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Abstract
In this paper, the monostatic (transmitter and receiver are located at the same
place) and bistatic (transmitter and receiver are distinct) statistical shadowing
functions from an anisotropic two-dimensional randomly rough surface are
presented. This parameter is especially important in the case of grazing angles
for computing the bistatic scattering coefficient in optical and microwave
frequencies. The objective of this paper is to extend the previous work
(Bourlier C, Berginc G and Saillard J 2002 Waves Random Media 12 145–
74), valid for a one-dimensional surface, to a two-dimensional anistropic
surface by considering a joint Gaussian process of surface slopes and heights
separating two points of the surface. The monostatic average (statistical
shadowing function average over the statistical variables) shadowing function
is then performed in polar coordinates with respect to the incidence angle,
the azimuthal direction and the surface height two-dimensional autocorrelation
function. In addition, for a bistatic configuration, it depends on the incidence
angle and azimuthal direction of the receiver. For Gaussian and Lorentzian
correlation profiles and practically important power-type spectra such as the
Pierson–Moskowitz sea roughness spectrum, the numerical solution, obtained
from generating the surface Gaussian elevations (Monte Carlo method), is
compared with the uncorrelated and correlated models. The results show that
the correlation underestimates the shadow slightly, whereas the uncorrelated
results weakly overpredict the shadow and are close to the numerical solution.
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1. Introduction

The problem of electromagnetic wave scattering from a randomly rough surface has been
widely studied because of its relevance in the fields of telecommunications and remote sensing.
To obtain semi-analytical models of the scattering coefficient or emissivity for microwave [1–
11] and optical frequencies [12–14], assumptions are used on the surface roughness. We can
quote the Kirchhoff approach, the small-perturbation model, the phase perturbation model,
the full wave method (see [11]) and the small-slope approximation (see [8]). The two-scale
model, which is a combination of the Kirchhoff and small-perturbation models, fails when the
illumination grazing angle is small [1]. One reason for this failure is that the theoretical models
do not directly account for the effects of the surface self-shadowing that occurs under these
illumination conditions. Attempts have been made to extend the scattering models to smaller
grazing angles by introducing shadowing functions that reduce the predicted scattering. The
unshadowed scattering coefficient [1–7] is then multiplied by the average shadowing function
integrated over the surface heights and slopes. As shown by Sancer [15], this procedure
is valid for the geometrical optics approximation (solution of the Kirchhoff integral for the
high-frequency limit). On the other hand [16, 17], with Kirchhoff’s approximation, since the
scattered field depends on the statistical variables, the statistical shadowing function has to
account for the unshadowed scattering field to calculate the shadowed scattering cross section.

The problem of wave scattering by a rough surface in the presence of shadowing was first
considered analytically in [18] and chapter 7 of [2] by means of the theory of random function
overshoots developed in [19]. The statistical (this means that the average over the surface slopes
and heights is not performed) shadowing function,defined as the ratio of the illuminated surface
to the total area, is then expressed from an infinite series by Rice [2, 20, 21]. The shadowing
effect with single reflection was rediscovered later with the Wagner [22], Smith [23, 24] and
Beckman [25] formulations which approximate Rice’s infinite series. Wagner and Beckman
retain only the first term of the series, whereas Smith uses the Wagner approach by introducing
a normalization function. For monostatic (transmitter and receiver located at the same place)
and bistatic (transmitter and receiver are distinct) configurations, these authors assume a one-
dimensional Gaussian surface where the correlation between the surface heights and slopes is
omitted, meaning that the statistical shadowing function is independent of the surface height
autocorrelation function. Recently, for a one-dimensional surface with a correlated Gaussian
process of the surface heights and slopes, Bourlier et al [26, 27] show that the correlation can
be neglected. Moreover, comparisons with numerical results computed from [28] show the
Smith approach is more accurate than Wagner’s. In [29], the shadowing effect is extended to
a two-dimensional anisotropic surface for any uncorrelated process.

For monostatic and bistatic configurations, the objective of this paper is to extend the one-
dimensional results to a two-dimensional anisotropic surface roughness in order to quantify
the correlation effect on a Gaussian process. Firstly, for a monostatic configuration, the
uncorrelated and correlated statistical shadowing functions are derived and compared with the
exact numerical shadowing function computed from the algorithm developed by Brokelman
and Hagfors [28]. The generation of surface heights, required for the numerical solution,
cannot be treated as for the one-dimensional case. Indeed, to have a good representation of the
surface statistics such as the surface height autocorrelation function and the height distribution,
an important number of surface samples is required. For example, with a one-dimensional
surface, the sample number is 100 000, which implies that with a two-dimensional surface the
surface size could be 100 000 × 100 000, which requires a lot of memory. To overcome this
problem, the surface is generated [30] with respect to the azimuthal direction φ which is similar
to making a cross section of the two-dimensional surface according to φ. The advantage of
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this method is to transform a two-dimensional problem to a one-dimensional problem along φ.
The same method is used for the analytical calculations of the statistical shadowing function
expressed in spherical coordinates.

The plan of this paper is defined as follows. Section 2 summarizes the results obtained
for a one-dimensional surface since they are required from a two-dimensional configuration.
In section 3, the statistical monostatic and bistatic shadowing functions are extended to a
two-dimensional surface with the help of the one-dimensional formulation. Simulations are
also presented for Gaussian and Lorentzian surface height autocorrelation functions and a sea
surface spectrum. The study of the bistatic configuration leads to the case where the transmitter
and the receiver are located in the same plane, and the second case, when they are in different
planes where the correlation between the observed surface slopes at the same point is then
accounted for, unlike [29]. In the last section, we give concluding remarks.

2. One-dimensional shadowing function

For a one-dimensional random surface [2, 20, 21], we give the rigorous expression of the
statistical monostatic shadowing function equal to Rice’s infinite series of integrals. For any
uncorrelated process, the statistical and average shadowing functions can then be computed
analytically [26]. Nevertheless, for an uncorrelated Gaussian process, the model has no
physical meaning at grazing incidence angles. Moreover, when the correlation is introduced,
the problem becomes very complicated and is not tractable analytically.

Therefore, the Wagner approach [22] which keeps only the first term of Rice’s series,
and the Smith [23, 24] formulation, which uses Wagner’s approach with the introduction of
the normalization function, are used for estimating the shadowing effect. Comparing both
these models with the exact numerical solution, from a correlated Gaussian process with
Gaussian and Lorentzian surface height autocorrelation functions, Bourlier et al [26] show
that the Smith results are more accurate than Wagner’s solution, and the correlation can be
neglected. When the correlation is omitted, the shadowing effect is independent of the surface
height autocorrelation function. The exact solution is computed by generating numerically
the surface heights and slopes and applying the algorithm of Brokelman and Hagfors [28]
summarized in figure 4 of [26]. The extension of the Smith formulation to a one-dimensional
bistatic configuration leads to the same conclusion. Therefore, for a one-dimensional surface,
the Smith formulation is the more accurate and it is used as a starting point to perform the
shadowing effect.

In this section, the Smith formulation is summarized for monostatic and bistatic
configurations with and without correlation. As will be shown in the next section, this reminder
is required since the one-dimensional approach is used for a two-dimensional surface.

2.1. Monostatic shadowing function for an uncorrelated Gaussian process

For an observation length L0, the statistical monostatic shadowing function S(θ, F, L0) [22–
24] is equal to the probability that the point F(ξ0, γ0) on a random rough surface, of given
height ξ0 above the mean plane and with local slope γ0 = ∂ξ0/∂l, is illuminated as the surface
is crossed by an incident beam from incidence angle θ (figure 1)

S(µ, F, L0) = ϒ(µ − γ0) exp

[
−

∫ L0

0
g(µ, F, l) dl

]
(1)
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Figure 1. Monostatic shadowing function.

with

ϒ(µ − γ0) =
{

0 if γ0 � µ

1 if γ0 < µ
, and µ = cot θ. (1a)

g(µ, F, l) dl is the conditional probability that the ray of slope µ = cot θ (θ denotes the
incidence angle) intersects the surface in the interval [l; l + dl] and with the knowledge that the
ray does not cross the surface in the interval [0; l]. ϒ is the Heaviside function which carries
a restriction on the surface slopes.

