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Abstract
There are several nonlocal scattering models available in the literature. Most of
them are given with little or no mention of their expected accuracy. Moreover,
high- and low-frequency limits are rarely tested. The most important limits are
the low-frequency or the small perturbation method (SPM) and the high-
frequency Kirchhoff approximation (KA) or the geometric optics (GO). We are
interested in providing some insight into two families of non-local scattering
models. The first family of models is based on the Meecham–Lysanov ansatz
(MLA). This ansatz includes the non-local small slope approximation (NLSSA)
by Voronovich and the operator expansion method by Milder (OEM). A quick
review of this first family of models is given along with a novel derivation
of a series of kernels which extend the existing models to include some more
fundamental properties and limits. The second family is derived from formal
iterations of geometric optics which we call the ray tracing ansatz (RTA). For
this family we consider two possible kernels. The first is obtained from iteration
of the high-frequency Kirchhoff approximation, while the second is an iteration
of the weighted curvature approximation (WCA). In the latter case we find that
most of the required limits and fundamental conditions are fulfilled, including
tilt invariance and reciprocity. A study of scattering from Dirichlet sinusoidal
gratings is then provided to further illustrate the performance of the models
considered.

1. Introduction

Scattering of electromagnetic or acoustic waves from rough surfaces is an interesting problem
due to its wide applications in current physics projects, including remote sensing. Current
scattering theories are based mostly on development of a smallness parameter. For the most
part the accuracy of these models is not well established.
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We will analyse two families of multiple scattering models. The first can be classified
under the Meecham–Lysanov ansatz (MLA). This family includes the Meecham–Lysanov
Model (MLM) [1–3], the non-local small slope approximation (NLSSA) by Voronovich [4]
and the operator expansion method (OEM) by Milder [5] and more recently the non-local
curvature approximation (NLCA) by Elfouhaily et al [6, 24] and the phase factor representation
(PFR) by Tatarskii [7]. The second family can be based on what we call the ray tracing ansatz
(RTA) (i.e., Garcia et al [8], Jin and Lax [9] and Macaskill [10]). This family encompasses
all models based on the iterations of the Kirchhoff model, among which we cite the extended
Kirchhoff approximation by Ishimaru [11] and the integral equation method (IEM) by Fung
[12, 13].

There are some mandatory limits that any scattering model must reproduce in order to
qualify for a wide range of applications over different rough surfaces especially those which
include multiple scales. We identify two fundamental limits, the small perturbation method
(SPM) and the high-frequency Kirchhoff (KA) or geometric optics (GO). It must be noted
that these two limits can be of first or second order depending on whether local or non-local
effects are considered. It is therefore interesting to have a local model which complies with
the SPM-1 and GO-1 limits while its non-local extension includes SPM-2 and GO-2 limits, if
possible. Unfortunately, in the literature one can find a plethora of scattering models where
some of the mentioned limits are not reached regardless of whether the model is local or
non-local. Most models are in fact not even checked to reveal their compliance with these
compulsory limits. A specific example is the original IEM [12], which was used for more than
10 years even though it did not reproduce the SPM-1 limit under general bistatic conditions
(see, [14]). This deficiency was later corrected by Alvarez-Perez [13] and adopted by Fung
and his co-authors [15].

In this paper we analyse properties of non-local models based on either the MLA (such
as NLSSA) or the RTA (such as IEM). We begin by identifying a deficiency in NLSSA with
regard to the first and second order geometric optics (GO-1 and GO-2) limits. We show that
a modified kernel NLSSA can be derived that obtains the GO-1 limit. However the GO-2
limit is found not reachable by NLSSA regardless of the kernel used since the deficiency is
identified in the ansatz itself.

We then consider the RTA, and show that for Neumann, Dirichlet, and perfect conducting
boundary conditions, a simple non-local model can be found by imposing formal compliance
with the high-frequency GO-1 and GO-2. It is also shown that by accident SPM-1 is reached
under the low-frequency limit. However generalization of this model to the general dielectric
case is not found to be easily possible. To address this issue, an iterative weighted curvature
approximation (WCA) based on the RTA is proposed. The local WCA method was recently
developed by Elfouhaily et al [6], and achieves both the GO-1 and SPM-1 limits in the dielectric
case while retaining a form as simple as the tangent plane approximation. The iterative WCA
developed retains the GO-1 and SPM-1 limits of the local model while the iterative procedure of
the RTA ensures compliance with the GO-2 limit. A study of the performance of both existing
and newly developed local and non-local models is then presented in terms of scattering from
a one-dimensional sinusoidal grating for the Dirichlet case. Results confirm the analytical
performances expected, although the choice of a particular model for the greatest accuracy
remains dependent on the surface of interest.

2. The Meecham–Lysanov ansatz

The Meecham–Lysanov model (MLM) [1, 2] was developed for acoustic scattering under
Dirichlet boundary conditions. Its non-local ansatz survived extensions to more general
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boundary conditions such as those by the non-local small slope approximation (NLSSA) by
Voronovich [4] and the operation extension method (OEM) by Milder [5, 16]. For simplicity
we reveal these details through the notation and form of NLSSA.

