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Azimuthal Harmonic Coefficients of the Microwave
Backscattering From a Non-Gaussian Ocean

Surface With the First-Order SSA Model
Christophe Bourlier

Abstract—In this paper, the first-order small slope approxima-
tion is applied to a rough sea surface with non-Gaussian statis-
tics, for which the third- and the fourth-order statistics are taken
into account in the calculation of the radar cross section. From
the Cox and Munk slope distribution, the higher order statistic
moments are derived, and behaviors of the corresponding corre-
lation functions are assumed. We show that the fourth order (re-
lated to the peakedness or kurtosis) is isotropic, whereas the third
order (related to the skewness) has a behavior as cos( ), where

is the wave direction along the wind direction. Thus, using the
Elfouhaily et al. sea height spectrum, related to the second-order
statistics, we show that the normalized radar backscattering cross
section (NRBCS) can be expanded as an even Fourier series in
cos( ) (where is a positive integer), for which the harmonic
coefficients require only a single integration over the radial dis-
tance. This result is consistent with experimental data done for mi-
crowave frequencies. In addition, we show for microwave frequen-
cies (like C- and Ku-bands) that the Fourier series can be truncated
up to the second order, since the higher order harmonic coefficients
vanish. The NRBCS is also compared with empirical backscat-
tering models CMOD2-I3 and SASS-II, valid in C- and Ku-bands,
according to the scattering angle and the wind direction. The first-
order harmonic coefficient predicts the surface asymmetry along
the upwind and downwind directions, whereas the second-order
harmonic coefficient describes the surface asymmetry along the
upwind and crosswind directions.

Index Terms—Non-Gaussian statistics, ocean remote sensing,
radar scattering, scattering from rough surfaces.

I. INTRODUCTION

I N THE LAST three decades, considerable efforts have been
devoted to the development of the normalized radar backscat-

tering cross section (NRBCS) to predict and/or to interpret mea-
sured data from ocean surfaces. For a multiscale surface like the
ocean, to calculate the NRBCS from analytical scattering model,
we can use the two-scale model (TSM) [1]–[5], the integral equa-
tion method (IEM) model [6], [7], the modified IEM model de-
noted by the author as IEMM [8], the small slope approximation
(SSA) [9]–[13], the weighted curvature approximation (WCA)
[14], and the full wave solution [15].

From microwave measurements [16]–[21] for copolariza-
tions [vertical (VV) and horizontal (HH)], the NRBCS is
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expanded as
, which depends on the scattering angle , the

wind speed and the azimuthal wind direction . By analogy
with the Fourier series, denotes the Fourier coef-
ficient. The isotropic backscattering term mainly carries a
piece of information on the wind speed, is related to the
surface asymmetry along the up and down ( )
wind directions, and describes the surface asymmetry along
the up and cross ( ) wind directions. Assuming
a Gaussian process, from the first-order SSA model, in [10],
[13], and are calculated analytically, which require
only a single numerical integration over the radial distance
between two points on the surface (the surface is assumed to be
stationary). In addition, they showed that is equal to zero
because the sea surface statistics are assumed to be Gaussian.

The contribution of is attributed to the hydrodynamicmod-
ulation of the short waves by the longer ones. For instance, under
moderate wind conditions, the crests of the waves are tilted to-
ward the wind direction. This point has been studied both theoret-
ically and experimentally by Longuet-Higgins [22] within the in-
troduction of the higher order statistics. With the IEM approach,
Fung and Chen [6], [7] included the surface statistics up to the
thirdorder,which is related to thesurfaceskewness (or thebispec-
trum), in the NRBCS calculation. This allows one to predict the
upwind/downwind asymmetry phenomenon. We can also quote
the work of Elfouhaily et al. [23]. Nickolaev et al. [5] applied
the two-scale model to sea surfaces whose slope probability den-
sity function is described as the Gram–Charlier type truncated up
to the fourth order. The higher order statistical moments are ob-
tained from the Cox and Munk slope distribution [24]. Recently,
McDaniel introduced the skewness and the peakedness (related
to the fourth-order statistical moment) effects in the calculation
of the NRBCS obtained from the full wave method.

