member, IEEE, Nicolas Déchamps, and Gérard Berginc

Abstract—In this paper, recent asymptotic backscattering
models are compared for one-dimensional multiscale dielectric
sea surfaces with Gaussian statistics and by considering the
Elfouhaily et al. height spectrum. We focus on the calculations of
the normalized radar cross sections (NRCS) obtained from the
weighted and local curvature approximations (WCA and LCA),
recently published by Elfouhaily, and of the first- and second-order
small slope approximation (SSA(1) plus SSA(2) denoted as SSA),
developed by Voronovich. Voronovich et al. (2002 Waves Random
Media 11 247–269) presented simulations of the SSA by making
an assumption over the SSA(2) contribution (the model is referred
to as SSAM). The NRCS computation is then similar to SSA(1),
where the sea spectrum is substituted by a modified spectrum
defined as the product of the sea spectrum by the second-order
polarization term. The second-order statistical moment of WCA is
calculated rigorously for any two-dimensional height correlation
of the surface with Gaussian statistics. The NRCS of the WCA,
WCAQ (obtained from a quadratic approximation of WCA),
LCA, SSA, and SSAM backscattering models are compared
for moderate wind speeds, for microwave frequencies and for
backscattering angles ranging from 0 (nadir) to 70 .

Index Terms—Radar scattering, ocean remote sensing, scat-
tering from rough surface.

I. INTRODUCTION

THE most widely used method to calculate the mi-
crowave backscattering from multiscale sea surfaces is

the two-scale model (TSM) derived for acoustic waves by
Kur’yanov [1] and for electromagnetic waves by Wright [2].
It introduces a scale-dividing parameter separating the
small- and large-scale components of the roughness which
can be arbitrarily chosen within wide limits. The advantage
of this method is that it is easy to apply. One disadvantage is
that the predictions are dependent on the partitioning of the
surface within the choice of . A second one is the difficulty
in establishing the accuracy of the theory.

The first- and second-order small slope approximation
(SSA(1) and SSA(2) denoted as SSA) developed by Voronovich
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[3]–[5] can be applied for rough multiscale surfaces such as
the sea surface, since its domain of validity is independent of
the electromagnetic wavelength. Indeed, Voronovich showed in
[6] that the higher-oder SSA captures the two scale model. The
SSA scattering model can be applied when the slopes of the
incident and scattered fields sufficiently exceed the rms (root
mean square) slopes of the surface. The applicability of the
SSA model to scattering from ocean-like surfaces at microwave
frequencies has not been fully established. Nevertheless, when
the difference between the first- and second-order results is
relatively small, one may hope that the solution of the scattering
problem is accurate.

The weighted curvature approximation (WCA), recently
published by Elfouhaily et al. [7], is a new version of the
extended Kirchhoff approximation published by Elfouhaily et
al. [8], which has been compared in [9] with the first-order SSA
and also with direct numerical simulations using the MOMI
method. WCA can be considered as a generalization of the
local weight approximation by Dashen and Wurmser [10]. This
model satisfies the necessary conditions of convergence toward
the small perturbation method and the high-frequency Kirch-
hoff approximation while remaining compact, reciprocal an tilt
invariant. Therefore, it should be also adequate for multiscale
rough surfaces. The local curvature approximation (LCA),
recently published by Elfouhaily et al. [7], [11], [12], can be
seen as a generalization of the tilt-invariant approximation
[13], [14], valid only for a metallic surface, to the dielectric
case. Like WCA, it is reciprocal, tilt invariant and converges
toward the small perturbation method and the high-frequency
Kirchhoff approximation.

