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Abstract
The integral equation model (IEM) has been developed over the last decade
and it has become one of the most widely used theoretical models for rough-
surface scattering in microwave remote sensing. In the IEM model the
shadowing function is typically either omitted or a form based on geometric
optics with single reflection is used. In this paper, a shadowing function for
one-dimensional rough surfaces which incorporates multiple scattering, finite
surface length and both monostatic and bistatic configurations is developed. For
any uncorrelated process, the resulting equation can be expressed in terms of
the monostatic statistical shadowing function with single reflection, derived in
the preceding companion paper. The effect of correlation between the surface
slopes and heights for a Gaussian surface is studied to illuminate the range over
which such correlations can be ignored. It is found that while the correlation
between surface slopes and heights in the monostatic statistical shadowing
function with single reflection can be ignored, when calculating the average
shadowing function with double reflection the correlation between slopes and
heights between points must be incorporated.

1. Introduction

For a very rough surface, the phenomenon of multiple scattering is important and allows us
to explain the backscattering enhancement observed from experimental data [1, 2] and from
computing simulation [3–6]. To predict this phenomenon, analytical models such as the integral
equation model (IEM) can also be used. This method is based on the first- and second-order
Kirchhoff approximation with a rough surface assumed to be stationary.
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The first version of IEM, developed by Fung [7], assumed an incorrect shape for the Weyl
representation of such a Green function and its gradient. This was recognized and partially
corrected in the second version, suggested by Hsieh et al [8–10], of the model (IEMM).
However, the shape of the gradient of the Green function remained incorrect and a third
version, by Chen et al [11], was released to amend this. Recently, Alvarez-Pérez [12] provided
a consistent formulation of the IEM model denoted as IEM2M, since erroneous assumptions
are made in the previous models.

In the IEM model, when the shadowing effect is not ignored, the average shadowing
function with single reflection is extended to that with double reflection by a physical approach.
As shown by Sancer [13] from the first-order Kirchhoff approximation, this assumption is valid
with the geometric optics approximation. Bourlier et al [14, 15] have shown how the statistical
shadowing function can be included in the bistatic scattering coefficient performed from the
first-order Kirchhoff approximation.

To solve this problem, the statistical shadowing function with multiple reflection is
investigated in this paper for monostatic (emitter and receiver located at the same place
corresponding to the backscattering case) and bistatic (emitter and receiver locations are
distinct) configurations. The statistical shadowing function with single reflection presented
by Bourlier et al [16] for a given observation length is a starting point to determine the
shadowing effect with multiple reflection. As shown in [16], for a single reflection, the
statistical shadowing function carries a restriction over the surface slopes and modifies the
surface height behaviour. The surface height and slope probability density function (pdf) with
shadow is then obtained from the unshadowed one multiplied by the statistical shadowing
function. The aim of this paper is to extend these results to a multiple-scattering problem and
to discuss the consequences for the derivation of the scattering coefficient. For this analysis, the
surface is assumed to be one dimensional and stationary. As shown by Bourlier et al [16–18],
since the Smith statistical shadowing function is more accurate than Wagner’s, the Smith
analysis with single reflection is used for computing the statistical shadowing function with
multiple reflection.

Section 2 presents the monostatic statistical shadowing function for any uncorrelated
process, and applies the model for an uncorrelated Gaussian process. Section 3 extends the ap-
proach for a bistatic configuration. Since the correlation between the surface heights and slopes
is ignored, the statistical shadowing function does not depend on the surface height autocorre-
lation function. In section 4, the correlation is investigated for a Gaussian correlated process.

2. Monostatic statistical shadowing function for any uncorrelated process

Wagner’s [19] and Smith’s [20,21] approaches are used to describe the shadowing function with
single reflection for a stationary rough surface. Their formulation assumes that the surface is
one dimensional with a Gaussian process, where the correlation between the surface slopes and
heights is neglected. From these works, Bourlier et al [16–19] have extended the shadowing
function for any uncorrelated and correlated Gaussian processes. With a Gaussian process, they
showed for an infinite observation length that the Smith results are more accurate than Wagner’s,
and the correlation weakly improves the model. Therefore in this paper, the Smith approach is
chosen as a starting point to develop the statistical shadowing function with multiple reflection.

In this section this is performed from a one-dimensional rough surface in a monostatic
configuration. This function is required for the derivation of the scattering coefficient calculated
from the first- and second-order Kirchhoff approximations. In section 2.1, the problem is
formulated for a double reflection, and section 2.2 presents simulations. In the last section,
the case of the multiple reflection is analysed.
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Figure 1. On the left, an illustration of the monostatic statistical shadowing function with double
reflection for θ1 ∈ [0;π/2] and θ ∈ [−π/2;π/2]. The surface point F(ξ0, γ0) is characterized by
the height ξ0 and the slopeγ0, whereas the surface pointF1(ξ1, γ1) is given by {ξ1 = ξ0+l1 cot θ, γ1}.
On the right, the case where γ1 = µ1 = cot θ1, corresponding to the surface limit slope where the
point F1 is viewed by the receiver.

2.1. Monostatic statistical shadowing function with double reflection

As shown in figure 1, the monostatic statistical shadowing function with double reflection
S2 (subscript 2) represents the probability that the double-bounced waves denoted by the rays
(0)–(1) are not intercepted by the surface. We can write that for each case (ai) with θ1 ∈ [0;π/2]
and θ ∈ [−π/2;π/2]

S2(µ,µ1, F, F1, l1) =



S(|µ|, F, l1)× S(µ1, F1,∞) if θ ∈ [−π/2; 0] case (a1)

S(µ, F, l1)× S(µ1, F1,∞) if θ ∈ [θ1;π/2] case (a2)

0 if θ ∈ ]0; θ1[ case (a3)

(1)
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with {µ = cot θ, µ1 = cot θ1} the beam slopes of the rays (0)–(1), respectively. S denotes the
monostatic statistical shadowing function with single reflection and for a given observation
length l1.

