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Abstract
In this paper the first- and second-order Kirchhoff approximation is applied
to study the backscattering enhancement phenomenon, which appears when
the surface rms slope is greater than 0.5. The formulation is reduced to
the geometric optics approximation in which the second-order illumination
function is taken into account. This study is developed for a two-dimensional
(2D) anisotropic stationary rough dielectric surface and for any surface slope
and height distributions assumed to be statistically even. Using the Weyl
representation of the Green function (which introduces an absolute value over
the surface elevation in the phase term), the incoherent scattering coefficient
under the stationary phase assumption is expressed as the sum of three
terms. The incoherent scattering coefficient then requires the numerical
computation of a ten- dimensional integral. To reduce the number of numerical
integrations, the geometric optics approximation is applied, which assumes
that the correlation between two adjacent points is very strong. The model is
then proportional to two surface slope probabilities, for which the slopes would
specularly reflect the beams in the double scattering process. In addition, the
slope distributions are related with each other by a propagating function, which
accounts for the second-order illumination function. The companion paper
is devoted to the simulation of this model and comparisons with an ‘exact’
numerical method.

1. Introduction

One of the most interesting phenomena associated with rough-surface scattering is the
backscattering enhancement effect [1]. This phenomenon is associated with the appearance
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of a well-defined peak in the backscattering direction of the intensity of the incoherently
scattered component of the electromagnetic field. Enhanced backscattering has been observed
experimentally [2–5] and numerically [6–8] from the numerical Monte Carlo method. The
enhanced backscattering phenomenon can involve surfaces with relatively large slopes for
which predictions of the standard Kirchhoff approximation and of the small perturbation
method of first order are inaccurate, because of the small slope limitations of these approximate
theories. However, other approximate theories such as a higher-order Kirchhoff approximation
[9], the IEM (integral equation model) [10], full-wave method [11] for surfaces with large slope
have been developed to explain the backscattering enhancement phenomenon. They remain
restricted to their domains of validity and the random surface is assumed to be Gaussian as
the numerical method. In addition, these analytical theories include the shadowing effects
from the shadowing function with single reflection. Recently, Bourlier et al gave a rigorous
formulation of the shadowing effect with double reflection [12].

In this paper, for any random two-dimensional (2D) anisotropic dielectric surfaces
assumed to be statistically even, the incoherent scattering coefficient is derived from the first-
and second-order Kirchhoff approximation reduced to the geometric optics approximation.
Moreover, the second-order shadowing function is included. The formulation is based on the
work of Ishimaru et al [9] with the following differences:

• From the Weyl representation, Ishimaru et al expanded the Green function over the
difference of the horizontal distance |x2 − x1|, whereas we expand it over the height
difference |z2 − z1| such as the IEM model [13, 14].

• For the calculation of the second-order illumination function, Ishimaru et al used the
shadowing function with single reflection from a geometrical procedure, whereas we use
a recently published rigorous formulation [12].

• Ishimaru et al assumed a Gaussian process for the surface, whereas our formulation is
valid for any random process.

• Ishimaru et al assumed an isotropic surface, whereas we consider an anisotropic surface.
• Ishimaru et al neglected the cross Kirchhoff term whereas we derive its contribution.

The paper is organized as follows. In section 2, the first- and second-order Kirchhoff
approximation is addressed and in section 3, the incoherent scattering coefficient is derived
under the geometric optics approximation for any random process. In section 4, the shadowing
effect is incorporated in the incoherent scattering coefficient and the last section gives
concluding remarks. In the companion paper, the model will be simulated for co- and cross
polarizations and will be compared with an ‘exact’ numerical method.

2. Formulation of the first- and second-order Kirchhoff approximations

In this section, the first- and second-order Kirchhoff approximations combined with the
stationary phase approximation are presented to calculate the bistatic cross-section of waves
scattered from two- dimensional randomly rough surfaces. In the first and second subsections,
the first- and second-order Kirchhoff fields are addressed and in the last subsection the average
scattered power is performed.

2.1. First-order Kirchhoff approximation

The first-order Kirchhoff approximation has been studied extensively in the past. Here a brief
summary is presented.
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Figure 1. First-order Kirchhoff approximation.

Figure 2. Geometry of the problem for the first-order Kirchhoff approximation.

With the Kirchhoff approach, the scattered field is written in terms of the tangential
field on a rough surface (see figure 1). The surface field is then approximated by the field
that would be present if the rough surface was replaced by a planar surface tangential to the
point of interest. This means that the surface total scattered field can be expressed from the
incident field Ei = E0â exp( jK i · R1) and the Fresnel coefficients {FV , FH } for V and H
polarizations, respectively. â is the unitary polarization vector of the incident field of direction
K i . The Fresnel coefficients are determined with an angle θ1 = −arccos(N̂ 1 · K̂ i ) where
K̂ i = K i/k0, for which k0 is the incident wavenumber. N̂ 1 is the unitary vector normal to
the surface.

The total scattered field in the far-field zone is then expressed as follows [15]:

Es = jk0E0

∫
F (N̂ 1, K̂ i , K̂s)G(R1,R) exp( jK i ·R1) dr1, (1)

where

F (N̂ 1, K̂ i , K̂s) = K̂s ∧ [(1 + FH)(â · t̂)(N̂ 1 ∧ t̂) − (1 − FV )(N̂ 1 · K̂ i )(â · d̂)t̂]

+ K̂s ∧ K̂s ∧ [(1 + FV )(â · d̂)(N̂ 1 ∧ t̂) + (1 − FH)(N̂ 1 · K̂ i )(â · t̂)t̂], (1a)

and

R1 = x1x̂ + y1ŷ + z1ẑ = r1 + z1ẑ. (1b)

The unitary vectors {t̂, d̂} are defined as t̂ = K̂ i ∧ N̂ 1/‖K̂ i ∧ N̂ 1‖, d̂ = K̂ i ∧ t̂ and
G(R1,R) denotes the scalar Green function, which can be approximated in the far-field zone
as

G(R1,R) = exp( jk0R0 − jKs · R1)/(4πR0), (2)

where R0 range from the surface to the receiver.
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The stationary phase method is commonly used to evaluate the scattered field over a
rough surface. This approach assumes that the major contribution of the scattered field from
the rough surface comes from the regions around the specular direction. This means that the
normal to the surface N̂ 1 = N̂ 10 becomes independent of the surface slopes

N̂ 10 = (Ks − K i )/‖Ks − K i‖. (3)

Let v̂i , ĥi be unitary polarization vectors for the incident and horizontal waves,
respectively. Let v̂s , ĥs be the corresponding polarization vectors for the scattered waves.
The unitary vectors {K̂ i , ĥi , v̂i , K̂s , ĥs , v̂s} (see figure 2) are defined as follows [15]:

K̂ i = sin θi cos ϕix̂ + sin θi sin ϕi ŷ − cos θi ẑ, ĥi = −sin ϕix̂ + cos ϕi ŷ, v̂i = ĥi ∧ K̂ i , (4)

and

K̂s = sin θs cos ϕsx̂ + sin θs sin ϕs ŷ + cos θs ẑ, ĥs = −sin ϕsx̂ + cos ϕs ŷ, v̂i = ĥs ∧ K̂s . (5)

When the incident wave is horizontally polarized, in (1a) â = ĥi . The co- and cross
scattered fields are then given by Ehihs

s = ĥs · Ês , and Ehivs
s = v̂s · Es , respectively. In the

same way where â = v̂i , E
vihs
s = ĥs · Es and Evivs

s = v̂s ·Es are obtained. Substituting (3)
into (1a) and (2) into (1), according to the polarization states of the incident i = {vi, hi} and
scattered s = {vs, hs} fields, the components of the scattered field are

Ei→s
s = jk0 exp( jk0R0)

4πR0
E0I1F̄ 1(K̂ i , K̂s), (6)

where

I1 =
∫

�1(r1) exp[−j (Ks − K i ) · R1] dr1. (6a)

The square matrix F̄ 1(K̂ i , K̂s) of length 2 is given in appendix A. In (6a), �1(r1) denotes
the one- order illumination function; �1(r1) = 1 if the point corresponding to r1 is illuminated
and the rays emanating from the transmitter and receiver do not cross the surface, �1(r1) = 0
else. The term I1 depends on the position r1 and on the surface elevation z1 = z(r1) through
R1 = r1 + z1ẑ.