For radar microwave applications (frequency range from 1 to
20 GHz corresponding to electromagnetic wave number range
from 21 to 419 rad/m), the Rayleigh parameter of the sea sur-
face can be much greater than unity. In addition, the sea has a
wide-band spectrum involving that the calculation of the height
correlation, obtained by computing the IFFT of the spectrum,
requires a great number of samples which increases the com-
puting time. Indeed, the height correlation has to take into ac-
count information on both the gravity waves (related to the low
frequencies) and the capillary waves (related to the high fre-
quencies) to reproduce the two-scale model. These points make
its difficult the numerical computation of the multidimensional
integrals of the normalized radar cross section (NRCS). To have
a short computing time and to study the scattering models with
accuracy, the sea surface is then assumed to be one-dimensional
(1-D).
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The purpose of this paper is to compare SSA with WCA and
LCA at microwave frequencies and for moderate wind speeds
from 1-D Gaussian rough multiscale sea surfaces that obeys the
Elfouhaily et al. [15] height spectrum. In addition, the modified
SSA model used by Voronovich et al. [3] and referred to as
SSAM will be presented. The ensemble average of the WCA
scattered field is calculated by assuming Gaussian statistics. A
quadratic approximation, referred to as WCAQ and suggested
by Dr. Elfouhaily (personal discussion) is applied to simplify
the scattering cross section of the WCA model.

This paper is organized as follows. In Section II, the SSA,
SSAM, LCA, WCA, and WCAQ scattering models are pre-
sented. In Section III, by assuming a height spectrum given by
[15], the backscattering models are compared for a wind speed

m/s (defined at ten meters above the sea), for a radar
frequency GHz (Ku band) and for backscattering angles
ranging from 0 (nadir) to 70 . The last section briefly discusses
results for other frequencies and ocean states, and provides con-
cluding remarks.

II. SSA, WCA, AND LCA SCATTERING MODELS

A. SSA Approach

The SSA scattering model has been analytically tested in
many papers that considered Gaussian statistics to derive ex-
pressions for ensemble averages. For a 2-D ocean-like surface,
the comparison [16], [17] of the SSA(1) backscattering NRCS
with experimental data showed good agreement. In [18], only
the SSA cross term of the backscattering NRCS is added (the
partial fourth order term is omitted). In [3], an assumption
is used to include the SSA(2). The computation of the SSA
backscattering NRCS becomes then similar to the computation
of the SSA(1) NRCS, where the sea spectrum is substituted by a
modified spectrum which depends on the sea spectrum and the
second-order polarization terms. This model will be presented
and referred to as SSAM. In [19], SSA(1) is compared with a
rigorous numerical code based on the method of moments for
Gaussian and power-law spectra. For a 1-D Dirichlet surface
with a Gaussian elevation spectrum (single-scale surface), the
comparison of the SSA bistatic NRCS with the method of
Moments showed good agreement [20], and similar simulations
are reported in [21], [22] for ocean-like dielectric surfaces.
Recently, Berginc [23] and Gilbert et al. [24] implemented
numerically the vector case of SSA from 2-D dielectric surfaces
with a Gaussian height spectrum. This list of references is not
exhaustive.

The SSA presents an explicit expression of the scattering am-
plitude (SA) on the basis of plane waves in terms of
parameters of the incident and the scattered waves and surface
roughness elevation [4], [5]

(1)

where

(2)

In (1), are the horizontal coordinates and
are the horizontal projections of the incident and scattered wave
vectors, correspondingly, and is the Fourier transform of

. Values and are appropriate vertical projections of
the wavevectors defined as

(3)

where , and

(4)

SA represents a 2 2 matrix describing mutual trans-
formations of the electromagnetic waves at different polariza-
tions. Namely, is the amplitude of the scattering
from an incident plane wave with horizontal wavevector and
polarization into a scattered plane wave with hor-
izontal wavevector and polarization . In our case,
the polarization index corresponds to a polarization con-
ventionally defined as vertical, and refers to a horizontal
polarization. Values are expressed in Appendix B
and are 2 2 matrices.

The expression of the scattering cross section is directly re-
lated to the second-order statistical moment of the SA. For a
Gaussian process [4], [5], the dimensionless scattering cross
section for the scattering of the wave of polariza-
tion into the wave of polarization is

(5)

where

(6)

in which

(7)

(8)

(9)

(10)

(11)

The symbol stands for the complex conjugate and the
symbol denotes the real part. In (7)–(9) and (11),
the subscript and the dependence over of

, and are omitted. is
the characteristic function; and the height correlation, , is
defined from its height spectrum, , as

(12)



1642 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 5, MAY 2005

The height variance is defined as . In (11) and (9),
and are ex-

pressed as

(13)

(14)

, and are related to the
second (superscript 11), third (superscript 12), and partial
fourth (superscript 22) order terms of the scattering cross
section, respectively. Thus, the SSA method requires to com-
pute three Inverse fast Fourier transform (IFFT) to obtain

and a numerical inte-
gration over . For a multiscale sea surface, for which the
height spectrum is very wide and the Rayleigh parameter (pro-
portional to the product of the electromagnetic wave number by
the surface rms height) is much greater than unity at microwave
frequencies, the computation of the IFFTs are much more
difficult since the sampling of the spectrum must be sufficiently
small to take into account both the gravity and the capillary
waves. This is why, for the simulations, the surface is assumed
to be 1-D, for which the and polarization contributions
will be displayed.

