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Abstract
This second part presents illustrative examples of the model developed in
the companion paper, which is based on the first- and second-order optics
approximation. The surface is assumed to be Gaussian and the correlation
height is chosen as anisotropic Gaussian. The incoherent scattering coefficient
is computed for a height rms range from 0.5λ to 1λ (where λ is the
electromagnetic wavelength), for a slope rms range from 0.5 to 1 and for
an incidence angle range from 0 to 70◦. In addition, simulations are presented
for an anisotropic Gaussian surface and when the receiver is not located in the
plane of incidence. For a metallic and dielectric isotropic Gaussian surfaces,
the cross- and co-polarizations are also compared with a numerical approach
obtained from the forward–backward method with a novel spectral acceleration
algorithm developed by Torrungrueng and Johnson (2001, JOSA A 18).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this second part, the incoherent scattering coefficient obtained under the one- and second-
order geometric optics approximation is simulated for an anisotropic Gaussian surface and
compared with numerical results [1], for which the height correlation function is assumed
to be Gaussian. Dielectric and metallic surfaces, rms slope ranging from 0.5 to 1 and rms
height ranging from 0.5λ to 1λ, are considered in this study, where λ is the electromagnetic
wavelength. In addition, the incoherent scattering coefficient is computed for incident angles
ranging from normal incidence up to 70◦, for which nonlocal interactions and increased
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Figure 1. Geometric representation of the mean duration of a fade D(zm) for a given height
level zm.
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Figure 2. Incoherent scattering coefficient σVV in VV polarization versus the scattering angle θi

for an isotropic (σsx = σsy) metallic surface. At the top, the incidence angle θi = 0◦, whereas at
the bottom θi = 40◦. On the left, σsx = 1 and kσh = 2π ⇒ σh/λ = 1 (wave number k multiplied
by rms height σh), whereas on the right, σsx = 0.5 and kσh = π ⇒ σh/λ = 0.5. The receiver and
the transmitter are located in the same plane and ϕs = ϕi = 0◦.



Multiple scattering in the high-frequency limit with second-order shadowing function 255

–90 –60 –30 0 30 60 90
0

0.5

1

1.5

2

2.5

3

(a) : θ
i
=0°, σ

sx
=σ

sy
=1, kσ

h
=6.283

θ
s
 in degree

σ V
H

OG1
OG2 Num
OG2 11.13
OG2 20.00
OG2 30.00

–90 –60 –30 0 30 60 90
0

0.5

1

1.5

2

2.5

3

(b) : θ
i
=0°, σ

sx
=σ

sy
=0.5, kσ

h
=3.142

θ
s
 in degree

σ V
H

OG1
OG2 Num
OG2 11.13
OG2 20.00
OG2 30.00

–90 –60 –30 0 30 60 90
0

0.5

1

1.5

2

2.5

3

(c) : θ
i
=40°, σ

sx
=σ

sy
=1, kσ

h
=6.283

θ
s
 in degree

σ V
H

OG1
OG2 Num
OG2 11.13
OG2 20.00
OG2 30.00

–90 –60 –30 0 30 60 90
0

0.5

1

1.5

2

2.5

3

(d) : θ
i
=40°, σ

sx
=σ

sy
=0.5, kσ

h
=3.142

θ
s
 in degree

σ V
H

OG1
OG2 Num
OG2 11.13
OG2 20.00
OG2 30.00

Figure 3. Same variation as figure 2 in VH polarization.

shadowing effects are involved. Simulations are also presented when the surface is anisotropic
unlike papers [1–3].

Whereas the scattering models [4–6] from one-dimensional (1D) may be adequate for
co-polarized scattering, a 2D surface model is required for predicting cross-polarized
scattering. Since backscattering enhancement is related to multiple-scattering effects, cross-
polarized fields should illustrate the backscattering enhancement effect more clearly than
co-polarized fields.

This paper is organized as follows. From [7], in section 2, expressions of the first-
and second-order incoherent scattering coefficients are presented by assuming an anisotropic
Gaussian process. In section 3, the present model is compared with numerical results and the
last section gives concluding remarks.

2. Incoherent scattering coefficient for a Gaussian process

In this section, for the special case of a Gaussian process, the first- and second-order Kirchhoff
approximations presented in the companion paper are summarized. The bistatic incoherent
cross section of waves scattered from two-dimensional rough anisotropic surfaces is then
expressed as

σt = σ1 + σ12 + σ2. (1)
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Figure 4. Same variation as figure 2 but ϕs = {0, 45, 90}◦ as indicated in the legend and
lm = 11.13Lcx .