To our knowledge, no published paper has presented a simple
expression of the th Fourier coefficients and has
justified the use of an expansion of NRBCR as the even Fourier
series along the wind direction. It is the purpose of this paper.
From the first-order SSA model, we show that can
be computed from a one-dimensional integral, where both the
skewness and the peakedness effects are taken into account. In
addition, they are compared with microwave experimental data,
where the height roughness spectrum is given by Elfouhaily
et al. [25], and the higher order statistics are performed from
the Cox and Munk slope distribution.

The paper is organized as follows. The second section presents
the first-order SSA model, where the skewness and the peaked-
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ness effects are accounted for the derivation of the ensemble av-
erage over the surface heights (this leads to the derivation of the
characteristic function of two variables). In Section III, from the
Cox and Munk slope distribution, the higher order statistical mo-
ments are derived. This allows us to find the symmetry properties
of the skewness and the peakedness correlation functions along
the wind direction and to perform the angular integration with the
help of the Bessel functions. The last section studies the skew-
ness and the peakedness effects on the NRBCS and compares
the model with microwave measurements.

II. SCATTERING MODEL

The small-slope approximation is appropriate for scattering
from both large- (the high-frequency regime), intermediate- and
small-scale (the low-frequency regime) roughness scales within
a single theoretical scheme. Both the lowest order approxima-
tion (denoted as SSA-1) and the next-order approximation (re-
ferred to as SSA-2), which is a correction of the lowest order
one, can be calculated. The SSA was verified in a great number
of numerical simulations [10]–[13], [26]–[28].

Assuming a statistically Gaussian sea surface, Voronovich
et al. [11, Fig. 1(e) and (f)] compared SSA-1 with

for a radar frequency GHz, for wind speeds
m/s (defined as 10 m above the sea), and for

scattering angles . They observed that the mean
backscattering coefficients are similar for the VV polariza-
tion, whereas for the HH polarization, the difference between

and SSA-1 increases with the wind speed,
but remains within about 1 dB. In addition, for
m/s and GHz, McDaniel [12, Figs. 4 and 5] observed a
deviation between and SSA-1 smaller than
1 dB. Therefore, for radar microwave backscattering, SSA-1
can be used with a mean accuracy of the order of 1 dB. It must
be noted that the purpose of this paper is to obtain simple math-
ematical expressions of the azimuthal harmonic coefficients

. Indeed, this is only possible with SSA-1, since the
computation of the SSA-2 contribution requires two additional
numerical integrations. In addition, SSA-2 is derived only for
Gaussian statistics.

With SSA-1, the bistatic scattering coefficient is expressed as
[11]

(1)

where the horizontal projections of the
incident and scattered wave vectors and their vertical
projections, respectively. are the heights at two arbi-
trary points on the surface separated by the horizontal distance

(the surface is assumed to be stationary). is
the 2 2 matrix of the first-order small perturbation method
given in the Appendix of [11]. The symbol stands for
the ensemble average over the random variables .
In the backscattering direction, and

vanish, which means that
the cross-polarization contributions cannot be predicted. The
SSA-2 contribution must then be computed.

For a non-Gaussian surface, Longuet-Higgins [22] showed
that the ensemble average is given by successive sums of a
Gram–Charlier series defined as

(2)

In the above equation, are the statistical cumu-
lants equal for a random process with zero mean values

to the statistical moments defined as

(3)

is the height joint probability. To be consistent with
the slope distribution of the Cox and Munk given in the next
section, the double sum in (2) is expanded up to . We
then obtain

(4)

We can note that and
, where is the height variance.

denotes the well-known height correlation function, whereas
is referred to as the bicorrelation function. The

bicorrelation function can be split up into a symmetric part
and an asymmetric part

, where and
. Chen, Fung et al. [6], [7] denoted as the skewness

function, because it is related to the surface asymmetry. In addi-
tion, the peakedness function [29] related to the fourth-order sta-
tistical is expressed as , which is an even
function . The definition of is such that

and . From (4), the resulting equation
is then

(5)

