
312 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 3, MARCH 2002

One- and Two-Dimensional Shadowing Functions
for any Height and Slope Stationary Uncorrelated

Surface in the Monostatic and Bistatic Configurations
Christophe Bourlier, Gérard Berginc, and Joseph Saillard

Abstract—The approaches developed by Wagner [1] and
Smith [2], [3] for computing the shadowing properties from a
one-dimensional randomly stationary surface are investigated for
an arbitrary surface uncorrelated height and slope probability
density function (pdf) and extended to a two-dimensional surface
in the monostatic and bistatic configurations. Bourlier et al. [5]
have expressed, from Brown’s work [4], the Smith and Wagner
average shadowing functions, for a one-dimensional surface,
whatever the assumed uncorrelated slope and height pdf. They are
then completely defined from both integrations over the surface
slope pdf. The shadowing function is performed for Gaussian,
Laplacian, and exponential slope probability density functions.
With the method presented in [6], the one-dimensional monostatic
shadowing function is also compared with the exact solution. It is
obtained by generating the slope-height surfaces. The Gaussian
and Laplacian slope pdfs are treated with a Gaussian surface
height. The analytical results are extended to a one-dimensional
bistatic configuration, and the case of a two-dimensional surface
is investigated with a Gaussian and Laplacian surface slope pdfs.
The last point is very relevant, because the classical shadowing
functions of Smith and Wagner are assumed to be one-dimensional
or isotropic.

Index Terms—Electromagnetic scattering by rough surfaces,
shadowing function.

I. INTRODUCTION

T HE shadowing function of random surfaces is originally
introduced as a correction to the unshadowed scattering

coefficient performed from analytical formulations as the Kirch-
hoff approach. With the geometric optics approximation derived
from the Kirchhoff integral, [7] shows how the shadow can be
introduced in the scattering coefficient from the use of the av-
erage shadowing function over the surface slopes and heights.
Theoretically, the scattered field Kirchhoff integral and the sta-
tistical shadowing function (the average over the slopes and the
heights is not performed) from random surfaces depend on the
surface slopes and heights. This means that the statistical shad-
owing function should be included in scattered field, and the
shadowed scatttering coefficient is obtained from averaging the
shadowed scattered field multiplied by its conjugate. Bourlieret
al. exposed this problem in [8] and [9] with the Kirchhoff for-
mulation.
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The scattering analytical theories and the shadowing function
are developed with a slope and height joint Gaussian process.
Gaussian process is probably adequate for the ocean, but for
other surfaces such as sea ice, the density function of the sur-
face roughness is not Gaussian [10]. Therefore, it is necessary
to extend the shadowing theory for any density function in order
to study its effect; such is the purpose of this paper.

References [11] and [12] proved that the shadowing func-
tion is rigorously defined by Rice’s infinite series of integrals.
In [6], Bourlier et al. observe that the approach proposed by
Wagner retains only the first term of these series, whereas the
Smith formulation uses the Wagner model by introducing a nor-
malization function. The average shadowing function with the
Ricciardi–Sato solution has been calculated with a Gaussian un-
correlated process [6], and since the correlation between the sur-
face slopes and heights is ignored, the solution has not physical
meaning at grazing incidence angles. Therefore, the Smith and
Wagner approaches are used to study the shadowing effect of a
random surface, because the Ricciardi–Sato formulation is not
tractable with correlation.

Classically, the surface is assumed to be one-dimensional
with a stationary Gaussian probability density function (pdf),
and the correlation between the slopes and the heights is
omitted. In [5] and [6], the last assumption has been investi-
gated for any one-dimensional surface-height autocorrelation
function, and it is proved that the discrepancy between the
correlated and uncorrelated results is small. Consequently, in
this paper, the correlation is not investigated, which allows a
simpler formulation of the shadowing function. However, the
shadowing function is determined for any surface slope and
height pdf. From Brown’s work [4] with a one-dimensional
surface, Bourlieret al. [5] have expressed the Smith and
Wagner monostatic shadowing functions, averaged over the
surface slopes and heights, whatever the slope and height
pdf assumed to be uncorrelated. These average monostatic
shadowing functions depend then on two integrations over the
surface slope pdf and independent of the surface height pdf.