2.2. Second-order Kirchhoff approximation

As depicted in figure 3, the field at r2 consists of the first- and second-order Kirchhoff
approximations. The second-order Kirchhoff field E2 at r2 is obtained using the first-order
Kirchhoff approximation at r1 and propagating from r1 to r2.

By analogy with (1), the components of the field Ei→m
1 scattered from r1 and propagating

towards r2 with respect to K̂m can be expressed as

Ei→m
1 = jk0E0

∫
F̄ (N̂ 1, K̂ i , K̂m)G(R1,R2) exp( jK i · R1) dr1, (7)

where K̂m = Km/k0, for which

K̂m = k̂ + mq̂ẑ = sin θ cos ϕx̂ + sin θ sin ϕŷ + m cos θ ẑ, where

m = ±1 = sign(z2 − z1). (7a)

The polarization basis is i = {vi, hi} for the emitter and m = {vm, hm} for the scattered
field propagating with respect to K̂m.
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Figure 3. Illustration of the second-order Kirchhoff approximation denoted as KA-2.

In the same way, the components of the scattered field Ei→s
s from r2 are expressed from

Ei→m
1 as

Ei→s
s = jk0

∫
Ei→m

1 G(R2,R)F̄ (N̂ 2, K̂−m, K̂s) dr2

= ( jk0)
2E0

∫
F̄ mG(R1,R2)G(R2,R) exp( jK i ·R1) dr1 dr2, (8)

where

F̄ m = F̄ (N̂ 1, K̂ i , K̂m) × F̄ (N̂ 2, K̂−m, K̂s). (8a)

F̄ m is a square matrix of length 2 calculated from a product matrix of F̄ (N̂ 1, K̂ i , K̂m) and
F̄ (N̂ 2, K̂−m, K̂s). Since the scattered field Ei→s

s is derived in the far zone, we have

G(R2,R) = exp( jk0R0 − jKs · R2)/(4πR0). (9)

The expansion of the retarded Green function G(R1,R2) into plane waves is called the
Weyl representation of a spherical wave

G(R1,R) = j

8π2

∫
1

q
exp{ j[k · (r2 − r1) + q|z2 − z1|]} dk, (10)

with

q =
{(

k2
0 − k2

)1/2
if k2

0 � k2

j
(
k2 − k2

0

)1/2
if k2

0 < k2
and Ri = xix̂ + yi ŷ + zi ẑ = ri + zi ẑ.

(10a)

In (10), instead of taking the absolute value |z2 −z1| over the difference heights, Ishimaru et al
[9] took it on the horizontal distance |x2 −x1| whereas for Bahar’s formulation [11], there is no
term with absolute value. Ishimaru et al avoided to use |z2 − z1| because the derivation of the
ensemble average over {zi} is more complicated. Nevertheless, the use of |x2 − x1| involves
that the integrations over {xi} cannot be calculated analytically. In addition, the expansion
over |z2 − z1| is more relevant to obtain the geometric optics approximation for any random
process.

To eliminate the absolute value over the height difference z2 − z1, the scattered field is
split into wave positive and negative paths depicted in figure 4, and we have

G(R1,R2) = G+(R1,R2) + G−(R1,R2), (11)
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Figure 4. Illustration of the positive and negative paths of the scattered field.

where

Gm(R1,R2) = j

8π2

∫
1

q
exp{ j[k · (r2 − r1) + mq(z2 − z1)]} dk. (11a)

For the sign plus (m = +), z2 � z1, whereas for the sign minus (m = −), z2 < z1. The
substitution of (11) and (9) into (8) leads to

Ei→s
s = j( jk0)

2E0 exp( jk0R0)

4(2π)3R0
(J+ + J−), (12)

where

Jm =
∫

F̄ m�2m(r1, r2) exp{ j[K i ·R1 − Ks ·R2 + k · (r2 − r1) + mq(z2 − z1)]} dkdr1 dr2.

(12a)

In (12a), �2m(r1, r2) represents the second-order illumination function. �2m = 1 if a
ray with a direction K̂ i is not intercepted by the surface and strikes the point corresponding
to r1, if the line drawn from the point r1 in the direction K̂m intercepts the surface at the
point referred to as r2 and if the ray emanating from r2 in the direction K̂s does not cross the
surface. Otherwise, �2m = 0.

The use of the stationary phase approximation implies that ∂�/∂ri = 0, where � denotes
the argument of the exponential in (12a). This means that


∂�

∂r1
= 0 ⇒ ki − k + (qi − mq)

∂z1

∂r1
= 0 ⇒ ∂z1

∂r1
= − k − ki

mq − qi

∂�

∂r2
= 0 ⇒ k − ks + (mq − qs)

∂z2

∂r2
= 0 ⇒ ∂z2

∂r2
= − ks − k

qs − mq
,

(12b)

where K i,s = ki,s + qi,s ẑ. The normals to the surface at r1 and r2 then become

N̂ 1 = N̂ 10 = (Km − K i )/‖Km − K i‖ and

N̂ 2 = N̂ 20 = (Ks − K−m)/‖Ks − K−m‖. (13)

Comparing (3) with (13), we can see that the stationary phase approximation of first order
can be used before iteration to obtain the second-order stationary phase approximation. Thus,
substituting (13) into (8a), the resulting equation is F̄ m = F̄ 1m, where

F̄ 1m(K̂ i , K̂m, K̂s) = F̄ 1(K̂ i , K̂m) × F̄ 1(K−m, K̂s)

=
[
F

vivm

1 F
v−mvs

1 + F
vihm

1 F
h−mvs

1 F
vivm

1 F
v−mhs

1 + F
vihm

1 F
h−mhs

1

F
hivm

1 F
v−mvs

1 + F
hihm

1 F
h−mvs

1 F
hivm

1 F
v−mhs

1 + F
hihm

1 F
h−mhs

1

]
. (14)
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In the above equation, F̄ 1(K̂ i , K̂m) is given by (A2) where K̂s is substituted by
K̂m, which is similar to replace {θs, ϕs} by {θ, ϕ} for m = + and by {π − θ, ϕ} for
m = −. F̄ 1(K−m, K̂s) is given by (A2) where K̂ i is substituted by K−m, which is
similar to replace {θi, ϕi} by {π − θ, ϕ} for m = + and by {θ, ϕ} for m = −. It must be
noted that F̄ 1m(K̂ i , K̂m, K̂s) obeys F̄ 1+(K̂ i , K̂+, K̂s) = F̄ 1−(K̂s , K̂−, K̂ i ) which ensures
reciprocity.

2.3. Average scattered power

This subsection presents the average scattered power obtained from the first- and second-order
Kirchhoff approximations given by (6), (12) and denoted as E1 and E2, respectively. The
superscript i → s which characterizes the polarization is omitted to facilitate the notation.

The total field Et is defined as

Et = E1 + E2. (15)

The average scattered power is expressed as

〈EtE
′∗
t 〉 = 〈E1E

′∗
1 〉 + 2	〈E2E

′∗
1 〉 + 〈E2E

′∗
2 〉, (16)

where 	 is the real part operator and * is the symbol for complex conjugate. To obtain the
incoherent power Pt , we have to subtract the mean-square power from the total power. That
is,

Pt = P1 + P12 + P2, (17)

with

P1 = 〈E1E
′∗
1 〉 − |〈E1〉|2 = |k0E0F̄ 1(K̂ i , K̂s)/(4πR0)|2A1, (18)

P12 = 2	[〈E2E
′∗
1 〉−〈E2〉〈E′∗

1 〉]

= |E0|2k3
0

4(2π)4R2
0

	
(

F̄ ∗
1(K̂ i , K̂s)

∫
F̄ 1m(K̂ i , K̂m, K̂s)A12

q
dk

)
, (19)

P2 = 〈E2E
′∗
2 〉 − |〈E2〉|2

= |E0|2k4
0

16(2π)6R2
0

∫
F̄ 1m(K̂ i , K̂m, K̂s)F̄ 1m(K̂ i , K̂

′
m, K̂s)

∗A2

qq ′ dk dk′, (20)

where

A1 =
∫

〈�1(r1)�1(r2) exp[−j(Ks − K i ) · (R1 − R2)]〉 dr1 dr2

−
∣∣∣∣
∫

〈�1(r1) exp[−j(Ks − K i ) · R1]〉 dr1

∣∣∣∣
2

, (20a)