In the right-hand side, the first exponential term is equal to
the height joint characteristic function of a Gaussian process,
whereas the second and the third exponential terms are related to
the non-Gaussian effect of the surface. For a Gaussian process,

and , which means that the second
exponential term is equal to one. In addition, to be consistent
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with the expansion of order in (2), the third exponential
term must equal to one. Thus, we find the well-known result

and (5) becomes
with (this function measures the devi-
ation of the peakedness function between surfaces statistically
non-Gaussian and Gaussian)

(6)

III. DERIVATIONS OF THE HIGHER ORDER STATISTICS

The ensemble average requires the knowledge of the height
correlation function , the skewness function and
the deviated peakedness function . The height correla-
tion function is obtained from the height roughness spectrum,
which is related to the height and slope rms. The higher order
statistics cannot then be calculated from the height spectrum.
Nevertheless, as the Cox and Munk slope probability involves
statistics up to fourth order, and can be derived
for close to zero. For any and are de-
rived by assuming an extrapolation. It is important to note that
the slope probability gives only information over the statistical
moments of the surface, such its rms slope, its skewness and
its kurtosis, and the corresponding spectra or correlations have
to be known to obtain a full description of the surface statistic
features.

A. Second-Order Statistic

We assume that the sea surface height obeys the Elfouhaily
et al. [25] directional spectrum, . In polar coordinates,

, it is defined as

(7)

where represents the isotropic part of the sea spectrum
and is the spreading function. The sea height correlation
function is then expressed in polar coordinates,

, as [13], [30]

(8)

where

(9a)

(9b)

is the isotropic part, whereas denotes the
anisotropic part. is the th-order Bessel function of the first
kind. It must noted that which ex-
plains that the upwind/downwind asymmetry cannot be pre-
dicted. On the other hand, since
the upwind/crosswind asymmetry is predicted.

B. Third- and Fourth-Order Statistic Moments for
Close to Zero

To determine the symmetry properties of and ,
we can use the slope distribution of the Cox and Munk [24]
given by

(10)

where

(11a)

(11b)

(11c)

The wind speed is measured at 12.5 m above the sea.
are the surface slopes in the up- and cross-wind direc-

tions and are their variances, respectively. The im-
portant results of are reported in [24] and [31]. The
characteristic function of the slopes is then

(12)

For close to zero, we have and
(since is even, we have

for
and where ). Thus,
from (6), we obtain

(13)

The comparison of (13) with (12) leads for to

(14)
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As mentioned by [15], [23], and [32], from (11) we have
. The above

equation becomes then in polar coordinates for

(15)

Unlike the height correlation function , we have
. We will then show in the next sec-

tion, that an angular dependence in of can predict the
upwind/downwind asymmetry of the NRBCS, .
Since is an odd function and are even
functions ( is even), we have

(16)

(17)

where . In addition we can note from
(15) that

(18)

(19)

This result is consistent with [6], [7], and [29], where it was
shown for a one-dimensional surface that must obey

and
to have finite values of the statistical

moments. Moreover, since and
is an even function, has the same symmetry properties as

. We can also note from (15) that

(20)

(21)

We then observe that (21) is consistent with (17). However,
(16) cannot predict that and vanish
since is even and is odd. This is due to the fact that

where is a function of . Thus, we can show
for any that the behavior as implies that
and vanish.

C. Skewness and Deviated Peakedness Functions for Any

To have a complete description of , (15) must
be both extrapolated for any and must satisfy the sym-
metry properties given by (16)–(21). Unfortunately, there are
poor experimental data in the literature on the skewness and
peakedness functions for ocean rough surfaces. Fung and
Chen et al. selected the following form of the skewness func-
tion where

[6],
[33], and [7], [34]. Guissard
[29] pointed out that the determination of , which is propor-
tional to the skewness correlation length, is not based on direct
measurements of the skewness. It has seemingly been selected
in such a way that the NRBCS agrees with measurements. In

addition, we can note that instead of
. McDaniel [15] assumed that the roughness spectrum

of , denoted as , have the following
forms , where
stands for the isotropic part of the sea height spectrum, given by
the Elfouhaily et al. model, and are the anisotropic
parts of the skewness and deviated peakedness spectra. These
functions are determined from the properties given in the
previous subsection. This solution is not adopted because

have to be reevaluated from for
the calculation of the NRBCS. However, in this paper, we use a
combination of the two previous approaches.