B. SSAM Approach

To facilitate the calculations in the cases of the SSA12 and
SSA22, Voronovich et al. [3] assumed in (1) that

(15)

Thus, they showed

(16)

where

(17)

is related to the modified rough-
ness spectrum as

(18)

where

(19)

Equation (16) is similar to that giving the contribution of the
SSA11 where the height correlation was substituted by

.

C. WCA Model

1) Weighted Curvature Approximation: The WCA is based
on the curvature kernel derived in the local curvature approxi-
mation developed for the electromagnetic case by Elfouhaily et
al. [7]. It is formulated as

(20)

where

(21)

and
, in which

and . The coefficient is the Kirch-
hoff polarization matrix given in Appendix B and
is related to the polarization matrix of SSA(1) as

. The definition of the curvature
kernel ensures the high-frequency limit obtained from the
Kirchhoff approximation. In addition, since
and is quadratic in its lower order and
therefore the small perturbation method is reached.

2) Calculation of the Ensemble Average: In this paper,
we propose to calculate rigorously the ensemble average

(in the functional is
substituted by whereas in is substituted by ) to obtain

.
Equation (20) is split up into two terms as

, where
includes only , whereas includes only

. Thus, we get

(22)

For a stationary surface or spatially homogeneous surface, the
ensemble average depends only on the difference

. Therefore, using the variables transformations
, and integrating over , we have

(23)

(24)

(25)



BOURLIER et al.: COMPARISON OF ASYMPTOTIC BACKSCATTERING MODELS 1643

where is the statistical operator defined as

(26)

for a Gaussian process. The statistical moments ,
and giving the coherent contributions are obtained
from (23)–(25) by omitting the statistic correlation (similar to

). The calculation of the expected values are presented
in the Appendix A for Gaussian statistics and for any 2-D
anisotropic correlation. The resulting scattering cross section is

(27)

where

(28)

in which

(29)

(30)

(31)

The functions and
are expressed from (A19) and (A14),

and are expressed from (A18) and
(A23). When the ensemble average is calculated rigorously,
two additional integrations over are required
for , whereas for one
additional integration over is required. For a 1-D surface,
the slopes become scalar, which reduces the number of
integrations. Comparing (29) with (7) where ,
we have . are related to

.
3) Calculation of the Ensemble Average Based on the

Quadratic Assumption: To reduce the number of the numerical
integrations of , we can use a quadratic assumption (sug-
gested by Dr. Elfouhaily) of the curvature kernel .
Indeed, since is quadratic with respect to in its lower order,
a Taylor series expansion of second order around zero leads
to . It is easy to show that the resulting
ensemble average (the superscript is added) of (20) is

(32)

where

(33)

in which

and

(34)

We can notice that the computation of requires a
single integration over instead of three over
for .

4) Application to a 1-D Surface: For a 1-D sur-
face, the surface slope is defined along one direction
( and the vectorial notation
disappears) which means that . Thus, we get from
Appendix

(35)

where

(36)

(37)

In the above equations, is the 1-D height correlation,
its first derivative and its second derivative.

denotes the slope variance.
Moreover

(38)

We can note that
and
since

, and (this also holds for a 2-D
surface).

For the calculation of is simplified as

and (39)

D. LCA Model

The Local Curvature Approximation (LCA), recently pub-
lished by Elfouhaily et al. [7], [11], [12], can be seen as a gen-
eralization of the tilt-invariant approximation [13], [14], valid
only for a metallic surface, to the dielectric case. Like WCA, it is
reciprocal and converges toward the small perturbation method
and the high-frequency Kirchhoff approximation. The Kernel of
LCA is very similar of that of SSA. Using the Voronovich nota-
tion, it is obtained from the SSA scattering model given by (1)
by making the following substitutions

(40)



1644 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 5, MAY 2005

Thus, the SPM matrix is substituted by the Kirchhoff one
, where is given from appendices B and C

of [7]. Moreover, the kernel is substituted by the kernel
given by (21). The scattering cross

section of LCA has then the same form as the SSA one ex-
pressed from (5). It should be noted that the fact that the SPM
matrix is substituted by the Kirchhoff one, implies that the
second order term of the NRCS of LCA, ,
where is the NRCS obtained under the stationary phase
approximation.