A12 =
∫

{〈�2m(r1, r2)�1(r3) exp{ j[Ki · (R1 − R3) + Ks · (R3 − R2) + k · (r2 − r1)

+ mq(z2 − z1)]}〉 − 〈exp{ j[K i · R1 − Ks ·R2 + k · (r2 − r1)

+ mq(z2 − z1)]}〉〈exp[ j(Ks − K i ) · R3]〉} dr1 dr2 dr3, (20b)

A2 =
∫

〈�2m(r1, r2)�2m(r3, r4) exp{ j[K i · (R1 − R3) + Ks · (R4 − R2) + k · (r2 − r1)

+ mq(z2 − z1) − k′ · (r4 − r3) − m′q ′(z4 − z3)]}〉 dr1 dr2 dr3 dr4

−
∣∣∣∣
∫

〈�2m(r1, r2) exp{ j[K i ·R1 − Ks ·R2 + k · (r2 − r1)

+ mq(z2 − z1)]}〉 dr1 dr2

∣∣∣∣
2

. (20c)
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The symbol 〈· · ·〉 denotes the ensemble average calculated over the surface elevations
{zi}. The incoherent scattering intensity is obtained by the multiplication of the scattered
field with its complex conjugate from the field expression. To distinguish the conjugate from
the field expression, the point (1) becomes (2) in (20a); in (20c) the points (1)–(2) become
(3)–(4) and the vector k is denoted as k′. In (15), when the second-order scattered field
E2 is added, the mean scattered power is defined as the sum of three incoherent scattered
powers.

The random variables that appear in (20a)–(20c) are zi = z(ri ), �1(ri ), �2m(ri , ri+1),
respectively. In order to calculate the expected value, the shadowing effect is assumed to
be statistically independent of the elevations {zi}, which means that p({zi}, {�1}, {�2m}) =
p({zi}) × p({�1}, {�2m}) where p is the joint probability of the random variables. The
ensemble average is then equal to the product of two ensemble averages 〈· · ·〉 = 〈· · ·〉{zi } ×
〈· · ·〉{�1,�2m} obtained from the density functions p({zi}) and p({�1}, {�2m}). For a Gaussian
process, 〈· · ·〉{zi } can be calculated analytically. For a stationary surface where the statistical
properties depend only on the difference ri − rj , the total power Pt therefore requires two-,
six- and ten-fold integrations for the first-order, cross and second-order Kirchhoff terms
{P1, P12, P2}, respectively. To obtain an expression of the total incoherent scattered power
usable numerically, additional assumptions such as the geometric optics approximation are
then used.

Ishimaru’s approach used the geometric optics approximation, which means that the
correlations of z1 − z2 and z3 − z4 are very strong. The correlation between the elevation pair
{z1, z2} and {z3, z4} is also neglected. It must also be noted that Ishimaru and Bahar implicitly
assumed that the shadowing effect is statistically independent of the elevations {zi}, and that
the contribution of the cross term P12 is omitted. Moreover, the probability density function
is assumed to be Gaussian.

3. Incoherent scattering coefficient in the high-frequency limit

The geometric optics approximation (which is valid if the product k0σh is much larger than
unity, with k0 being the wave number, and σh being the surface height rms) assumes that the
scattering intensity gives contribution only for correlated closely located points. This means
that the dashed lines in figures 5 and 6 for scattering from adjacent points are assumed to be
close to the solid lines compared to the surface correlation length.

To simplify the expression of the incoherent scattering power obtained from (17), the
expected value over the surface elevation is not performed, and the height difference zi − zj

of closely located points is expanded as sj · (ri − rj ) where sj = ∂zj /∂rj = sjxx̂ + sjy ŷ and
{sjx, sjy} are the surface slopes along the {x̂, ŷ} directions at the point (j). In addition, the
coherent contributions corresponding to the second terms of the right-hand sides of (20a)–(20c)
can be omitted.

For any random process, we now derive the incoherent scattering coefficient σi for first
order (subscript i = 1), cross (subscript i = 12) and second order (i = 2). It is defined for a
two-dimensional extended target as

σi = 4πR2
0Pi/(S0|E0|2), (21)

where S0 = (2Lsx)(2Lsy) is the illumination surface. {2Lsx, 2Lsy} are the lengths of the foot
print according to the {x̂, ŷ} directions, which are assumed to be much greater than the surface
correlation lengths {Lcx, Lcy} defined along the {x̂, ŷ} directions.
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Figure 5. Geometrical representation of the incoherent term for the cross scattered power P12. On
the left, cases {a1,2} (point (3) close to the point (2) or (1)) exhibit the wave positive path. On the
right, cases {b1,2} (point (3) close to the point (1) or (2)) display the wave negative path.

(1)

(2)

(3)

Coincidental waves : ladder term Anticoincidental waves : cross term
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(2)
(1)
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Figure 6. Geometrical representation of the incoherent term for (20c) ensemble average A2.
On the left, cases {a1,2} correspond to the ladder term exhibiting the double reflections from
coincidental waves. On the right, cases {b1,2} denote the cross term showing the double reflections
from anticoincidental waves.

3.1. First-order incoherent scattering

In the high-frequency limit, since z2 is close to z1, z2 − z1 can be expanded as s1 · (r2 − r1).
Thus, substituting (18) and (20a) into (21) by neglecting the coherent term and assuming a
stationary surface, we get

σ1 = |k0F̄ 1(K̂ i , K̂s)|2
4π

∫
S0

dr21〈�1(r21) exp{ j[ks − ki + s1(qs − qi)] · r21}〉, (22)
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where the variable transformations r21 = r2 − r1 and rp = r2 + r1 were used. The random
variables which appear in the above equation are {�1, s1}. It is convenient to represent the
density function p(s1, �1) in terms of the conditional probability as [16]

p(s1, �1) = ps(s1) × p(�1|s1), (23)

where ps(s1) is the slope joint distribution. This is the case because

p(s1, �1) = S1(K̂ i , K̂s |s1)δ(�1 − 1) + [1 − S1(K̂ i , K̂s |s1)]δ(�1), (24)

where δ is the Dirac distribution. S1(K̂ i , K̂s |s1) is the joint probability that a point on the
surface will be illuminated by two rays having the directions {K̂ i , K̂s} with the knowledge
of the slope s1. This function will be presented in subsection 4.1.

The contribution of the integrand is significant for {r21 · x̂, r21 · ŷ} smaller than {Lcx, Lcy},
where {Lcx, Lcy} stand for the correlation lengths along the directions {x̂, ŷ}. Moreover, the
lengths {2Lsx, 2Lsy} of the illuminated surface are assumed to be much greater than {Lcx, Lcy},
which allows us to transform the integration limit over r21 as {−∞,∞}. The integration over
r21 of (22) then leads to

σ1 = π |k0F̄ 1(K̂ i , K̂s)|2〈S1(K̂ i , K̂s |s1)δ[ks − ki + s1(qs − qi)]〉. (25)

Now the random variable is s1, and we have

σ1 = π |k0F̄ 1(K̂ i , K̂s)|2
(qs − qi)2

ps

(
s0

1

)
S1
(
K̂ i , K̂s

∣∣s0
1

)
, (26)

where

s0
1 = −(ks − ki )/(qs − qi). (26a)

This result has already been established by Sancer [16]. In what follows, the approach is
extended to the second-order scattering.

3.2. Cross incoherent scattering coefficient

In what follows, the formulation is not restricted to a Gaussian random process, unlike the
formulations given by Ishimaru and Bahar. Indeed, the correlation between the random
variables is described with the help of the covariance matrix, which involves that the
mathematical expression of the density function is not required.

As seen in figure 5, the cases {a1, a2} exhibit the wave positive paths referred to as
z21 � 0 (m = + in (20b)), whereas the cases {b1, b2} display the wave negative paths
corresponding to z21 < 0 (m = − in (20b)).