With the Smith formulation g(µ, F, l) is defined as follows:

g(µ, F, l) =
∫ ∞
µ

(γ − µ)p(ξ, γ |ξ0, γ0; l) dγ∫ ∞
−∞

∫ ξ0+µl
−∞ p(ξ; γ |ξ0, γ0; l) dξ dγ

, (2)

with

ξ = ξ0 + µl. (2a)

In (2), p(ξ, γ |ξ0, γ0; l) denotes the joint conditional probability over the surface heights
{ξ0, ξ} and slopes {γ0, γ } separating two surface points. Substituting (2) into (1), for an
arbitrary uncorrelated process, Bourlier et al ((12) and (12 b) of [26]) show that the statistical
monostatic shadowing function is

S(µ, F, L0) = ϒ(µ − γ0)

[
P(ξ0) − P(−∞)

P(ξ0 + µL0) − P(−∞)

]�

, (3)

where

� = 1

µ

∫ ∞

µ

(γ − µ)p(γ ) dγ, and P =
∫

p(ξ) dξ. (3a)

The uncorrelated Gaussian process states

p(ξ)p(γ ) = 1

2πσω
exp

(
− ξ2

2ω2
− γ 2

2σ 2

)
, (4)

where {ω2, σ 2} denote the surface height and slope variances, respectively. Substituting (4)
into (3) and (3a), S(µ, F, L0) becomes

S(µ, F, L0) = ϒ(µ − γ0)

[ 1 − 1
2 erfc( ξ0√

2ω
)

1 − 1
2 erfc( ξ0+µL0√

2ω
)

]�(ν)

, (5)
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with

�(ν) = exp(−ν2) − ν
√

πerfc(ν)

2ν
√

π
, ν = µ√

2σ
= cot θ√

2σ
, (5a)

where erfc denotes the complementary error function. The Gaussian process with shadow
becomes then p(ξ0, γ0)S(µ, F, L0) where p(ξ0, γ0) is the unshadowed process. This means
that the shadowing effect carries a restriction over the surface slopes (γ0 � µ = cot θ due
to the ϒ(µ − γ0) term) and modifies (term in brackets in (5)) the surface height distribution
which becomes non-Gaussian (for an illustration see figure 2 of [26]).

The average shadowing function over the surface heights ξ0 and slopes γ0 is expressed as

S(µ, L0) =
∫ ∞

−∞

∫ ∞

−∞
p(ξ0, γ0)S(µ, F, L0) dξ0 dγ0. (6)

From the use of (5), for an infinite observation length (L0 → ∞), S(µ, L0) is equal to

S(ν,∞) = [1 − erfc(ν)/2]/[1 + �(ν)]. (7)

For example, with a surface slope standard deviation σ = 0.3, incidence angles
θ = {80◦, 85◦}, we have ν = {0.416, 0.206} and S = {0.56, 0.32} which is a decreasing
function of θ , since the shadowing function is defined as the ratio of illuminated surface to the
total area.

2.2. Monostatic shadowing function for a correlated Gaussian process

For a surface height {ξ, ξ0} and slope {γ, γ0} joint Gaussian process, p(ξ, γ |ξ0, γ0; l) is
expressed as (appendix 3 of [31])

p(ξ, γ |ξ0, γ0; l) = σω

2π
√|[C]| exp

[
−Ci11(ξ

2
0 + ξ2) + Ci33(γ

2
0 + γ 2)

2|[C]| +
ξ2

0

2ω2
+

γ 2
0

2σ 2

− 2Ci12ξ0ξ + 2Ci34γ0γ + 2Ci13(ξ0γ0 − ξγ ) + 2Ci14(ξ0γ − ξγ0)

2|[C]|
]
, (8)

with

Ci11 = ω2(σ 4 − R2
2) − R2

1σ
2 Ci14 = R1(R2

1 − R0 R2 − ω2σ 2)

Ci12 = R0(R2
2 − σ 4) − R2

1 R2 Ci33 = σ 2(ω4 − R2
0) − R2

1ω
2

Ci13 = −R1(R0σ
2 + ω2 R2) Ci34 = R2(ω

4 − R2
0) + R2

1 R0

|[C]| = (C2
i33 − C2

i34)/(ω
4 − R2

0)

(8a)

where R0(l) is the height autocorrelation function, assumed even and derivable at the origin,
and {R1(l), R2(l)} are its first and second derivatives according to l. The surface height variance
ω2 is equal to R0(0) and the surface slope variance σ 2 is −R2(0). |[C]| is the determinant
of the covariance matrix [C]. The first subscript i in Cii j denotes the elements of the inverse
matrix [C] defined as

[C] =



ω2 R0(l) 0 R1(l)
R0(l) ω2 −R1(l) 0

0 −R1(l) σ 2 −R2(l)
R1(l) 0 −R2(l) σ 2


 . (9)

If the correlation is neglected, then [C] is diagonal, and (8) becomes (4). Substituting (8)
into (2) and (1) Bourlier et al (section 3.1 of [26]) show that the statistical shadowing function



32 C Bourlier and G Berginc

with correlation is

S(ν, h0, ζ0, y0) =




ϒ(ν − ζ0) exp

[
−Lc

∫ yt

0
g(ν, h0, ζ0, y) dy

]
if y0 � yt

else

ϒ(ν − ζ0) exp

[
−Lc

∫ yt

0
g(ν, h0, ζ0, y) dy

]

×
[

1 − erfc(h0 + ytνη)/2

1 − erfc(h0 + y0νη)/2

]�(ν)

(10)

where

h0 = ξ0/(ω
√

2) ζ0 = γ0/(σ
√

2) y0 = L0/Lc, (10a)

with ν = cot θ/(σ
√

2) and η = σ Lc/ω, where ω is the surface height standard deviation
and Lc the surface correlation length. yt represents the lower limit of the observation length
where the correlation between the surface heights and slopes can be omitted. This means, for
the range y ∈ [yt; y0], the correlation can be omitted, meaning that the function Lcg can be
analytically integrated over y and gives the second term on the right-hand-side of (10). For
y0 � yt the integration of the g function given in table 1 of [26] is computed numerically. It
depends on the normalized functions { fi j(y)} given by (28a) of [26]

f11 = 1 − f 2
2 − f 2

1 f33 = 1 − f 2
0 − f 2

1 f13 = f1( f0 − f2)

f12 = f0 f 2
2 + f 2

1 f2 − f0 f34 = f 2
0 f2 + f 2

1 f0 − f2 f14 = f1(1 − f 2
1 − f0 f2)

fM = ( f 2
33 − f 2

34)/(1 − f 2
0 ).

(11)

In fact { fi j (y)} are equal to {Cii j } by replacing in (8a) {R0, R1, R2, ω, σ } →
{ f0,− f1,− f2, 1, 1}, where f0 = R0/ω

2, f1 = −R1/(ωσ) and f2 = −R2/σ
2. For

Gaussian and Lorentzian normalized surface height autocorrelation functions, { f0(y)} =
{exp(−y2), 1/(1 + y2)}, { f1,2(y)} are given in table 2 of [26], and η = σ Lc/ω = √

2. The
{ fi j (y)} functions are plotted in figure 4 of [26].

When the correlation is neglected we have fi j = δi j (Kronecker symbol) with δi j = 1 if
i = j else 0, and {ytG = 3, yt L = 4} for Gaussian and Lorentzian correlations. Moreover, the
exponential term exp[· · ·] of (10) is equal to[

1 − erfc(h0)/2

1 − erfc(h0 + y0νη)/2

]�(ν)

, (11a)

and the statistical monostatic shadowing function becomes

S(ν, h0, ζ0, y0) =
[

1 − erfc(h0)/2

1 − erfc(h0 + y0νη)/2

]�(ν)

ϒ(ν − ζ0). (12)

The classical function (5) without correlation is then found with y0νη = µL0/(
√

2ω) and
h0 = ξ0/(ω

√
2). Substituting (10) into (6) with the variable transformations given by (10a) and

p(ξ0, γ0) = exp[−ξ2
0 /(2ω2) − γ 2

0 /(2σ 2)]/(2πσω), the average shadowing function S(ν, y0)

can be computed numerically with respect to {ν = cot θ/(σ
√

2), y0 = L0/Lc}.
The comparison in [26] of the uncorrelated and correlated approaches with the numerical

exact solution shows that the correlation can be omitted with a good accuracy. The numerical
method is obtained from the generation of the surface heights and the use of the algorithm
developed by Brokelman and Hagfors [28]. For a finite observation length y0 [27], the
conclusion is similar.
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Figure 2. One-dimensional bistatic statistical shadowing function.

e

e

e

Figure 3. Geometric representation of the three cases for the one-dimensional bistatic
configuration.

2.3. Bistatic shadowing function

This section presents the uncorrelated, correlated and numerical statistical bistatic shadowing
functions for a one-dimensional rough surface.

From (2.31) of [31], the statistical bistatic shadowing function is given by (figures 2,3)

S(µ1, µ2, F, L0) =




S(µ1, F, L0)S(µ2, F, L0) if θ2 ∈ [0; π/2] case(a)

S(µ1, F, L0) if θ2 ∈ [θ1; 0] case(b)

S(µ2, F, L0) if θ2 ∈ [−π/2; θ1] case(c),

(13)

with θ1 � 0. Equation (13) means that the bistatic statistical shadowing function,
S(µ1, µ2, F, L0), is obtained from two independent monostatic statistical shadowing
functions, defined with respect to the locations of the transmitter S(µ1, F, L0) and receiver
S(µ2, F, L0).