To have the properties given by (16)–(21), we assume the
following forms of

where

(22)

(23)

The definition of is such as .
Moreover they obey the conditions expressed from (18)–(21).
Thus

(24)

(25)

The Cox and Munk measurements indicate that an oil slick,
which tends to suppress the capillary waves (small scale),
reduces the skewness but leaves the deviated peakedness un-
changed. This means that the skewness is related to the small
scale of height rms , whereas the peakedness is related to
the large scale of height rms . Thus, in (24) and (25), the
rms height is not the same. The total height variance can be
split up as

(26)

where the cutoff wavenumber , which separates the small
and the large scales, must be determined. Its calculation is dif-
ficult since few results exist in the literature. Guissard [29] set

where is the incident electromagnetic
wavenumber, and depends on the wind speed. In the X-band
( GHz), Elfouhaily et al. [23] set rad/m. Thus,
these two approaches suggest that is dependent of the radar
frequency, which is surprising since is an intrinsic param-
eter of the sea. We then propose the following method to esti-
mate . Since an oil slick sea suppresses the capillary waves,
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Fig. 1. RMS height versus the wind speed u .

we have for the total slope of the gravity
waves

(27)

from the Cox and Munk model. When the cumulative integral
over reaches the value of the total slope variance of the
gravity waves, is determined. For instance, for

m/s ( with an error of 2%), we
obtain rad/m, which is smaller than
the value used by Elfouhaily [23]. In addition, we have

, where is the wavenumber
for which the height gravity spectrum reaches its maximum. As
shown in [30], only the gravity waves contribute to the height
rms, which explains that .

In Fig. 1, the rms heights of the gravity and capillary waves
are plotted versus the wind speed . In the legend, “Capil-
lary (Bou)” means that is computed from (27), whereas for
“Capillary (Elf),” rad/m (value used by Elfouhaily
[23]). We can observe that the ratio is much greater
than unity (from 16–790) and computed from our approach
(mean value equal to 3.6 mm) has the same order of magnitude
as the one obtained for rad/m (mean value equal to
1.1 mm).

In Fig. 2, the correlation lengths in meters of the height ,
of the skewness [see (24) and according to two approaches]
and of the peakedness [see (25)] are plotted, versus the
wind speed . is computed for and defined as

. As previously said, the values
obtained from the Elfouhaily and our approaches are of the same
order of magnitude and decrease with the wind speed. The cor-
relation lengths of the height and the deviated peakedness func-
tions are of the same order of magnitude and increases with
the wind speed. Since the correlation lengths of the deviated
peakedness and of the height are related to the gravity waves,
we have much greater than , which is related to

Fig. 2. Correlation lengths in meters of the height L , of the skewness L
(according to two approaches), and of the deviated peakedness L versus the
wind speed u .

Fig. 3. Normalized correlation functions of the height W (r;�)=� , of the
skewnessW (r;�)=� , and of the deviated peakedness W (r)=� versus
the radial distance r and for � = 0. (Top) Wind speed u = 5 m/s. (Bottom)
Wind speed u = 15 m/s.

the capillary waves. This result is in qualitative agreement with
the values selected in [7] and found by Guissard [29].