For the contribution of the cases {a1, b1}, we use the following variable transformations:

R21 = R2 − R1 and R32 = R3 − R2. (27)

In (20b), the exponential function with respect to {ri}(K i,s = ki,s + qi,s ẑ and Ri =
ri + zi ẑ) of the incoherent term takes the form

exp{ j[ki · (r1 − r3) + ks · (r3 − r2) + k · (r2 − r1) + mq(z2 − z1)]}
= exp{ j[(ks − ki ) · r32 + (k − ki ) · r21]}, (28)

and the ensemble average giving the contribution of the incoherent term is

	12,I = 〈�2m(r1, r2)�1(r3) exp{ j[z32(qs − qi) + z21(mq − qi)]}〉. (29)
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For the cases {a1, b1}, the point (2) is close to the point (3), which allows us to expand
the height difference z32 as s2 · r32. Thus, substituting (19) and (20b) into (21) and using (28)
and (29), the cross incoherent scattering coefficient for a stationary surface takes the form

σ12 = k3
0

2(2π)3
	
(

F̄ ∗
1(K̂ i , K̂s)

∫
F̄ 1m(K̂ i , K̂m, K̂s)A12

q
dk

)
, (30)

where

A12 =
∫

S0

dr21 dr32〈�2m(r1, r2)�1(r3) exp{ j[ks − ki + s2(qs − qi)] · r32

+ j (k − ki ) · r21 + jz21(mq − qi)}〉. (30a)

It must noted that the integration over r3, where dr1 dr2 dr3 = dr21 dr32 dr3, gives
S0 dr21 dr32 where S0 is the illuminated foot print. To simplify σ12, we used the following
three assumptions: (i) the correlation between the points (1) and (2) is omitted; (ii) to be
consistent with the geometric optics approximation, the evanescent waves are neglected. See
appendix D for more details; (iii) to quantify the fact that the scattered waves at the point (1)
propagate only in certain distance before being intercepted by the surface at the point (2), a
tapering function χt defined as (B9) is included in σ12. The resulting equation is then (see
appendix B)

σ12 = πk2
0ps

(
s0

2

)
4(qs − qi)2

	
{
F̄ ∗

1(K̂ i , K̂s)

∫ π/2

0
sin θ dθ

∫ 2π

0
F̄ 1m(K̂ i , K̂m, K̂s)χt (k − ki )

× 〈S12
(
K̂ i , K̂s , K̂m

∣∣s0
2, z21

)
exp[ jz21(mq − qi)]

〉
dϕ

}
. (31)

For the contribution of the cases {a2, b2}, the following variable transformations are used:

R21 = R2 − R1 and R31 = R3 − R1. (32)

Applying the same way, the incoherent scattering coefficient is then given by

σ12 = equation (31) where K̂ i is transposed by K̂s in the integrand. (33)

Therefore, since F̄ 1−(K̂ i , K̂−, K̂s) = F̄ 1+(K̂s , K̂+, K̂ i ) the reciprocity is ensured.

3.3. Second-order scattering coefficient

In (20c), the splitting up of the ensemble average 	2,I into positive and negative paths leads
to

	2,I = 〈(I+F1+ + I−F1−)(I+F1+ + I−F1−)′∗〉 = F1+F
′∗
1+〈I+I

′∗
+ 〉 + F1−F ′∗

1−〈I−I ′∗
− 〉

+ 2	(F1+F
′∗
1−〈I+I

′∗
− 〉), (34)

where

〈I+I
′∗
+ 〉 = 〈�2+�

′
2+ exp{ j[qiz13 − qsz24 + qz21 − q ′z43]}〉,

for {z21 � 0, z43 � 0} and {m = +,m′ = +}, (34a)

〈I−I ′∗
− 〉 = 〈�2−�′

2− exp{ j[qiz13 − qsz24 − qz21 + q ′z43]}〉
for {z21 < 0, z43 < 0} and {m = −,m′ = −}, (34b)

〈I+I
′∗
− 〉 = 〈�2+�

′
2− exp{ j[qiz13 − qsz24 + qz21 + q ′z43]}〉

for {z21 � 0, z43 < 0} and {m = +,m′ = −}, (34c)
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where

zij = zi − zj ,�2m = �2m(r1, r2),�
′
2m = �2m(r3, r4), F

′
1m = F1m(K̂ i , K̂m, K̂s)

∣∣
K̂m=K̂

′
m

.

(34d)

The ensemble average 〈I+I
′∗
+ 〉 + 〈I−I ′∗

− 〉 gives the contribution of the coincidental waves
exhibited in figure 6 (cases {a1,2} where the wave paths are in the same direction, both either
positive or negative), whereas 〈I+I

′∗
− 〉 gives the contribution of the anticoincidental waves

shown in figure 6 (cases {b1,2} where the wave paths are in opposite directions).

3.3.1. Contribution of the coincidental waves. We use the following variable transformations
of {R1,2,3,4} into {R31,R24,Rd}:


R31 = R3 − R1

R24 = R2 − R4

Rp1 = (R1 + R3)/2
Rp2 = (R2 + R4)/2

⇒




R1 = Rp1 − R31/2
R3 = Rp1 + R31/2
R2 = Rp2 + R24/2
R4 = Rp2 − R24/2

and Rd = Rp2 − Rp1. (35)

In (20c), the exponential function according to the components {ri} is then

exp{ j[ki · (r1 − r3) + ks · (r4 − r2) + k · (r2 − r1) − k′ · (r4 − r3)]}
= exp

{
j

[(
k + k′

2
− ki

)
· r31 +

(
k + k′

2
− ks

)
· r24 + (k − k′) · rd

]}
. (36)

In addition, for 〈I±I ′∗
± 〉, we have

〈I±I ′∗
± 〉 =

〈
�2±�′

2±exp

{
j

[(
±q + q ′

2
− qi

)
z31 +

(
±q + q ′

2
− qs

)
z24 ± (q − q ′)zd

]}〉
.

(37)

For the cases {a1, a2} in figure 6, the point (1) must be close to the point (3) and the point
(2) must be close to the point (4). The height differences z31 = z3 − z1 and z24 = z2 − z4 can
be then expanded as s1 · r31 and s2 · r24, respectively, where s1 ≈ s2, for which {s1, s2} are
the surface slopes at the points (1) and (2). These equalities imply in (20) that K̂m ≈ K̂ ′

m and
F̄ 1m(K̂ i , K̂m, K̂s)F̄ 1m(K̂ i , K̂

′
m, K̂s)

∗ ≈ |F̄ 1m(K̂ i , K̂
′
m, K̂s)|2.

With R21 = Rd − (R24 + R31)/2, the above equations take the form

Equation (36) = exp{ j[(k′ − ki ) · r31 + (k′ − ks) · r24 + (k − k′) · r21]}, (38)

and

〈I±I ′∗
± 〉 = 〈�2±�′

2±exp{ j[(±q ′ − qi)s1 · r31 + (±q ′ − qs)s2 · r24 ± (q − q ′)z21]}〉. (39)

The substitution of (20) into (21) yields the following incoherent scattering coefficient
(subscript c for coincidental waves):

σ2c = k4
0

8(2π)5

∫ |F̄ 1m(K̂ i , K̂
′
m, K̂s)|2A2

qq ′ dk dk′, (40)

where

A2 =
∫

s0

dr21 dr31 dr24〈I±I ′∗
± 〉× equation (38). (40a)

To simplify σ2c, we used the following three assumptions; (i) the correlation between the
points (1) and (2) and (3) and (4) is omitted; (ii) to be consistent with the geometric optics
approximation, the evanescent waves are neglected—see appendix D for more details; (iii) to
quantify the fact that the scattered waves at the point (1) propagate only in certain distance
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before being intercepted by the surface at the point (2), a tapering function χt defined as (B9)
is included in σ2c. The resulting equation is then (see appendix C)

σ2c = πk4
0

16

∫ π/2

0
dθ

∫ π/2

0
dθ ′
∫ 2π

0
dϕ

∫ 2π

0
dϕ′ |F̄ 1m(K̂ i , K̂

′
m, K̂s)|2χt(k − k′) sin θ sin θ ′

(±q ′ − qi)2(±q ′ − qs)2

ps

(
s0c

1

)
ps

(
s0c

2

)〈
Sc

(
K̂ i , K̂m, K̂s

∣∣s0c
1 , s0c

2 , z21
)
exp[±j(q − q ′)z21]

〉
, (41)

where the slopes
{
s0c

1,2

}
are given by (C5). For the derivation of the ensemble average, the

only random variable is z21 where
〈
z2

21

〉 = 2σ 2
h . The integrand is maximum, when K̂ = K̂ ′.