In Section II, the results are applied to Gaussian, Laplacian,
and exponential slope probability density functions. Moreover,
for a Gaussian surface height autocorrelation function of
Gaussian surface height pdf, the shadowing functions are
compared with the exact solution [6], [13]. The exact solution
is calculated numerically by generating the height and slope
surfaces. Since it is difficult to simulate a surface of exponential
pdf, the Gaussian and Laplacian slope pdfs are only treated
in this paper. Note that the relationship between Laplacian
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and Gaussian samples has to be determined. In Section III,
the monostatic case is extended to the bistatic configuration.
From the approach developed by [5] in Gaussian case, the last
section presents the two-dimensional shadowing function with
Gaussian and Laplacian slope distributions.

II. ONE-DIMENSIONAL SURFACE FOR AMONOSTATIC

CONFIGURATION

References [11] and [12] give the rigorous expression of the
statistical shadowing function equal to Rice’s infinite series of
integrals. For an uncorrelated Gaussian process, these series can
be computed analytically, but as shown [6], the model does not
have physical meaning at grazing incidence angles. Moreover,
when the correlation is introduced, the problem becomes very
complicated and is not tractable analytically [14]. Therefore,
the Wagner approach [1], which keeps only the first term of
Rice’s series, and the Smith [2], [3] formulation, which uses
Wagner’s formulation with the introduction of the normalized
function, are then studied for estimating the shadowing effect.
Comparing these models with the exact solution, Bourlieret
al. [5], [6] show that with a correlated Gaussian process and
Gaussian and Lorentzian surface height autocorrelation func-
tions, there is good agreement between the results.

The exact solution is computed from generating numerically
the height and slope surfaces and using the algorithm of
Brokelman–Hagfors [13] summarized in [6, Fig. 4]. Moreover,
since with the same statistic properties as previously the devia-
tion between the results obtained with and without correlation
is small, in this paper the correlation between the surface slopes
and heights is not investigated. This allows a simpler statistical
shadowing function and implies that the shadowing effect is
independent of the surface autocorrelation function.

This section presents the one-dimensional shadowing func-
tion for a monostatic configuration obtained from the Wagner
and Smith analysis without correlation. With the aim to estimate
the accuracy of their formulations, the exact solution is com-
puted from generating the height and slope surfaces. Gaussian,
Laplacian, and exponential slope probability density functions
are studied in the determination of the analytical shadowing
function. The exact solution is examined for Gaussian and
Laplacian slope distributions with a surface Gaussian height
pdf of Gaussian surface height autocorrelation function.

A. Wagner and Smith Formulations

For an infinite observation length, the statistical shadowing
function is equal to the probability that the point

on a random rough surface, of given heightabove
the mean plane and with local slope , is illuminated
as the surface is crossed by an incident beam from incidence
angle (Fig. 1)

(1)

with

if
if

(1a)

Fig. 1. Illustration of the monostatic shadowing function.

where is the conditional probability that the ray in-
tersects the surface in the interval and knowing that
the ray does not cross the surface in the interval [0;]. is the
Heaviside function. In the Wagner (index) and Smith (index

) approaches, is defined as follows:

(2)

where and is the surface slope
and height conditional joint probability den-

sity. is the slope of the incident ray. We can notice
that Smith introduces a normalization function in the denomi-
nator. The exact formulation of is expressed as an
integral infinite series of Rice (for more details, see [11], [12],
and [6]).

The uncorrelated surface pdf states that

(3)

We can note that the conditional probability is
independent of since it does not depend on the surface auto-
correlation function. If the correlation is investigated, then the
conditional joint probability density for a Gaussian process is
expressed from [6, eq. (14a)].

Substituting (3) into (2), we have

(4)

with

(4a)

Since the range of the denominator of is [0; 1], this
inverse is [1; [ , which involves .
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From (1), since is a decreasing function of, we get
. Therefore, the statistical shadowing

function of Smith is smaller than Wagner’s, whatever the as-
sumed uncorrelated slope and height pdf. This comes from the
fact that Smith introduces a normalization function at the de-
nominator of (2) conditional probability.

We can also note that the Smith and Wagner statistical
shadowing functions depend on the surface slopeand height

. For a scattering problem from a randomly rough surface, the
scattering coefficient is derived from averaging the scattered
electromagnetic field multiplied by its conjugate. Thus, if the
electromagnetic field depends on , which is the case
with the Kirchhoff approach, then the statistical shadowing
function has to be included in the electromagnetic field, and the
scattering coefficient with shadow is obtained from averaging
the shadowed electromagnetic field. This method is explained
in detail in [8] and [9] and applied on the Kirchoff integral.
With the geometric optics approximation, [7] showed that the
average shadowing function can be used as a correction of the
unshadowed scattering coefficient.