For any uncorrelated process, Bourlier et al show in [26] that (13) becomes

S(ν1, ν2, h0, ζ0, y0) = (14)

�

[
P(h0) − P(−∞)

P(h0 + ν1ηy0) − P(−∞)

]�(ν1)
[

P(h0) − P(−∞)

P(h0 + ν2ηy0) − P(−∞)

]�(ν2)

if ν2 � 0, (14a)

ϒ(ν1 − ζ0)

[
P(h0) − P(−∞)

P(h0 + ν1ηy0) − P(−∞)

]�(ν1)

if − ∞ � −ν2 < −ν1, (14b)

ϒ(ν2 − ζ0)

[
P(h0) − P(−∞)

P(h0 + ν2ηy0) − P(−∞)

]�(ν2)

if − ν1 � −ν2 < 0, (14c)
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where

νi = | cot θi |/(σ
√

2),

� =
{

1 if ζ0 ∈ [−ν1; ν2]

0 else
, and η = σ Lc/ω.

(15)

ϒ is the Heaviside function defined by (1a), {�, P} is obtained from (3a) and {h0, ζ0}
denote the surface normalized heights and slopes expressed from (10a).

For an uncorrelated Gaussian process, in (14a)–(14c), the terms between brackets are
given by that of (12). For an infinite observation length, the average shadowing function
defined as (6) is ((62) of [26])

S(ν1, ν2) = (16)

[erf(ν1) + erf(ν2)]/{2[1 + �(ν1) + �2(ν2)]} if ν2 � 0, (16a)

[1 + erf(ν1)]/{2[1 + �(ν1)]} if − ∞ � −ν2 < −ν1, (16b)

[1 + erf(ν2)]/{2[1 + �(ν2)]} if − ν1 � −ν2 < 0. (16c)

We can note for θ2 � 0 that the bistatic average shadowing function S(ν1, ν2) �=
S(ν1)S(ν2).

For a correlated Gaussian process, the statistical bistatic shadowing function is ((51)
of [26])

S(ν1, ν2, h0, ζ0, y0) = (17)

� exp

[
−Lc

∫ yt

0
g12(ν1, ν2, h0, ζ0, y) dy

][
1 − erfc(h0 + ytν1η)/2

1 − erfc(h0 + y0ν1η)/2

]�(ν1)

×
[

1 − erfc(h0 + ytν2η)/2

1 − erfc(h0 + y0ν2η)/2

]�(ν2)

if ν2 � 0, (17a)

ϒ(ν1 − ζ0) exp

[
−Lc

∫ yt

0
g(ν1, h0, ζ0, y) dy

][
1 − erfc(h0 + ytν1η)/2

1 − erfc(h0 + y0ν1η)/2

]�(ν1)

if − ∞ � −ν2 < −ν1, (17b)

ϒ(ν2 − ζ0) exp

[
−Lc

∫ yt

0
g(ν2, h0, ζ0, y) dy

][
1 − erfc(h0 + ytν2η)/2

1 − erfc(h0 + y0ν2η)/2

]�(ν2)

if − ν1 � −ν2 < 0 (17c)

where

g12(ν1, ν2, h0, ζ0, y) = g(ν1, h0, ζ0, y) + g(ν2, h0, ζ0, y). (18)

The integration of the g function given in table 1 of [26] is computed numerically. In (17a)–
(17c), if y0 � yt , then the terms between brackets containing the erfc functions are equal to
one. Since (17b), (17c) correspond to a monostatic configuration, they are similar to (10) with
ν substituted by either ν1 for the transmitter or ν2 for the receiver. Equation (17a) is the product
of both monostatic cases defined according to {ν1, ν2}.

The numerical average bistatic shadowing function can be computed from the algorithm
developed for a monostatic configuration. The algorithm is used both for the transmitter
and the receiver, with the fact that a point of the surface is illuminated if it is observed
both by the transmitter and the receiver. As the monostatic configuration, comparison of the
numerical solution with the uncorrelated and correlated models shows that the uncorrelated
statistical shadowing function can be used to a good approximation. This allows us to obtain
mathematically a simple statistical shadowing function.
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Figure 4. Two-dimensional configuration in polar coordinates.

2.4. Conclusion

In this section, the uncorrelated, correlated and numerical one-dimensional shadowing
functions are summarized for monostatic and bistatic configurations with a Gaussian process.
Since the Smith formulation is more accurate than Wagner’s, only the Smith case is presented
in this paper. For an arbitrary uncorrelated process, the statistical shadowing function can
be also performed (see (3) and (14)). In general, the correlation can be omitted to a good
approximation. In [29], simulation made with a surface slope Laplacian process yields the
same conclusion. The purpose of the next section is to extend this approach to an anisotropic
two-dimensional surface and quantify the correlation effect on a Gaussian process.

3. Two-dimensional shadowing function

In this section, the two-dimensional shadowing function is investigated for monostatic and
bistatic configurations by considering a correlated Gaussian process. To use the results exposed
in the second section, the shadowing function is performed in polar coordinates {R, φ} (for a
sea surface, φ denotes the azimuthal direction according to the wind direction defined along
(Ox)). As depicted in figure 4, this approach is similar to making a cross section of the surface
along the φ direction. As will be shown in this section, since a Gaussian process in Cartesian
coordinates remains a Gaussian process in polar coordinates, this rotation allows us to use the
set of results presented in the previous section. Mathematically, the covariance matrix defined
in Cartesian coordinates has to be calculated in polar coordinates. This method allows us
to perform the shadowing effect for a two-dimensional anisotropic surface with an arbitrary
uncorrelated process [29].

3.1. Monostatic shadowing function without correlation

The probability density function (pdf) p(ξ, γ ) of the surface heights ξ and slopes γ defined
for a one-dimensional surface becomes, for a two-dimensional surface in the (OX) direction,
p(ξ, γX ) where γX is the surface slope along the (OX) direction. The covariance matrix [C2]
of {ξ, γX } is defined as

[C2] =
[

E(ξ2) E(ξγX )

E(γXξ) E(γ 2
X )

]
, (19)
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where γX = γx cos φ +γy sin φ, with {γx, γy} the surface slopes in the {(Ox), (Oy)} directions,
and φ the azimuthal direction according to (Ox). E(x) denotes the expected value of the
random variable x . We can note that [C2] is a symmetrical matrix, and since the samples
{γx, γy} are Gaussian, γX , defined from a sum of {γx, γy}, is also Gaussian. Therefore,

E(ξγX ) = E(ξ [γx cos φ + γy sin φ]) = cos φE(ξγx) + sin φE(ξγy). (20)

Since {ξ, γx , γy} are assumed to be uncorrelated, we have E(ξγx) = E(ξγy) = 0.
Moreover,

E(γ 2
X ) = E([γx cos φ + γy sin φ]2) = (σx cos φ)2 + (σy sin φ)2, (21)

where {σ 2
x , σ 2

y } are the slope variances in the {(Ox), (Oy)} directions, respectively (E(γxγy) =
0). With ω2 = E(ξ2) the height variance, the covariance [C2] can be expressed as

[C2] =
[

ω2 0
0 σ 2

X

]
, (22)

where

σ 2
X = (σx cos φ)2 + (σy sin φ)2, (22a)

which leads to

p(ξ, γX ) = 1

2πωσX
exp

(
− γ 2

X

2σ 2
X

− ξ2

2ω2

)
. (23)

The pdf p(ξ, γX ) in the φ direction is also a Gaussian process with a new slope variance
σ 2

X as a function of φ given by (22a). We can note, for φ = {0◦, 90◦}, σX = {σx , σy}.
Consequently, for a monostatic configuration with a Gaussian slope pdf, the two-dimensional
shadowing effect is obtained from the one-dimensional shadowing effect by replacing in (5a)
σ by σX (φ). We can note in (5) that L0 becomes the observation length along the φ direction.

In figure 5, the two-dimensional average monostatic shadowing function is plotted
versus {φ, θ} for an uncorrelated Gaussian process with {σx = 0.2, σy = 0.15} (left) and
{σx = 0.4, σy = 0.2} (right). For {σx = 0.2, σy = 0.15}, the shadow increases weakly with
φ and decreases with θ , because the percentage of the illuminated surface decreases. For
{σx = 0.4, σy = 0.20}, the shadow is smaller than the previous case since the slope rms is
larger, and the anisotropic effect is more important since the ratio σx/σy is greater.

3.2. Monostatic shadowing function with correlation

3.2.1. Introduction. For a one-dimensional problem, the surface height {ξ, ξ0} and
slope {γ, γ0} joint conditional pdf p(ξ, γ |ξ0, γ0; l) has to be performed (see (2)).
For a two-dimensional problem, in polar coordinates {R, φ}, p(ξ, γ |ξ0, γ0; l) becomes
p(ξ, γX |ξ0, γ0X , ; R, φ). {γ0X , γX } are the surface slopes along the (OX) direction separated
by the radial distance R, whereas {ξ0, ξ} are the surface elevations.