For any surface height ξ0 and slope γ0 the uncorrelated process p(ξ0, γ0) with the Smith
formulation, S(µ, F, l1), is expressed as (equations (12) and (12b) of [16])

S(µ, F, l1) = ϒ(µ− γ0)×
[

P(ξ0)− P(−∞)
P (ξ0 + µl1)− P(−∞)

]�(µ) {
F ≡ F(ξ0, γ0)

{µ, l1} � 0,
(2)

with

ϒ(x) =
{

1 if x � 0

0 else,
(2a)

and

� = 1

µ

∫ ∞

µ

(γ − µ)p(γ ) dγ P =
∫
p(ξ) dξ. (2b)

As shown in figure 1, in the (a3) case, we obtain S2 = 0 since the point F cannot be viewed
by the receiver. For cases (a1,2), S2 is the product of both monostatic shadowing functions.
S(|µ|, F, l1) is defined for a beam slope µ = cot θ from the surface point F(ξ0, γ0) with
an observation length l1. S(µ1, F1,∞) is defined for an incidence beam slope µ1 = cot θ1

emanating from the surface point F1(ξ1ξ0 + µl1, γ1) with an infinite observation length.
The use of (1), (2) yields

S2(µ,µ1, F, F1, l1) =



�1

[P(ξ0)− P(−∞)]�(|µ|)

[P(ξ0 + |µ|l1)− P(−∞)]�(|µ|)−�(µ1)

cases (a1,2) with θ ∈
[
−π

2
; 0

]
∪

[
θ1; π

2

]
,

0 case (a3) with θ ∈ ]0; θ1[

(3)

with

�1 = ϒ(|µ| − γ0)ϒ(µ1 − γ1). (3a)

Although the sign of µ is different for cases (a1,2) (see figure 1), the statistical shadowing
function is the same. This is due to the fact that the surface slope distribution is assumed to be
even, which means that the probability of obtaining negative slopes is equal to that for positive
slopes.

If l1 = 0, then F1 ≡ F (see figure 1), meaning that {γ1 = γ0, µ1 = µ} and
S2(µ, F, l1) = ϒ(|µ| − γ0)[P(ξ0) − P(−∞)]�(|µ|), which is similar to the monostatic
shadowing function with single reflection and for an infinite observation length.

The surface height and slope joint distribution with shadowing effect p2Sh(µ,µ1, ξ0, ξ1,
γ0, γ1, l1) is then expressed from the unshadowed one p(ξ0, ξ1, γ0, γ1; l1) as

p2Sh(µ,µ1, ξ0, ξ1, γ0, γ1, l1) = p(ξ0, ξ1, γ0, γ1; l1)S2(µ,µ1, ξ0, ξ1, γ0, γ1, l1)

where ξ1 = ξ0 + |µ|l1. (4)

To illustrate (4), an uncorrelated Gaussian process with zero mean is used:

p(ξ0, ξ1, γ0, γ1; l1) = 1

(2πωσ)2
exp

(
− ξ 2

0

2ω2
− ξ 2

1

2ω2
− γ 2

0

2σ 2
− γ 2

1

2σ 2

)
, (5)

where {ω2, σ 2} are the surface height and slope variances, respectively. We can note that the
above equation is independent of l1 since the correlation is omitted.



Shadowing by surface roughness: II 179

Use of the variable transformations

h0 = ξ0/(ω
√

2) ζ0 = γ0/(σ
√

2)

h1 = ξ1/(ω
√

2) ζ1 = γ1/(σ
√

2)
y1 = l1/Lc, (6)

and

p(ξ) = 1

ω
√

2π
exp

(
− ξ 2

2ω2

)
⇒ P(ξ) = 1

2
erf

(
ξ

ω
√

2

)
,

dξ0 dξ1 dγ0 dγ1 = 2(ωσ)2 dh0 dh1 dζ0 dζ1

(7)

leads for the (a1,2) cases, with ν ∈ [−ν1; ∞[ to

P2Sh = [ϒ(ν − ζ0) exp(−ζ 2
0 )/

√
π ] × [ϒ(ν1 − ζ1) exp(−ζ 2

1 )/
√
π ]

×[{1 − erfc(h0)/2}�(|ν|) exp(−h2
0)/

√
π

×{1 − erfc(h0 + y1|ν|η)/2}�(ν1)−�(|ν|) exp{−(h0 + y1|ν|η)2}/
√
π ], (8)

with
�(ν) = [exp(−ν2)− ν√πerfc(ν)]/(2ν

√
π)

ν1 = µ1/(σ
√

2) ν = µ/(σ
√

2)

η = σLc/ω

(8a)

where erf is the error function, erfc(x) = 1 − erf(x) and Lc denotes the surface correlation
length. For a Gaussian surface height autocorrelation function, we obtain η = √

2.
In (8), since |ν| ∈ [ν1; ∞[ we obtain�(ν1) � �(ν) � 0 ⇒ �(ν1)−�(ν) � 0, involving

[1 − erfc(· · ·)/2]�(ν1)−�(|ν|) ∈ [0; 1] because [1 − erfc(· · ·)/2] ∈ [0; 1].

2.2. Simulations for the Gaussian process and surface correlation

The first two terms between brackets on the right-hand side of (8) denote the restriction over
the surface-normalized slopes {ζ0, ζ1}, respectively. They are independent of the normalized
distance y1. In figure 2, they are represented versus {ζ0, ζ1}, for ν1 = {1, 0.5}. The slope
distribution according to ζ0 is not equal to zero for ζ0 � ν, whereas that defined with respect
to ζ1 is reduced to the range ζ1 � ν1. Both distributions are not equal to zero if ν ∈ ]−∞; ν1].

In figure 3, the last term on the right-hand side of (8), which characterizes the shadowed
surface height distribution, is plotted versus the normalized height h0 for ν1 = {1, 0.5} and
y1 = {0.1, 0.5, 2}. Unlike the slope distributions (figure 2), we see that when y1 decreases the
slope distribution quickly increases, tending to that defined with one reflection. The amplitude
of the height distribution decreases when ν1 decreases, corresponding to grazing incidence
angles or a rougher surface since ν1 = cot θ1/(σ

√
2).

The average statistical shadowing function over the surface heights ξ0 and slopes {γ0, γ1}
is expressed with ξ1 = ξ0 + |µ|l1 as

S2(µ,µ1, l1) =
∫ ∫ ∫

p2Sh(µ,µ1, ξ0, ξ1, γ0, γ1, l1) dξ0 dγ0 dγ1

=
∫ ∫ ∫

p(ξ0, ξ1, γ0, γ1; l1)S2(µ,µ1, ξ0, ξ1, γ0, γ1, l1) dξ0 dγ0 dγ1. (9)

Substituting (3) into (9), the average shadowing function is

S2(µ,µ1, l1) =




�1(|µ|)×�1(µ1)×
∫ ∞

−∞
p(ξ0)[P(ξ0)− P(−∞)]�(|µ|)

×p(ξ0 + |µ|l1)[P(ξ0 + |µ|l1)− P(−∞)]�(µ1)−�(|µ|) dξ0

if µ ∈ ]−∞;µ1]

0 else,

(10)



180 C Bourlier et al

Parameter v Parameter v

Parameter v Parameter v

v1 = 1.0 v1 = 0.5
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Figure 2. Top: monostatic shadowed surface slope distribution with double reflection versus the
normalized slope ζ0 for ν1 = {1, 0.5}. Bottom: that versus the normalized slope ζ1.

with

�1(x) =
∫ x

−∞
p(γ ) dγ. (10a)

The use of variable transformations (6) and (8a) yields for an uncorrelated Gaussian
process (�1(x) = [1 + erf(x)]/2)

S2(ν, ν1, y1) =




1

4π
[1 + erf(|ν|)][1 + erf (ν1)]

∫ ∞

−∞
exp[−h2

0 − (h0 + y1|ν|η)2]

×[
1 − 1

2 erfc(h0)
]�(|ν|)

[1 − 1
2 erfc(h0 + y1|ν|η)]�(ν1)−�(|ν|) dh0

if ν ∈ ]−∞; ν1]

0 else.