The average shadowing function is obtained from
integrating the statistical shadowing function over

(5)

Substituting (4) into (1), using (5) and [5, (2.7)] leads to

(6)

with

(6a)

We can see that Wagner and Smith shadowing functions
depend on the surface slope probability density

function of root mean square (rms) within
and on . According to the following inequalities (see [15,
(4.2.32)]):

(7)

we have

(8)
with . Equation (8) is in agreement with the
notice on (4). For any uncorrelated process, the Smith shad-
owing function averaged over the surface slopes and heights is
then smaller than Wagner’s.

To illustrate the above results, this paper examines the one-di-
mensional Gaussian (index), Laplacian (index ), and expo-

nential [4] (index ) surface slope pdfs with zero mean value
expressed as follows:

(9)

where is one of the modified Bessel functions of order
one. is obtained from performing the marginal proba-
bility of a two-dimensional isotropic exponential distribution
defined as [4]

(10)

We can note that the variances of are equal to
. Comparing [4, (13)] with (9), the

number six is replaced by three since the variance of has
to be equal to instead of 2.

In Fig. 2, Gaussian, Laplacian, and exponential surface slope
distributions are plotted versus the slopewith . It should
be noted that the Laplacian density shows a much greater prob-
ability of occurrence of small slopes than the Gaussian and the
exponential densities. We see that the deviation between the
Laplacian and exponential densities is smaller than the devia-
tion obtained when a Gaussian density is considered.

Substituting (9) into (6) and performing the integration over
the slopes , the parameters are given in Table I ac-
cording to . “erfc” denotes the complementary
error function. With an exponential distribution, the integration
over is computed numerically.

In Fig. 3(a), the Wagner and Smith one-dimensional monos-
tatic shadowing functions are represented versusfor Gaussian,
Laplacian, and exponential slope distributions. In Fig. 3(b), their
difference is plotted according to the Smith average shadowing
function with a Gaussian slope pdf. For grazing angles corre-
sponding to , the shadow tends toward zero, whereas
for normal angles , it converges to one, because the sur-
face is entirely illuminated. For values of , with Laplacian
and exponential distributions, the shadow is larger than that ob-
tained with a Gaussian, whereas for , the contrary effect
is observed. In each case, the shadow estimated with Wagner
formulation is greater than that computed with Smith, which is
in agreement with (8), and the deviation between the Laplacian
and exponential results is small. In fact, as shown in the next
section, Wagner’s results are overestimated.

B. Comparison With the Numerical Shadowing Function or
Exact Shadowing Function

The Smith and Wagner approaches assume that the correla-
tion between the slopes and the heights is negligible. References
[5] and [6] have introduced the correlation with Gaussian sur-
face pdf for any surface height autocorrelation function. They
compare the results with and without correlation with the nu-
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Fig. 2. Gaussian, Laplacian, and exponential slope surface pdfs with� = 1.

TABLE I
PARAMETERS f�; � g FOR A ONE-DIMENSIONAL SURFACE GAUSSIAN,

LAPLACIAN, AND EXPONENTIAL SLOPEPROBABILITY DENSITY FUNCTIONS IN

THE MONOSTATIC CASE

merical solution for several surface height autocorrelation func-
tions and show that the discrepancy between the correlated and
uncorrelated curves is small. This is due to the fact that the shad-
owing function with correlation varies weakly with the autocor-
relation function.

To compare the Wagner and Smith shadowing functions given
by (6) with the numerical solution (obtained from [6, Fig. 4]),
the height and slope surfaces have to be generated. For any sur-
face height autocorrelation function, when the surface elevation
pdf is Gaussian, the linearity of the filter leads also to a Gaussian
surface slope pdf. The variable transformation between Lapla-
cian-exponential and Gaussian random variables
therefore has to be determined. Because it is easy to simulate
numerically a Gaussian white noise, so from [16] the solution is
found by solving the following differential equation:

(11)

The exponential case is not treated because there is no an-
alytical solution. Solving the above differential equation, this
problem could be studied numerically. But the numerical errors
could affect the profile of the slope pdf, involving a numerical
error on the numerical solution computation of the average shad-
owing function, since it is very sensitive with respect to the sur-
face slope distribution.

(a)

(b)

Fig. 3. (a) One-dimensional monostatic shadowing function versus
� = cot �=(�

p
2) for Gaussian, Laplacian, and exponential slope surface

distributions. (b) Difference according to the Smith average shadowing function
with a Gaussian slope pdf.