In Fig. 3, the normalized correlation functions of the height
, of the skewness and of the devi-

ated peakedness are plotted versus the radial dis-
tance and for . At the top, the wind speed m/s
and at the bottom, m/s. For the height correlation, we
can observe that there is a significant range of negative values
not present in most of the correlation functions for land surfaces.
This comes from the fact that the sea roughness height spectrum
reaches to a maximum. The skewness function
reaches a minimum value equal to

, for which the radial distance is ,
whereas reaches a maximum value equal to

, for which the radial distance is .
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The Fourier transform of the skewness function is the
bispectrum and has a simple closed-form in polar coor-
dinates

(28)

We can note that is complex without real part. Guis-
sard [29], within the works of Masudo and Kuo [35], pointed
out the significance of the imaginary part of the bispectrum.
Because of the symmetry properties, it provided no contribu-
tion to the third-order moment . They showed however,
through a simple example (e.g., see [29, Fig. 1]), that the waves
height are tilted forward or backward depending on the sign of
the imaginary part of . Thus, the imaginary part of

determines the asymmetry of the waves, also called
horizontal skewness by Fung [7]. On the other hand, the real
part of is related to the vertical skewness; it leads to
a wave with sharp peaks and flat troughs, or conversely. This is
called vertical skewness in [7]. It yields a skewed displacement
of the height distribution (e.g., see [7, Fig. 7A.2]). As shown
in the next subsection, since horizontal skewness is asymmetric
with respect to the vertical axis, it is the component that influ-
ences the difference in the ocean NRBCS in the upwind and
downwind directions.

D. Derivation of the Incoherent Scattering Coefficient

In this section, the incoherent scattering coefficient is derived
for a bistatic configuration, and the results are simplified for the
monostatic case and for microwave frequencies.

1) Bistatic Case: Substituting (8), (22), and (23) into (6), the
resulting equation is

(29)

where

(30a)

(30b)

From (1), the incoherent (superscript ) bistatic scattering co-
efficient is then in polar coordinates

(31)

where

(32)

In the backscattering direction, we have

(33)

In (32), is defined from the vectors , where
. In

the backscattering direction, , which implies that
and , where is the backscat-

tering azimuthal direction along the upwind direction and the
backscattering incident direction. In (33), is the incident
electromagnetic wavenumber. In most of the articles, excepted
in [10] and [13] (where the surface is statistically Gaussian), the
angular integration is computed numerically. Thus,
cannot be expanded as a Fourier series along the direction .
In this paper, the angular integration over is performed ana-
lytically, which extends the results obtained in [10] and [13] to
a statistically non-Gaussian sea surface. This integration is de-
rived in the Appendix and given by (45). In addition, to show
that depends only on , the sum over is expanded
for and for the case , the variable
transformation is used. Moreover, the same way is ap-
plied for the sum over . One uses the following properties of
the Bessel functions: ,
where is an integer. One then shows

(34)

where

(35a)

(35b)

Thus, the incoherent scattering coefficient is expressed as the
sum of even Fourier series according to the angle and we can
note that there is no component along the harmonics .
According to the value of , the series can be truncated.
For instance, around the forward direction defined as

and therefore the
incoherent scattering coefficient is independent of the wind di-
rection. On the other hand, in the backscattering direction de-
fined as , the incoherent backscattering coefficient
depends on the wind direction. The next subsection is devoted
to this configuration.

2) Monostatic Case: Bourlier et al. [13] considered a
Gaussian surface, which means that . Thus, in (35), we
have and
where is even ( for ). They then showed
for radar frequencies GHz and for wind
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Fig. 4. Function E (r) = expf�[Q � � � (r)]g
 (� ; � ) versus r for n = f0; 1; 2g and M = f0;1; 2; 3g. (Top) Wind speed u = 5 m/s.
(Bottom) Radar frequencies f = f5:3; 14g GHz.

speed m/s in the backscattering direction
that and that the
higher order coefficients in vanish. Hence, since the
non-Gaussian effect of the surface is considered as a small
perturbation compared with a surface with Gaussian statistics,
the incoherent NRBCR can be expanded up to

(36)

where

(37a)

(37b)

where . Equation (36) is also consistent with ex-
perimental data [16], [17] obtained for microwave frequencies,
for which the contributions of the higher order harmonics are
insignificant.