(11)

In figure 4, the above equation is plotted versus {ν, y1} for ν1 = {2, 1, 0.5, 0.1}. We can
see that when the normalized distance y1 increases, the average shadowing function decreases
quickly, as |ν| tends to zero, corresponding to either a very rough surface or angles close to
±90◦. If ν1 decreases, then the amplitude of the average shadowing function decreases, and for
values of ν � ν1 it is equal to zero. This maximum value is obtained when {y1 = 0, ν1 � 2}
(�(2) ≈ 2, 4 × 10−4 and erf(2) ≈ 0.99), meaning that

S2(ν, 2, 0) ≈ 1 + erf(|ν|)
2π

∫ ∞

−∞
exp(−2h2

0) dh0 = 1 + erf(|ν|)
2
√

2π
if ν ∈ ]−∞; 2]. (12)
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Figure 3. Monostatic shadowed surface height distribution with double reflection versus the
normalized height h0 for y1 = {0.1, 0.5, 2}. Left: ν1 = 1. Right: ν1 = 0.5.

Now, we can calculate the integration over l1 of the average shadowing function defined
from (9) as

S2(µ,µ1) =
∫ ∞

0
S2(µ,µ1, l1) dl1. (13)

We show in the appendix, for any uncorrelated distribution, that the above equation
becomes

S2(ν, ν1) =



�1(|ν|)�1(ν1)

2|µ|[1 +�(|ν|)][1 +�(ν1)/2]
if ν ∈ ]−∞; ν1]

0 else
(14)

with

�1(x) =
√

2σ
∫ x

−∞
p(γ

√
2σ) dγ. (14a)

For an uncorrelated Gaussian process, � is given by (8a), and �1(ν) = [1 + erf(ν)]/2.
In figure 5, the 2|µ|S2(ν, ν1) average monostatic shadowing function integrated over l1 is

plotted versus ν for ν1 = {2, 1, 0.5, 0.1} with an uncorrelated Gaussian process. For a very
rough surface (high standard deviation of slopes σ , i.e. |νi | = |µi |/σ

√
2 small), the shadowing

function decreases quickly. For incidence near 90◦, corresponding to |νi | → 0, the surface is
highly shaded (S2 → 0). In contrast, for normal incidence angles (ν1 close to 2), the whole
surface is illuminated (S2 = 1). The variation between these two asymptotic values is as
much as σ .
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Figure 4. Average monostatic shadowing function S2(ν, ν1, l1) (equation (11)) versus {ν, y1} for
ν1 = {2, 1, 0.5, 0.1} with an uncorrelated Gaussian process.

2.3. Monostatic statistical shadowing function with multiple reflection

In this section the monostatic statistical shadowing function with n′ = n + 1 reflections is
investigated. Only the (a1,2) cases of figure 1 are treated since the (a3) case is null. Therefore
θp � θp−1 with θp ∈ [0;π/2] (see figure 6). We can note for θ0 ∈ [−π/2; 0] (case (a1)) that
the shadowing effect is the same. As shown in figure 6, the monostatic statistical shadowing
function with n′ reflections Sn′ represents the probability that the n′-bounced waves are not
intercepted by the surface. Then, we can write

Sn+1({µn}, {Fn}, {ln}) =
p=n∏
p=0

S(µp, Fp, lp+1), (15)

with

ln+1 = ∞ µ0 → |µ0| Fp ≡ Fp(ξp, γp)
ξp = ξp−1 + µp−1lp for p > 0

µp � µp−1.

(15a)

If the relationship µp � µp−1 is not valid, then the statistical shadowing function is equal
to zero.

For a double reflection, n′ = 2 ⇒ n = 1 and (15) becomes S(µ0, F0, l1)×S(µ1, F1,∞),
which is equal to the (a1,2) cases of (1) with {µ0, F0} ≡ {|µ|, F }.
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Figure 5. Average monostatic shadowing function 2|µ|S2(ν, ν1) integrated over l1 (equation (14))
versus ν for ν1 = {2, 1, 0.5, 0.1} with an uncorrelated Gaussian process.
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Figure 6. Illustration of the monostatic statistical shadowing function with n′ = n− 1 reflections.
This corresponds to a generalization of cases (a1,2) of figure 1 with θp � θp−1 and θn ∈ [0;π/2].

Substituting (2) into (15), we obtain

Sn+1({µn}, ξ0, {γn}, {ln}) =
p=n∏
p=0

ϒ(µp − γp)
[

P(ξp)− P(−∞)
P (ξp + µplp+1)− P(−∞)

]�(µp)
, (16)

with

ξp = ξ0 +
m=p∑
m=1

µm−1lm for p > 0. (16a)

For an uncorrelated Gaussian process defined as

p({ξn}, {γn}) =
p=n∏
p=0

p(ξp)× p(γp), (16b)
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the average shadowing function integrated over ξ0 and {γn} is

Sn+1({µn}, {ln}) =
p=n∏
p=0

�1(µp)

∫ ∞

−∞

[
P(ξp)− P(−∞)

P (ξp + µplp+1)− P(−∞)
]�(µp)

p(ξ0) dξ0, (17)

with �1 given by (10a).
The average shadowing function integrated over {lp+1} (ln+1 = ∞) is

Sn+1({µn}) =
p=n∏
p=0

�1(µp)

∫ ∞

−∞
p(ξ0)[P(ξ0)− P(−∞)]�(µ0) dξ0

×
{ p=n−1∏

p=0

∫ ∞

−∞
[P(ξp + µplp+1)− P(−∞)]�(µp+1)−�(µp)

×p(ξp + µplp+1) dlp+1

}
. (18)

Using the variable transformation ξp+1 = ξp + µplp+1 and the appendix, we show

Sn+1({νn}) = �1(ν0)

1 +�(ν0)

p=n−1∏
p=0

�1(νp+1)

2µp{1 + [�(νp+1)−�(νp) +�(ν0)]/2} p > 0, (19)

with

νp = µp/(σ
√

2). (19a)

The first term on the right-hand side of (19) corresponds to the average monostatic
shadowing function with single reflection for an infinite observation length. For a double
reflection, n = 1 and (14) is found with {|µ| = µ0, |ν| = ν0}. Since µp � µ0, from (19a)
and (8a) we obtain νp � ν0 and �(νp) � �(ν0), meaning that �(ν0) − �(νp) � 0. This
means that Sn+1({νn}) � 0.