2.1. Formulation

In a follow up on the local small slope approximation in [17], Voronovich generalized his
model to include non-local scattering mechanisms such as double reflection on the surface.
The ansatz used by Voronovich in [4] conforms to the Meecham–Lysanov ansatz (MLA) and
has the explicit expression

S(k,k0) =
∫∫∫

φ(k,k0; ξ) e−i(k−ξ)·x1−iqkη(x1) ei(k0−ξ)·x2−iq0η(x2) dξ dx1 dx2 (1)

where φ(k,k0; ξ) is the non-local kernel, η(x) is a rough surface (which could be random as
well), and the incident K i and scattered Ks wavenumbers are defined as

K i = k0 − q0ẑ (2a)

Ks = k + qkẑ (2b)

qξ =
√

K2 − ξ · ξ (2c)

|K i | = |Ks | = K. (2d)

If the kernel function φ is chosen to satisfy

φ(k,k0; ξ) = φT (−k0,−k;−ξ) (3)

then the MLA satisfies the fundamental properties of reciprocity as well as vertical and
horizontal shift invariance:

S(k,k0) = ST (−k0,−k) (4a)

S(k,k0)|η+H = e−iQzHS(k,k0)|η (4b)

S(k,k0)|η(x−d) = e−iQH ·dS(k,k0)|η (4c)

where

Qz = q0 + qk (5a)

QH = k − k0. (5b)

Voronovich in [4] suggested a derivation of the kernel φ(k,k0; ξ) based on matching both the
first and second order small perturbation methods (SPM-1 and SPM-2). The resulting kernel
function is

φ(k,k0; ξ) = B(k,k0)

Qz

+
B2(k,k0; ξ) − B2(k,k0;k0)

q0
+
B2(k,k0; ξ) − B2(k,k0;k)

qk

(6)

where B and B2 refer to the SPM kernel functions shown in the appendix of this paper.
This kernel will be referred to as the NLSSA kernel throughout the remainder of the paper.
However, use of the NLSSA kernel in the MLA does not guarantee convergence toward the
GO-1 or GO-2 limits, as will be examined in the next section.
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2.2. First-order geometric optics from MLA

The high-frequency limit of the NLSSA ansatz as in (1) can be derived by invoking the
stationary phase theorem and single reflection, hence

S(k,k0) = φ(k,k0; ξs)

∫
e−iQzη(x) e−iQH ·x dx (7)

where the originally dummy integration variable ξ is now evaluated at the stationary point:

ξs = qkk0 + q0k

qk + q0
. (8)

In order for NLSSA to be able to reproduce the first order geometric optics limit (GO-1), the
following condition must be satisfied

K
Qz

= φ

(
k,k0; qkk0 + q0k

qk + q0

)
(9)

where K is the polarization matrix of the high-frequency Kirchhoff in the notation of [6].
Satisfying the GO-1 condition in (9) formally is nearly impossible (unless it is used originally
to define φ). For this reason, one can use the following identities

ξs = qkk0 + q0k

qk + q0
= k − qk

QH

Qz

= k0 + q0
QH

Qz

(10)

along with a Taylor expansion of (9) in powers of QH . In this case, one can satisfy the GO-1
condition only approximately up to some order in QH .

K
Qz

= 1

2

{
φ

(
k,k0;k − qk

QH

Qz

)
+ φ

(
k,k0;k0 + q0

QH

Qz

)}
(11)

≈ 1

2

{
φ(k,k0;k) + φ(k,k0;k0) − [qk∇φ(k,k0;k) − q0∇φ(k,k0;k0)] · QH

Qz

+
1

2

QH

Qz

· [
q2

k ∇∇φ(k,k0;k) + q2
0∇∇φ(k,k0;k0)

] · QH

Qz

+ · · ·
}

. (12)

Using equation (6) and the identities in the appendix, it is straight forward to show that the
NLSSA does not satisfy this condition in the quadratic order for the Dirichlet, Neumann, or
perfect conducting boundary conditions, contrary to equation (5.3) in [4]. The original local
SSA [3] does not reach GO-1 for the dielectric case only. It is therefore clear that enforcing
the SPM-1 and SPM-2 limits in the MLA does not guarantee the GO-1 limit even for perfect
conducting boundary conditions.

2.3. Modified non-local kernels

Different kernels can be proposed for the MLA to attempt to reach both the SPM-1 and high-
frequency limits. Such kernels can be based on the SPM-2 but without necessarily reproducing
the SPM-2 limit. Using the identities of the appendix, we can derive a new kernel as

φ(k,k0; ξ) = qk + q0

2qkq0
B2(k,k0; ξ). (13)

This result can be considered as a simplification of the first-order operator expansion method
(OEM) developed by Milder [5, 18] and a generalization of the Meecham–Lysanov model
[1, 2]; the kernel will be referred to as the Meecham–Lysanov model (MLM) kernel throughout
the remainder of the paper. Equation (13) is simple because it is readily applicable to Neumann,
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Dirichlet perfect conduction, dielectric boundary conditions, indifferently. Using the identities
of the appendix, it can be demonstrated that this kernel satisfies both the SPM-1 and GO-1
limits for Neumann, Dirichlet and perfect conducting surfaces, but not the SPM-2 limit. It can
also be shown that this scattering model is not tilt invariant; for a definition of tilt invariance
the reader is referred to [6, 19].