2.1. Incoherent scattering coefficient in the high-frequency limit

σ1 is referred to as the first-order Kirchhoff term giving the contribution of the single scattering
under the geometric optics assumption ((26) of [7])

σ1 = π |kF̄ 1(K̂ i,K̂s)|2
(qs − qi)2

ps

(
s0

1

)
S1

(
K̂ i,K̂s

∣∣ s0
1

) · (2)

s0
1 ((26a) of [7]) are the surface slopes defined as the specular direction and k0 = 2π/λ

stands for the wave number with λ being the electromagnetic wavelength. F̄ 1(K̂ i , K̂s) is a
square matrix of length 2 related to the polarization terms expressed in appendix A of [7].
{K̂ i , K̂s} are the unitary incident and scattered wave vectors defined as K̂ i = k̂i + q̂i ẑ and
K̂s = k̂s + q̂s ẑ where qi = −k cos θi and qs = k cos θs ·ps

(
s0

1

)
is the surface slope probability

density function expressed for an anisotropic Gaussian process as

ps(s1) = 1

2πσsxσsy

exp

(
− s2

1x

2σ 2
sx

− s2
1y

2σ 2
sy

)
, (3)

where {σsx, σsy} are the rms slope with respect to the directions {x̂, ŷ}. Since the height
correlation function is assumed to be even, the cross-correlation between the slopes {s1x, s1y}
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Figure 5. Same variation as figure 4 but in VH polarization.

is nil. S1
(
K̂ i , K̂s

∣∣ s0
1

)
denotes the average bistatic shadowing function over the surface

elevations and with the knowledge of the slope s0
1. It is given by (48), (49) and (51) of [7]

for ϕs = ϕi, ϕs = ϕi + π and {ϕs �= ϕi, ϕs �= ϕi + π} (transmitter of azimuthal angle ϕi

and receiver of azimuth angle ϕs in different planes), respectively, in which �(K̂) has to be
derived. In [8], a method is addressed for the derivation of �(K̂). For a Gaussian process,
�(K̂) then takes the form

�(K̂) ≡ �(ν) = [exp(−ν2) − ν
√

πerfc(ν)]/(2ν
√

π), and

ν = |cot θ |√
2
[
σ 2

sx(cos ϕ)2 + σ 2
sy(sin ϕ)2

] · (4)

where erfc is the complementary error function.
In the high-frequency limit, the contribution of the cross-Kirchhoff term σ12, related to

the correlation between the first- and second-order scattered field, is equal to zero due to the
shadow.

The second-order scattering coefficient is expressed as the sum of two terms σ2 =
σ2c + σ2a .
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Figure 6. Same variation as figure 2 but σsy �= σsx (σsx = 0.5, σsy = {0.5, 0.7, 0.9} as indicated
in the legend) and lm = 11.13Lcx .

In the high-frequency limit, the incoherent scattering coefficient related to the coincidental
waves (subscript c) is given by ((41) of [7])

σ2c = πk4

16

∫ π/2

0
dθ

∫ π/2

0
dθ ′

∫ 2π

0
dϕ

∫ 2π

0
dϕ′ |F̄ 1m(K̂ i , K̂

′
m, K̂s)|2χt(k − k′) sin θ sin θ ′

(±q ′ − qi)2(±q ′ − qs)2
,

ps

(
s0c

1

)
ps

(
s0c

2

)〈
Sc

(
K̂ i , K̂m, K̂s

∣∣ s0c
1 , s0c

2 , z21
)

exp[mj(q − q ′)z21]
〉

(5)

where the slopes
{
s0c

1,2

}
are given by

s0c
1 = −(k′ − ki )/(mq ′ − qi), s0c

2 = −(k′ − ks)/(mq ′ − qs) and m = ±. (5a)

When m = +, σ2c gives the contribution of the wave positive paths where z21 = z2 −
z1 � 0, whereas for m = −, σ2c gives the contribution of the wave negative paths where
z21 = z2 − z1 < 0. {zi} is the elevation at the point (i) on the surface. F̄ 1m(K̂ i , K̂m, K̂s) =
F̄ 1(K̂ i , K̂m)F̄ 1(K̂−m, K̂s) is a square matrix defined from a matrix product, where F̄ 1
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Figure 7. Same variation as figure 6 but in VH polarization.

related to the polarization terms is expressed in appendix A of [7]. It must be noted that
F̄ 1+(K̂ i , K̂+, K̂s) = F1−(K̂s , K̂−, K̂ i ) which ensures the reciprocity.

The incoherent scattering coefficient related to the anticoincidental waves (subscript a) is
given by ((43) of [7])

σ2a = πk4

8
Re

{∫ π/2

0
dθ

∫ π/2

0
dθ ′

∫ 2π

0
dϕ

∫ 2π

0
dϕ′

× |F̄ 1−(K̂ i , K̂
′
−, K̂s)|2 sin θ sin θ ′ps

(
s0a

1

)
ps

(
s0a

2

)
(q ′ + qs)2(q ′ + qi)2

×χt(k + k′ − ki − ks)
〈
Sa

(
K̂ i , K̂

′
−, K̂s

∣∣ s0a
1 , s0a

2 , z21
)

× exp[ j(q − q ′ − qi − qs)z21]
〉}

, (6)

where

s0a
1 = −(ks − k′)/(qs + q ′), s0a

2 = −(ki − k′)/(qi + q ′). (6a)
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Figure 8. Comparison of the geometric optics approximation denoted as ‘OG1’ (first order), ‘Sh’
(first and second orders with shadow) and ‘Un’ (first and second orders without shadow) with
numerical results [1] referred to as ‘Num’ for {VV (a), VH (b), HV (c), HH (d)} polarizations.
The surface is assumed to be metallic and isotropic. lm = 11.13Lcx, σsy = σsx = 1, kσh = 2π ⇒
σh/λ = 1 and incidence angle θi = 0◦.