To study the convergence of the sum according to , one
plots in Fig. 4, the function

versus for and
, in the backscattering direction where

and are given by (30).
The wind speeds m/s and the radar frequencies

GHz at the top and at the bottom, respec-
tively. We observe that for , the functions vanish
and for the main contribution is given for .
Simulations for m/s, not reported in this paper,
lead to the same conclusion. In (37) the integrand must be
multiplied by where . Thus, for

. From (35), can
then be simplified as

(38a)

(38b)

(38c)

IV. NUMERICAL RESULTS

For incidence angles ( ) of interest for remote
sensing applications and for the VV and HH polarizations, this
section presents numerical results of the incoherent NRBCS
by assuming a height roughness anisotropic spectrum given
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Fig. 5. (Top) VV and (bottom) HH incoherent NRBCS f� (�)g versus the scattering angle for f = 5:3 GHz and u = 5 m/s. (a) VV: n = 0. (b) VV: n = 1.
(c) VV: n = 2. (d) HH: n = 0. (e) HH: n = 1. (f) HH: n = 2.

by the Elfouhaily et al. [25] model. The higher order statis-
tics, like the bicorrelation [related
to the skewness surface and given by (22)] and the tricorre-
lation [related to the deviated peakedness function
and given by (23)] functions, are computed from Section III.
The height correlation function is computed from
the sea height roughness spectrum by using (8) and (9). Two
radar frequencies are studied, GHz (C-band, rel-
ative permittivity , [36]) and GHz
(Ku-band, , [36]). In (37), the terms
require the calculation of , where

. The integral is then conver-
gent if . If
then this condition is satisfied for any , whereas if ,
then this condition is not fully satisfied for any . In fact,

is valid for small values of , which means that is a
perturbation compared with . Thus, we can
expand as .

A. Coefficients of the Azimuthal Harmonics
for

Fig. 5 shows the predictions of the VV and HH incoherent
NRBCS in C-band versus the scattering angle for
wind speed m/s. For the cases (a) and (d), .
For the cases (b) and (e), . For the cases (c) and (f),

. In the legend, SPM denotes the small perturbation method
obtained for (no peakedness), for which

(39a)

(39b)

(39c)

where

(40a)

(40b)

In addition, we have the following:

• , means that and (no
skewness and peakedness);

• , means that and (no
peakedness);

• , means that and (no
skewness);

• , means that and .
In Fig. 5, we can observe for any polarization that the skew-

ness effect does not affect for and .
Indeed, the levels obtained for and
are the same as and , respectively.
This leads from (38) to

(41)

However, the peakedness effect affects (decibel scale)
and (decibel scale), especially as the wind speed in-
creases and when the scattering angles are close to the nadir.
As expected, for scattering angles greater than 30 and for any

, for which the Bragg regime is valid, the SPM and the SSA-1
models become similar. In addition, along the scattering angle,
the incoherent NRBCS decreases more quickly in HH polariza-
tion than in VV polarization. For the coefficient of the first har-
monic , the peakedness phenomenon is not significative
(linear scale).

Simulations for
, and , not

reported in this paper, lead to the same conclusion. However, we
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Fig. 6. Isotropic parts of the curvature spectrum (Ŵ (k)k ) and
jjŴ (k)k j (modulus of the skewness spectrum multiplied by k ) versus the
wavenumber k for wind speeds u = f5; 15g m/s. The vertical lines represent
the value of the Bragg wavenumber K = 2K sin � for f = 5:3 GHz and
� = f30 ; 60 g.

could see for and that
in the Bragg region that the SPM model does not converge to-
ward the SSA-1 model. To explain this disagreement, in Fig. 6
the isotropic parts of the curvature spectrum, , and
of (modulus of the skewness spectrum multiplied
by ) are plotted versus the wavenumber for wind speeds

m/s. The vertical lines represent the value of the
Bragg wavenumber for GHz and

. From (39), in the Bragg region, and
are related to and , which is real
according to (28). We can observe that reaches
zero, obtained from (28) when

rad/m for m/s. This
means for that with
SPM, whereas for .
In the Bragg region, one can observe for m/s that the
level of is small comparatively to that obtained for

m/s. The disagreement between SPM and SSA-1 ob-
tained for m/s may come from the fact that in the
Bragg region, is greater than , which
means that in (6) cannot be expanded
as to obtain the SPM approximation. Only

can be expanded as .