3.3.2. Contribution of the anticoincidental waves. We use the following variable
transformations of {R1,2,3,4} into {R41,R23,Rd}:


R41 = R4 − R1

R23 = R2 − R3

Rp1 = (R1 + R4)/2
Rp2 = (R2 + R3)/2

⇒




R1 = Rp1 − R41/2
R4 = Rp1 + R41/2
R2 = Rp2 + R23/2
R3 = Rp2 − R23/2

and Rd = Rp2 − Rp1. (42)

Therefore, using the same procedure as the coincidental waves, the incoherent scattering
coefficient giving the contribution of the anticoincidental (subscript a) waves is

σ2a = πk4
0

8
	
{∫ π/2

0
dθ

∫ π/2

0
dθ ′
∫ π/2

0
dϕ

∫ π/2

0
dϕ′

× |F̄ 1−(K̂ i , K̂
′
−, K̂s)

2| sin θ sin θ ′ps

(
s0a

1

)
ps

(
s0a

2

)
(q ′ + qs)2(q ′ + qi)2

×χt(k + k′ − ki − ks)
〈
Sa

(
K̂ i , K̂

′
−, K̂s

∣∣s0a
1 , s0a

2 , z21
)

× exp[ j(q − q ′ − qi − qs)z21]
〉}

, (43)

where

s0a
1 = −(ks − k′)/(qs + q ′), s0a

2 = −(ki − k′)/(qi + q ′). (43a)

The major contributions come from the regions where K̂+ + K̂ ′
− − K̂ i − K̂s ≈ 0. From

figure 6, for the anticoincidental waves, we have K̂ ′
− ≈ −K̂+. The rays are then quasi-

antiparallel and K̂s ≈ −K̂ i occurring in the backscattering direction defined as {θs =
−θi, ϕs = ϕi}, which gives in consequence the backscattering enhancement.

4. Shadowing function

Ishimaru and Bahar formulations and the IEM model derived the second-order illumination
function from the average shadowing function with single reflection by using a geometrical
way and by assuming an isotropic surface. Recently, for a 1D surface and for any uncorrelated
process, Bourlier et al [12] calculated rigorously the second-order illumination function,
which is expressed from the monostatic statistical shadowing function with single reflection.
Moreover, they showed that the monostatic statistical shadowing function obtained from 1D
surface can be extended to a 2D anisotropic surface [17, 18].

In this section, the shadowing effect with single and double reflections is presented and
a procedure is given in order to include it in the first- and second-order incoherent scattering
coefficients.
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4.1. Bistatic shadowing function with single reflection

In this subsection, the first-order average bistatic shadowing function S1
(
K̂ i , K̂s

∣∣s0
1

)
, which

appears in (26) for the derivation of σ1, is determined. Unlike a 1D surface, for the calculation
of the first-order illumination function of a 2D surface, three cases have to be considered
ϕs = ϕi, ϕs = ϕi + π and {ϕs �= ϕi, ϕs �= ϕi + π} (transmitter and the receiver are in different
planes).

When the transmitter and the receiver are located in the same plane, i.e. {ϕs = ϕi, ϕs =
ϕi +π}, the issue is similar to a 1D surface since the surface slope viewed both by the transmitter
and the receiver is the same.

From [18], for an infinite observation length with ϕs = ϕi , the bistatic statistical shadowing
function is

Sb(K̂ i , K̂s , z0, s0X)

=




S(K̂ i , z0, s0X)S(K̂s , z0, s0X) if θs ∈ [0;π/2]
S(K̂ i , z0, s0X) if θs ∈ [−θi; 0[ for ϕs = ϕi.

S(K̂s , z0, s0X) if θs ∈ [−π/2;−θi[

(44)

The monostatic statistical shadowing function Sm(K̂, z0, s0X) is defined as

S(K̂, z0, s0X) = ϒ(µ − s0X)[Ph(z0) − Ph(−∞)]�(K̂), (44a)

where

�(K̂) = �(θ, ϕ) = 1

µ

∫ ∞

µ

(s0X − µ)ps(s0X) ds0X and µ = cot θ. (44b)

In the above equations, Ph stands for a primitive of the height distribution, ϒ is the unit
step function defined as ϒ(x) = 1 for x � 0 else 0, s0X is the surface slopes viewed by the
incident ray of direction K̂ along the azimuthal angle ϕ and s0X = s0x cos ϕ + s0y sin ϕ, where
{s0x, s0y} are the surface slopes along the directions {x̂, ŷ}. ps(s0X) stands for the marginal
slope probability density function with

mean value 〈s0X〉 since 〈s0x〉 = 〈s0y〉 = 0, (45)

variance
〈
s2

0X

〉 = σ 2
sx(cos ϕ)2 + σ 2

sy(sin ϕ)2 since
〈
s2

0x,0y

〉 = σ 2
sx,sy and 〈s0xs0y〉 = 0. (46){

σ 2
sx,sy

}
are the slope variances along the directions {x̂, ŷ}. In [17], a method is addressed for

the derivation of ps(s0X) knowing ps(s0x, s0y).
In (44a), the shadowing effect modifies the height distribution at once, due to the Ph

function, and ϒ(µ − s0X) carries a restriction over the slopes γ0X. From (44), this implies
that {s0X ∈ [−µi;µs], s0X ∈ ]−∞;µi], s0X ∈ ]−∞;µs]} for each case. From figure 1, this
leads to |θ1| < π/2. In (26), the knowledge of the slope s0

1, given by (26a), involves that
cos θ1 = −N 1 · K̂ i = q1/2 where q1 is expressed from (A6). Since 0 � q1 < 2, we have
0 � cos θ1 < 1 ⇒ 0 � θ1 < π/2, which means that |θ1| is always strictly smaller than π/2.
Therefore, there is no restriction over the surface slope and the only random variable in (44)
is z0. We have

S1
(
K̂ i , K̂s |s0

1

) = 〈Ph(z0)Sb(K̂ i , K̂s , z0)〉, (47)

which leads for any process to

S1
(
K̂ i , K̂s

∣∣s0
1

) =




[1 + �(K̂ i ) + �(K̂s)]−1 if θs ∈ [0;π/2]
[1 + �(K̂ i )]−1 if θs ∈ [−θi; 0[ for ϕs = ϕi.

[1 + �(K̂s)]−1 if θs ∈ [−π/2;−θi[
(48)
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Applying the same way for ϕs = ϕi + πi , we obtain

S1
(
K̂ i , K̂s

∣∣s0
1

) =




[1 + �(K̂ i ) + �(K̂s)]−1 if θs ∈ [−π/2; 0]
[1 + �(K̂ i )]−1 if θs ∈ ]0; θi] for ϕs = ϕi + πi.

[1 + �(K̂s)]−1 if θs ∈ ]θi;π/2]

(49)

In the above equations, �(K̂) is defined as (44b) which depends on the marginal slope
probability ps(s0X).

For {ϕs �= ϕi, ϕs �= ϕi + π} (transmitter and receiver in different planes), the slopes{
s0Xi

, s0Xs

}
observed by the emitter and the receiver are not equal and we have [18]

Sb

(
K̂ i , K̂s , z0, s0Xi

, s0Xs

) = ϒ
(
µs − s0Xs

)
ϒ
(
µi + s0Xi

)
[Ph(z0) − Ph(−∞)]�(K̂ i )+�(K̂s ).

(50)

As previously mentioned, the knowledge of s0
1 implies that there is no restriction over

the surface slopes
{
s0Xi

, s0Xs

}
and the only random variable is then z0. Averaging (50), the

resulting equation is then

S1
(
K̂ i , K̂s

∣∣s0
1

) = [1 + �(K̂ i ) + �(K̂s)]
−1 for {ϕs �= ϕi, ϕs �= ϕi + π}. (51)

4.2. Bistatic shadowing function with double reflection

This section is devoted to the calculations of the average shadowing functions that appear in
(31), (41) and (43).

4.2.1. Case of the cross incoherent scattering coefficient. In (44a), we can observe that
the shadow carries a restriction over the surface slopes through the Heaviside function ϒ .
From figure 1, this leads to |θ1| < π/2. Hence, for a double reflection, as depicted in
figure 3, we must get {θ1, θ2} ∈ {]−π/2;π/2[} depending on {θi, θs, θ}, since the slopes at
these points are performed from the stationary phase method. In (31), for the derivation of
σ12, S12

(
K̂ i , K̂s , K̂m

∣∣s0
2, z21

)
has to be performed. In S12, the knowledge of s0

2 given by (B7)
involves that θ = π − θi and the slope at the point (1) are given by (26a) where s0

1 = s0
2,

which means that θ = θs . In addition, from figure 3, we have θ1 = (θ + θi)/2 and θ2 =
(π + θs − θ)/2 which means that θ1 = θ2 = π/2. Thus, the slopes at the points (1) and (2) are
hidden and the contribution of the cross incoherent scattering coefficient σ12 is equal to zero
due to the shadow. In [9], this term is neglected without justification.