III. NUMERICAL RESULTS IN THE BACKSCATTERING

DIRECTION

In this section, the normalized radar cross section (NRCS) is
computed for a frequency GHz (Ku band and

[25]), for a wind speed m/s (defined at 10 meters
above the sea), in the backscattering direction and for scattering
angles . In our simulations, we used the Elfouhaily
et al. [15] omnidirectional sea roughness spectrum, and the sea
is assumed to be fully developed (the inverse of the wave age
is ). For a 1-D surface, the NRCS is multiplied by

. This is consistent with the NRCS defined as
, where is the scattered power, the

incident wave number, the length of the illuminated surface,
the incident field and the distance from the surface to the

receiver.
The advantage to use SSAM, reported in [3], is to compute

only a single numerical IFFT [ , (18)], whereas
two numerical IFFT’s are needed for SSA [ and

, (13)–(14)]. This computation is made for each
scattering angle , whereas the SSA11 computation requires
only one IFFT for the calculation of the height correlation
[ , (12)], which is independent of . In addition, to take
all the spectral components of into
account, the upper cut-off wavenumber is chosen equal to 1500
rad/m. This implies a number of samples
in order to sample the gravity spectrum with accuracy. For
instance, for a wind speed m/s, we choose the
lower cut-off wavenumber equal to (corresponding
to a level of of the sea gravity normalized spectrum

, for which is obtained for ),
where rad/m. This means that the
sampling rad/m and the number of
samples between and is , allowing
to take into account the gravity with accuracy.

For the simulations, the and polarizations are displayed
for eight backscattering models:

• SSA11 [(5) with and ], full SSA
referred to as SSA [ , (5)],
SSA used by Voronovich in [3] denoted as SSAM and
given by (16);

• full WCA [ , (27)],
where the ensemble average is derived from Ap-
pendix A, WCA based on the quadratic assumption
(32) and referred to as WCAQ;

• full LCA [ , (5) with the
substitutions expressed from (40)];

• small perturbation method denoted as SPM
( where

, for which is the incident electro-
magnetic wave number);

• and the stationary phase approximation referred to as
SP (equal to LCA11).

The computing time can be reduced by using the fact that
the scattering models (5), (16), (27), and (32) all obey

, which means that

(41)

Moreover, for the computation of (35), since the integrand
with respect to the surface slopes obeys

(it is the case because is even
according to ), we can reduce the computing time by using

(42)

A. Comparison of SSA11, SP, SPM, and LCA Backscattering
Models

In Fig. 1, the NRCS in dB ( where
) of SSA11, SP, SPM, and LCA are displayed

versus the scattering angle , in (at the top) and polar-
izations (at the bottom), for the Ku band (frequency
GHz) and for a wind speed m/s. We observe that the
NRCS decreases more quickly in polarization as in po-
larization. For near-nadir scattering angles, Fig. 1 reveals that
the SP, SSA11, and LCA models are similar, which means that
SSA11 reproduces the Kirchhoff approximation reduced to the
SP approximation (theoretically, SSA11 does not reproduce the
Kirchhoff approximation, but since the sea surface is highly con-
ducting and the backscattering angle vanishes, the SPM polar-
ization matrix is close to the Kirchhoff one ).
Indeed, for scattering angles ranging from 0 to 20 , only the
gravity waves contribute to the scattering and therefore the SP
approximation can be applied. However, a smooth transition at
scattering angles of 20 –40 , for which the SP model becomes
invalid and the Bragg scattering regime (given by the SPM)
predominates, is observed. In this region, SSA11 tends toward
SPM, whereas the full LCA NRCS goes above

and does not converge toward SPM. Thus, although
the LCA kernel reaches the small perturbation method and the
high-frequency Kirchhoff approximation and it is tilt invariant,
the NRCS does not converge toward the Bragg regime. Never-
theless, simulations not reported in this paper, showed for small
roughness ( , where SPM is valid) with a Gaussian
height spectrum, that the full LCA NRCS converges toward
SPM. For a multiscale sea surface, this means that the higher
orders of the LCA NRCS are unable to
correct the lowest order to converge toward SPM.