2.2. Tapering function

In (5) and (6), the function χt(u) is defined as

χt(u) =
(

k

π

)2 ∫
St (u) exp( ju · r21) dr21. (7)

St (u) is a tapering function which quantifies the fact that the scattered waves at the point
(1) propagate only in a certain distance before being intercepted by the surface at the point (2)
(see figure 4 of [7]). Ishimaru et al [5] set St (u) = exp

(−u2
/
l2
m

)
(which is similar to add

an apodization function) and Bahar et al [6] used St (u) = 	[−lm;lm] = 1 if ‖u‖ ∈ [−lm; lm]
else 0.

For a one-dimensional surface, we compared the incoherent scattering coefficient
according to St (u). The simulations showed that the results are similar for both these functions
St . Thus, for the simulations we chose the one used by Ishimaru et al because in (5) and (6)
the integration over ϕ can be derived analytically (see appendix A). This leads to

χt(u) = (klm)2 exp
(−l2

mu2
/

2
)/

π. (8)
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Figure 9. Same variation as figure 8 but θi = 20◦.

In the above equation, the calculation of χt requires the knowledge of the mean path
length lm. To calculate lm, Ishimaru et al [4, 5] identified this length as the mean duration of a
fade and they showed for a Gaussian process with a Gaussian height correlation that

D(zm)/Lc = π√
2

exp

(
z2
m

2σ 2
h

) [
1 + erf

(
zm√
2σh

)]
and lm = D(zm)|zm∼σh

. (9)

In addition, zm = σh

√
2 which satisfies power conservation for a Dirichlet one-

dimensional Gaussian surface and is consistent with sinusoidal surfaces. This leads to
lm = 11.13Lcx,cy where {Lcx,cy} are the correlation lengths with respect to the directions
{x̂, ŷ}. As depicted in figure 1, zm depends on the angles {θ, ϕ} and the slope rms {σsx, σsy}
are not taken into account in (9). From the second-order shadowing function, appendix C
proposes a method for the derivation of zm = zm(ν) ≡ zm(θ, ϕ, σsx, σsy) where ν is given
from (4).

2.3. Second-order shadowing function

To calculate in (5), the ensemble average 〈· · ·〉 over z21 = z2 − z1, the shadowing effect is
assumed to be statistically independent of exp[mj(q − q ′)z21] leading to
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Figure 10. Same variation as figure 8 but θi = 40◦.

〈
Sc

(
K̂ i , K̂m, K̂s

∣∣ s0c
1 , s0c

2 , z21
)

exp[mj(q − q ′)z21]
〉

= 〈
Sc

(
K̂ i , K̂m, K̂s

∣∣ s0c
1 , s0c

2 , z21
)〉〈exp[mj(q − q ′)z21]〉, (10)

where 〈exp[mj(q − q ′)z21]〉 = exp
[−(q − q ′)2σ 2

h

]
, for which σ 2

h is the height variance. This
assumption is analysed in appendix B and leads to an overestimation of the modulus.

For the positive path (m = +), the average shadowing function 〈Sc〉 is given by (55) and
(57) of [7] for ϕs = ϕi and {ϕs �= ϕi, ϕs �= ϕi + π}, respectively. For ϕs = ϕi + π, 〈Sc〉 is
similar to 〈Sc〉 obtained for ϕs = ϕi where the ranges over the scattering angle θs are given
by (49) of [7]. Since the surface is assumed to be statistically even, we get for the negative
path (m = −) 〈Sc〉 = S2−

(
K̂ i , K̂−, K̂s

∣∣ s0c
1 , s0c

2

) = S2+
(
K̂s , K̂+, K̂ i

∣∣ s0c
1 , s0c

2

)
, which is

similar to the transposition of the transmitter with the receiver.
Applying the same way as previously for the derivation of 〈· · ·〉 in (5), we have

〈Sa exp[ j(q − q ′ − qi − qs)z21]〉
≈ S2−

(
K̂ i , K̂−, K̂s

∣∣ s0a
1 , s0a

2

)〈exp[ j(q − q ′ − qi − qs)z21]〉
= S2−

(
K̂ i , K̂

′
−, K̂s

∣∣ s0c
1 , s0c

2

)
exp

[−(q − q ′ − qi − qs)
2σ 2

h

]
. (11)

We can note that S2−
(
K̂ i , K̂

′
−, K̂s

∣∣ s0a
2 , s0c

2

) = S2−
(
K̂ i , K̂

′
−, K̂s

∣∣ s0c
1 , s0c

2

)
because

there is no restriction over the surface slopes.
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Figure 11. Same variation as figure 8 but θi = 70◦.