4.2.2. Second-order bistatic statistical shadowing function. From [12], we have for a 2D
surface

S2+(K̂ i , K̂+, K̂s , F1, F2) =




S(K̂ i ,∞, F1)S̃(K̂+, l2, F1)S(K̂s ,∞, F2) Case (b1+)

0 Case (b2+)

S(K̂ i ,∞, F1)S̃(K̂+, l2, F1) Case (b3+)

S(K̂s ,∞, F1)S̃(K̂+, l2, F1) Case (b4+),

(52)
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Figure 7. Bistatic statistical shadowing function with double reflection for θi ∈ [0;π/2], θ ∈
[0; π/2] and θs ∈ [−π/2; π/2]. The surface point F1(z1, s1X) is characterized by the height z1
and the slope s1X , whereas the surface point F2(z2, s2X) is described by {z2, s2X}. This figure
depicts the case of the positive path.

where Fi ≡ Fi(zi, siX). The cases {(b1+,2+,3+,4+)} are defined with θi ∈ [0;π/2], and
θs ∈ [−π/2;π/2] as (figure 7)


Case (b1+) where θs ∈ [0;π/2] and θ ∈ [θs;π/2]
Case (b2+) where θs ∈ [0;π/2] and θ ∈ [0; θs[
Case (b3+) where θs ∈ [−θi; 0[ and θ ∈ [0;π/2]
Case (b4+) where θs ∈ [−π/2;−θi[ and θ ∈ [0;π/2].

(52a)
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Since in (52), θ ∈ [0;π/2], the subscript + corresponds to the positive path. S(K̂ i ,∞, F1)

represents the probability that the ray with incidence angle θi is not intercepted by the surface
before it strikes the point F1(z1, s1X). S̃(K̂+, l2, F1) denotes the probability that the ray (0)
emanating from F1 intercepts the surface at the point F2(z2, s2X), where the symbol ˜ stands
for the complementary probability (S̃ = 1 − S). S(K̂s ,∞, F2) is the probability that the ray
(s) coming from F2 is observed from the receiver. The contribution of the case (b2+) is nil
since the surface point F2 cannot be viewed by the receiver. According to [12], we changed
in (52) the probability S(K̂+, l2, F1) by S̃(K̂+, l2, F1).

S(K̂, l2, F1) is the monostatic statistical shadowing function for a given observation
length l2. It is defined as

S(K̂, l2, F1) = S(K̂, F1)[Ph(z1 + µl2) − Ph(−∞)]−�(K̂) and S(K̂,∞, F1) = S(K̂, F1),

(53)

where S(K̂, F1) and �(K̂) are given by (44a) and (44b).
For the coincidental waves, the incoherent scattering coefficient σ2c given by (41)

requires the calculation of
〈
Sc

(
K̂ i , K̂m, K̂s

∣∣s0c
1 , s0c

2 , z21
)

exp[±j(q − q ′)z21]
〉
. Using the

same approach as mentioned previously, the knowledge of the surface slopes at the point (1)
s0c

1 and (2) s0c
2 defined as (C5) implies that the angles {θ1, θ2} ∈ {]−π/2;π/2[}. Therefore,

there is no restriction over the surface slopes and the monostatic statistical shadowing function
S(K̂, l2, z1, s1X) becomes S(K̂, l2, z1), which is independent of the slopes s1X. The average
shadowing function is then expressed as

Sc

(
K̂ i , K̂m, K̂s

∣∣s0c
1 , s0c

2

) =
∫ ∞

−∞
dz1

∫ z2u

z21

S2m(K̂ i , K̂m, K̂s , z1, z2)ph(z1, z2) dz2, (54)

where ph(z1, z2) denotes the height joint probability separating two points on the surface of
horizontal distance l2. For the positive path, {z2l = z1, z2u = ∞}, whereas for the negative
path, {z2l = −∞, z2u = z1}. From figures 5 and 6, l2 is equal to either x12 cos ϕ + y12 sin ϕ or
x34 cos ϕ + y34 sin ϕ. Since {x12, x34} and {y12, y34} are assumed to be greater than the surface
correlation lengths Lcx and Lcy , we get ph(z1, z2) ≈ ph(z1)ph(z2). Hence, substituting (52)
and (53) and into (54), we show from [12] that

for ϕs = ϕi, S2+
(
K̂ i , K̂+, K̂s

∣∣s0c
1 , s0c

2

)
(55)

= �[(1 + �i)(1 + � + �i)(2 + �i + �s)]
−1 where θs ∈ [0;π/2], (55a)

�[(1 + �i)(1 + � + �i)(2 + �i)]
−1 where θs ∈ [−θi; 0[, (55b)

�[(1 + �s)(1 + � + �s)(2 + �s)]
−1 where θs ∈ [−π/2;−θi[.

(55c)

with

�i,s = �(K̂ i,s),� = �(K̂+). (55d )

Since the surface is assumed to be even (the probability that the height z � 0 occurs is
equal to the one obtained for z � 0), we show for the negative path that

S2−
(
K̂ i , K̂−, K̂s

∣∣s0c
1 , s0c

2

) = S2+
(
K̂s , K̂+, K̂ i

∣∣s0c
1 , s0c

2

)
. (56)

This is similar to permute the transmitter with the receiver. For the case where
ϕs = ϕi + πi , the second-order illumination function is given by (55) and (56), where
the ranges over θs are given by (49).
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If the emitter and the receiver are in different planes {ϕs �= ϕi, ϕs �= ϕi + π}, then for any
θs we have

S2+
(
K̂ i , K̂+, K̂s

∣∣s0c
1 , s0c

2

) = �[(1 + �i)(1 + � + �i)(2 + �i + �s)]
−1 and equation (56).

(57)

In fact, the ensemble average Sc

(
K̂ i , K̂m, K̂s

∣∣s0c
1 , s0c

2 , z21
)

exp[±j(q − q ′)z21] is given
rigorously by∫ ∞

−∞
dz1

∫ z2u

z2l

S2m(K̂ i , K̂m, K̂s , z1, z2) exp[±j(q − q ′)z21]ph(z1)ph(z2) dz2. (58)

To compute this double integral analytically, the following assumption can be used:

〈Sc exp[±j(q − q ′)z21]〉 ≈ 〈Sc〉z2∈[z2l ;z2u]〈exp[±j(q − q ′)z21]〉
= S2m(K̂ i , K̂m, K̂s)〈exp[±j(q − q ′)z21]〉. (59)

For a Gaussian process, 〈exp[±j(q − q ′)z21]〉 = exp
[−(q − q ′)2σ 2

h

]
. Using the above

equation leads to an overestimation of the modulus of the ensemble average (see appendix B
of the companion paper).

The contribution of the anticoincidental waves σ2a given by (43) requires the derivation
of
〈
Sa

(
K̂ i , K̂

′
−, K̂s

∣∣s0a
1 , s0a

2 , z21
)

exp[ j(q − q ′ − qi − qs)z2]
〉
. Using the same approach as

mentioned previously, we have

〈Sa exp[ j(q − q ′ − qi − qs)z21]〉 ≈ 〈Sa〉〈exp[ j(q − q ′ − qiqs)z21]〉
= S2−

(
K̂ i , K̂

′
−K̂s

∣∣s0a
1 , s0a

2

)〈exp[ j(q − q ′ − qi − qs)z21]〉
= S2−

(
K̂ i , K̂

′
−K̂s

∣∣s0c
1 , s0c

2

)〈exp[ j(q − q ′ − qi − qs)z21]〉. (60)

We can note that S2−
(
K̂ i , K̂

′
−, K̂s

∣∣s0a
1 , s0a

2

) = S2−
(
K̂ i , K̂

′
−, K̂s

∣∣s0c
1 , s0c

2

)
because

there is no restriction over the surface slopes.