The method used in [31] to perform this joint pdf is the following. Firstly, the
joint pdf p(ξ, γX , γY , ξ0, γ0X , γ0Y ; R, φ) is derived from the knowledge of the joint pdf
p(ξ, γx , γy, ξ0, γ0x , γ0y; x, y) defined in Cartesian coordinates. {γ0x , γx} and {γ0y, γy}
are the surface slopes at the points of coordinates {(0, 0), (x, y)}, whereas {γ0Y , γY } are
the surface slopes in the (OX) orthogonal direction separated by the radial distance R.
Secondly, p(ξ, γX , γY |ξ0, γ0X , γ0y; R, φ) = p(ξ, γX , γY , ξ0, γ0X , γ0Y ; R, φ)/p(ξ0, γ0X , γ0Y )

(Bayes theorem) is performed and the joint conditional probability p(ξ, γX |ξ0, γ0X ; R, φ) is
calculated by integrating over γY with γ0Y = γY . With this approach, p(ξ, γX |ξ0, γ0X ; R, φ)
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Figure 5. Two-dimensional average monostatic shadowing function versus the azimuthal direction
φ and the incidence angle θ for an uncorrelated Gaussian process with {σx = 0.2, σy = 0.15} (left)
and {σx = 0.4, σy = 0.2} (right).

is a complicated function meaning that it does not have the same form as obtained for a one-
dimensional surface (see (8)). Therefore, the one-dimensional results cannot be used and the
g function has to be re-evaluated. The problem becomes then very complicated. To overcome
this problem, another simpler method is required.

To have a similar form as (8), in this paper the joint probability p(ξ0, ξ, γ0X , γX ; R, φ) is
determined by using the same method as the previous section. p(ξ, γX |ξ0, γ0X ; R, φ) is then
equal to p(ξ0, ξ, γ0X , γX ; R, φ)/p(ξ0, γ0X ).

3.2.2. Derivation of the covariance matrix. For a six-dimensional Gaussian process, the
covariance matrix of {ξ0, ξ, γ0x , γx , γ0y, γy} is

[C6] =




R0(0) R0 −R1x(0) R1x −R1y(0) R1y

R0 R0(0) −R1x −R1x(0) −R1y −R1y(0)

−R1x(0) −R1x −R2x(0) −R2x −R2xy(0) −R2xy

R1x −R1x(0) −R2x −R2x(0) −R2xy −R2xy(0)

−R1y(0) −R1y −R2xy(0) −R2xy −R2y(0) −R2y

R1y −R1y(0) −R2xy −R2xy(0) −R2y −R2y(0)


 (24)

with

R1x = ∂ R0

∂x
R1y = ∂ R0

∂y

R2x = ∂2 R0

∂x2
R2y = ∂2 R0

∂y2
R2xy = ∂2 R0

∂x ∂y
,

(24a)

where R0(x, y) is the surface height autocorrelation function in Cartesian coordinates. To
have a real surface without an imaginary part, its spectrum has to be Hermitian, which means
that the autocorrelation function R0(x, y) obtained from the inverse Fourier transform of the
spectrum is even according to both {(Ox), (Oy)} directions. This means that R0(x, y) depends
on {X = x2, Y = y2}. The even of R0(x, y) may be obtained with {X = |x |, Y = |y|}, but
R0(x, y) is not derivable at zero. This implies that R1x(0) = 0, R1y(0) = 0 and R2xy(0) = 0.
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Equation (24) becomes then

[C6] =




ω2 R0 0 R1x 0 R1y

R0 ω2 −R1x 0 −R1y 0
0 −R1x σ 2

x −R2x 0 −R2xy

R1x 0 −R2x σ 2
x −R2xy 0

0 −R1y 0 −R2xy σ 2
y −R2y

R1y 0 −R2xy 0 −R2y σ 2
y


 (25)

where R0(0) = ω2 is the height variance, and {−R2x(0) = σ 2
x ,−R2y(0) = σ 2

y } the slope
variances in the up- and cross-directions.

The joint pdf p(ξ0, ξ, γ0X , γX ; R, φ) is defined by the covariance matrix

[C4] =



E(ξ2
0 ) E(ξ0ξ) E(ξ0γ0X ) E(ξ0γX )

E(ξ0ξ) E(ξ2) E(ξγ0X ) E(ξγX )

E(ξ0γ0X ) E(ξγ0X ) E(γ 2
0X ) E(γ0XγX )

E(ξ0γX ) E(ξγX ) E(γ0XγX ) E(γ 2
X )


 , (26)

where γ0X,X = γ0x,x cos φ + γ0y,y sin φ. Since {γ0X,X } is expressed as the sum of Gaussian
slopes {γ0x,x , γ0y,y}, the joint pdf p(ξ0, ξ, γ0X , γX ; R, φ) is also Gaussian. We have

E(ξ2
0 ) = ω2, (26a)

E(ξ0ξ) = R0, (26b)

E(ξ0γ0X ) = cos φE(ξ0γ0x) + sin φE(ξ0γ0y), (26c)

E(ξ0γX ) = cos φE(ξ0γx) + sin φE(ξ0γy), (26d)

E(ξ2) = ω2, (26e)

E(ξγ0X ) = cos φE(ξγ0x) + sin φE(ξγ0y), (26f)

E(ξγX ) = cos φE(ξγx) + sin φE(ξγy), (26g)

E(γ 2
0X ) = (cos φ)2 E(γ 2

0x) + (sin φ)2 E(γ 2
0y) + sin(2φ)E(γ0xγ0y), (26h)

E(γ0XγX ) = (cos φ)2 E(γ0xγx) + (sin φ)2 E(γ0yγy) + sin(2φ)[E(γ0xγy) + E(γ0yγx)]/2, (26i)

E(γ 2
X ) = (cos φ)2 E(γ 2

x ) + (sin φ)2 E(γ 2
y ) + sin(2φ)E(γxγy). (26j)

The use of (25) yields

[C4] =



ω2 R0 0 R1

R0 ω2 −R1 0
0 −R1 σ 2

X −R2

R1 0 −R2 σ 2
X


 , (27)

where

R1 = R1x cos φ + R1y sin φ, (27a)

R2 = R2x sin(φ)2 + R2y cos(φ)2 + R2xy sin(2φ). (27b)

σ 2
X is given by (22a). R0,1,2 has to expressed in polar coordinates {R, φ} which means that

{R1x , R1y, R2x , R2y, R2xy} given by (24a) has to depend on {R, φ}. The appendix shows that

R1 = ∂ R0

∂ R
, and R2 = ∂2 R0

∂ R2
. (28)

The conditional joint pdf p(ξ, γX |ξ0, γ0X ; R, φ) is derived from

p(ξ, γX |ξ0, γ0X ; R, φ) = p(ξ0, ξ, γ0X , γX ; R, φ)/p(ξ0, γ0X ), (29)
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Table 1. Gaussian and Lorentzian surface height autocorrelation functions for a two-dimensional
anisotropic surface. L2

c = [cos φ/Lx )2 + (sin φ/L y )
2]−1, L2

1 = 2Lx L y/ sin(2φ), r = R/Lc and
l1 = LC/L1.

Gaussian case Lorentzian case

R0(x, y) ω2 exp(−x2/L2
x − y2/L2

y) ω2/(1 + x2/L2
x )/(1 + y2/L2

y)

R0(R, φ) ω2 exp(−R2/L2
c) ω2/(1 + R2 cos2 φ/L2

x )/(1 + R2 sin2 φ/L2
y )

R1(R, φ) = ∂R0

∂R
− 2ω2

L2
c

R exp(−R2/L2
c ) − 2ω2 R

L2
c

(1 + 2R2 L2
c/L4

1)

(1 + R2/L2
c + R4/L4

1)
2

R2(R, φ) = ∂2 R0

∂R2
− 2ω2

L2
c

(1 − 2R2/L2
c ) exp(−R2/L2

c) ω2

[
(2R/L2

c + 4R3/L4
1)

2

(1 + R2/L2
c + R4/L4

1)
3

− 2/L2
c + 12R2/L4

1

(1 + R2/L2
c + R4/L4

1)
2

]

σX , η = σX Lc/ω 2ω2/L2
c , η = √

2 2ω2/L2
c , η = √

2

f0(r, φ) = R0(R, φ)

ω2
exp(−r2)

1

1 + r2 + (rl1)4

f1(r, φ) = − R1(R, φ)

ωσX
r
√

2 exp(−r2)
r
√

2(1 + 2r2l4
1 )

[1 + r2 + (rl1)4]2

f2(r, φ) = − R2(R, φ)

σ 2
X

(1 − 2r2) exp(−r2)
1 + 6r2l4

1

[1 + r2 + (rl1)4]2
− (2r + 4r3l4

1 )2

[1 + r2 + (rl1)4]3

where the covariance matrix of p(ξ0, γ0X ) is given by (22). Comparing the covariance matrix
(see (9)) performed for a one-dimensional surface with (27), a similar form is found by
substituting {l, σ } → {R, σX }. In (10), the function g for a two-dimensional surface depends
now on the φ angle within the functions {R0,1,2} and ν = cot θ/(σX

√
2). In addition g

depends on { fi j} expressed from (11). The last two subsections present them for Gaussian and
Lorentzian height correlations and a sea spectrum.