Substituting (9) into (11), we get

(12)

with . For , the integration of both sides of
(12) leads to

erf (13)

with “erf” the error function. Thus

erf if (14)

The condition involves . For , the use
of the same way as previously leads to

with

with .

(15)

As shown in Fig. 4(a), the first step is to simulate a Gaussian
white noise (100 000 samples) of variance one with zero
mean value (centered on zero). We see a good agreement
between the theoretical and numerical results. As depicted in
Fig. 4(b), a white noise is characterized by a Dirac autocorre-
lation function.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Statistical properties of the height and slope surfaces of a Gaussian surface height autocorrelation function with a Gaussian height distribution. The length
correlation isL = 200 and the number of samples is 100 000.

The second step is to simulate a Gaussian height surface with
a surface height autocorrelation function assumed to be
Gaussian

(16)

with the surface correlation length and the surface height
variance. From [6], the height samples are computed by
writing that

(17)

The symbol is the convolution product. denotes the
filter coefficients, equal for a Gaussian autocorrelation function
[6]

(18)

From Fig. 4(d), the surface height autocorrelation function is
well Gaussian with . As depicted in Fig. 4(c), the lin-
earity of the filter involves a Gaussian height histogram. From
Fig. 4(e), since the height samples are Gaussian repre-
sented in Fig. 4(c), the slope samples equal
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(a) (b)

(c) (d)

Fig. 5. (a) and (b) One-dimensional monostatic shadowing function versus� = cot �=(�
p
2) for a Gaussian surface height pdf with Gaussian and Laplacian

surface slope pdfs,L = 200. (c) and (d) Difference between the Smith and Wagner shadowing functions according to the numerical solution.

to are also Gaussian, and the surface slope
autocorrelation function is theoretically

(19)

with a surface slope variance given by

(20)

Fig. 4(f) shows a very good agreement between the theoret-
ical and numerical surface slope autocorrelation functions. Note
that , computed numerically, is close to the theo-
retical value equal to 0.00707.

As shown in Fig. 4(g), for the last step, we apply (15) for
computing the samples of a Laplacian surface slope pdf.
Knowing , the surface height is built by writing

(21)

In Fig. 4(h), the height samples are plotted.
In conclusion, they have the same height variance
(theoretical value is one) with the same Gaussian height pdf
[Fig. 4(c)], but their slope pdf is different [Fig. 4(e) and (g)].
From the surfaces , the numerical shadowing
functions are evaluated by using the algorithm described in [6,
Fig. 4].

In Figs. 5(a) and (b) and 6(a) and (b), the Wagner, Smith, and
numerical monostatic one-dimensional shadowing functions are
compared versus, with and sam-
ples. In parts (c) and (d) are plotted the differences of the Wagner
and Smith shadowing function according to the numerical solu-
tion. In Table II, the values of the shadowing function are given,
with a surface rms slope , leading

. We see with the Smith approach that the
results are more accurate than those obtained with the Wagner
approach, and the discrepancy between the numerical and Smith
data is small. In both cases, the shadowing effect is overesti-
mated. Thus, the Smith approach is kept as a comparison in this
paper.

References [5] and [6], with a Gaussian surface height and
slope joint pdf and for different surface height autocorrelation
functions, proved that including the correlation between the
heights and the slopes slightly improves the shadowing func-
tion.

III. ONE-DIMENSIONAL SURFACE FOR A BISTATIC

CONFIGURATION

This section presents the bistatic shadowing function for a
one-dimensional rough surface. Since the results obtained with
the Smith formulation are more accurate than Wagner’s formu-
lation, only the Smith approach is kept in the following.
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(a) (b)

(c) (d)

Fig. 6. Same variation as Fig. 5 withL = 100.

TABLE II
VALUES OF THESHADOW FOR� = cot �=(�

p
2) = 0:6

From [5, (2.31)], the statistical bistatic shadowing function is
given by

if

if

if

case a)

case b)

case c)

(22)

with . Equation (22) involves that the statistical bistatic
shadowing function is obtained from two inde-
pendent statistical monostatic shadowing functions defined with
respect to the locations of the transmitter and the re-
ceiver . Consequently, the b) and c) cases are similar to
the monostatic configuration, and case a) has to be investigated.