4.2.3. Comparison with the formulations used by Ishimaru and Bahar. Ishimaru and
Bahar implicitly assumed that the shadowing effect is statistically independent of the surface
elevations {〈zi}. The ensemble average 〈· · ·〉 over the surface elevations can be then written
as 〈· · ·〉 = 〈· · ·〉{zi } × 〈· · ·〉{�1,�2m}, where 〈· · ·〉{zi } is the expected value by neglecting the
shadowing effect and 〈· · ·〉{�1,�2m} denotes the second-order average shadowing function over
the heights. In addition, 〈· · ·〉{�1,�2m} is calculated by a geometrical way by setting that

〈· · ·〉{�1,�2m} = S1(K̂ i ) × [1 − S1(K̂)][1 − S1(K̂
′)] × S1(K̂s), (61)

where S1 is the monostatic average shadowing function with single reflection. Ishimaru used
the Wagner formulation leading to S1(K̂) = [1 − erfc(v)/2][1 − e−�/�] for a Gaussian
process, where � is calculated from (44b) and and v = cot θ

/(
2
〈
s2

0X

〉)1/2
. (1 − e−�)/� and

[1 − erfc(v)/2] correspond to the average over the surface heights and slopes, respectively.
Bahar used the Smith formulation by omitting the restriction over the surface slopes, which
means that S1(K̂) = [1 + �]−1. Thus, comparing (61) with (55), there is no relation between
these two approaches. Nevertheless, taking θ = θ ′ = 90◦, we get v = v′ = 0,�(K̂) =
�(K̂ ′) → ∞, S1(K̂) = S1(K̂

′) = 0, 〈· · ·〉{�1,�2m} = [1 + �(K̂ i )]−1[1 + �(K̂s)]−1 with
the Smith approach and S2+ takes the form [1 + �(K̂ i )]−1[2 + �(K̂s) + �(K̂ i )]−1 for
θs ∈ [0;π/2], [1 + �(K̂ i,s)]−1[2 + �(K̂ i,s)]−1 else. If now θi = θs = 0 (there is no
shadow for the transmitter and the receiver), then 〈· · ·〉{�1,�2m} = 1 whereas S2+ = 1/2. Since
for the positive path z21 � 0 and the surface is even (the probability that the height z � 0
occurs is equal to the one obtained for z � 0), the average over z21 leads to the factor 1/2
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by neglecting the shadow. In conclusion, the ratio S2+/〈· · ·〉{�1,�2m} is of the order of 1/2,
which involves that the incoherent scattering coefficient follows approximately the same ratio.
In fact, since Ishimaru et al expanded the Green function over |x2 − x1|, the factor 1/2 is
introduced within the integration over x21 = x2 − x1.

5. Conclusion

In this paper, for an anisotropic two-dimensional stationary rough surface assumed to be
statistically even, the incoherent scattering coefficient with single and double reflections
is calculated by taking into account the shadowing phenomenon. The model is obtained
from the first- and second-order Kirchhoff approximation reduced to the geometric optics
approximation, which assumes that the correlation between two adjacent points is very strong.

We show that the cross incoherent scattering coefficient is nil due to the shadow. The
second-order scattered field is divided into two components related to the wave positive and
negative paths, giving the contributions of the coincidental and anticoincidental waves of the
incoherent scattering coefficient. This method then explains the origin of the backscattering
enhancement. The second-order incoherent scattering coefficient is then proportional to the
product of two surface slope probabilities for which the slopes would specularly reflect the
rays in the double scattering process. In addition, the slope distributions are related to each
other by a propagating term, equal to the modified characteristic function derived over the
elevation difference where both reflections occur. This result generalizes the one obtained
by Sancer [16] for any process in the case of single scattering. The propagating term also
takes into account the shadowing effect in the double-scattering phenomenon and includes the
probability that a ray emanating from the first reflection intercepts the surface in order to give
the second reflection. This probability is obtained from the shadowing function with double
reflection calculated for any even process.

In the companion paper, the present model will be simulated and compared with numerical
results.
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Appendix A. Polarization terms for the first-order Kirchhoff approximation

According to the polarization states of the incident i = {vi, hi} and scattered s = {vs, hs}
fields, the elements of the matrix F̄ 1(K̂ i , K̂s) are expressed from [15] as

F̄ 1 =
[
F

vivs

1 F
vihs

1

F
hivs

1 F
hihs

1

]
, (A1)

where


F
vivs

1 (K̂ i , K̂s) = D(f2FV + f1FH)

F
vihs

1 (K̂ i , K̂s) = D(f3FV − f4FH)

F
hivs

1 (K̂ i , K̂s) = D(f4FV − f3FH)

F
hihs

1 (K̂ i , K̂s) = D(f1FV + f2FH)




f1 = (ĥs · K̂ i )(ĥi · K̂s)

f2 = (v̂s · K̂ i )(v̂i · K̂s)

f3 = (v̂s · K̂ i )(ĥi · K̂s)

f4 = (ĥs · K̂ i )(v̂i · K̂s)

D = q2
1

/{q1z[(ĥs · K̂ i )
2 + (v̂s · K̂ i )

2]},
(A2)
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where the scalar products are calculated from (4) and (5){
ĥs · K̂ i = −sin θi sin(ϕs − ϕi)

ĥi · K̂s = sin θs sin(ϕs − ϕi),
(A3)

{
v̂s · K̂ i = sin θi cos θs cos(ϕs − ϕi) + cos θi sin θs

v̂i · K̂s = −[sin θs cos θi cos(ϕs − ϕi) + cos θs sin θi],
(A4)

and

q1z = cos θi + cos θs, (A5)

q1 = {2[1 + cos θi cos θs − sin θi sin θs cos(ϕs − ϕi)]}1/2. (A6)

The Fresnel coefficients {FV,H } are performed with an incidence angle θ10 =
−arccos(N̂ 10 · K̂ i ), where

N̂ 10 · K̂ i = [(K̂s − K̂ i ) · K̂ i]/‖K̂s − K̂ i‖ = −q1/2. (A7)

Appendix B. Derivation of the cross incoherent scattering coefficient

This appendix is devoted to the derivation of the cross incoherent scattering coefficient
expressed from (30).

In (30a), the random variables are {�2m,�1, s2, z21 = z2 − z1}. We can show that the
covariance matrix of samples {s2, z21} = {s2x, s2y, z21} is

[C12] =

 σ 2

sx 0 −ρ1x

0 σ 2
sy −ρ1y

−ρ1x −ρ1y 2
(
σ 2

h − ρ0
)

 , (B1)

where

ρ1x = ∂ρ0

∂x21
ρ1y = ∂ρ0

∂y21
ρ2xy = ∂2ρ0

∂x21∂y21
. (B2)

In the above equations
{
σ 2

sx, σ
2
sy

} = {−ρ2x(O),−ρ2y(O)} are the surface slope variances
along the directions {x̂, ŷ} and σ 2

h = ρ0(O) is the height variance. ρ0(r21) stands for the
height correlation function, assumed to be even (ρ0(±r21) = ρ0(r21)). It should be noted
that 〈s2xz2〉 = ρ1x(O) = 0, 〈s2yz2〉 = ρ1y(O) = 0 and 〈s2xs2y〉 = −ρ2xy(O) = 0 since
{ρ1x, ρ1y, ρ2xy} are odd.

Since [C12] is independent of r32 and the integration limit over r32 can be extended to
±∞, the integration over r32 of (30a) leads to

A12 = (2π)2
∫

S0

dr21〈�2m(r1, r2)�1(r3)δ(ks − ki + s2[qs − qi])

× exp{ j(k − ki ) · r21 + z21(mq − qi)}〉. (B3)

As previously mentioned, it is convenient to represent the density function
p(s2, z21, �1, �2m) in terms of the conditional probability as

p(s2, z21, �1, �2m) = p(s2, z21) × p(�1, �2m|s2, z21), (B4)

where

p(s2, z21, �1, �2m) = S12(K̂ i , K̂s , K̂m|s2, z21)δ(�12m − 1)

+ [1 − S12(K̂ i , K̂s , K̂m|s2, z21)]δ2(�12m), (B5)
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and �12m = [�1�2m] is a vector of length 2. Substituting (B5) and (B4) into (B3), and
calculating the ensemble average over the slope s2, we obtain

A12 =
(

2π

qs − qi

)2 ∫
S0

dr21 exp[ j(k − ki ) · r21]
〈
S12(K̂ i , K̂s , K̂m

∣∣s0
2, z21

)
× exp[ jz21(mq − qi)]

〉
, (B6)

where

s0
2 = −(ks − ki )/(qs − qi). (B7)