3.2.3. Computation of the { fi j} functions for Gaussian and Lorentzian height correlations.
Gaussian and Lorentzian height correlations correspond to rough surfaces often used in optics.
They are expressed in table 1 with

l1 = Lc/L1 =
{

Lxy sin(2φ)

2[(Lxy cos φ)2 + (sin φ)2]

}1/2

, where Lxy = L y/Lx . (30)

From table 1, we can see for the two autocorrelation functions that the surface slopes
rms σX are equal, which means that they have similar uncorrelated shadowing functions since
they depend only on the roughness parameter ν = cot θ/(σX

√
2). On the other hand, for the

correlated case, the functions { f0,1,2} are different, meaning that { fi j} given by (11) and plotted
in figure 6 are also different for each autocorrelation function. For the Gaussian autocorrelation
function, { f0,1,2} are independent of φ, but the g function depends on φ since ν is as a function
of φ.

As depicted in figure 6, the functions { f12, f34, f13, f14}(i �= j) become equal to zero
when r � rtG = 3 and r � rt L = 4 for Gaussian (chain curve) and Lorentzian (circle and
cross curves) cases, respectively, whereas { f11, f33}(i = j) become independent of r and tend
to unity. In the uncorrelated case represented in the full curve, { fi j} is equal to either zero or
one. Therefore, in the range [rt; ∞[, the correlation can be neglected, which explains the erfc
term of (10), whereas for [0; rt ], g(ν, h0, ζ0X , r) has to be computed numerically from table 1
of [26] with y = r and ζ0 = ζ0X .
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Figure 6. Functions { fi j } versus the normalized radial distance r for Gaussian and Lorentzian
(φ = {0◦, 45◦}) surface height autocorrelation functions. Lxy = 2 meaning that σx = 2σy .

3.2.4. Computation of the { fi j} functions for a sea spectrum. This subsection is devoted to
correlation functions related to practically important power-type spectra such as sea spectra.
The Pierson spectrum [32] is one of the first spectra published in the literature to describe
capillary and gravity waves. The gravity region has been modified by adding the JONSWAP
behaviour [33] where the fetch effect is provided. Since the capillary region does not fit some
physical criteria such as the surface slope variance, its behaviour has been investigated. We
can quote the Apel spectrum [34] which is a synthesis of works done in the 1980s and 1990s.
Unfortunately, as shown by Elfouhaily et al [35], this spectrum does not agree with the slope
model proposed by Cox and Munk [36]. This discrepancy is due to an inaccuracy of the
capillary waves. The set of these aspects is summarized in [31]. Nevertheless, the Elfouhaily
et al model was developed without any relation to remote-sensing data. This avoids some
deficiencies found in [37].

In fact, all the previous sea roughness spectra have a similar behaviour to describe the
gravity waves given by the Pierson–Moskowitz spectrum. In our simulation we use this
spectrum defined as

S(k,�) = M(k) f (k,�) (31)

where

M(k) = A exp(−k2
p/k2)/k3 k p = 8.44/u2

19 A = 4.05 × 10−3, (31a)

f (k,�) = [1 + cos(2�)]/2. (31b)

u19 denotes the wind speed at an altitude of 19.5 m above the sea. For a sea state equal to
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Figure 7. Behaviour of the normalized Pierson–Moskowitz sea spectrum.

six, we get u19 = 11.5 m s−1. In (31), M(k) denotes the non-directional spectrum (isotropic
part) modulated by the f (k,�) spreading function. The general behaviour of the normalized
isotropic part M(k)/M(kM ) is depicted in figure 7 versus x = k/k p. kM = k p

√
6/3 = 0.82k p

denotes the wavenumber where the spectrum is a maximum, k1 = x1k p = 0.26k p the lower
cut-off wavenumber defined as M(k1)/M(kM ) = 10−4 and k2 = x2k p = 28.99k p the upper
cut-off wavenumber defined as M(k2)/M(kM) = 10−4.

In Cartesian coordinates, the surface height autocorrelation function R0(x, y) is equal to
the Fourier transform of the spectrum �(kx, ky). From (31) and (31b), in polar coordinates,
the sea autocorrelation function R0(R, φ) is expressed from the sea spectrum S(k,�) =
M(k)[1 + cos(2�)]/2 as [31]

R0(R, φ) = R00(R) − cos(2φ)R02(R), (32)

where

R00(R) =
∫ k2

k1

M(k)J0(Rk) dk R02(R) =
∫ k2

k1

M(k)J2(Rk) dk. (33)

R00(R) is the isotropic part, whereas R02(R) denotes the anisotropic part. Jn is the nth order
Bessel function of the first kind. The surface height variance ω2 = R0(0, φ) = R00(0). The
computation of the { fi j} functions requires also the knowledge of {R1 = ∂ R0/∂ R, R2 =
∂ R1/∂ R} and we show

R1(R, φ) = R10(R) − cos(2φ)R12(R), (34)

where

R10 = dR00

dR
= −

∫ k2

k1

kM(k)J1(Rk) dk

R12 = dR02

dR
= 1

2

∫ k2

k1

kM(k)[J1(Rk) − J3(Rk)]
(34a)

and

R2(R, φ) = R20(R) − cos(2φ)R22(R), (35)
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Table 2. Calculations of the { f0,1,2} functions according to r = Rk p for a Pierson–Moskowitz
roughness spectrum with MN (x) = exp(−1/x2)/x3 and x = k/k p . We can note that A/(k2

pω2) =
2/[exp(−1/x2

2 ) − exp(−1/x2
1 )], and A/(k pωσX ) = (2

√
2)/{[1 + cos(2φ)/2][Ei(1/x2

2 ) −
Ei(1/x2

1 )][exp(−1/x2
2 )] − exp(−1/x2

1 )]}1/2 which are independent of {A, k p} like A/(2σ 2
X ).

R{0,1,2}(R, φ) R0,1,2(R, φ) = R{0,1,2}0 (R) − cos(2φ)R{0,1,2}0 (R)

ω2 = R0(0, φ) A[exp(−1/x2
2 ) − exp(−1/x2

1 )]/(2k2
p)

σ 2
X = −R2(0, φ) A[1 + cos(2φ)/2][Ei(1/x2

2 ) − Ei(1/x2
1 )]/4 with Ei(x) = ∫ ∞

x [exp(−t)/t] dt

η = σX Lc

ω
= σX

k pω

{
[1 + cos(2φ)/2][Ei(1/x2

2 ) − Ei(1/x2
1 )]

2[exp(−1/x2
2 ) − exp(−1/x2

1 )]

}1/2

f0(r, φ) = R0(R, φ)

ω2

A

k2
pω

2

[∫ x2

x1

MN (x)J0(rx) dx − cos(2φ)

∫ x2

x1

MN (x)J2(rx) dx

]

f1(r, φ) = − R1(R, φ)

ωσX

A

k pωσX

[∫ x2

x1

x MN (x)J1(rx) dx − cos(2φ)

2

∫ x2

x1

x MN (x)[J1(rx) − J3(rx)] dx

]

f2(r, φ) = − R2(R, φ)

σ 2
X

A

2σ 2
X

[∫ x2

x1

x2 MN (x)[J0(rx) − J2(rx)] dx

+
cos(2φ)

2

∫ x2

x1

x2 MN (x)[J0(rx) − 2J2(rx) + J4(rx)] dx

]

where

R20 = d2 R00

dR2
= −1

2

∫ k2

k1

k2 M(k)[J0(Rk) − J2(Rk)] dk

R22 = d2 R02

dR2
= 1

4

∫ k2

k1

k2 M(k)[J0(Rk) − 2J2(Rk) + J4(Rk)] dk.

(35a)

The surface slope variance σ 2
X (φ) in the φ direction is defined as −R2(0, φ) = −[R20(0)−

cos(2φ)R22(0)]. Substituting (31a) into (33)–(35a), the normalized functions { f0, f1, f2} are
computed numerically versus {r = Rk p, φ} from integral equations given in table 2. We can
observe that { f0, f1, f2} are independent of {A, k p} and k p is similar to the inverse of the
surface correlation length Lc.

In figure 8, { f0,1,2} are plotted versus the normalized radial distance r = Rk p = R/Lc

for a Pierson–Moskowitz sea spectrum according to φ = {0◦, 45◦, 90◦}. Unlike Gaussian and
Lorentzian correlations, negative values are observed for f0 due to the fact that the sea gravity
spectrum reaches a maximum located at kM . This means that the sea spectrum can be expressed
as a convolution product of a Dirac distribution centred around kM by the spectrum centred at
zero. The autocorrelation function is then equal to the product of the Fourier transforms of
the sea spectrum and the Dirac function, which explains the oscillatory behaviour of f0. From
{ f0,1,2}, { fi j} are computed from (11) and rt = 12 since for rt � 12 we have { f0,1,2} ≈ {0}.

3.3. Numerical monostatic shadowing function

To compare the uncorrelated and correlated shadowing functions with an exact solution, the
numerical shadowing function has to be computed. For a one-dimensional surface [26] shows
that the deviation between the analytical and the numerical solutions is weak, which allows us
to conclude that the uncorrelated solution can be used with a good accuracy.