3. Illustrative examples

This section is devoted to the comparison of the second-order geometric optics approximation
referred to as OG2 with numerical results obtained from the forward–backward method with
a novel spectral acceleration algorithm developed by Torrungrueng and Johnson [1].

3.1. Simulations of OG2 and first-order incoherent scattering coefficient denoted as OG1

In what follows, the simulation parameters are summarized in table 1 where a metallic Gaussian
anisotropic surface is considered with a height correlation assumed to be Gaussian.

3.1.1. Comparison for a metallic isotropic surface in the incidence plane where ϕs = ϕi = 0◦.
In figure 2, the incoherent scattering coefficient σVV in VV polarization computed from
the second-order geometric optics approximation (denoted as OG2) is plotted versus the
scattering angle θs for an isotropic (σsx = σsy ⇒ Lcx = Lcy) metallic surface. At the top,
the incidence angle θi = 0◦, whereas at the bottom θi = 40◦. On the left, σsx = 1 and
kσh = 2π ⇒ σh/λ = 1 (wave number k multiplied by rms height σh ), whereas on the
right, σsx = 0.5 and kσh = π ⇒ σh/λ = 0.5. OG1 gives the contribution of the first
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Table 1. Simulation parameters of figures 2–7. The surface is assumed to be Gaussian with an
anisotropic height correlation also assumed to be Gaussian (σsx,sy = σh

√
2/Lcx,cy). θi is the

incidence angle, {σsx, σsy} are the rms slopes defined along the {x̂, ŷ} directions, σh/λ is the ratio
of the rms height σh to the electromagnetic wavelength λ and {Lcx, Lcy} are the correlation lengths
along the {x̂, ŷ} directions. For all figures, azimuthal direction of the emitter is ϕi = 0◦ and a
metallic surface is considered.

θ◦
i ϕ◦

s σsx σsy σh/λ lm/Lcx Polarization

Figure 2(a) 0 0 1 1 1 11.13, 20, 30 VV
Figure 3(a) 0 0 1 1 1 11.13, 20, 30 VH
Figure 2(b) 0 0 0.5 0.5 0.5 11.13, 20, 30 VV
Figure 3(b) 0 0 0.5 0.5 0.5 11.13, 20, 30 VH
Figure 2(c) 40 0 1 1 1 11.13, 20, 30 VV
Figure 3(c) 40 0 1 1 1 11.13, 20, 30 VH
Figure 2(d) 40 0 0.5 0.5 0.5 11.13, 20, 30 VV
Figure 3(d) 40 0 0.5 0.5 0.5 11.13, 20, 30 VH

Figure 4(a) 0 0, 45, 90 1 1 1 11.13 VV
Figure 5(a) 0 0, 45, 90 1 1 1 11.13 VH
Figure 4(b) 0 0, 45, 90 0.5 0.5 0.5 11.13 VV
Figure 5(b) 0 0, 45, 90 0.5 0.5 0.5 11.13 VH
Figure 4(c) 40 0, 45, 90 1 1 1 11.13 VV
Figure 5(c) 40 0, 45, 90 1 1 1 11.13 VH
Figure 4(d) 40 0, 45, 90 0.5 0.5 0.5 11.13 VV
Figure 5(d) 40 0, 45, 90 0.5 0.5 0.5 11.13 VH

Figure 6(a) 0 0 0.5 0.5, 0.7, 0.9 1 11.13 VV
Figure 7(a) 0 0 0.5 0.5, 0.7, 0.9 1 11.13 VH
Figure 6(b) 0 0 0.5 0.5, 0.7, 0.9 0.5 11.13 VV
Figure 7(b) 0 0 0.5 0.5, 0.7, 0.9 0.5 11.13 VH
Figure 6(c) 40 0 0.5 0.5, 0.7, 0.9 1 11.13 VV
Figure 7(c) 40 0 0.5 0.5, 0.7, 0.9 1 11.13 VH
Figure 6(d) 40 0 0.5 0.5, 0.7, 0.9 0.5 11.13 VV
Figure 7(d) 40 0 0.5 0.5, 0.7, 0.9 0.5 11.13 VH

order. In the legend, ‘Num’ indicates that the mean path length lm is derived numerically from
appendix C, else it is equal to lm/Lc = {11.13, 20, 30} as mentioned in the legend. In figure 3,
the same variation is represented in VH polarization. Since for a metallic surface the Fresnel
coefficients obey to |RV| = |RH| = 1, the components in HV and HH polarizations are not
displayed (σHH = σVV, σVH = σHV).