For GHz and m/s, the product
where [17] is the height variance and

is the incident electromagnetic wave
number. As mentioned by Fung et al. [26] (the simulations
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Fig. 1. Comparison of the SSA11, SP, SPM, and LCA backscattering NRCS versus the scattering angle for f = 14 GHz and u = 5 m/s and for the V and
H polarizations.

are presented for L band, GHz), since is much
greater than unity, only a part of the height correlation
is taken into account for the integration over of .
In addition, although the difference between the height cor-
relation computed from the gravity spectrum [ ] and
the full spectrum [ gravity plus capillarity] is small,
the contribution of the capillary waves related to the high
frequency spectrum must be taken into account with accuracy.
Indeed, for , if the difference
is small, then the difference

can become significative. Thus, the difference
become significative,

implying that the corresponding are very different. In
conclusion, in the computation of the height correlation, all
spectral components of the height spectrum must be included
to reproduce the Bragg regime, which occurs for moderate
scattering angles.

B. Comparison of SSA11, SSA11 SSA12, SSA, and SSAM

In Fig. 2, the same variation as Fig. 1 is plotted for the
SSA11, SSA11 SSA12, SSA, and SSAM backscattering
NRCS. In addition, in Fig. 3, the backscattering NRCS

and
are plotted versus the scattering angle in dB scale. For the
polarization and scattering angles , all NRCS are
similar within 1 dB whereas for the polarization, the NRCS
all similar up to 20 . Above this lower limit, SSA11 goes
below SSA and their deviation increases with the scattering
angle and it is stronger for the polarization. As expected, the

contributions of the higher order terms (SSA12 and SSA22)
increase with the scattering angle. SSAM follows SSA11 up
to 40 –50 and above this angle is converged toward SSA
but without reaching it. The accuracy of SSA11 depends not
only on the rms slope, but also on the polarization. The reason
[3], [6] for the different behavior of the two polarizations is
the stronger dependency of the backscattering NRCS on the
incidence angle for the polarization, which leads to more
pronounced modulation effects as compared to the polariza-
tion case. Indeed, in Ku band, for a 2-D sea surface, for wind
speeds m/s, for scattering angles ,
and for the and polarizations, a comparison of SSA11
and SSAM with TSM was used in paper [3]. This allowed the
author of paper [6] to conclude that SSAM takes into account
the tilt modulation of the Bragg scattering by the large-scale
surface components, whereas the SSA11 does not. In addition,
he noticed for the -polarization that the difference between
the TSM and the SSA11 results practically disappears when
the SSAM contribution is added. On the other hand, for the

polarization, this difference was already negligible and
therefore SSAM provides a very small correction.

C. Comparison of WCA11, WCA11 WCA12, WCA and
WCAQ

In Fig. 4, the same variation as Fig. 1 is plotted for the
and WCAQ backscat-

tering NRCS. In addition, in Fig. 5, the backscattering
NRCS and

are plotted versus the scattering angle in dB
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Fig. 2. Same variation as Fig. 1 for the SSA11; SSA11 + SSA12;SSA and SSAM backscattering NRCS.

Fig. 3. Backscattering NRCS 10 log(� =� ); 10 log[� =(� + � )] and 10 log(� =� ), where � = � + � +
� versus the scattering angle.

scale. We observe that WCAQ can not reach WCA. This may
be explained by the fact that the ensemble average of WCA

involves the height correlation and its first
and second derivatives, whereas WCAQ uses only
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Fig. 4. Same variation as Fig. 1 for the WCA11, WCA11 + WCA12, WCA, and WCAM backscattering NRCS.