The computation of the numerical shadowing function requires the generation of the
surface height samples z(i) computed from z(i) = b(i)∗w(i). b is a Gaussian white noise
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Figure 8. Functions { f0,1,2} versus the normalized radial distance r = Rk p = R/Lc for a Pierson–
Moskowitz sea spectrum according to φ = {0◦, 45◦, 90◦}.

with zero mean value and unitary variance, the symbol ∗ is the convolution product and
w denotes the filter coefficients obtained from the surface height autocorrelation function
R0(i). From [31], w(i) = FT−1{√FT[R0(i)]} where FT is the Fourier transform. To have
a good representation of the surface statistic such as its autocorrelation function and height
distribution, a large number of samples is required such as 100 000. Therefore, for a two-
dimensional surface, this method cannot be used since the surface elevation z(i, j) has to be a
matrix of dimension 100 000 × 100 000. Moreover, to compare the analytical solutions with
the numerical one, the shadow has to be computed in polar coordinates which require us to
interpolate the two-dimensional surface. Another method is therefore used to generate the
surface along the azimuthal direction φ.

From [30], the surface elevation ξ(x, y, t) can be expressed as a double sum of sinusoidal
components from the given energy spectrum S(k,�)

ξ(x, y, t) = 1

2π

N−1∑
i=1

M−1∑
j=1

[2S(ki ,� j)�k��]1/2

× cos[ki(x cos � j + y sin � j) − �i t + �i j ], (36)

with x and y the horizontal directions respectively parallel and normal to the predominant
wave direction, t the time, �i the circular frequency, �k and �� the increments in k and
�, respectively, and �i j a random phase angle uniformly distributed between 0 and 2π . For
t = 0, in polar coordinates (36) becomes

ξ(R, φ) = 1

2π

N−1∑
i=1

M−1∑
j=1

[2S(ki ,� j )�k��]1/2 cos[ki R cos(� j − φ) + �i j ]. (37)

This advantage of this method is to generate the two-dimensional surface in the φdirection.
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Figure 9. Cross section of the surface heights along the φ = {0◦, 45◦, 90◦} directions, for
Gaussian (full curve) and Lorentzian (dashed curve) surface height autocorrelation functions.
{Lx = 50, L y = 100}, leading to σx = 2σy . The surface height variance is ω = 1, and the
number of the sample is 100 000.

The surface height spectrum defined in Cartesian coordinates S(kx , ky) is obtained from
the Fourier transform of the surface height autocorrelation function R0(x, y), yielding

S(kx , ky) =
∫ ∞

−∞

∫ ∞

−∞
R0(x, y) exp[−j(kx x + ky y)] dx dy. (38)

For Gaussian (subscript G) and Lorentzian (subscript L) autocorrelation functions given
in table 1, we get

SG(kx, ky) = π Lx L y exp[−(kx Lx/2)2 − (ky L y/2)2]
SL (kx, ky) = π2 Lx L y exp(−|kx |Lx − |ky|L y).

(39)

The spectrum S(k,�) defined in polar coordinates is obtained from the one expressed in
Cartesian coordinates by writing S(kx , ky) dkx dky = kS(k,�) dk d� with kx = k cos � and
ky = k sin �. For a sea surface, the Pierson–Moskowitz spectrum given by (31) is used.

Figure 9 represents the cross section of the surface heights along the φ = {0◦, 45◦, 90◦}
directions, for Gaussian and Lorentzian surface height autocorrelation functions. The
correlation lengths are {Lx = 50, L y = 100}, the surface height variance is ω = 1 and
the number of samples is 100 000. In (37), N = M = 100. For a given φ, we can see that the
surfaces are similar.

In figure 10, the surface height and slope normalized histograms of the surfaces (plotted
in figure 9) are depicted versus the surface heights and normalized surface slopes, respectively.
We can observe that both surface heights and slopes obey a Gaussian process with one
height standard deviation and σX = ω

√
2/Lc (see table 1) slope standard deviation for both

autocorrelation functions. Comparison of the numerical slope rms with the theoretical one
(see figure 9) gives good agreement, with a weak overestimation of the order of 4%.
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Figure 10. On the left, the normalized histograms of the surface heights plotted in figure 9. On the
right, the normalized histograms of the surface slopes obtained from the surface heights plotted in
figure 9.

For a Pierson–Moskowitz roughness spectrum, on the left of figure 11, the surface height
is plotted with a wind speed u19 = 11.5 m s−1. In (37), {N = 200, M = 100}, and the number
of samples is 100 000. In the middle, the normalized histogram of the surface heights. On the
right, the normalized histogram of the surface slopes. The wind direction is φ = {0◦, 45◦, 90◦}.
As previously, a good fit is observed between the numerical and theoretical distributions. For
the normalized histograms, the first values of {ω, σX } are numerical and the second ones are
theoretical.

3.4. Comparison of the average monostatic shadowing functions

In this subsection, the uncorrelated, correlated and numerical average shadowing functions are
compared for a Gaussian surface and an infinite observation length (r0 → ∞).

The uncorrelated one Sunc(ν,∞) is given by (7) with ν = cot θ/[σX (φ)
√

2]. The
correlated one Scor (ν, r0) (r0 is the normalized observation length according to the surface
correlation length LC ), is computed from the substitution of (10) into (6) with the variable
transformations given by (10a). This leads to

Scor (ν, r0) =




∫ ∞

−∞
exp(−h2

0)G(ν, h0, rt ) dh0 if r0 � rt∫ ∞

−∞
exp(−h2

0)

[
1 − erfc(h0 + rtνη)/2

1 − erfc(h0 + r0νη)/2

]�(ν)

G(ν, h0, rt ) dh0 else

(40)

where

G(ν, h0, rt ) =
∫ ν

−∞
exp(−ζ 2

0X ) exp

[
−Lc

∫ rt

0
g(ν, h0, ζ0X , r) dr

]
dζ0X . (40a)
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Figure 11. On the left, surface heights for a Pierson–Moskowitz roughness spectrum with a wind
speed u19 = 11.5 m s−1. In the middle, the normalized histogram of the surface heights. On the
right, the normalized histogram of the surface slopes. The wind direction is φ = {0◦, 45◦, 90◦}.

The function Lcg is expressed in table 1 of [26] and computed numerically. It depends
on the normalized functions { fi j(y)}, given by (11), where { f0, f1, f2, η} are expressed in
table 1 for Gaussian (rt = 3, see figure 6) and Lorentzian (rt = 4, see figure 6) autocorrelation
functions, and in table 2 for a Pierson–Moskowitz sea spectrum (rt = 12, see figure 8).
The numerical average shadowing function Snum is computed from the generation of the
surface heights, and with the help of the algorithm developed by Brokelman and Hagfors [28]
summarized in figure 5 of [26].

In figures 12 and13, the differences {Sunc − Snum, Scor − Snum} between the numerical
solution and the uncorrelated (at the top) and correlated (at the bottom) average monostatic
shadowing functions are plotted versus the azimuthal direction φ and the incidence angle θ .
The left-hand side corresponds to the Gaussian correlation case, and the right-hand side to the
Lorentzian one. In figure 12 {σx = 0.4, σy = 0.2}, whereas in figure 13 the rms slopes are
divided by two {σx = 0.2, σy = 0.1}. Within the values of the extrema {min, max}, we can
observe that the differences are small. For the uncorrelated case (at the top), the results are
weakly overpredicted (Sunc > Snum), whereas for the correlated ones (at the bottom), they
are slightly underestimated (Scor < Snum). Since for figure 13 the surface slope is divided by
two, the difference becomes significant for incidence angles greater than the one observed in
figure 12, where the shadowing effect is more important.

In figure 14, the numerical, correlated and uncorrelated monostatic shadowing functions
are represented versus the incidence angle for a Pierson–Moskowitz sea spectrum with a wind
speed u19 = 11.5 m s−1. At the top, φ = 0. In the middle, φ = 45◦. At the bottom φ = 90◦.
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Figure 12. Differences {Sunc − Snum , Scor − Snum} between the numerical solution and the
uncorrelated (at the top) and correlated (at the bottom) average monostatic shadowing functions for
Gaussian (on the left) and Lorentzian (on the right) autocorrelation functions, with {σx = 0.4, σy =
0.2}.

As previously, we can note that the correlated results are slightly smaller than the numerical
ones and the uncorrelated model is close to the numerical solution.

3.5. Average bistatic shadowing function

As shown in figure 15, for a bistatic configuration the transmitter and the receiver are located by
the knowledge of the azimuthal directions {φ1, φ2} along the (Ox) direction and the incidence
angles {θ1, θ2}.