It is possible to enforce in addition to SPM-1 and GO-1, the SPM-2 limit through a relation
similar to equation (18) in [6],

φ(k,k0; ξ) = α + βB2(k,k0; ξ) + γB2(k,k0;k + k0 − ξ), (14)

where α, β and γ are three constants to be determined by imposing three relevant conditions.
If γ is set to zero and a solution is sought for α and β from imposing the SPM-1 and SPM-2
limits, one gets the NLSSA. If however one imposes in addition to SPM-1 and SPM-2, the
high-frequency GO-1 limit for Neumann, Dirichlet and perfectly-conducting surfaces, the
constant γ becomes necessary as another degree of freedom. After some tedious algebraic
manipulations, one finds

φ(k,k0; ξ) = qk + q0

2qkq0

[
B2(k,k0; ξ) + B2(k,k0;k + k0 − ξ) − q2

k + q2
0

(qk + q0)2
B(k,k0)

]
(15)

or equivalently,

φ(k,k0; ξ) = B(k,k0)

Qz

+
qk + q0

2qkq0
[B2(k,k0; ξ) + B2(k,k0;k + k0 − ξ) − B(k,k0)] . (16)

As with the NLSSA, the latest form separates the local SSA-1 contribution (first term) from
the non-local correction. This kernel function will be referred to as the modified non-local
SSA (MNLSSA) kernel in the remainder of the paper. It can be shown that the MNLSSA
kernel produces a tilt-invariant theory when used in the MLA. This non-local kernel in (16) is
therefore analytically highly appropriate but unfortunately still does not reach the second-order
high-frequency Kirchhoff as explained in what follows.

2.4. Second-order geometric optics from MLA

We perform a comparison of the MLA with the GO-2 limit in the incoherent ensemble average
case where the second-order geometric optics is known to have the form (see equation (51a)
[20] or equation (51) [13]):

〈S(k,k0)S∗(k,k0)〉 =
∫ ∣∣∣∣φ(k,k0; ξ) − φ(k,k0; ξs)

(qk ± qξ)(q0 ∓ qξ)

∣∣∣∣2

P

(
− k − ξ

qk ± qξ

,
k0 − ξ

q0 ∓ qξ

)
dξ (17)

where P is the joint probability density function (pdf) of the slopes at two different locations
on the surface, and φ is a kernel associated with the GO-2 model. The above equation can
be interpreted by considering a scattering process in which the incident wave is specularly
scattered into the ξ direction, when is then specularly re-scattered into the observation direction.
Consideration of the slopes required for this process results in the arguments observed in the
slope probability density function above; these arguments are similar to those observed in
single point slope pdf for the local GO-1 model. The integration adds the contributions from
all possible directions of the intermediate wave ξ (note ξ is the horizontal projection of the
propagation direction). The plus-and-minus signs in this expression account for the possibility
of the intermediate waves propagating either upwards or downwards.
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Now compute the ensemble average of the modulus of the scattering matrix in (1)

〈S(k,k0)S∗(k,k0)〉 =
∫∫∫∫∫∫

φ(k,k0; ξ1)φ
∗(k,k0; ξ2)

× 〈
e−i(k−ξ1)·x1−iqkη1 ei(k0−ξ1)·x2−iq0η2 ei(k−ξ2)·x3+iqkη3 e−i(k0−ξ2)·x4+iq0η4

〉
× dξ1 dξ2 dx1 dx2 dx3 dx4. (18)

After expansion in the phase of the difference of elevations in the slope times the difference
of positions, we rewrite (18) as

〈S(k,k0)S∗(k,k0)〉 =
∫∫∫∫∫∫

φ(k,k0; ξ1)φ
∗(k,k0; ξ2)P (∇η1,∇η2)

× e−iqk∇η1(x1−x3)−iq0∇η2(x2−x4) e−i(k−ξ1)·x1+i(k0−ξ1)·x2 ei(k−ξ2)·x3−i(k0−ξ2)·x4

× dξ1 dξ2 dx1 dx2 dx3 dx4 d∇η1 d∇η2. (19)

We then find, after a change of variables to sum and differences coordinates and using the
stationary phase approximation:

〈S(k,k0)S∗(k,k0)〉 =
∫ ∣∣∣∣φ(k,k0; ξ) − φ(k,k0; ξs)

q0qk

∣∣∣∣2

P

(
−k − ξ

qk

,−ξ − k0

q0

)
dξ. (20)

Note the arguments of the probability density function above are inconsistent with the
original GO-2 form and provide no consideration of the possibility of up- or down-going
intermediate waves. Therefore, this result in (20) is incompatible with the second order
geometric optics limit (GO-2) regardless of the kernel used. This result is not surprising when
the expansion of the exact spectral Green’s function used to derive the original MLA (see
[4]) is recalled; in fact the MLA-derived result matches GO-2 only when qξ = 0 due to this
expansion. This limitation is also apparent due to the fact that the MLA form omits any terms
involving qξ in the phase term of the integrand.