To illustrate equation (19), the case where νp+1 ≈ νp = ν0 is considered and we obtain

Sn+1(ν0) = 1

(2µ0)n

[�1(ν0)]n+1

[1 +�(ν0)][1 +�(ν0)/2]n
� Sn+1({νn}). (20)

We can note that Sn+1(ν0) is an upper bound of (2µ0)
nSn+1({νn}).

In figure 7, for νp = ν0, the monostatic average shadowing function (2µ0)
nSn+1({ν0})

integrated over {lp+1} is plotted versus the parameter ν0 with respect to n = n′ − 1, where n′

denotes the number of reflections. We observe that the ratio of the illuminated surface to the
whole surface decreases when n′ increases.

3. Bistatic statistical shadowing function for any uncorrelated process

In this section, the previous model is extended to a bistatic configuration. In section 3.1, the
problem is formulated for a double reflection, and section 3.2 presents simulations. In the last
section, the case of multiple reflection is investigated.

3.1. Bistatic statistical shadowing function with double reflection

As shown in figures 8 and 9, the bistatic configuration is obtained from the monostatic
configuration (figure 1) by adding a ray originating from an emitter with an incidence angle
θi ∈ [−π/2; 0] defined for l < 0. For l � 0, the monostatic geometry is used with a receiver
located at an incidence angle θ1 ∈ [−π/2;π/2]. Therefore, the bistatic statistical shadowing
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Figure 7. Average monostatic shadowing function (2µ0)
nSn+1(ν0) integrated over lp+1

(equation (20)) versus ν0 with νp = ν0 and for an uncorrelated Gaussian process.

function with double reflection S2 represents the probability that the threefold-bounced waves
denoted by the rays (i), (0), and (1) are not intercepted by the surface.

From figure 8, we can write with θ ∈ [0;π/2] that

S2(µi, µ, µ1, F, F1, l1) =



S(|µi |, F,∞)× S(µ, F, l1)× S(µ1, F1,∞) case (b1)

S(|µi |, F,∞)× S(µ, F, l1) case (b2)

0 case (b3),

(21)

and the {(b1,2,3)} cases are defined as

(b1) case where θ1 ∈ [0;π/2] and θ ∈ [θ1;π/2]

(b2) case where θ1 ∈ [−π/2; 0[ and θ ∈ [0;π/2]

(b3) case where θ1 ∈ [0;π/2] and θ ∈ ]0; θ1[.

(21a)

Case (b1) is similar to a monostatic configuration S(|µi |, F,∞) of an infinite observation
length with single reflection defined according to the emitter and a monostatic configuration
S(µ, F, l1)× S(µ1, F1,∞) with double reflection corresponding to the receiver (case (a2) of
figure 1). Case (b2) is similar to case (a1). Like case (a3) of figure 1, case (b3) is zero since
the surface point F cannot be viewed by the receiver.

As shown in figure 9, with θ ∈ [−π/2; 0[ we obtain

S2(µi, µ, µ1, F, F1, l1) =




0 case (b4)

0 case (b5)

S(|µi |, F,∞) case (b6)

S(|µi |, F,∞)× S(µ1, F,∞) case (b7)

(22)
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Figure 8. Bistatic statistical shadowing function with double reflection for θi ∈ [−π/2; 0] and
θ ∈ [0;π/2]. In this case l1 � 0. The surface point F(ξ0, γ0) is characterized by the height ξ0 and
the slope γ0, whereas the surface point F1(ξ1, γ1) is characterized by {ξ1 = ξ0 + l1 cot θ, γ1}.

and the ranges of the cases {(b4,5,6,7)} are

case (b4) where θ ∈ ]θi; 0[

case (b5) where θ ∈ [−π/2; θi] and θ1 ∈ [−π/2; θ [

case (b6) where θ ∈ [−π/2; θi] and θ1 ∈ [θ; 0[

case (b7) where θ ∈ [−π/2; θi] and θ1 ∈ [0;π/2].

(22a)

For case (b4), there is no double reflection. In case (b5), the surface point F1 cannot be
viewed by the receiver since the surface is crossed by ray (1). Case (b6) is similar to a monostatic
configuration S(|µi |, F,∞) with an infinite observation length, since the probability that the
surface point F1 is hidden is equal to unity. Case (b7) is similar to a bistatic configuration with
single reflection and for an infinite observation length.

In figure 10, cases {(bi)} are represented in the plane (θ, θ1) with θ ∈ [−π/2;π/2],
θ1 ∈ [−π/2;π/2] and θi ∈ [−π/2; 0].
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Figure 9. Bistatic statistical shadowing function with double reflection for θi ∈ [−π/2; 0] and
θ ∈ [−π/2; 0[. In this case l1 � 0. The surface point F(ξ0, γ0) is characterized by the height ξ0
and the slope γ0, whereas the surface point F1(ξ1, γ1) is characterized by {ξ1 = ξ0 + l1 cot θ, γ1}.
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Figure 10. Representation of cases {(bi )} in the plane (θ, θ1) with θ ∈ [−π/2;π/2], θ1 ∈
[−π/2;π/2], and θi ∈ [−π/2; 0].

Using (2) and combining (21) with (22), we obtain

S2(µi, µ, µ1, F, F1, l1) =




�b1 × [P(ξ0)− P(−∞)]�(|µi |)+�(µ)
[P(ξ0 + µl1)− P(−∞)]�(µ)−�(µ1)

case (b1)

�b2 × [P(ξ0)− P(−∞)]�(|µi |)+�(µ)
[P(ξ0 + µl1)− P(−∞)]�(µ) case (b2)

ϒ(|µi | − γ0)× [P(ξ0)− P(−∞)]�(|µi |) case (b6)

�b7 × [P(ξ0)− P(−∞)]�(|µi |)+�(µ1) case (b7)

0 cases (b3,4,5)

(23)

with
�b1 = ϒ(|µi | + γ0)ϒ(µ− γ0)ϒ(µ1 − γ1)

�b2 = ϒ(|µi | + γ0)ϒ(µ− γ0)

�b7 = ϒ(|µi | + γ0)ϒ(µ1 − γ0),

(23a)

and
case (b1) where µ1 ∈ [0; ∞[ µ ∈ [0;µ1]

case (b2) where µ1 ∈ ]−∞; 0[ µ ∈ [0; ∞]

case (b6) where µ1 ∈ ]−∞;µ] µ ∈ [µi; 0]

case (b7) where µ1 ∈ [0; ∞[ µ ∈ [µi; 0[

case (b3) where µ1 ∈ [0; ∞[ µ ∈]µ1; ∞[

case (b4) where µ ∈ ]−∞;µi[
case (b5) where µ1 ∈ ]µ; 0[ µ ∈ [µi; 0]

with {µ1, µ} ∈ ]−∞; ∞[ and µi ∈ ]−∞; 0].