B. Comparison of With Experimental Data for
Versus the Scattering Angle

In Fig. 7, the VV and HH incoherent NRBCS are
compared with experimental data in C-band [20] (CMOD2-I3)
versus the scattering angle ( and there is no exper-
imental data for the HH polarization). At the top, the wind speed

m/s, whereas at the bottom m/s. For the cases
(a) and (d), . For the cases (b) and (e), . For the cases
(c) and (f), . For [Fig. 7, cases (a), (c), (d), and
(f)], we can observe that the measurement level is larger than the
numerical result level. This deviation increases weakly with the

wind speed. For scattering angles (corresponding to
the range where the SPM model is valid) and for GHz,
the Bragg scattering wavenumber is
rad/m. This means for getting a better agreement with the mea-
surement that the sea elevation spectrum must be more impor-
tant for shorter waves of wavenumber .

In Fig. 8, the same variation as Fig. 7, is plotted for Ku-band
[16] (SASS-II model). For the VV polarization and , one
can note a good agreement between the experimental data and
the numerical results. As previously mentioned, for the HH po-
larization in the Bragg region, the numerical curves go below the
measurements. A possible explanation of the under estimation
of the amplitude of zeroth harmonic at HH polarization is the
contribution of the breaking waves. For scattering angles close
to the nadir, the measurements coincide with the SSA-1 model
for whereas for , the numerical curves go above
the measurements.

In Figs. 7 and 8, for scattering angles smaller than 30 , one
can observe that the absolute value of the first harmonic
of the measurement is small comparatively to that of the nu-
merical results. In fact, the SASS-II model forced to be
zero at negative values. In the Bragg regime, there is a better
agreement between the measurements and the numerical results
where the observed level is of the order of (a zoom of
Figs. 7 and 8, of cases (b) and (e), not represented in this paper,
allows to evaluate this level). is related to the skewness
function given by (22), where and have to
be determined. Numerical results, not reported in this paper,
showed that the level of is very sensitive to the value of

, which depend on the wavenumber separating
the large and the small scales. For instance, when the value of
Elfouhaily et al. is used [23] ( rad/m, see Figs. 1 and 2
for the comparison of the Elfouhaily et al. approach with ours),
the obtained levels are smaller than ours with a ratio ranging
from 2–10, according to the wind speed and the radar frequency.
To avoid this problem, Fung and Chen et al. [6], [7], [34] re-
trieved and from experimental data. It is not the pur-
pose of this paper, and this point should be investigated in future
work.

C. Comparison of With Experimental Data Versus
the Wind Direction

In Fig. 9, the VV and HH incoherent NRBCS are
compared with experimental data in C-band [20] versus the
wind direction . At the top, the wind speed m/s,
whereas at the bottom m/s. For the cases (a) and (c),

whereas for the cases (b) and (d), . The range
over is chosen as since ,
which means that is a symmetry axis. To quantify
the skewness effect, we define the variation as

.
As shown in Fig. 9 for the numerical results,

dB for case (a), dB for case
(b), dB for case (c), and
dB for case (d). If , then the level is larger in
the upwind direction than in the downwind direction and the
minimum occurs for . If , then there is
no skewness effect and the minimum occurs in the crosswind
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Fig. 7. Comparison of the VV and HH incoherent NRBCS f� (�)g with experimental data in C-band (f = 5:3 GHz) versus the scattering angle �. (a) n =
0; u = 5 m/s, f = 5:3 GHz. (b) n = 1;u = 5 m/s, f = 5:3 GHz. (c) n = 2;u = 5 m/s, f = 5:3 GHz. (d) n = 0;u = 15 m/s, f = 5:3 GHz.
(e) n = 1;u = 15 m/s, f = 5:3 GHz. (f) n = 2;u = 15 m/s, f = 5:3 GHz.