Thus, the only random variable is z21. To simplify σ12, the correlation between the points
(1) and (2) is omitted, which means ρ0 ≈ 0. The double scattering process consists of a pair
of slopes defined at the points (1) and (2), whose values are appreciably different. But the
slopes along the {x̂,y} directions of a random surface change significantly in the correlation
distances {Lcx, Lcy}. Thus, we expect {|x21| > Lcx, |y21| > Lcy} for a typical case, therefore
the correlation between z2 and z1 can be omitted. This implies that the covariance matrix
given by (B1) becomes diagonal. The substitution of (B6) into (30) then yields

σ12 = πk2
0ps

(
s0

2

)
4(qs − qi)2

	
{

F̄ 1
∗(K̂ i , K̂s)

∫
F̄ 1m(K̂ i , K̂m, K̂s)χt (k − ki )

q

× 〈
S12
(
K̂ i , K̂s , K̂m

∣∣s0
2, z21

)
exp[ jz21(mq − qi)]

〉
dk

}
, (B8)

where

χt(u) =
(

k0

π

)2 ∫
St (u) exp( ju · r21) dr21 and

〈
z2

21

〉 = 2σ 2
h . (B9)

St (u) is a tapering function which quantifies the fact that the scattered waves at the point
(1) propagate only in a certain distance before being intercepted at the point (2) by the surface.
It will be expressed in the companion paper. In (B8), the integration range of k is {]−∞;∞[}.
To be consistent with the geometric optics approximation, the evanescent waves are omitted,
which involves from appendix D that ‖k‖ ∈ [−k0; k0]. In the spherical coordinates, where
the components of {K̂ i , K̂m, K̂s} are given by (4), (5) and (7a), we then obtain

σ12 = πk2
0ps

(
s0

2

)
4(qs − qi)2

	
{
F̄ 1

∗(K̂ i , K̂s)

∫ π/2

0
sin θ dθ

∫ 2π

0
F̄ 1m(K̂ i , K̂m, K̂s)χt (k − ki )

× 〈
S12
(
K̂ i , K̂s , K̂m

∣∣s0
2, z21

)
exp[ jz21(mq − qi)]

〉
dϕ

}
. (B10)

Appendix C. Derivation of the second-order incoherent scattering coefficient

This appendix is devoted to the derivation of the second-order incoherent scattering coefficient
expressed from (40) giving the contribution of the coincidental waves.

The random variables in (39) are {�2±, �′
2±, s1, s2, z21}. The covariance matrix of

samples {s1x, s2x, s1y, s2y, z21} is

[Cc] =




σ 2
sx −ρ2x 0 −ρ2xy −ρ1x

−ρ2x σ 2
sx −ρ2xy 0 −ρ1x

0 −ρ2xy σ 2
sy −ρ2y −ρ1y

−ρ2xy 0 −ρ2y σ 2
sy −ρ1y

−ρ1x −ρ1x −ρ1y −ρ1y 2
(
σ 2

h − ρ0
)


 . (C1)
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where {ρ1x, ρ1y, ρ2xy} are defined as (B2) and

ρ2x = ∂2ρ0

∂x2
21

ρ2y = ∂2ρ0

∂y2
21

. (C2)

Since the height correlation ρ0(r21) is even (ρ0(±r21) = ρ0(r21)), {ρ1x, ρ1y, ρ2xy}
are odd, which implies that ρ1x,1y,2xy(O) = 0. For instance, this explains that
〈s1x,1yz21〉 = 〈s1x,1yz2〉−〈s1x,1yz1〉 = −ρ1x,1y +ρ1x,1y(O) = −ρ1x,1y . In addition, {−ρ2x(O),

−ρ2y(O)} = {
σ 2

sx, σ
2
sy

}
are the surface slope variances along the directions {x̂, ŷ} and

σ 2
h = ρ0(O) is the height variance.

In view of (38) and (39), since the covariance matrix is independent of {r31, r24}, the
integrations over {r31, r24} of (40a), where the integrations limit can be extended to ∓∞,
lead to

A2 = (2π)4
∫

S0

exp[ j(k − k′) · r21]〈�2±�′
2± exp[±j(q − q ′)z21]

× δ([±q ′ − qi]s1 + k′ − ki )δ([±q ′ − qs]s2 + k′ − ks)〉dr21. (C3)

Using the same form as (B4) and (B5), the calculation of the expected value over {s1, s2}
yields

A2 = (2π)4

(±q ′ − qi)2(±q ′ − qs)2

∫
S0

exp[ j(k − k′) · r21]
〈
Sc

(
K̂ i , K̂m, K̂s

∣∣s0c
1 , s0c

2 , z21
)

× exp[±j(q − q ′)z21]
〉
dr21, (C4)

where

s0c
1 = −(k′ − ki )/(±q ′ − qi), s0c

2 = −(k′ − ks)/(±q ′ − qs). (C5)

Sc is the second-order illumination function with the knowledge of
{
s0c

1 , s0c
2

}
. This

function is presented in subsection 4.2.2. As previously mentioned, it is reasonable to neglect
the correlation between the points (1) and (2). The covariance matrix given by (C1) then
becomes diagonal, and we have for any random process

p(s1, s2, z21) = ps(s1)ps(s2)ph(z21). (C6)

Therefore, substituting (C6) into (C4) and into (40), omitting the evanescent waves (see
appendix D), the incoherent scattering coefficient takes the form

σ2c = πk4
0

16

∫ π/2

0
dθ

∫ π/2

0
dθ ′
∫ 2π

0
dϕ

∫ 2π

0
dϕ′ |F̄ 1m(K̂ i , K̂

′
m, K̂s)|2χt(k − k′) sin θ sin θ ′

(±q ′ − qi)2(±q ′ − qs)2

×ps

(
s0c

1

)
ps

(
s0c

2

)〈
Sc

(
K̂ i , K̂m, K̂s

∣∣s0c
1 , s0c

2 , z21
)

exp[±j(q − q ′)z21]
〉
. (C7)

Appendix D. Weyl’s representation

This appendix discusses the origin of the evanescent waves from the Weyl representation of
the scalar Green function.

Using the polar coordinates {kx = κ cos ϕ, ky = κ sin ϕ}, (10) can be expressed as

G(R1,R2) = j

8π2

∫ ∞

0

exp( jq|z2 − z1|) dκ

q

{∫ 2π

0
exp[ jκ‖r21‖ cos(ϕ − φκ)] dϕ

}

with q =
{(

k2
0 − κ2

)1/2
if k2

0 � κ2

j
(
κ2 − k2

0

)1/2
if k2

0 < κ2,
(D1)
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where

φκ = arctan[(y2 − y1)/(x2 − x1)]. (D2)

The integration over ϕ gives (‖r21‖ = r21)

G(R1,R2) = j

4π

∫ ∞

0

dκ

q
J0(κr21) exp( jq|z2 − z1|), (D3)

where J0 is the Bessel function of the first kind and zero order. According to the value of κ ,
we can expand the above equation as

G(R1,R2) = j

4π

∫ k0

0
dκ

J0(κr21) exp
[

j
(
k2

0 − κ2
)1/2|z2 − z1|

]
(
k2

0 − κ2
)1/2

+
1

4π

∫ ∞

k0

dκ
J0(κr21) exp

[−(κ2 − k2
0

)1/2|z2 − z1|
]

(
κ2 − k2

0

)1/2 . (D4)

In the first and second terms of (D4) right-hand side, using the variable transformations
x = (

1 − κ2
/
k2

0

)1/2
, x = (

κ2
/
k2

0 − 1
)1/2

leads to

G(R1,R2) = jk0

4π

∫ 1

0
J0
([

k2
0(1 − x2)

]1/2
r21
)

exp( jk0x|z2 − z1|) dx

+
k0

4π

∫ ∞

0
J0
([

k2
0(1 + x2)

]1/2
r21
)

exp(−k0x|z2 − z1|) dx. (D5)

Since k0 is real for the air, the second term of (D5) right-hand side represents the evanescent
waves. In this paper these modes are neglected. Therefore, in spherical coordinates, the scalar
Green function given by (10) can be expressed as

G(R1,R2) = jk0

8π2

∫ π/2

0
sin θ dθ

∫ 2π

0
exp{ jk0[(x2 − x1) sin θ cos ϕ

+ (y2 − y1) sin ϕ sin ϕ + cos θ |z2 − z1|]} dϕ, (D6)

where the evanescent waves are omitted (case where k2 > k2
0).
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