(23b)

In (23a), we can notice for the ϒ(|µi | + γ0) term that the sign of γ0 is positive because
the emitter is defined for l < 0.

Figure 11 illustrates the {(bi)} cases in the plane (µ,µ1) with {µ1, µ} ∈ ]−∞; ∞[ and
µi ∈ ]−∞; 0].
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Figure 11. Representation of cases {(bi )} in the plane (µ,µ1)withµ ∈ ]−∞; ∞[,µ1 ∈ ]−∞; ∞[
and θi ∈ ]−∞; 0].

3.2. Discussion

For an uncorrelated Gaussian process defined as (5), substituting (23) into (4), using variable
transformations (6) and (7), the surface height and slope joint distribution with shadowing
effect p2Sh(µi, µ, µ1, ξ0, ξ1, γ0, γ1, l1) for each case (bi) is

p2Sh(νi, ν, ν1, ξ0, ξ1, γ0, γ1, l1) (24)

= case (b1)




[ϒ(|νi | + ζ0)ϒ(ν − ζ0) exp(−ζ 2
0 )/

√
π ]

×[ϒ(ν1 − ζ1) exp(−ζ 2
1 )/

√
π ]

×[{1 − erfc(h0)/2}�(|νi |)+�(ν) exp(−h2
0)/

√
π

×{1 − erfc(h0 + y1νη)/2}�(ν1)−�(|ν|)

× exp{−(h0 + y1νη)
2}/√π ]

(24a)

= case (b2)




[ϒ(|νi | + ζ0)ϒ(ν − ζ0) exp(−ζ 2
0 )/

√
π ]

×[{1 − erfc(h0)/2}�(|νi |)+�(ν) exp(−h2
0)/

√
π

×{1 − erfc(h0 + y1νη)/2}−�(|ν|)
× exp{−(h0 + y1νη)

2}/√π ],

(24b)

= case (b6)

{
[ϒ(|νi | + ζ0) exp(−ζ 2

0 )/
√
π ]

×[{1 − erfc(h0)/2}�(|νi |) exp(−h2
0)/

√
π ],

(24c)

= case (b7)

{
[ϒ(|νi | + ζ0)ϒ(ν1 − ζ0) exp(−ζ 2

0 )/
√
π ]

×[{1 − erfc(h0)/2}�(|νi |)+�(ν1) exp(−h2
0)/

√
π ],

(24d)

= cases (b3,4,5) 0, (24e)

with

νi = µi/(σ
√

2) ν1 = µ1/(σ
√

2) ν = µ/(σ
√

2), (25)

and in (23b) the ranges of cases (bi), {µi, µ1, µ} are substituted by {νi, ν1, ν}.
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The comparison of (24a) with (8) shows, for the bistatic configuration, an additional
restriction over the surface-normalized slopes ζ0 represented by theϒ(|νi |+ζ0) term, and over
the surface-normalized heights h0, the additional term {1−erfc(h0)/2}�(|νi |). This corresponds
to the contribution of the shadowing effect according to the emitter. The (b6) case is similar
to a monostatic case with an infinite observation length, which carries a restriction over the
surface-normalized slopes ζ0 and modifies the unshadowed surface height distribution. Their
effect is represented in figure 2 of [16]. The (b7) case is similar to a bistatic configuration with
an infinite observation length and it is depicted in figure 13 of [16].

Substituting (23) into (9), the bistatic average shadowing function over {h0, ζ0, ζ1} with
double reflection is expressed for any uncorrelated process as

S2(µi, µ, µ1, l1) (26)

= case (b1)




[�1(|νi |) +�1(ν)− 1] ×�1(ν1)×
∫ ∞

−∞
p(ξ0)p(ξ0 + µl1)

×[P(ξ0)− P(−∞)]�(|νi |)+�(ν)
×[P(ξ0 + µl1)− P(−∞)]�(ν1)−�(|ν|) dξ0,

(26a)

= case (b2)




[�1(|νi |) +�1(ν)− 1] ×�1(ν1)

∫ ∞

−∞
p(ξ0)p(ξ0 + µl1)

×[P(ξ0)− P(−∞)]�(|νi |)+�(ν)
×[P(ξ0 + µl1)− P(−∞)]−�(|ν|) dξ0,

(26b)

= case (b6) �1(|νi |)× [1 +�(|νi |)]−1, (26c)

= case (b7) [�1(|νi |) +�1(ν1)− 1] × [1 +�(|νi |) +�(ν1)]
−1, (26d)

= cases (b3,4,5) 0, (26e)

where {�,�1} is defined as (2b) and (14a), respectively. For a Gaussian process it is equal to
�1(x) = [1 + erf(x)]/2 and � is given by (8a).

We can note that∫ ∞

−∞
p(ζ ) dζ = 1 =

∫ |x1|

−∞
p(ζ ) dζ +

∫ x2

−∞
p(ζ ) dζ −

∫ x2

−|x1|
p(ζ ) dζ, (27)

meaning that ∫ x2

−|x1|
p(ζ ) dζ = �1(|x1|) +�1(x2)− 1. (28)

This explains in (26a) and (26b) the term�1(|νi |)+�1(ν)−1, since the integration range
of ζ0 is [−|νi |; ν]. In cases (b2,6,7) (24b)–(24d), the integration over ζ1 is not required since the
shadowed process does not depend on ζ1. Equation (26c) corresponds to the average monostatic
shadowing function given by (18) of [16] with a Gaussian process (Smith formulation) for an
infinite observation length, whereas (26d) represents that for a bistatic configuration ((62), first
case of [16]).

Using the same method as the appendix, the integration of S2(νi, ν, ν1, l1) over l1 leads
for (26a) and (26b) to

S2(νi, ν, ν1, l1) (29)

= case (b1)
[�1(|νi |) +�1(ν)− 1] ×�1(ν1)

2µ[1 +�(ν) +�(|νi |)]{1 + [�(ν1) +�(|νi |)]/2} (29a)

= case (b2)
[�1(|νi |) +�1(ν)− 1] ×�1(ν1)

2µ[1 +�(ν) +�(|νi |)][1 +�(|νi |)/2]
(29b)

with {νi, ν, ν1} given by (25).
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Figure 12. Illustration of the bistatic statistical shadowing function with n′ = n − 1 reflections.
θn ∈ [0;π/2], θi ∈ [−π/2; 0] and θp � θp−1.

If in (29b) ν1 → ∞ (θ1 = 0 normal incidence), then �(ν1) → 0 and (29b) is equal
to (29a). Comparing equation (29a) with (14), a similar form is found, and the difference is due
to the addition of the emitter. Indeed, if |νi | → ∞ (emitter located at normal incidence angle),
then {�(|νi |) → 0,�1(|νi |) → 1} and the bistatic configuration is equal to the monostatic
one with ν substituted by |ν|.