In summary, MLA-based methods can be designed to achieve conformity with the SPM-1,
SPM-2, and GO-1 limits, but are inconsistent with the exact GO-2 limit by definition. Because
the MLA form is proposed in order to capture non-local effects (as in GO-2) compared to the
standard local scattering models, this failure is a cause for concern in applying MLA-based
methods. Because the MLA is more expensive than standard local scattering models, the gain
of using these models is not immediately apparent. Of course, the possibility that equation (20)
provides a usable approximation to equation (17) in many cases of practical interest remains.
However, use of a method that captures the GO-2 limit by design may offer a higher degree of
accuracy in modelling special multiple-scattering effects. One possible solution is to modify
the ansatz itself to introduce the vertical component of the scattered ray between two points
on the surface (±qξ). However in this case the triple integral becomes more coupled and
therefore a constant non-local kernel no longer yields a local integral similar to the high-
frequency Kirchhoff as in (7). The next section considers a more direct method for achieving
agreement in the GO-2 limit.

3. Ray tracing ansatz

As its name indicates, the ray tracing ansatz (RTA) is intuitively based on reflected optical rays
at the rough surface. We consider herein only single and double reflection. We assume that for
the double reflection, the single reflection model can be convoluted twice. Most models based
on iteration of the Kirchhoff approximation can be grouped under this ansatz, see for instance
[20], although in the literature many variations are observed involving the use of ‘shadowing
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functions’. Here we omit any such functions, and further assume that the rough surface is not
penetrable or the attenuation in the second medium is important so that no significant number
of rays can emerge after penetrating the surface. Evanescent intermediate waves are also not
considered in the formulation here.

3.1. Formulation

Begin by writing the scattering amplitude as

S(Ks ,K i ) = S1(Ks ,K i ) + S2(Ks ,K i ) + · · · (21)

where

S1(Ks ,K i ) =
∫

φ1(Ks ,K i ) exp[−i(Ks − K i ) · X] dx. (22)

and X = x + ηẑ. The second iterative term is then expressed explicitly as a product of the
first

S2(Ks ,K i ) =
∫ S1(Ks ,Kξ) · S1(Kξ,K i ) + S1(Ks , Ǩξ) · S1(Ǩξ,K i )

2qξ

dξ. (23)

Hence

S2(Ks ,K i ) =
∫∫∫

φ2(Ks ,K i; Ǩξ) exp[−i(Ks − Ǩξ) · X1]

× exp[−i(Ǩξ − K i ) · X2] dξ dx1 dx2 +
∫∫∫

φ2(Ks ,K i;Kξ)

× exp[−i(Ks − Kξ) · X1] exp[−i(Kξ − K i ) · X2] dξ dx1 dx2 (24)

where Kξ = ξ + qξ ẑ and the ‘check’ operator indicates a reversal of the sign of the vertical
component of a vector (e.g. Ǩξ = ξ − qξ ẑ). Using (23), one gets a definition of the second
kernel

φ2(Ks ,K i;Kξ) = φ1(Ks ,Kξ) · φ1(Kξ,K i )

2|qξ| . (25)

Note that in the usual Kirchhoff coefficients the incident and the scattered wavenumbers have
their vertical components of opposite signs. The two terms in equation (24) account for both
down- and up-going intermediate waves, respectively, as is apparent from the arguments in
the integrations. It can be shown (see [20]) that the above equations will obtain an ensemble
average form identical to the GO-2 ensemble average (equation (17)) when evaluated in the
high-frequency limit, due to the explicit inclusion of the qξ terms in the intermediate wave
phases and the inclusion of both up- and down-going intermediate waves.

If the kernel functions are chosen to satisfy

φ1(Ks ,K i ) = φT
1 (−K i ,−Ks) (26a)

φ2(Ks ,K i;Kξ) = φT
2 (−K i ,−Ks;−Kξ) (26b)

then the RTA ansatz satisfies the principles of reciprocity, vertical and horizontal shift
invariance (equation (4)). The unknown kernels in (22) can then be determined from first
principles or from matching to fundamental high- and/or low-frequency limits. A first
principle approach can be the surface current integral equation or the Stratton–Chu method
which may lead to cumbersome kernels [13, 15]. Instead the matching approach is pursued.
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3.2. Iterated high-frequency limits

3.2.1. Definitions. To produce agreement with the GO-1 and GO-2 kernel functions, the
RTA kernel functions are required to be

φ1(Ks ,K i ) = K(Ks ,K i )

(Ks − K i ) · ẑ
(27a)

φ2(Ks ,K i;Kξ) = 1

2qξ

K(Ks ,Kξ) · K(Kξ,K i )

(Ks − Kξ) · ẑẑ · (Kξ − K i )
. (27b)

Note in the above that φ1 is defined with an up-going first argument and down-going second
argument; when evaluated with arbitrary arguments the appropriate substitutions should be
made both in the numerator and denominator of the right-hand side of the equation. The sum
of S1 from (22) and S2 from (24) using the kernels (27) is referred to as the KA-2 model
throughout the remainder of this paper.

The tensor multiplication in the second order kernel (for vector scattering problems)
translates the physical fact that a reflected ray could take any possible polarization in the
transition between the two reflection points while the nominal polarizations of the incident
and the scattered waves are imposed by the observer.