Fig. 5. Backscattering NRCS 10 log(� =� ); 10 log[� =(� + � )], and 10 log(� =� ), where � = � +
� + � versus the scattering angle.

and . Indeed, is related to the surface
slope correlation. For the polarization, WCA is weakly
below of WCA11 whereas for the

polarization, the opposite effect is observed. Thus, for the
polarization, the contributions of the higher order terms

(WCA12 and WCA22) are negative. In fact, Fig. 5 reveals
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TABLE I
VALUES OF max j� =� j AND max j� =� j IN dB SCALE, WHERE � = � , ACCORDING TO THE WIND SPEED u , THE

FREQUENCY f AND FOR � 2 [0; 70] DEGREES

for the polarization that and
with , whereas for the polarization,

and . As the SSA model, the
contributions of the higher order terms are larger for the po-
larization and increase with the scattering angle. Nevertheless
for WCA, the difference between the second order
and its higher order terms is smaller than that SSA (comparison
of Fig. 3 with Fig. 5, where ). Therefore, the
large-scale tilt-modulation predicted by WCA is smaller than
that obtained for SSA.

IV. CONCLUSION

In this paper, the NRCS of the WCA, LCA and the first-
[SSA(1)] and second- [SSA(2)] order SSA are compared. The
sea surface is assumed to be 1-D with Gaussian statistics and the
Elfouhaily et al. elevation omnidirectional spectrum is consid-
ered. To study the assumption used by Voronovich et al. [3] to
include the SSA(2) contribution, the SSAM is also computed.
This model has the advantage to demand the computation of two
IFFT’s instead of three for SSA. In addition, the second-order
statistical moment of WCA is calculated rigorously for any 2-D
height correlation by assuming Gaussian statistics. To reduce
the number of the numerical integrations of WCA, a quadratic
assumption on the kernel of the WCA scattered field is pro-
posed to derive the NRCS, denoted as WCAQ. For a wind speed

m/s and a frequency GHz, this paper displays
the backscattering NRCS of these scattering models versus the
scattering angle .

For near-nadir scattering angles, numerical results show
that SSA11 (second order of the SSA NRCS), SSAM, LCA11
(second order of the LCA NRCS, where is
the Kirchhoff approximation reduced to the stationary phase)
are similar and WCAQ differs from these models of 0.5 dB.
Moreover, the contributions of the higher order terms of SSA,
WCA and LCA are negligible. For scattering angles greater
than 20 –30 where the large-wave tilt modulation occurs,
SSA11 converges toward small perturbation method (SPM)
and the contributions of the higher order terms increase with
the scattering angle and it is greater for the polarization than
the polarization. We can observe that SSAM underestimates
SSA within 2–3 dB and the modulation effects predicted by
WCA are smaller than the SSA ones. A possible explanation is
that the SSA scattered field kernel , verifies ,
whereas , for the WCA model. Indeed the modu-
lation effects are related to the derivatives of and . For any
polarization, the full SSA NRCS is larger than its lower order,
whereas for the WCA model in polarization, the opposite

effect is observed. Elfouhaily et al. [7] noted the same effect
with a Gaussian spectrum.

Although the LCA scattered field kernel converges toward
SPM for small roughness, its backscattering NRCS does not
converge toward SPM for a multiscale sea surface. This defi-
ciency can be explained as follows. In [6], Voronovich showed
that the modulation effects are taken into account with a first-
order accuracy on (dimensionless) if (43), holds [(23) of [6]
simplified for a 1-D surface in the backscattering direction]

(43)

For , equality (43) holds for the SSA model because
and .

For the LCA model, and
are substituted from (40). In

addition, since is quadratic in its lower order, we
have . Thus, for , equality
(43) becomes for the LCA model,

for a perfectly conducting
surface . This equality holds if . It
is not the case. Hence, the general property,

, of the scattered field kernel, seems to be
fundamental to obtain the modulation effects.

Simulations not reported in this paper, showed for a greater
wind speed ( m/s) and for a lower frequency
( GHz), that the differences between SSA11-SSA and
WCA11-WCA increase with the wind speed and varies weakly
with the frequency (see Table I).

Numerically, for a 1-D surface, WCA requires two fold nu-
merical integrations over the surface slopes, whereas SSA re-
quires the computation of two 1-D IFFT’s. Nevertheless, for
SSA, the number of samples to calculate the IFFT is

, whereas for WCA, we use .
The calculations of the height correlation and its derivatives are
not accounted for because they have been computed before and
were saved in a data file. The integration over is not taken
into account because it is shared by WCA and SSA. WCAQ can
be simulated easily since it demands only two-fold integrations,
whereas WCA requires two additional two fold integrations.