As expected, an enhancement is observed in the backscattering direction provided by
the contribution of the anticoincidental waves. However, for figures 2(d) and 3(d) any peak
is observed in the backscattering direction. The results computed with lm = 11.13Lcx are
similar to those obtained when lm is determined numerically. As lm increases, the magnitude
increases weakly whereas the angular width of the peak varies insignificantly. Therefore in
what follows, we will set lm = 11.13Lc.

As depicted in figure 3, since the azimuthal angles ϕs = ϕi , the contribution of OG1 in
VH polarization is nil. This shows that the backscattering enhancement effect is related to the
multiple scattering and we can observe that the ratio σVH/σVV is of the order 0.5.

3.1.2. Comparison for a metallic isotropic surface where the transmitter is out of the incidence
plane. In figures 4 and 5, same variation as in figures 2 and 3 is plotted for VV and VH
polarizations with ϕs = {0, 45, 90}◦ (indicated in the legend), ϕi = 0◦ and lm = 11.13Lcx .
As ϕs increases, the magnitude decreases for VV polarization whereas it increases for VH
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Figure 12. Comparison of the geometric optics approximation denoted as ‘OG1’ (first order),
‘Sh’ (first and second orders with shadow) and ‘Un’ (first and second orders without shadow) with
numerical results [1] referred to as ‘Num’ for {VV (a), VH (b), HV (c), HH (d)} polarizations.
The surface is assumed to be metallic and isotropic. lm = 11.13Lcx, σsy = σsx = 0.5, kσh =
π ⇒ σh/λ = 0.5 and incidence angle θi = 20◦.

polarization because the first-order contribution becomes significant. However, for any
polarization and for θi = 40◦, when ϕs increases the level and the angular width of the
backscattering peak decrease noticeably.

3.1.3. Comparison for a metallic anisotropic surface in the incidence plane where ϕs =
ϕi = 0◦. In figures 6 and 7, same variation as in figures 2 and 3 is represented for VV and
VH polarizations with σsy = {0.5, 0.7, 0.9} (indicated in the legend), lm = 11.13Lcx, ϕs = 0◦

and σsx = 0.5. When σsy increases, the patterns increase for all scattering angles for the VH
polarization, whereas for grazing scattering angles, the patterns become smaller for the VV
polarization.

3.2. Comparison with numerical results for a Gaussian isotropic surface in the incidence
plane where ϕs = ϕi = 0◦

The simulation parameters are summarized in table 2. The numerical results are provided
by Torrungrueng and Johnson [1], for which the height correlation is considered as Gaussian



266 C Bourlier and G Berginc

Table 2. Simulation parameters of figures 8–19. The surface is assumed to be Gaussian with
an isotropic height correlation also assumed to be Gaussian (σsx = σh

√
2/Lcx with σsx = σsy

and Lcx = Lcy ). θi is the incidence angle, σsx is the rms slope defined along the x̂ direction,
σh/λ is the ratio of the rms height σh to the electromagnetic wavelength λ and Lcx = λ

√
2 is the

correlation length along the x̂ direction. For all figures, the four polarizations {VV, VH, HV, HH}
are depicted and the emitter and the transmitter are located in the same plane where ϕs = ϕi = 0◦.

θi σsx σh/λ Permittivity εr

Figure 8 0◦ 1 1 i∞
Figure 9 20◦ 1 1 i∞
Figure 10 40◦ 1 1 i∞
Figure 11 70◦ 1 1 i∞
Figure 12 20◦ 0.5 0.5 i∞
Figure 13 20◦ 1/

√
2 1/

√
2 i∞

Figure 14 70◦ 0.5 0.5 i∞
Figure 15 70◦ 1/

√
2 1/

√
2 i∞

Figure 16 20◦ 1 1 10 + i10
Figure 17 60◦ 1 1 10 + i10
Figure 18 20◦ 1 1 38 + i40
Figure 19 60◦ 1 1 38 + i40

and the correlation length Lcx = Lcy = λ
√

2 where λ is the electromagnetic wavelength.
The purpose of this subsection is to compare our model with numerical results based on the
forward–backward method with a novel spectral acceleration algorithm.

3.2.1. Case of a metallic surface. In figure 8, the geometric optics approximation denoted
as ‘OG1’ (first-order), ‘Sh’ (first and second orders where the shadowing effect is taken
into account) and ‘Un’ (first and second orders where the shadowing effect is omitted) is
compared with numerical results [1] referred to as ‘Num’ for {VV (a), VH (b), HV (c), HH (d)}
polarizations. The mean path length lm = 11.13Lcx , the rms slopes σsy = σsx = 1, the product
kσh = 2π ⇒ σh/λ = 1 and the incidence angle θi = 0◦. In figures 9 and 10, the same variation
is represented for θi = {20, 40}◦, respectively.

As the incident angle increases, the overall incoherent scattering coefficient level tends
to decrease. The deviation between the numerical results and OG2 decreases when the
incident angle increases since the contribution of the higher order scattering diminishes and
the difference is less for the co-polarizations.