Although agreement with GO-1 and GO-2 has been established, the low-frequency limit
of (21) requires examination.

3.2.2. The ‘accidental’ low-frequency limit. In order to verify whether the SPM-1 limit is
reached, the following condition must be checked:

B(Ks ,K i ) = K(Ks ,K i ) + ẑ · (Ks − K i )[φ2(Ks ,K i;K i ) + φ2(Ks ,K i;Ks)]

+ ẑ · (Ks − Ǩ i )[φ2(Ks ,K i; Ǩ i ) − φ2(Ks ,K i; Ǩs)]. (28)

This condition is obtained by simple linearization of (21) with respect to the surface η.
Knowing that

K(K ′,K ′) = 0 (29)

for an arbitrary K ′ leads to the following identities

φ2(Ks ,K i;Ks) = φ2(Ks ,K i;K i ) = 0 (30a)

φ2(Ks ,Ks; Ǩs) = φ2(Ks ,Ks;Ks) = 0. (30b)

for Neumann, Dirichlet and perfectly conducting surfaces. The last equation ensures that the
flat surface response from the local Kirchhoff is not contaminated by the non-local part of the
ansatz in (21). Using these identities in (28),

B(Ks ,K i ) = K(Ks ,K i ) + (qk − q0)φ2(Ks ,K i; Ǩ i ) + (q0 − qk)φ2(Ks ,K i; Ǩs) (31)

where

2(qk − q0)φ2(Ks ,K i; Ǩ i ) = B(Ks ,K i ) − K(Ks ,K i ) (32)

2(q0 − qk)φ2(Ks ,K i; Ǩs) = B(Ks ,K i ) − K(Ks ,K i ) (33)

and therefore the low-frequency limit is formally reached for Dirichlet, Neumann and perfectly
conducting cases. Such a result has been shown in previous works [21, 22]. However,
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additional expansion of the integrands shows that the SPM-2 limit is not achieved by the
model for any of these cases.

It is surprising that the iteration of high-frequency limits used results in convergence
toward the SPM-1 limit. A possible explanation could be based on the fact that in the
Dirichlet, Neumann and perfect conductor boundary conditions the high-frequency Kirchhoff
(GO-1) coincides with the low-frequency Kirchhoff (tangent plane approximation). However,
this coincidence is not observed under general dielectric conditions, so the model developed
remains incomplete for the dielectric case. To improve performance for the dielectric case,
use of a tangent plane formulation seems attractive in proposing the original kernels of the
RTA. However, there are several deficits in the tangent plane approximation with regard to
reciprocity or time reversal properties. Although some manifestly reciprocal formulations
of the tangent plane approximation have been proposed (see for instance equation (4.12) in
[23]), the resulting expressions are cumbersome and complicated. An alternative solution that
avoids these difficulties is proposed in the next section.

4. The non-local weighted curvature approximation

An interesting alternative to a reciprocal tangent plane approximation is the weighted curvature
approximation (WCA) (see equation (24) in [6]). The local WCA yields the proper low
and high-frequency limits while remaining reciprocal and compact. Under the 3D notation
introduced in the previous sections, the local WCA (WCA-1) can be recast as

S(Ks ,K i ) = 1

(Ks − K i ) · ẑ

∫
G(Ks ,K i;∇η) exp[−i(Ks − K i ) · X] dx (34)

where

G(Ks ,K i;∇η) = B(Ks ,K i ) − T (Ks ,K i;−Qz∇η) (35)

T (Ks ,K i;−Qz∇η) = B(K̃s , K̃ i ) − K(K̃s , K̃ i ). (36)

The local WCA is derived as a simplification of the local-curvature approximation (LCA),
which has a more complex form similar to the SSA-2 theory [3]; see [6] for the complete LCA
expressions as well as the definition of the tilt operator in (36).

A non-local model based on an iterated WCA has the form defined in (21) with first- and
second-order kernels

φ1(Ks ,K i ) = G(Ks ,K i;∇η)

(Ks − K i ) · ẑ
(37a)

φ2(Ks ,K i;Kξ) = 1

2qξ

G(Ks ,Kξ;∇η1) · G(Kξ,K i;∇η2)

(Ks − Kξ) · ẑẑ · (Kξ − K i )
. (37b)

Due to the RTA basis of this method, the predicted ensemble average cross sections remain
consistent with the GO-2 basic form. In addition, the non-local WCA (WCA-1+NLWCA-2)
should introduce better treatment of low-frequency limits under general dielectric conditions.
Due to the quadratic nature of the curvature kernel itself (35) [6], it can be shown that the
SPM-1 limit achieved by WCA-1 is not contaminated by the non-local contribution. Thus both
GO-1 and SPM-1 limits are now achieved from local considerations alone, while non-local
effects contribute toward the GO-2 and perhaps the SPM-2 limit. This model is called the
iterated or non-local weighted curvature approximation.
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5. The SPM-2 limit

It is important to check the second-order low-frequency limit (SPM-2) of this iterated model.
For the NLWCA-2 term, the phases in the second-order WCA will not contribute since the
kernels themselves have at lowest order a quadratic dependence on the surface. Hence, by
expanding (37) we get