Fig. 8. Same variation as in Fig. 7 for the Ku-band (f = 14:6 GHz). (a) n = 0;u = 5 m/s, f = 14:6 GHz. (b) n = 1;u = 5 m/s, f = 14:6 GHz.
(c) n = 2;u = 5 m/s, f = 14:6 GHz. (d) n = 0;u = 15 m/s, f = 14:6 GHz. (e) n = 1;u = 15 m/s, f = 14:6 GHz. (f) n = 2;u = 15 m/s,
f = 14:6 GHz.

direction ( ). If , then the level is larger
in the crosswind direction than in the upwind direction and
the minimum occurs for . The measurements show a

smaller skewness effect than the numerical results. The devia-
tion between the measurements and the numerical results can
be explained from Fig. 7. For instance, for case (a) of Fig. 9, the
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Fig. 9. Comparison of the VV and HH incoherent NRBCS with experimental data in C-band (f = 5:3 GHz) versus the wind direction �. (a) � = 20 ; u =

5 m/s, f = 5:3 GHz. (b) � = 40 ;u = 5 m/s, f = 5:3 GHz. (c) � = 20 ; u = 15 m/s, f = 5:3 GHz. (d) � = 40 ;u = 15 m/s, f = 5:3 GHz.

maximum deviation is about 6 dB and occurs for , since
for we observe in Fig. 7(c) a deviation of the order
of 5 dB. Similar simulation for GHz, not reported in
this paper, lead to the same conclusions. We have shown that
if then , which means that

by assuming that the SPM is valid. This remark
suggests us that the sign of is related to .

V. CONCLUSION

In this paper, the incoherent normalized radar backscattering
cross section NRBCS is calculated from the first-order small
slope approximation by considering non-Gaussian statistics of
the sea surface. The NRBCS is then expanded as an even Fourier
series in (where is a positive integer), which can
be truncated up to the second order for microwave frequencies
and moderate wind speeds. The azimuthal harmonic coefficients
demand then only the computation of a one-dimensional inte-
gral over the radial distance. The second-order statistics are ob-
tained from the Elfouhaily et al. surface height roughness spec-
trum, whereas the third (related to the skewness effect) and the
fourth (related to the peakedness or kurtosis effect) order sta-
tistical moments are computed from the Cox and Munk slope
distribution for radial distances close to zero. In addition, for
any radial distance, the corresponding correlation functions are
assumed, which have to obey symmetry properties expressed
in the spatial domain. Thanks to the skewness effect, the up-
wind/downwind asymmetry of the incoherent NRBCS is pre-
dicted, whereas the upwind/crosswind asymmetry is predicted
from the height roughness spectrum.

Comparisons of experimental data in C- and Ku-bands with
the zero- and second-order harmonic coefficients show a rela-

tively good agreement. As shown in [10] and [12], better agree-
ment with measurements could be obtained by modifying the
sea height roughness spectrum. The modification means a more
directional spectrum for long waves (at near-nadir scattering an-
gles, the magnitude of the second-order azimuthal harmonic de-
creases), and a less directional spectrum for shorter waves (in
the Bragg regime, the magnitude of second-order azimuthal har-
monic increases). For the first-order azimuthal harmonic, there
is a poor agreement between the numerical results and the ex-
perimental data. In fact, we have shown that the numerical re-
sults are very sensitive to the skewness correlation length. This
parameter is difficult to compute because there are poor exper-
imental data in the literature. However, we have shown that the
variation , defined as

, is related to the sign of the minus of the imaginary
part of the skewness spectrum. To avoid this problem, Fung and
Chen et al. retrieved this parameter from experimental data. This
point should be investigated in future work.

APPENDIX

We need to solve the following integral over

(42)

The complex exponential can be expressed as [37]

(43)
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where is the Bessel function of the first kind and of order .
Substituting (43) into (42) and performing the integration over

, we show

(44)

where is the Kronecker symbol defined as if
else 0. Using the relation where
denotes the Bessel function of the second kind and of order ,
we obtain

(45)
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