3.3. Bistatic statistical shadowing function with multiple reflection

In this section, the bistatic statistical shadowing function with n′ = n − 1 reflections is only
depicted for case (b1)of figure 8. This means that θn ∈ [0;π/2], θi ∈ [−π/2; 0] and θp � θp−1.
As depicted in figure 12, {θi, θn, θp} denote the incidence angles of the emitter, receiver and
reflections of order p + 1 with p ∈ [0; n − 1]. The other cases can be easily obtained by
following the same method as section 3.1.

Therefore, this case is similar to a monostatic configuration with n′ reflections given
by (15) and a monostatic configuration with single reflection defined according to the emitter
and for an infinite observation length. We obtain

Sn+1(µi, {µn}, {Fn}, {ln}) = S(|µi |, F0,∞)×
p=n∏
p=0

S(µp, Fp, lp+1), (30)

with the use of (15a).
The substitution of (2) into (30) yields

Sn+1(µi, {µn}, {Fn}, {ln}) = ϒ(|µi | + γp)× [P(ξ0)− P(−∞)]�(|µi |)

×
p=n∏
p=0

ϒ(µp − γp)×
[

P(ξp)− P(−∞)
P (ξp + µplp+1)− P(−∞)

]�(µp)
. (31)

Since the emitter is defined for l < 0, the sign of γ0 in ϒ(|µi | + γ0) is positive. Thus,
bistatic configuration (31) is obtained from the monostatic one (16) by substituting

�(µ0)→ �(µ0) +�(|µi |)
ϒ(µ0 − γ0)→ ϒ(µ0 − γ0)ϒ(|µi | + γ0)⇒ γ0 ∈ [−|µi |;µ0].

(31a)
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From the results developed in section 2.3, the bistatic case can be easily studied using the
above substitutions. For example, with the use of (19) and (28), the average bistatic shadowing
function integrated over lp+1 is given by

Sn+1(νi, {νn}) = �1(|νi |) +�1(ν0)− 1

1 +�l(ν0) +�(|νi |)

×
p=n−1∏
p=0

�1(νp+1)

2µp{1 + [�(νp+1)−�(νp) +�(ν0) +�(|νi |)]/2} . (32)

4. Statistical shadowing function for a correlated Gaussian process

This section studies the effect of the correlation between the surface heights and slopes, assumed
to be Gaussian. The statistical shadowing functions with multiple reflection developed in
section 2 and given by (1), (15), (21), (22) and (30) are also valid for a correlated process.
They are expressed from the monostatic statistical shadowing function S(|µ|, F, l1)with single
reflection and for a finite observation length. The assumption used arises from the derivation
of this function.

Bourlier et al [16] studied numerically the effect of the correlation with a Gaussian process
for an infinite observation length, and showed the correlation can be omitted if the parameter
ν = cot θ/(σ

√
2) is larger than two, where θ is the incidence angle and σ the surface slope

standard deviation. This section extends the previous analysis according to the observation
length, which is the additional parameter for a scattering problem with multiple scattering.

The monostatic statistical shadowing function with correlation becomes more
complicated, which means the derivations of the monostatic and bistatic statistical shadowing
functions with multiple reflection also become very complicated. This means, for a scattering
problem with shadowing effect, the derivation of the bistatic radar cross section cannot be
tractable numerically or analytically. Therefore, the aim of this section is to study the validity
range when the correlation is not taken into account.

In section 4.1, for a correlated Gaussian process, the monostatic statistical shadowing
function is summarized from [16]. Sections 4.2 and 4.3 compare the correlated monostatic
average shadowing function with the uncorrelated one for single and double reflections,
respectively.

4.1. Monostatic statistical shadowing function with single reflection

For a Gaussian process, the monostatic statistical shadowing function with correlation is
expressed as ((33) of [16] for the Smith formulation denoted by the subscript S with variable
transformations (6))

S(ν, h0, ζ0, y1) =




ϒ(ν − ζ0) exp

[
− Lc

∫ yt

0
g(ν, h0, ζ0, y) dy

]
if y1 � yt

ϒ(ν − ζ0) exp

[
− Lc

∫ yt

0
g(ν, h0, ζ0, y) dy

]

×
[

1 − erfc(h0 + ytνη)/2

1 − erfc(h0 + y1νη)/2

]�(ν)
else

(33)

with ν = cot θ/(σ
√

2) and η = σLc/ω, where ω is the surface height standard deviation
and Lc the surface correlation length. yt represents the inferior limit of the observation length
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where the correlation between the surface heights and slopes can be omitted. This means
that the function Lcg can be analytically integrated over y and gives the second term on the
right-hand side of (33). For y1 � yt the integration of the g function given in table 3 of [16]
is computed numerically. It depends on the functions {fij (y)} expressed as (28a) of [16]
obtained from the normalized surface height autocorrelation function denoted as f0(y) and
its derivatives {f1,2(y)} of first and second orders. For Gaussian f0(y) = exp(−y2) and
Lorentzian f0(y) = 1/(1 + y2) normalized surface height autocorrelation functions, {f1,2(y)}
are given in table 4 of [16] and {fij (y)} are plotted in figure 4 of [16].

When the correlation is neglected we have fij = δij (Kronecker symbol) with δij = 1 if
i = j , else 0, and {ytG = 3, ytL = 4} for Gaussian and Lorentzian correlations. Moreover,
the exponential term exp[· · ·] of (33) is equal to[

1 − erfc(h0)/2

1 − erfc(h0 + ytνη)/2

]�(ν)
, (33a)

and the statistical monostatic shadowing function becomes

S(ν, h0, ζ0, y1) =
[

1 − erfc(h0)/2

1 − erfc(h0 + ytνη)/2

]�(ν)
. (34)

The classical function is then found without correlation.

4.2. Average monostatic shadowing function with single reflection

To find a validity range of the monostatic statistical shadowing with single reflection and for an
uncorrelated Gaussian process, the average monostatic shadowing function over {h0, ζ0} with
correlation is compared with the uncorrelated one. We can note that the study of the validity
domain is not made on the statistical function because this function depends on four variables
(ν, h0, ζ0, y1).

For a Gaussian process, the monostatic average shadowing function is

S(ν, y1) = 1

π

∫ ∞

−∞

∫ ∞

−∞
exp(−h2

0 − ζ 2
0 )S(ν, h0, ζ0, y1) dh0 dζ0. (35)

The cross-correlation between the surface-normalized heights h0 and slopes ζ0 is
proportional to f1(0), where f1(y) denote the derivative of the normalized surface height
autocorrelation function f0(y). Since f0(y) is even for having an Hermitian spectrum,
f1(0) = 0, which implies that the cross-correlation between h0 and ζ0 is equal to zero. In (35),
this explains that p(h0, ζ0) = exp(−h2

0 − ζ 2
0 )/π .