φ2(Ks ,K i;Kξ) ≈ 1

2qξ

[∇η1 · ∇∇G(Ks ,Kξ; 0) · ∇η1] · G(Kξ,K i; 0)

(Ks − Kξ) · ẑẑ · (Kξ − K i )
(38a)

φ2(Ks ,K i; Ǩξ) ≈ 1

2qξ

G(Ks , Ǩξ; 0) · [∇η2 · ∇∇G(Ǩξ,K i; 0) · ∇η2]

(Ks − Ǩξ) · ẑẑ · (Ǩξ − K i )
. (38b)

When integrating over x1,x2 and ξ the previous kernels will vanish one by one. This leaves
the SPM-2 contribution only coming from WCA-1. However it has been shown that the
WCA-1 fails to reproduce SPM-2 [6]. Although perhaps a third iteration of the RTA could
improve this limitation, such a model would be too costly and is not recommended. Therefore
one must live with the fact that the double scattering WCA does not reproduce the formal
SPM-2 limit.

6. Tilt invariance

Because the WCA-1 has been shown to be tilt invariant [6, 19, 24], it is relevant to check
that the non-local kernel in (37) of NLWCA-2 does not contaminate the local response under
scattering from a slightly tilted, slightly rough surface. In other words, it is desired to show
that the NLWCA-2 term does not contribute in the SPM-1 limit even for a tilted slightly rough
surface.

Let us study the behaviour of the non-local kernel (37) under a slight tilt, where the
following substitution is operated,

η(x) ⇒ η(x) + �a · x (39)

and hence

φ2(Ks ,K i;Kξ) = 1

2qξ

G(Ks ,Kξ;∇η1 + �a) · G(Kξ,K i;∇η2 + �a)

(Ks − Kξ) · ẑẑ · (Kξ − K i )
(40a)

φ2(Ks ,K i; Ǩξ) = 1

2qξ

G(Ks , Ǩξ;∇η1 + �a) · G(Ǩξ,K i;∇η2 + �a)

(Ks − Ǩξ) · ẑẑ · (Ǩξ − K i )
(40b)

and the linearization in η and in �a yield

φ2(Ks ,K i;Kξ) ≈ 1

2qξ

[∇G(Ks ,Kξ; �a) · ∇η1] · G(Kξ,K i; 0)

(Ks − Kξ) · ẑẑ · (Kξ − K i )
(41a)

φ2(Ks ,K i; Ǩξ) ≈ 1

2qξ

G(Ks , Ǩξ; 0) · [∇G(Ǩξ,K i; �a) · ∇η2]

(Ks − Ǩξ) · ẑẑ · (Ǩξ − K i )
. (41b)

These two kernels will cancel each other when inserted into the non-local contribution in (22).
It is therefore demonstrated that WCA-1+NLWCA-2 is tilt invariant up to the first order in
the tilting vector. To our knowledge, the only multiple scattering models in the literature
that ensure tilt invariance are the NLCA in [24], NLSSA with the new kernel in (16) and the
iterated or non-local WCA (WCA-1+NLWCA-2) developed in this paper (37).
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7. Numerical examples

To examine the performance of the models considered in this paper, along with standard local
scattering models, a study was performed of scattering from a one-dimensional sinusoidal
grating under Dirichlet boundary conditions. Results are presented in terms of bistatically
scattered Floquet mode amplitudes in the plane of the grating; these Floquet modes satisfy the
grating relation

k = k0 +
2πn

P
(42)

where n is the mode number. Mode amplitudes (labelled as |E| in the figures) are normalized
such that the sum of the amplitude squared of all mode amplitudes is unity. Both ‘single’
and ‘double’ gratings are considered, where the surface profile z(x) of a ‘single’ grating is
defined as

z(x) = A sin

(
2πx

P

)
(43)

where z(x) is the surface profile, A is the sine wave amplitude, and P its period. For a ‘double’
grating

z(x) = A sin

(
2πx

P

)
+ A2 sin

(
2πx

P2
− �

)
. (44)

In all the results illustrated, the incident wave approaches at an angle of 0.5 radians with
respect to the x axis.

A numerical ‘method of moments’ algorithm was used to provide exact results for
comparison; the algorithm was based on the procedure described in [25], and showed good
convergence at a sample rate of approximately 10 points per wavelength for surface fields.

Figures 1 and 2 plot the results for the case A = 0.5λ, P = 5λ. This case was previously
considered in [4], although information was provided in this reference only in terms of the
level of power conservation observed. Information on power conservation is provided for each
method here in the legends of the figures. Figure 1 includes the local models KA (or GO-1),
SSA-1, SSA-2 [3], LCA [6], and WCA, while figure 2 plots the results for the MLA using
the kernels (6) (NLSSA), (13) (MLM), and (16) (modified NLSSA or MNLSSA). Results
from the RTA are also plotted including the KA-2 (27) and WCA-1+NLWCA-2. This case is
approaching a KA type surface, although the surface amplitude and period remain moderate
on a wavelength scale. Results show the local models to perform very well, with the exception
of the −1 mode where some higher-order scattering effects potentially influence the results.
For this mode the SSA-2, LCA, and WCA-1 show improved performance compared to KA,
but complete agreement is still not achieved by these models. SSA-1 performance is found
inadequate at almost all angles, due to the failure of SSA-1 to reproduce KA. The LCA also
shows poor performance for mode 0, although the reason for this failure is not immediately
clear.