3.5.1. Receiver and transmitter located in the same plane. When the transmitter and receiver
are in the same plane, we have φ2 = φ1 and the surface slopes viewed by the transmitter
and receiver are equal. Since, for a two-dimensional Gaussian surface, the process remains
also Gaussian in polar coordinates, the uncorrelated statistical bistatic shadowing function is
similar to the one (see (14)) performed for a one-dimensional Gaussian surface. We can also
note in (14) that νi = | cot θi |/[σX (φi)

√
2], and the normalized surface length y0 becomes

{r01, r02} according to the transmitter and the receiver, respectively. From (22a), we have
σ 2

X (−φi) = σ 2
X (φi), which explains that φ2 ∈ [0; π/2]. This means that the (Ox) direction is

a symmetric axis.
In figure 16, for infinite normalized observation lengths, {r01, r02} → ∞, the

uncorrelated average bistatic shadowing function Sunc(ν1, ν2) given by (16) is plotted versus
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Figure 13. The same variation as in figure 12 with {σx = 0.2, σy = 0.1}.

the azimuthal direction φ2 and the incidence angle θ2, with {σx = 0.4, σy = 0.2} and
θ1 = {−70,−75,−80,−85}. We can see that the shadow equal to the percentage of the
illuminated surface increases with φ2 because the surface is less rough (σX (φi) decreases) and
decreases with |θ2| and |θ1|.

In the correlated case, the statistical bistatic shadowing function is given by (17). For
θ2 < 0 ((17b) and (17c)), the configuration is monostatic, simulated previously. Therefore,
only the case θ2 � 0 is studied. The substitution of (17a) into (6) with the variable
transformations given by (10a) yields for infinite observation lengths

Scor (ν1, ν2) =
∫ ∞

−∞
exp(−h2

0)G12(ν1, ν2, h0, rt ){[1 − erfc(h0 + rtν1η)]/2}�(ν1)

× {[1 − erfc(h0 + rtν2η)]/2}�(ν2) dh0, (41)

where

G12(ν1, ν2, h0, rt ) =
∫ ν2

−ν1

exp(−ζ 2
0X ) exp

[
−Lc

∫ rt

0
g12(ν1, ν2, h0, ζ0X , r) dr

]
dζ0X , (41a)

and g12 is expressed from (18). The numerical bistatic shadowing function is computed
from [26].

In figures 17 and18, the differences {Sunc − Snum, Scor − Snum} between the numeri-
cal solution represented in figure 19 and the uncorrelated and correlated average bistatic
shadowing functions are plotted versus the azimuthal direction φ2 and the incidence angle
θ2 · {σx = 0.4, σy = 0.2}, θ1 = {−55◦,−65◦,−75◦,−85◦}, and the correlation is Gaus-
sian. As in the monostatic case (figures 12, 13), the correlated results (figure 18) underpredict
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Figure 14. Numerical, correlated and uncorrelated monostatic shadowing functions versus the
incidence angle for a Pierson–Moskowitz sea spectrum with a wind speed u19 = 11.5 m s−1. At
the top, φ = 0. In the middle, φ = 45◦ . At the bottom φ = 90◦ .

Figure 15. Bistatic shadowing function for a two-dimensional surface. φ1 ∈ [−π/2; 0] and
θ1 ∈ [−π/2; 0]. φ2 ∈ [−π/2; π/2] and θ2 ∈ [−π/2; π/2]. The hatched zones represent the
spaces covered by the transmitter and the receiver.

weakly the shadow whereas the uncorrelated solution (figure 17) overestimates them. We can
also note that the difference Scor − Snum increases with the incidence angle |θ1| although the
shadowing function is small (see figure 19). Other simulations not presented in this paper lead
to the same conclusion.
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Figure 16. Two-dimensional average bistatic shadowing function versus the azimuthal direction
φ2 and the incidence angle θ2 for an uncorrelated Gaussian process with {σx = 0.4, σy = 0.2} and
θ1 = {−70, −75,−80,−85}. The transmitter and the receiver are assumed to be located in the
same plane.

For the computations of the numerical and correlated shadowing functions, only the case
of Gaussian autocorrelation is studied, since with a sea spectrum and Lorentzian correlation,
we have a similar conclusion for a monostatic configuration.

3.5.2. Transmitter and receiver located in different planes. As shown in figure 20, if the
transmitter and receiver are located in different planes, the surface slopes {γ0X1 , γ0X2 } viewed
by the transmitter and the receiver are then not equal, meaning that the statistical bistatic
shadowing function S({θi , φi , ξ0, γ0Xi , L0i })(i = {1, 2}) is

S({θi , φi , ξ0, γ0Xi , L0i }) =
i=2∏
i=1

S(θi , φi , ξ0, γ0Xi , L0i ), (42)

where {S(θi , φi , ξ0, γ0Xi , L0i )} denote the statistical monostatic shadowing functions defined
according to the transmitter (subscript 1) and the receiver (subscript 2). {L0i } are the
observation lengths along the (OXi ) directions and ξ0 the surface elevations.

The average bistatic shadowing function S({θi , φi , L0i }) integrated over {ξ0, γ0X1 , γ0X2 }
is then

S({θi , φi , L0i }) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
p(ξ0, γ0X1 , γ0X2)S({θi , φi , ξ0, γ0Xi , L0i }) dξ0 dγ0X1 dγ0X2 .

(43)

When the transmitter and the receiver are in the same plane, we have γ0X1 = γ0X2 = γ0X .
Therefore, the bistatic statistical shadowing function is only integrated over {ξ0, γ0X }.
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Figure 17. Differences Sunc − Snum between the numerical solution (plotted in figure 19) and the
uncorrelated average bistatic shadowing function for the Gaussian autocorrelation function, with
{σx = 0.4, σy = 0.2} and θ1 = {−55◦,−65◦,−75◦,−85◦}. The transmitter and the receiver are
located in the same plane.

The covariance matrix [C3] of samples {ξ0, γ0x , γ0y} corresponds to the partitioned matrix
[C6] (lines and columns 1, 3 and 5) of (25)

[C3] =
[

ω2 0 0
0 σ 2

x 0
0 0 σ 2

y

]
. (44)

Using the same method as section 3.2.2, the covariance matrix [R3] of samples
{ξ0, γ0X1 , γ0X2} is then

[R3] =

ω2 0 0

0 σ 2
X1

ρσX1σX2

0 ρσX1σX2 σ 2
X2


 , (45)

where

σ 2
Xi

= E(γ 2
0Xi

) = σ 2
X (φi ), (45a)

ρ = E(γ0X1γ0X2)

[E(γ 2
0X1

)E(γ 2
0X2

)]1/2
= σ 2

x cos φ1 cos φ2 + σ 2
y sin φ1 sin φ2

σX1σX2

. (45b)

Since E(ξ0γ0x) = E(ξ0γ0y) = 0, we get E(ξ0γ0X1) = E(ξ0γ0X2) = 0. Thus, for a
Gaussian process, we obtain

p(ξ0, γ0X1 , γ0X2) =
exp[− ξ 2

0
2ω2 − 1

2(1−ρ2)σ 2
X1

σ 2
X2

(γ 2
0X1

σ 2
X2

+ γ 2
0X2

σ 2
X1 − 2ργ0X1γ0X2σX1σX2)]

(2π)3/2ωσX1σX2(1 − ρ2)1/2
.

(46)



52 C Bourlier and G Berginc

Figure 18. Differences Scor − Snum between the numerical solution (plotted in figure 19) and
the correlated average bistatic shadowing function for the Gaussian autocorrelation function, with
{σx = 0.4, σy = 0.2} and θ1 = {−55◦,−65◦,−75◦,−85◦}. The transmitter and the receiver are
located in the same plane.

Figure 19. Numerical bistatic shadowing function for the Gaussian autocorrelation function, with
{σx = 0.4, σy = 0.2} and θ1 = {−55◦,−65◦,−75◦,−85◦}. The transmitter and the receiver are
located in the same plane.
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Figure 20. Case where the transmitter and the receiver are not located in the same plane.

For an uncorrelated Gaussian process, the statistical monostatic shadowing function
S(θi , φi , ξ0, γ0Xi , L0i ) is given from (5) swapping {µ, L0, ν, γ0} for {µi = cot |θi |, L0i , νi =
µi/[σX (φi)

√
2], γ0Xi }, respectively. For an infinite observation length, S becomes

S(θi , φi , ξ0, γ0Xi ) = ϒ(µi − γ0Xi ){1 − erfc[ξ0/(
√

2ω)]/2}�(νi ). (47)

Substituting (47) and (46) into (43) and integrating over ξ0, we have for infinite observation
lengths {L0i → ∞}

S({θi , φi }) =
∫ µ1

−∞ dγ0X1

∫ µ2

−∞ exp[− γ 2
0X1

σ 2
X2

+γ 2
0X2

σ 2
X1−2ργ0X1 γ0X2 σX1 σX2

2(1−ρ2)σ 2
X1

σ 2
X2

] dγ0X2

2πσX1σX2(1 − ρ2)1/2[1 + �(ν1) + �(ν2)]
. (48)

The variable transformations γ0X2 = x2σX2 [2(1 − ρ2)]1/2, γ0X1 = x1σX1

√
2, and the

integration over x2 lead to

S({θi , φi}) =
∫ ν1

−∞ exp(−x2
1){1 + erf[(ν2 − ρx1)/(1 − ρ2)1/2]} dx1

[1 + �(ν1) + �(ν2)]2
√

π
. (49)

The integration over x1 is computed numerically. If the correlation between {γ0X1 , γ0X2 }
is neglected, then ρ = 0, and the above equation becomes [1 + erf(ν1)][1 + erf(ν2)]/{4[1 +
�(ν1) + �(ν2)]}. In [29], this assumption is used.