In figure 12, the geometric optics approximation denoted as ‘OG1’ (first order), ‘Sh’
(first and second orders where the shadowing effect is taken into account) and ‘Un’ (first
and second orders where the shadowing effect is omitted) is compared with numerical
results [1] referred to as ‘Num’ for {VV (a), VH (b), HV (c), HH (d)} polarizations. lm =
11.13Lcx, σsy = σsx = 0.5, kσh = π ⇒ σh/λ = 0.5 and θi = 20◦. In figure 13, the same
variation is represented with σsy = σsx = 1/

√
2, k0σh = π

√
2 ⇒ σh/λ = 1/

√
2. As shown

in table 2, for figures 9, 12 and 13, the incidence angle is θi = 20◦. For these figures, when
the rms slope decreases (or kσh decreases) better agreement between the numerical data and
OG2 model is obtained for the co-polarizations and the peak level weakly decreases.

In figures 14 and 15, the same variation is plotted as in figures 12 and 13 with θi = 70◦,
respectively. As shown in table 2, for figures 11, 14 and 15, the incidence angle is θi = 70◦.
Comparing these figures with figures 9, 12 and 13 where θi = 20◦, we can observe that
when θi increases better agreement between OG2 and numerical results is obtained for
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Figure 13. Same variation as figure 12 but σsy = σsx = √
2, k0σh = π

√
2 ⇒ σh/λ = 1/

√
2.

co-polarizations. Moreover, for figures 11(d), 14(d) and 15(d) in HH polarization, around the
specular direction numerical results exhibit more scattered energy than the OG2 model.

From figures 8–15, when the shadowing effect is included the level decreases weakly
around the backscattering direction except for θi = 70◦, where the shadow is needed.

3.2.2. Case of a dielectric surface. In figures 16 and 17, the geometric optics
approximation denoted as ‘OG1’ (first-order), ‘Sh’ (first and second orders where the
shadowing effect is taken into account) and ‘Un’ (first and second orders where the
shadowing effect is omitted) is compared with numerical results [1] referred to as ‘Num’
for {VV (a), VH (b), HV (c), HH (d)} polarizations. The surface is isotropic and dielectric
with εr = 10 + i10. lm = 11.13Lcx, σsy = σsx = 1, kσh = 2π ⇒ σh/λ = 1 and incidence
angle θi = 20◦. In figures 18 and 19, the same variation as in figures 16 and 17 is displayed
with εr = 38 + i40. From these figures and figure 9 where θi = 20◦ and εr = i∞, we can see
that the overall bistatic incoherent scattering coefficient level increases as the surface material
becomes denser (|εr | increases) because the modulus of the Fresnel coefficients increases. In
addition, when |εr | decreases the agreement between the OG2 model and numerical results
becomes better since the contribution of the higher order reflection is less important. As
previously mentioned, the shadowing effect can be omitted.
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Figure 14. Same variation as figure 12 but θi = 70◦.

4. Conclusion

We present an analytical theory for polarimetric scattering by 2D dimensional anisotropic
Gaussian surface. The model is based on the first- and second-order optics approximations
where the shadowing effect is taken into account within the first- and second-order illumination
functions. The computation of the incoherent scattering coefficient then required only three-
fold integrations allowing us to have a small computer time. In addition, this model predicts
the backscattering enhancement phenomenon for a slope rms range from 0.5 to 1 and a height
rms range from 0.5λ to 1λ (where λ is the electromagnetic wavelength).

The simulations show that the cross-polarizations exhibit energy although there is no first-
order contribution. The backscattering peak level is related to the difference of the azimuthal
directions ϕs −ϕi between the receiver and the transmitter. As incident angle increases, smaller
backscattering enhancement effects are observed, even when the very rough and large-slope
surfaces are considered. The incoherent scattering coefficient tends to increase as surfaces
become denser since it is expressed from the Fresnel coefficients. For moderate incident
angles, we can observe that the shadowing effect can be neglected. However, if the shadow
is taken into account, the level decreases weakly around the backscattering direction and for
grazing incident angle the shadow must be included.
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Figure 15. Same variation as figure 13 but θi = 70◦.

From the numerical results, a general conclusion of the applicability of the method can
be the following. For rms slope equal to 1, the model can be applied for incident angles θi,l

greater than 40◦, for which the higher order contributions vanish. This means that if the rms
slope diminishes, then the lower limit θi,l should decrease. From the simulations, this point
is not verified (for instance, see figure 12) since kσh is not large enough to use the geometric
optics approximation. Thus, the first restriction of the model seems to be that kσh must be
greater that 2π . According to the surface slope, greater the rms slope, larger the incident angle,
in order to eliminate the higher order contributions. For a dielectric surface, θi,l decreases
when |εr | decreases because a part of energy is transmitted in the lower medium leading to
the higher order contributions vanishing more quickly.
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Appendix A. Calculation of the integration over the azimuthal direction ϕ