Figure 2 shows the non-local models also to perform well, and to achieve an improved
prediction of the −1 mode in most cases. NLSSA and MNLSSA show very similar
performance, while the MLM is less accurate in general. The NLWCA performs well also,
although in some cases the NLWCA-2 correction moves the original WCA-1 away from the
correct result. KA-2 is shown to produce little change from the original KA predictions, and
the error remains larger than that of other models. These results indicate that the −1 mode
likely has contributions beyond those of a simple ray-tracing algorithm, so that improved
spectral accuracy (such as the SPM-2 limit of NLSSA and MNLSSA) is advantageous in this
case.
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Figure 1. Comparison between rigorous and local approximate models for A = 0.5λ, P = 5λ.
(a) MOM and Kirchhoff, (b) MOM, SSA1 and SSA2, (c) MOM and LCA and (d) MOM and WCA.
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Figure 2. Comparison between rigorous and non-local approximate models for A = 0.5λ, P = 5λ.
(a) MOM and MLM, (b) MOM, NLSSA and MNLSSA, (c) MOM, WCA and WCA+NLWCA-2
and (d) MOM, KA and KA-2.



Two families of non-local scattering models 575

−20 −15 −10 −5 0
−100

−80

−60

−40

−20

0

|E
|2  (

dB
)

(a)

MOM
KA   : 0.893

−20 − 15 −10 −5 0
−120

−100

−80

−60

−40

−20

0
(b)

MOM
SSA1 : 0.726
SSA2 : 0.932

−20 −15 −10 −5 0
−120

−100

−80

−60

−40

−20

0

Mode number

|E
|2  (

dB
)

(c)

MOM
LCA  : 0.93

−20 −15 −10 −5 0
−120

−100

−80

−60

−40

−20

0
(d)

Mode number

MOM
WCA  : 0.913

Figure 3. Comparison between rigorous and local approximate models for A = λ, P = 20λ.
(a) MOM and Kirchhoff, (b) MOM, SSA1 and SSA2, (c) MOM and LCA and (d) MOM and
WCA.
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Figure 4. Comparison between rigorous and non-local approximate models for A = λ, P = 20λ.
(a) MOM and MLM, (b) MOM, NLSSA and MNLSSA, (c) MOM, WCA and WCA+NLWCA-2
and (d) MOM, KA and KA-2.
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Figure 5. Comparison between rigorous and local approximate models for A = λ, P = 20λ, A2 =
0.03λ, P2 = λ, � = π/3. (a) MOM and Kirchhoff, (b) MOM, SSA1 and SSA2, (c) MOM and
LCA and (d) MOM and WCA.
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Figure 6. Comparison between rigorous and local approximate models for A = λ, P = 20λ, A2 =
0.03λ, P2 = λ, � = π/3. (a) MOM and MLM, (b) MOM, NLSSA and MNLSSA, (c) MOM,
WCA and WCA+NLWCA-2 and (d) MOM, KA and KA-2.
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Figures 3 and 4 show similar results for the case A = λ, P = 20λ. In this larger period
case, the RTA models may be expected to show improved performance. Although scattering
exists from modes −37 to 2 in this case, only modes −20 to 2 are plotted due to the extremely
small fields at larger angles. Again the local models are seen to perform very well, although
here mode −4 presents some difficulties and is not well predicted by most models. Figure 4
shows that most of the non-local models also fail to capture this mode, although KA-2 shows
a correction in the right direction. In general, conclusions for this case are similar to those of
figures 1 and 2.

Finally, figures 5 and 6 consider a double grating, with A = λ, P = 20λ,A2 =
0.03λ, P2 = λ, and � = π/3. This case contains both large and small scale surfaces, so that
some approximate multi-scale scattering effects can be observed. In particular, the SPM-1
theory for this surface would indicate a contribution around mode −20 due to the small scale
surface. Results in figure 5 indeed show an increased scattering level around mode −20,
and a complex scattering pattern in general. Again the local models all yield a reasonable
performance, although the KA-1 model shows increased error in the vicinity of mode −20.
All models have difficulty predicting the results for modes more negative than −30. The
non-local models in figure 4 show somewhat improved performance in matching this region,
particularly the KA-2 method. This is in agreement with the expectation that KA-2 captures
the SPM-1 limit for the Dirichlet case.

8. Conclusion

We have analysed two families of non-local scattering models. The first is based on the
Meecham–Lysanov ansatz (MLA). The second family is inspired by iteration of the geometric
optics (GO) and is called the ray tracing ansatz (RTA). For the MLA, the first deficiency
we identified is that the first order geometric optics limit (GO-1) is not attained by NLSSA
contrary to the statement in [4]. As an alternative, we proposed two kernels. The first ensures
both the small perturbation method (SPM-1) and GO-1 limits but with no constraint to the
SPM-2. This new kernel (13) is a generalization and a simplification of the first-order operator
expansion method (OEM-1) in [5, 18] and the Meecham–Lysanov model itself [3]. It is
also possible to derive a more complete kernel as in (16) which for Dirichlet, Neumann, and
perfectly conducting boundaries ensures both the GO-1 and SPM-1 limits as well as SPM-2
and tilt-invariance. It is however interesting to notice that even with this new kernel in (16),
the GO-2 limit will never be reached due to a deficiency in the MLA or NLSSA ansatz itself.