The substitution of (33) and (34) into (35) leads, without correlation, to

S(ν, y1) = 1 + erf(ν)

2
√
π

∫ ∞

−∞
exp(−h2

0)

[
1 − erfc(h0)/2

1 − erfc(h0 + y1νη)/2

]�(ν)
dh0 (36)

without correlation,

S(ν, y1) =




1

π

∫ ∞

−∞
exp(−h2

0) dh0

{ ∫ ν

−∞
exp(−ζ 2

0 ) exp[· · ·] dζ0

}
if y1 � yt else

1

π

∫ ∞

−∞
exp(−h2

0)

[
1 − erfc(h0 + ytνη)/2

1 − erfc(h0 + y1νη)/2

]�(ν)
dh0

×
{ ∫ ν

−∞
exp(−ζ 2

0 ) exp[· · ·] dζ0

}
.

(37)
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Figure 13. Average monostatic shadowing function with single reflection versus the parameter ν
and the normalized observation length y1. The full curve represents the correlated case, whereas
the broken curve corresponds to the uncorrelated case. Also depicted in the chain curve are the
uncorrelated results for an infinite observation length.

In figure 13, the average monostatic shadowing function with single reflection is plotted
versus the parameter ν and the normalized observation length y1. The full curve denotes the
correlated case given by (37), whereas the uncorrelated case expressed from (36) is depicted
with the broken curve. Also plotted in the chain curve are the uncorrelated results given by
[1 + erf(ν)]/{2[1 +�(ν)]} for an infinite observation length. For small values of ν, we observe
that the average monostatic shadowing function is not equal to zero and increases when y1

decreases. If the observation length y1 increases, the results tend to those computed for an
infinite observation length. Indeed, as shown by Bourlier et al [22], with an absolute relative
error of 0.1% the surface can be considered infinite if y1 is larger than

√
6/ν, which is similar

to ν greater than
√

6/y1. With y1 = {1, 3, 20}, we obtain ν = {2.45, 0.82, 0.12}.
In figure 14, the absolute relative difference |Sun(ν, y1)− Sco(ν, y1)|/Sun(ν, y1) between

the uncorrelated Sun(ν, y1) and correlated Sco(ν, y1) average monostatic shadowing functions
is plotted versus the parameter ν and the normalized observation length y1. We can note that
the maxima denoted by a cross and given for each curve in figure 14 converge toward 0.045
when y1 increases. This means that the correlation weakly improves the results as in the
case where the observation length is infinite. For ν larger than two, the average monostatic
shadowing functions with and without correlation are similar, and from figure 13 the shadow
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Figure 14. Absolute relative difference between the uncorrelated and correlated average monostatic
shadowing functions versus the parameter ν and the normalized observation length y1.

becomes equal to unity. Therefore, for a scattering problem, the shadow can be omitted if
ν � 2. Figure 16 of [16] gives versus the standard deviation of the surface slopes σ the limit
incidence angle where the shadow can be neglected.

4.3. Average monostatic shadowing function with double reflection

In this section, the average monostatic shadowing function with double reflection S2(µ,µ1, l1)

equal to (9) is investigated in order to study the validity range of the uncorrelated case. The
statistical monostatic shadowing function with double reflection S2(µ,µ1, F, F1, l1) is given
by (1) and is valid for any correlated process. It is expressed from S(µ, F, l1), which is given
by (33) for a correlated Gaussian process with variable transformations (6).

Therefore, substituting (33) into (1) and (9), using variable transformations (6), for a
correlated Gaussian process, S2(ν, ν1, y1) is written in cases {(a1,2)} (ν ∈ ]−∞; ν1]) as

S(ν, ν1, y1) =
∫ ∞

−∞
Gu(ν1, h1,∞, yt ) dh0

{ ∫ |ν|

−∞
Gc(|ν|, h0, ζ0) dζ0 (38)

×
[ ∫ ν1

−∞
Gc(ν1, h1, ζ1)p(h0, h1, ζ0, ζ1; y1) dζ1

]}
, if y1 � yt (38a)

=
∫ ∞

−∞
Gu(ν1, h1,∞, yt )Gu(|ν|, h0, y1, yt ) dh0

{ ∫ |ν|

−∞
Gc(|ν|, h0, ζ0) dζ0

×
[ ∫ ν1

−∞
Gc(ν1, h1, ζ1)p(h0, h1, ζ0, ζ1; y1) dζ1

]}
, otherwise (38b)
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Figure 15. Average monostatic shadowing function with double reflection versus the normalized
observation length y1. Circles and crosses, the shadowing function with and without correlation,
respectively. Chain curve, the case where the surface height and slope joint pdf are assumed
to be uncorrelated. Full curve, the case where the correlation of the function Gc is omitted.
ν = {0.1, 0.2, 0.3, 0.4} and ν1 = 0.5.

with

Gc(ν, h0, ζ0) = exp

[
− Lc

∫ yt

0
g(ν, h0, ζ0, y) dy

]
(38c)

Gu(ν, h0, y1, yt ) =
[

1 − erfc(h0 + ytνη)/2

1 − erfc(h0 + y1νη)/2

]�(ν)
(38d)

h1 = h0 + y1|ν|η. (38e)

For the (a3) cases (ν ∈ ]ν1; ∞[), S(ν, ν1, y1) = 0.
We can note, for y1 → ∞, Gu(ν1, h1,∞, yt ) given by (38d) is equal to [1 − erfc(h1 +

ytν1η)/2]�(ν1).
p(h0, h1, ζ0, ζ1; y1) denotes the surface height and slope joint probability density function.

p(ξ0, ξ1, γ0, γ1; l1) is obtained from (21) of [16] by writing that (Bayes theorem)

p(ξ0, ξ1, γ0, γ1; l1) = p(ξ, γ |ξ0, γ0; l1)× p(ξ0, γ0). (38f)

Moreover, using variable transformations (6), in (21) of [16] {{Ciij }, ξ0, ξ1, γ0, γ1, l1} are
substituted by {{fij }, h0, h1, ζ0, ζ1, y1} with the Jacobian equal to (2ωσ)2, and we obtain

p(h0, h1, ζ0, ζ1; y1) = 1

π2
√
fM

exp[{−f11(h
2
0 + h2

1) + f33(ζ
2
0 + ζ 2

1 ) + 2f12h0h1 + 2f34ζ0ζ1

+ 2f13(h0ζ0 − h1ζ1) + 2f14(h0ζ1 − h1ζ0)}(fM)−1]. (39)
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Figure 16. Average monostatic shadowing function with double reflection versus the normalized
observation length y1. Circles and crosses, the shadowing function with and without correlation,
respectively. Chain curve, the case where the surface height and slope joint pdf are assumed
to be uncorrelated. Full curve, the case where the correlation of the function Gc is omitted.
ν = {0.1, 0.2, 0.5, 0.9} and ν1 = 1.