Substituting (3) and (2) into (1), the Smith a) case of (22) is
expressed as

(23)

Since the transmitter is defined for , the sign of in
is positive and the slope of the incident

ray becomes . The use of (4a) leads to

(24)

with , , and if
else . Using the following variable transforma-
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tions , for each integral over,
we get

(25)

Let be a primitive of

(25a)

because . We obtain

(26)

Substituting (26) into (5), the Smith average bistatic shad-
owing function is expressed as

(27)

The integration over leads to

(28)

Writing that

(29)

From (6a), we have finally

(30)

with and . Since b) and c) of
(22) are monostatic cases, the Smith average bistatic shadowing
function is expressed as

with

if

if

if
(31)

We can note for the a) case that
. The form of (31) is similar to (6) with new values of
. With the Wagner approach, we can show that the form

is also similar.
Using equations of Table I for Gaussian, Laplacian, and ex-

ponential surface slope distributions, the functions are
expressed with respect to

(31a)

Equation (31) then becomes

with

if

if

if
(32)

Applying the same approach as the monostatic case, in
Fig. 7(a) and (b), the Smith bistatic shadowing function is
compared with the numerical one versus the parameter, with

, for Gaussian and Laplacian slopes, whereas
the height surface is Gaussian, . The height and
slope surfaces are the same as in Fig. 4. In Fig. 7(c) and (d),
the difference between the Smith and numerical solutions is
plotted. As shown, Smith’s results are weakly overestimated,
and this overestimation increases when decreases.

IV. TWO-DIMENSIONAL SHADOWING FUNCTION

From [5], which has treated only the Gaussian process, in this
section the Smith one-dimensional shadowing function is ex-
tended to two-dimensional surfaces. At first, with a Gaussian
process and for a monostatic configuration, the method is ex-
posed and applied to a Laplacian process. The last subsection
extends the model to a bistatic configuration for both processes.
This point is very relevant, because in the literature, except [5],
the surface is assumed to be either one-dimensional or isotropic.

The numerical solution of the average shadowing function
cannot be treated because it requires the generation of a two-di-
mensional surface. To have a good representation of the sur-
face statistics such as the surface height autocorrelation func-
tion and its distribution, an important number of surface samples
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(a) (b)

(c) (d)

Fig. 7. (a) and (b) One-dimensional bistatic shadowing function versus� = cot j� j=(�
p
2) with j� j = f0:4; 1:2g, for a Gaussian surface height pdf with

Gaussian and Laplacian surface slope pdfs,L = 200. (c) and (d) Difference between the Smith and numerical solutions.

is required. With a one-dimensional surface, we have chosen
, which implies that with a two-dimensional sur-

face, we have to generate a matrix Gaussian white noiseof
dimension . From (17), the convolution product with the
filter coefficients also has to be computed. To improve the com-
puter time, we could make this operation in the Fourier domain
and use an algorithm of fast Fourier transform, but the size of
the memory remains insufficient. Moreover, since the Fourier
transform is valid in Cartesian coordinates and the shadowing
function is expressed in polar coordinates, the surface cross-sec-
tion in the azimuthal direction has to be evaluated.

A. Monostatic Configuration

For a two-dimensional surface, the slope pdf , as-
sumed to be Gaussian, is expressed as follows:

(33)

with

(33a)

where denote the surface slopes of variance
in the directions (Fig. 8), respectively. is the
covariance matrix of determinant . To have a real surface
without an imaginary part, its spectrum has to be Hermitian,

which involves that the autocorrelation function ob-
tained from the inverse Fourier transform of the spectrum is
even according to directions. This means that

depends on . The “even” may be
obtained with , but is not deriv-
able at zero. Therefore, the surface cross-varianceis equal
to zero, since it is equal to

(34)

Consequently, (33) becomes

(35)

With Laplacian and exponential two-dimensional surface
slope probability density functions, we get

(36)

(37)

The two-dimensional shadowing function is characterized in
polar coordinates by the azimuth angle[observation direction
according to ] and the incidence angle (Fig. 8). For a
constant direction , the issue is one-dimensional. The idea [5]



BOURLIER et al.: ONE- AND TWO-DIMENSIONAL SHADOWING FUNCTIONS 321

Fig. 8. Two-dimensional configuration.

is to extend the one-dimensional results to the two-dimensional
surface by executing a rotation of an anglearound the
axis.

To determine the slope probability density in the
direction , we make a base transformation . The
former coordinates are expressed by the new ones

as

(38)

with the surface slopes in the direc-
tions (Fig. 8). Substituting (38) into (35), the marginal proba-
bility defined as

(39)

is then equal for a Gaussian process to [5, 2.41]

(40)

with

(40a)

The marginal probability in the direction is also a
Gaussian function with variance . Consequently, for a mono-
static configuration with a Gaussian slope pdf, the two-dimen-
sional shadowing function is obtained from the one-dimensional
shadowing function by replacing in (4a) and (6a)by .