For this reason we moved to the second family of non-local models. We showed that
iteration of the high-frequency Kirchhoff can provide not only GO-1 and GO-2 but also
SPM-1 by accident from the non-local contribution in the Dirichlet, Neumann and perfectly
conducting cases. However under general dielectric conditions the SPM-1 limit is not achieved.
We examined the weighted curvature approximation WCA [6] as an alternative to a general
low-frequency Kirchhoff approximation. A non-local WCA (WCA-1+NLWCA-2) (37) was
developed along the lines of the ray tracing ansatz, and is very powerful since it retains
most limits such as GO-1, GO-2 and SPM-1 as well as staying tilt-invariant, reciprocal and
compact. NLWCA also solves an inconsistency in previous models as to the need for the non-
local correction to retrieve the local SPM-1 limit. The SPM-2 limit is not formally reached
by WCA-1+NLWCA-2 while the GO-2 limit is not reached by the NLSSA even with the
kernel in (16). A study of scattering from sinusoidal gratings provided some indication that
the relative importance of matching the GO-2 or SPM-2 limits can depend on the scattering
problem considered.



578 T Elfouhaily et al

Acknowledgments

We would like to express our gratitude to our colleagues Charles-Antoines Guérin and Marc
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Appendix A. Kirchhoff and SPM kernel definitions and identities

For the Neumann–Dirichlet cases, the K and B functions are

K(k,k0) = ([K2 − k · k0 + qkq0],−[K2 − k · k0 + qkq0]) (A.1a)

B(k,k0) = (2[K2 − k · k0],−2qkq0). (A.1b)

For the perfect conductor case, we have

K(k;k0) =
(

[(K2 + qkq0)k̂ · k̂0 − kk0] K(qk + q0)(k̂ × k̂0) · ẑ

K(qk + q0)(k̂0 × k̂) · ẑ −[(K2 + qkq0)k̂ · k̂0 − kk0]

)
(A.2)

B(k;k0) = 2

(
K2k̂ · k̂0 − kk0 Kq0(k̂ × k̂0) · ẑ

Kqk(k̂0 × k̂) · ẑ −qkq0k̂ · k̂0

)
. (A.3)

The SPM-2 kernel for both cases can be defined as

B2(k,k0; ξ) = B(k, ξ)B(ξ, ξ)B(ξ,k0)

4Qzq
3
ξ

. (A.4)

See [6] for definitions of the polarization vectors in the perfectly conducting case. Note
there is a difference in the normalization between our notation and that of Voronovich [3]
that is essentially a factor of 2qkq0 for the SPM-1 and Kirchhoff coefficients and a factor of
−qkq0/Qz for the SPM-2 coefficient.

The following identities are useful in finding the limits discussed in the paper:

B2(k,k0;k) + B2(k,k0;k0) = B(k,k0) (A.5a)

qkB2(k,k0;k) + q0B2(k,k0;k0) = q2
k + q2

0

qk + q0
B(k,k0) (A.5b)

q0B2(k,k0;k) + qkB2(k,k0;k0) = 2qkq0

qk + q0
B(k,k0) (A.5c)

1

2
[∇B2(k,k0;k) + ∇B2(k,k0;k0)] · QH = qk − q0

qk + q0
K(k,k0) (A.5d )

1

2
[∇B2(k,k0;k) − ∇B2(k,k0;k0)] · QH = B(k,k0) − K(k,k0) (A.5e)

[qk∇B2(k,k0;k) − q0∇B2(k,k0;k0)] · QH

Qz

= B(k,k0) − 4qkq0

(qk + q0)2
K(k,k0) (A.5f )

[q0∇B2(k,k0;k) − qk∇B2(k,k0;k0)] · QH

Qz

= B(k,k0) − 2
(
q2

k + q2
0

)
(qk + q0)2

K(k,k0) (A.5g)

1

2
QH · [∇∇B2(k,k0;k) + ∇∇B2(k,k0;k0)] · QH = 2(B(k,k0) − K(k,k0)) (A.5h)
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1

2
QH · [

q2
k ∇∇B2(k,k0;k) + q2

0∇∇B2(k,k0;k0)
] · QH

= (
q2

k + q2
0

)
(B(k,k0) − K(k,k0)) . (A.5i)

The first equation in (A.5) is a well-known property formally obtainable from the shift
invariance to first order of the SPM-2 itself, see equation (3.16) of [4]. The remaining
equations in (A.5) are rather very complicated to demonstrate in general. With the exception
of the final two equations, we have verified them for Neumann, Dirichlet and perfect conductor
cases. In the general dielectric case, these equations may not hold formally but they could
be used approximately to within the quadratic order in (QH = k − k0). This order of
approximation is often sufficient since the difference between the low and high limits is at
least quadratic in QH , see [6]. The final two equations are valid only up to the quadratic order
in QH even for the Neumann, Dirichlet and perfect conductor cases.
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