The computation of the coincidental σ2c and anticoincidental σ2a contributions given by (5)
and (6) require four-fold integrations over {θ, θ ′, ϕ, ϕ′}. By using (8) we can calculate the
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Figure 16. Comparison of the geometric optics approximation denoted as ‘OG1’ (first order)
and ‘OG2’ (first and second orders) with numerical results [1] referred to as ‘Num’ for
{VV (a), VH (b), HV (c), HH (d)} polarizations. The surface is assumed to be dielectric with
εr = 10 + i10 and isotropic. lm = 11.13Lcx, σsy = σsx = 1, kσh = 2π ⇒ σh/λ = 1 and
incidence angle θi = 20◦.

integration over ϕ′ where u = k − k′, for the coincidental waves and u = k + k′ − ki − ks ,
for the anticoincidental waves. Thus, substituting (8) into either (5) or (6), the integral over ϕ′

is written as

� = (k0lm)2

π

∫ 2π

0
exp

{
− l2

m

2
[(kx + α)2 + (ky + β)2]

}
dϕ, (A1)

where

α = −k′
x, β = −k′

y for the coincidental waves, (A2)

α = k′
x − kix − ksx, β = k′

y − kiy − ksy for the anticoincidental waves. (A3)

Using the expressions of the components of {kix,sx,iy,sy} and {k′
x,y}, (A1) takes the form

� = (k0lm)2

π
exp

{
− l2

m

2
[(sin θ ′)2 + α2 + β2]

}

×
∫ 2π

0
exp

[−l2
m(α2 + β2)1/2 sin θ ′ cos(ϕ − χ)

]
dϕ, (A4)
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Figure 17. Same variation as figure 16 but θi = 60◦.

where tan χ = β/α. Using the following relation:

J0(x) = 1

2π

∫ 2π

0
exp[ jx cos(ϕ − χ)] dϕ, (A5)

where J0 is the Bessel function of the first kind and zero order, leads to

� = 2(k0lm)2 exp

{
− l2

m

2
[(sin θ ′)2 + α2 + β2]

}
I0

(
l2
m[α2 + β2]1/2 sin θ ′). (A6)

I0(x) = J0( jx) is the modified Bessel function of the first kind and zero order. The
computation of {σ2c, σ2a} now requires three-fold numerical integrations.

Appendix B. Study of the assumption used for the calculation of the ensemble average

To study assumption (10), the following expected value is computed:

�m = 〈
Sc

(
K̂ i , K̂m, K̂s

∣∣ s0c
1 , s0c

2 , z21
)

exp( jαz2l )
〉

=
∫ ∞

−∞
dz1

∫ z2u

z2l

exp[ jα(z2 − z1)]S2m

(
K̂ i , K̂m, K̂s

∣∣ s0c
1 , s0c

2 , z21
)
ph(z1, z2) dz2, (B1)

where ph(z1, z2) is the height joint distribution and S2m

(
K̂ i , K̂m, K̂s

∣∣ s0c
1 , s0c

2 , z21
)

is the
second-order statistical shadowing function. In addition, for m = +, {z2l = z1, z2u = ∞} and
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Figure 18. Same variation as figure 16 but εr = 38 + i40.

for m = −, {z2l = −∞, z2u = z1}. Thus, for a Gaussian process, we have for m = + with the
variable transformations hi = zi/(σh

√
2) (σh is the rms height)

�+ = 1

π

∫ ∞

−∞
dh1

∫ ∞

h1

exp[ jα
√

2σh(h2 − h1)] exp
(−h2

1 − h2
2

)
×S2+

(
K̂ i , K̂+, K̂s

∣∣ s0c
1 , s0c

2 , h21
)

dh2, (B2)

with

for φs = φi, S2+
(
K̂ i , K̂+, K̂s

∣∣ s0c
1 , s0c

2 , h21
)

(B3)

=
[
1 − erfc(h1)

2

]�(K̂ i )

(
1 −

{
[1 − erfc(h1)/2]

[1 − erfc(h2)/2]

}�(K̂+)
) [

1 − erfc(h2)

2

]�(K̂s )

where θs ∈ [0;π/2], (B4)

[
1 − erfc(h1)

2

]�(K̂ i )

(
1 −

{
[1 − erfc(h1)/2]

[1 − erfc(h2)/2]

}�(K̂+)
)

where θs ∈ [−θi; 0[, (B5)
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Figure 19. Same variation as figure 17 but εr = 38 + i40.

[
1 − erfc(h1)

2

]�(K̂ i )

(
1 −

{
[1 − erfc(h1)/2]

[1 − erfc(h2)/2]

}�(K̂+)
)

where θs ∈ [−π/2;−θi[.