Substituting (36) and (38) into (39) and performing the inte-
gration over , we show with a Laplacian slope pdf that the
marginal probability is

(41)
with

(41a)

We can verify that , with
the expected value. Since the marginal probability is not expo-
nential as (9), has to be performed from (4a) and (6a)
with , and we show (42) at the bottom of the page.

Since the integration over is impossible with an exponen-
tial surface slope pdf, its marginal probability is not performed,
and the Gaussian and Laplacian profiles are only studied.

In Fig. 9, the Smith monostatic two-dimensional shadowing
function is plotted versus in degrees with Gaussian and
Laplacian slope distributions. As shown in Fig. 9(a) and (b),
with , , the shadow increases weakly with

and increases with, because the ratio of illuminated surface
decreases. As the one-dimensional surface (Fig. 3), the shadow
with a Laplacian process is slightly larger than that obtained
with a Gaussian process. From Fig. 9(c) and (d) with ,

, when the shadow is close to one, the contrary
effect is observed. Since is smaller than Fig. 9(a) and (b),
the anisotropic effect is more important. Comparing Fig. 9(e)
and (f) for , with Fig. 9(c) and (d), the
shadowing function is greater because the surface rms slope is
smaller.

B. Bistatic Configuration

Since with a Gaussian surface slope pdf the marginal proba-
bility remains Gaussian with a variance given by (40a), the
bistatic configuration is obtained from the substitution ofin
(31a) by

(43)

where denote the transmitter and receiver azimuthal
directions, respectively, and their incidence angles. Substi-
tuting into (32), the Smith two-dimensional bistatic shad-
owing function is calculated with respect to ; .

(42)
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Fig. 9. Two-dimensional monostatic shadowing function with Gaussian and Laplacian slope pdfs.

With a Laplacian surface slope pdf, the Smith two-dimen-
sional bistatic shadowing function is computed from (32) and
(42), where , , is re-
placed by , ,
according to the transmitter or the receiver .

In Fig. 10, the Smith two-dimensional bistatic shad-
owing function is plotted versus the location of the receiver

for fixed location of the transmitter and
. The surface rms slopes are ,

with Gaussian [Fig. 10(a)–(c)] and Laplacian [Fig. 10(b)–(d)]

surface slope probability density functions. We can note that
the shadowing function increases with because the surface
variance slope in the direction decreases.

V. CONCLUSION

The shadowing theory developed by [1]–[3] is investigated in
this paper for any surface height and slope uncorrelated pdf. As
shown by [5] and [6], when the correlation is ignored, the statis-
tical shadowing function does not depend on the surface height
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Fig. 10. Smith two-dimensional bistatic shadowing function versus the location of the receiverf� ; � g for a constant location of the transmitterf� ; � g with
� = 0:3 and� = 0:2.

autocorrelation function. This allows a simpler shadowing func-
tion, and we show in this paper that it depends only on the sur-
face slope pdf.

To illustrate the method with a one-dimensional surface, the
average shadowing function is applied for Gaussian, Laplacian,
and exponential slope distributions. The comparison of the
Smith and Wagner monostatic shadowing functions with the
numerical solution [13] shows that the Wagner results are over-
estimated, whereas the Smith results are close to the numerical
solution. In fact, we show mathematically for an arbitrary
surface slope pdf that the Smith statistical shadowing function
is smaller than Wagner’s, involving that the average is also
smaller. The numerical solution [6] is obtained from generating
Gaussian and Laplacian slope distributions with a Gaussian
height pdf. Since it is easy to generate Gaussian samples, the
relationship between Laplacian and Gaussian samples has to be
determined, which is similar to solving a differential equation
[16]. The method is extended to the bistatic configuration.

Considering a two-dimensional rough surface, the analysis
is extended to monostatic and bistatic configurations with

Gaussian and Laplacian anisotropic surface slope distributions.
Therefore, in this paper, we have developped a two-dimen-
sional shadowing function that can be used in the Kirchhoff
formulation. With the geometric optics approximation, [7]
proved that the shadowed scattering coefficient can be obtained
from multiplying the unshadowed scattering coefficient by
the average shadowing function. However, with the Kirchhoff
integral, to take into account the shadowing effect, the statistical
shadowing function has to be integrated in the electromagnetic
field. This means that the scattering coefficient with shadow is
performed by averaging the shadowed field by its conjugate.
This approach is explained in detail in [8] and [9] with a
Gaussian process.
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