{fij (y1)}, which depend on y1, are given by (28a) of [16] performed from the normalized
surface height autocorrelation function denoted as f0(y) and its derivatives {f1,2(y)} of first
and second orders.

Equation (38) shows that the correlation increases the complexity of the model, and the
average monostatic shadowing function requires threefold integrations over {h0, ζ0, ζ1}.

When the correlation is omitted, fij = δij (Kronecker symbol), and (39) is equal to (5) with
variable transformations (6) and the Jacobian equal to (2ωσ)2. Moreover, (38c) becomes (33a),
meaning that integrand (38b) is[

1 − erfc(h0)/2

1 − erfc(h0 + y1|ν|η)/2
]�(|ν|)

[1 − erfc(h1)/2]�(ν1) exp(−h2
0 − h2

1 − ζ 2
0 − ζ 2

1 )/π
2. (40)

Therefore, the integrations over {ζ0, ζ1} can be performed analytically and give π [1 +
erf(|ν|)][1 + erf(ν1)]/4. Equation (11) is then found with h1 = h0 + y1|ν|η.

In figures 15–17, the average monostatic shadowing function with double reflection is
plotted versus the normalized observation length y1. The circles and crosses denote the
shadowing function with (equation (38)) and without (equation (11)) correlation, respectively.
The chain curve gives the case where the surface height and slope joint pdf are assumed
to be uncorrelated (equation (38) where the pdf p is given by (5)). The full curve
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Figure 17. Average monostatic shadowing function with double reflection versus the normalized
observation length y1. Circles and crosses, the shadowing function with and without correlation,
respectively. Chain curve, the case where the surface height and slope joint pdf are assumed
to be uncorrelated. Full curve, the case where the correlation of the function Gc is omitted.
ν = {0.1, 0.5, 1, 1.4} and ν1 = 1.5.

gives the case where the correlation of the function Gc is omitted (equation (38d) with
Gc(ν, h0, ζ0) = Gu(ν, h0, y1, 0), which corresponds to the first term of (40), and the
pdf p given by (39)). In figure 15, ν = {0.1, 0.2, 0.3, 0.4} and ν1 = 0.5. In
figure 16, ν = {0.1, 0.2, 0.5, 0.9} and ν1 = 1. In figure 17, ν = {0.1, 0.5, 1, 1.4} and
ν1 = 1.5.

For small values of the normalized observation length y1, we observe that the difference
between the correlated (circles) and uncorrelated (crosses) results is large, and decreases when
y1 increases since the correlation becomes smaller as ν1 decreases. The comparison of the full
curve (the case where the pdf is correlated withGc uncorrelated) with the chain curve (the case
where the pdf is uncorrelated with Gc correlated) shows that this discrepancy arises from the
fact that the correlation on the pdf is not taken into account. Indeed, when the correlation on
the pdf is not ignored with Gc uncorrelated, there is a good fit with the correlated results. We
also note that the shadowing function calculated with the correlated pdf converges to zero when
y1 is close to zero since the correlated pdf is equal to zero for y1 = 0, unlike the uncorrelated
one.
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In conclusion, as in the previous section, the uncorrelated monostatic statistical shadowing
function with double reflection can be used, but for the average shadowing function the
correlation between the surface heights and slopes of the joint probability density function
has to be taken into account.

Since the bistatic statistical shadowing function with double reflection is expressed from
the monostatic one, we obtain a similar conclusion.

5. Conclusion and discussion

In this paper, the statistical shadowing function with double and multiple reflections from a
one-dimensional stationary random rough surface is investigated for monostatic and bistatic
configurations. It is obtained from the monostatic statistical shadowing function with single
reflection for a given observation length.

For any uncorrelated process, the statistical shadowing function is expressed from the
primitive of the surface height distribution and the unit step function over the surface slopes.
As in the single-reflection case, both conditions modify the height distribution and carry
a restriction over the surface slopes. For an uncorrelated Gaussian process, the average
shadowing function over the surface heights and slopes is performed, and the integration
over the observation length of the average shadowing function is also presented. We can note
that this determination is analytic and valid for any uncorrelated process.

To quantify the correlated effect between the surface heights and slopes, a correlated
Gaussian process is studied. The simulations show that the correlation over the statistical
shadowing function can be omitted, but for the computation of the average shadowing func-
tion the correlation has to be taken into account of the surface height and slope joint probability
density function. This result allows us to have a simple statistical shadowing function.

For a scattering problem with single reflection, Bourlier et al [16] explain how the
shadowing function effect can be introduced, and treat in [14, 15] the first-order Kirchhoff
formulation. The effect of double scattering may be studied from either the IEM–IEMM–
IEM2M [7–12] models or the work of Ishimaru et al [5, 6, 23] based on the first- and second-
order Kirchhoff approximations. In both these approaches, the shadowing function is either
omitted or accounted for by the average shadowing function (valid for the geometric optics
approximation) with single reflection. The prospect of this paper is to include the statistical
shadowing function with double reflection in the previous scattering models.
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Appendix. Derivation of the average statistical monostatic shadowing function

This appendix presents the derivation S2(µ,µ1) of the integration over l1 of the average
monostatic shadowing function S2(µ,µ1, l1) defined from (13) for any uncorrelated process.

Substituting (13) into (9), and using the variable transformation ξ1 = ξ0 + |µ|l1 with (3),
we obtain

S2(µ,µ1) = �1(|µ|)�1(µ1)
1

|µ|
∫ ∞

−∞
p(ξ0)[P(ξ0)− P(−∞)]�(|µ|)dξ0

×
[ ∫ ∞

ξ0

p(ξ1)[P(ξ1)− P(−∞)]�(µ1)−�(|µ|)dξ1

]
if µ ∈ ]−∞;µ1]

= 0 else (A.1)

with �1 given by (10a). The integration over ξ1 leads for µ ∈ ]−∞;µ1] to
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S2(µ,µ1) = �1(|µ|)�1(µ1)

|µ|[1 +�(µ1)−�(|µ|)]
∫ ∞

−∞
p(ξ0)[P(ξ0)− P(−∞)]�(|µ|)

×{1 − [P(ξ0)− P(−∞)]1+�(µ1)−�(|µ|)}dξ0 (A.2)

since P(∞)− P(−∞) = 1. Expanding the term over ξ0, and integrating over ξ0, we show

S2(µ,µ1) =



�1(|µ|)�1(µ1)

|µ|[1 +�(|µ|)][2 +�(µ1)]
if µ ∈ ]−∞;µ1]

0 else.
(A.3)
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