In figure 21, the two-dimensional average bistatic shadowing function S({θi , φi }) is
plotted versus the azimuthal directions {φ1, φ2} for an uncorrelated Gaussian process with
{σx = 0.4, σy = 0.2}, θ2 = {−85◦,−60◦, 85◦, 60◦} and θ1 = −75◦. For θ2 < 0 (figures (a)
and (b)), if φ2 = φ1 then S({θi , φi}) is computed from either (16b) (case where |θ1| > |θ2|)
or (16c) (case where |θ1| < |θ2|) which is greater than (49) used for φ2 �= φ1. For θ2 > 0
(figures (c) and (d)) with φ2 = φ1, the shadow is given by (16a).

For the correlation case with infinite observation lengths, the average bistatic shadowing
function is expressed from (41), where G12 is given by

G12(ν1, ν2, h0, rt ) =
∫ ν1

−∞
dζ0X1

∫ ν2

−∞
p(ζ0X1 , ζ0X2)

× exp

{
−Lc

∫ rt

0
[g(ν1, h0, ζ0X1 , r) + g(ν2, h0, ζ0X2 , r)] dr

}
dζ0X2 , (50)
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Figure 21. Two-dimensional average bistatic shadowing function versus the azimuthal
directions {φ1, φ2} for an uncorrelated Gaussian process with {σx = 0.4, σy = 0.2}, θ2 =
{−85◦,−60◦, 85◦, 60◦} and θ1 = −75◦.

where the function Lcg is expressed in table 1 of [26] and integrated numerically. The
pdf p(ζ0X1 , ζ0X2) is performed from (46) by using the variable transformations ζ0Xi =
γ0Xi /(σXi

√
2)

p(ζ0X1 , ζ0X2) = exp

[
− 1

1 − ρ2
(ζ 2

0X1
+ ζ 2

0X2
− 2ρζ0X1ζ0X2)

]/
[
√

π(1 − ρ2)1/2]. (51)

Therefore, the average bistatic shadowing function is computed from fourfold integrations
over {ζ0X1 , ζ0X2 , r} plus one for the computation of g which required a lot of computer
time. Moreover, the numerical solution cannot be computed numerically since two different
azimuthal directions of the surface are required which means generating a two-dimensional
surface. Thus, only the uncorrelated case is simulated in this paper.

4. Conclusion

In this paper, the monostatic and bistatic shadowing functions from a Gaussian rough stationary
surface are investigated. Since, for a one-dimensional surface, the Smith results are better than
Wagner’s, the Smith model is used as a starting point to calculate the shadowing effect from
an anisotropic or two-dimensional surface.

As shown [26], Smith’s approach assumes a one-dimensional surface where the correlation
between the surface heights and slopes is omitted. To quantify the correlation effect, for
monostatic and bistatic configurations, the uncorrelated and correlated average shadowing
functions are then compared with an exact numerical solution computed from the generation
of the surface Gaussian heights and the algorithm developed by Brokelman and Hagfors [28].
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The results show that the correlation can be omitted with a good accuracy. The purpose of the
paper is to use the same method for a two-dimensional rough surface.

For a two-dimensional Gaussian surface, we show that the uncorrelated monostatic
shadowing function can be obtained from the one defined for a one-dimensional surface,
from the substitution of the surface slope rms σ by the surface slope rms σX (φ) defined
along the azimuthal direction φ. Moreover, the correlated case can be performed, from the
use of the correlated case where the one-dimensional surface height autocorrelation function is
replaced by the one given in polar coordinate functions as {R, φ}. R denotes the radial distance
between two points on the surface. To compute the numerical solution, the surface height is
generated with respect to φ from the method exposed in [30]. As in the one-dimensional
case, for Gaussian and Lorentzian height correlations and a sea spectrum, the comparison of
the different formulations shows the uncorrelated solution overestimates weakly the shadow,
whereas the correlated one underpredicts it slightly. This means that the shadowing function
does not depend on the autocorrelation function.

For a bistatic configuration, when the transmitter and the receiver are located in the same
plane, the comparison of the different approaches yields a similar conclusion. Nevertheless,
the deviation between the uncorrelated results and the reference solution is smaller that the
one evaluated with the correlated ones. If the transmitter and receiver are in different planes,
the correlated solution requires then fourfold integrations and the reference solution cannot
be computed since a two-dimensional surface has to be generated. In this paper, only the
uncorrelated bistatic statistical function is therefore derived.

In conclusion, as the one-dimensional case, the uncorrelated statistical bistatic shadowing
function can be used to a good approximation. This allows us to get a simple statistical
shadowing function. Although the simulations presented in this paper assume an infinite
observation length, the mathematical formulations take this into account.
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Appendix. Derivation of the elements of the covariance matrix in polar coordinates

In (27a) and (27b), the functions {R1x , R1y, R2x , R2y, R2xy} given by (24a) in Cartesian
coordinates (x, y) have to be expressed in polar coordinates {R, φ}.

The partial derivatives {R1x , R1y} can be defined as

R1x = ∂ R0

∂x
= ∂ R0

∂ R

∂ R

∂x
+

∂ R0

∂φ

∂φ

∂x

R1y = ∂ R0

∂y
= ∂ R0

∂ R

∂ R

∂y
+

∂ R0

∂φ

∂φ

∂y

(A.1)

where R0(x, y) is the surface height autocorrelation defined in Cartesian coordinates. We can
write

∂ R

∂x
= ∂(

√
x2 + y2)

∂x
= x√

x2 + y2
= cos φ

∂ R

∂y
= ∂(

√
x2 + y2)

∂y
= y√

x2 + y2
= sin φ,

(A.2)
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and
∂φ

∂x
= ∂(atan[y/x])

∂x
= − y

x2 + y2
= − sin(φ)

R
∂φ

∂y
= ∂(atan[y/x])

∂y
= x

x2 + y2
= cos(φ)

R
.

(A.3)

Substituting (A.2) and (A.3) into (A.1), we have

R1x = R1R cos(φ) − R1φ

sin φ

R

R1y = R1R sin(φ) + R1φ

cos φ

R
,

(A.4)

where

R1R = ∂ R0

∂ R
, and R1φ = ∂ R0

∂φ
. (A.5)

Applying (A.1), the partial derivatives of second order can be written as

R2x = ∂ R1x

∂x
= ∂ R1x

∂ R

∂ R

∂x
+

∂ R1x

∂φ

∂φ

∂x

R2y = ∂ R1y

∂y
= ∂ R1y

∂ R

∂ R

∂y
+

∂ R1y

∂φ

∂φ

∂y

R2xy = ∂ R1x

∂y
= ∂ R1x

∂ R

∂ R

∂y
+

∂ R1x

∂φ

∂φ

∂y
.

(A.6)

We can show that
∂ R1x

∂ R
= R2R cos φ +

(
R1φ

R2
− R2Rφ

R

)
sin φ

∂ R1y

∂ R
= R2R sin φ −

(
R1φ

R2
− R2Rφ

R

)
cos φ,

(A.7)

and
∂ R1x

∂φ
=

(
R2Rφ − R1φ

R

)
cos φ −

(
R1R +

R2φ

R

)
sin φ

∂ R1y

∂φ
=

(
R2Rφ − R1φ

R

)
sin φ +

(
R1R +

R2φ

R

)
cos φ,

(A.8)

with

R2R = ∂2 R0

∂ R2
R2φ = ∂2 R0

∂φ2
R2Rφ = ∂2 R0

∂ R ∂φ
. (A.9)

The substitution of (A.7) and (A.8) into (A.6) yields

R2x = R2 R2R cos2(φ) + sin2(φ)(RR1R + R2φ) − sin(2φ)(RR2Rφ − R1φ)

R2

R2y = R2 R2R sin2(φ) + cos2(φ)(RR1R + R2φ) + sin(2φ)(RR2Rφ − R1φ)

R2

R2xy = 2 cos(2φ)(RR2Rφ − R1φ) + sin(2φ)(R2 R2R − RR1R − R2φ)

2R2
.

(A.10)

From (A.10) and (A.4), we can notice that the partial derivatives {R1x , R2x } are obtained
from {R1y, R2y} defined with respect to y by replacing {sin(φ),− cos(φ)} in {cos(φ), sin(φ)}
which is similar to changing φ for φ + π/2.

The substitution of (A.10) and (A.4) into (27a) and (27b) gives

R1 = R1R = ∂ R0

∂ R
, and R2 = R2R = ∂2 R0

∂ R2
. (A.11)
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