For a 2-D problem, the simulation of SSA becomes a very
difficult task due to the number of samples required for the
calculation of the two bi-dimensional IFFT’s. This is why
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Voronovich et al. [3] used the approximate model SSAM and
evaluated the IFFT with an another method by considering
the spectrum on logarithmic scale. Monte Carlo methods for
evaluating the WCA and the SSA NRCS could be used. These
may be more computationally efficient for some cases (from
linear and nonlinear ocean surface realizations) than computing
the multidimensional integrals. Comparison with benchmark
numerical methods [9], [21], [22], [27]–[29] (see also the
papers quoted in these references) would permit to study the
validity of these asymptotic backscattering models. However,
for a sea surface, the SSA model seems to be better than the
WCA model because the modulation effects predicted by WCA
are very small. Numerical simulations would resolve this issue.

APPENDIX A

This Appendix is devoted to the calculation of the ensemble
averages (23)–(25) for a surface slope and elevation joint
Gaussian process and for any 2-D anisotropic correlation func-
tion. To facilitate the notation, the subscripts are omitted. Only
the expected values over the elevations and are derived
since is a complicated function of .

Firstly,
is calculated. The covariance matrix of the random variables

has to be
known. denote the surface slopes along the direction

at the points 1 and 2, respectively, whereas stand
for the surface slopes along the direction at the points 1 and
2, respectively. This covariance matrix is given by (25) of [30].
Moreover, we can note that the operator given by (26)
depends on the elevation difference . Thus,
defined as the difference of Gaussian variables is also Gaussian.
Thus from (25) of [30], we show that the covariance matrix of

is

(A1)

where
,

in which .
is the surface height correlation function in Cartesian co-
ordinates . is the height variance and

are the slope variances
in the up- and cross-directions, respectively. To have a real
surface without imaginary part, its spectrum has to be Hermi-
tian, which implies that the correlation function is even
with respect to the two directions . This implies that

, and . The ensemble
average is defined as

(A2)

where

(A3)

in which . The
superscript stands for transpose ( is a column vector of
length 5). To inverse the matrix is partitioned as

(A4)

where

(A5)

In addition from [31], we have

(A6)

where

(A7)

(A8)

(A9)

(A10)

in which, is a scalar, a column vector of length four,
a square matrix of length 4, the determinant of

expressed from the determinant of denoted as . The
substitution of (A6) and (A10) into (A3) yields

(A11)

where , which is inde-
pendent of . Therefore, using

(A12)

where and setting
, the substitution of (A12) into (A2)

leads to

(A13)
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In addition, from (A8)–(A9) we get
, where . Thus,

the above equation becomes

(A14)

where

(A15)

and are given in (A16) and (A17), shown at the
bottom of the page. In (A15), the subscript indicates that the
joint probability density function of dimension 4 is over the
surface slopes. We can note that demands the calculation of

, which can be derived analytically. If
(the correlation between the elevations and the slopes is ne-
glected), then

which is equal to the character-
istic function of the random variable .

The contribution of the coherent term
, related to ,

is obtained from (A14) by omitting the correlation .
This means from (A5) that and that the matrix

becomes diagonal. Thus, from (A16) and (A17),
, and we have

(A18)

From (A14), it is easy to calculate
giving

(A19)
where

(A20)

(A21)

(A22)

As previously said, the contribution of the coherent term
,

related to , can be easily derived from
(A19) by omitting the correlation. This yields

(A23)

APPENDIX B

The general expressions for kernel functions and
on the basis of vertically and horizontally polarized

waves are given in [3] and are as follows. The first order is

(B1)

(B2)

(B3)

(B4)

The second order are expressed from (B5) as follows:

(A16)

(A17)
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(B5)

Here, and are the vertical components of
the appropriate wavevectors in the first (air) and the second (di-
electric) media

(B6)

The vector is a unit normal to the horizontal plane
and is the surface dielectric permittivity.

The Kirchhoff polarization terms defined according
to Elfouhaily are given by [7]

(B7)

where

(B8)

in which

(B9)

stand for the Fresnel coefficients defined in
and polarizations, respectively, evaluated at the angle

, and is the incident wave number.
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