(B6)

� is expressed from (4). Now, assuming in (B2) that the shadow is statistically independent
of exp( jαz21), we get

�+ = 〈
S2+

(
K̂ i , K̂+, K̂s

∣∣ s0c
1 , s0c

2 , z21
)〉〈exp( jαz21)〉

= S2+
(
K̂ i , K̂+, K̂s

∣∣ s0c
1 , s0c

2

)
exp

(−α2σ 2
h

)
, (B7)

where S2+
(
K̂ i , K̂+, K̂s

∣∣ s0c
1 , s0c

2

)
is given by (55) of [7] for ϕs = ϕi . Therefore, the expected

value is given either by (B2), computed numerically, or (B7) computed analytically. It
depends on {�(K̂ i ),�(K̂+),�(K̂s)} and αh = ασh. To reduce the number of freedom
degrees for the simulations, we set {�(K̂ i,s)} ≈ {0}, which means that the transmitter
and the receiver illuminate the whole surface. These approximations can be used if νi,s =
|cot θi,s |

/{
2
[
σ 2

sx(cos ϕi)
2 + σ 2

sy(sin ϕs)
2
]}1/2

is larger than 1.5 (� = 0.003). For instance,

for rms slopes
[
σ 2

sx(cos ϕi)
2 + σ 2

sy(sin ϕs)
2
]1/2 = {0.5, 1}, we must have {|θi,s |} � {43, 25}◦,

respectively.
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Figure B1. Numerical (circle and cross curves depict its real and imaginary parts, respectively)
and analytical (full curve) ensemble averages versus the parameter ν.

In figure B1, the real and imaginary parts of the ensemble average (B2) are compared with
analytical equation (B7), which is real, versus the parameter ν with αh = {0.1, 0.5, 1, 2}. One
can see that for ν greater than 1.5 (corresponding to θ close to 0◦, or rms slope small), �+ tends
towards zero, since the probability that the ray emanating from the first reflection intercepts
the surface is insignificant. For small values of αh, there is a good agreement between the real
part of the numerical results and the analytical ones, while when αh increases, the deviation
between the two quantities increases, and the imaginary part is appreciable. In conclusion,
using (B7) leads to an overestimation of the real part of �+ and the imaginary part is equal
to zero. Nevertheless, for the simulations (B7) is applied because using (B1) involves two
additional numerical integrations which strongly increase the computer time.

Appendix C. Calculation of the mean path length

In this appendix, a method is presented to calculate zm as functions of the angles {θ, ϕ}
and of the slope rms {σsx, σsy} defined according to the {x̂, ŷ} directions. From figure 1,
we can write

zm = 〈z2 − z1〉 =
∫ ∞

−∞
dz1

∫ z2u

z2l

S2m(K̂ i , K̂m, K̂s , z2, z1)(z2 − z1)ph(z1, z2)

〈S2m(K̂ i , K̂m, K̂s , z2, z1)〉
dz2, (C1)
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Figure C1. Ratio lm/Lc defined as the mean path length over the correlation length versus the
angle θ . The rms slope σsx = 1 and θs = θi = {0, 20, 40, 60}◦ with ϕi = ϕs = ϕ = 0.

where ph(z1, z2) is the height joint distribution and S2m(K̂ i , K̂m, K̂s , z2, z1) is the second-
order statistical shadowing function. In addition, for m = +, {z2l = z1, z2u = ∞} and for
m = −, {z2l = −∞, z2u = z1}. Neglecting the shadow provided by both the transmitter
and the receiver (θi = θs = 0◦ ⇒ �(K̂ i ) = �(K̂s) = 0), and considering an uncorrelated
Gaussian process, we have from [7] for the ray positive path

z+

σh

√
2

= 2[1 + �(K̂+)]

�(K̂+)

∫ ∞

−∞
dh1

∫ ∞

h1

{
1 −

[
1 − erfc(h1)/2

1 − erfc(h2)/2

]�(K̂+)
}

(h2 − h1)

× exp
(−h2

1 − h2
2

)
dh2, (C2)

where � is given by (4). Therefore, z+/(σh

√
2) depends on {θ, ϕ, σsx, σsy} within ν expressed

from (4). In figure C1, the ratio l+/Lc computed from (C2) and (9) is plotted versus the
angle θ . The full curve is obtained when θi = θs = 0◦ corresponding to (C2), whereas for the
other curves, we have θs = θi = {20, 40, 60}◦ where S2+(K̂ i , K̂+, K̂s , z2, z1) is performed
from (55) of [7]. In addition, the azimuthal angles ϕi = ϕs = ϕ = 0 and σsx = 1 which means
that (σsx cos ϕ)2 + (σsy sin ϕ)2 = σ 2

sx . We observe that {lm/Lc} decreases when the {θ, θi,s}
angles increase since the ratio of the illuminated surface diminishes. There is no discrepancy
between the results computed for θi,s = {0, 20}◦, because the shadowing effect can be omitted.
Indeed, for this case, νi,s = {4051, 1.9} and �(νi,s) = {0, 0.0003}, which is much smaller
one. Nevertheless, for θi,s = 40◦, we observe a weakly difference, since �(νi,s) = 0.05. For
the simulations of the incoherent scattering coefficient, (C2) is used.
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