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One- and Two-Dimensional Shadowing Functions
for any Height and Slope Stationary Uncorrelated
Surface in the Monostatic and Bistatic Configurations

Christophe Bourlier, Gérard Berginc, and Joseph Saillard

Abstract—The approaches developed by Wagner [1] and  The scattering analytical theories and the shadowing function
Smith [2], [3] for computing the shadowing properties from a  are developed with a slope and height joint Gaussian process.
one-dlr_nensmnal randomly statlonary_surface are |nvest|gate_d_ for Gaussian process is probably adequate for the ocean, but for
an arbitrary surface uncorrelated height and slope probability th f h ice. the density functi f th
density function (pdf) and extended to a two-dimensional surface other surfaces S_UC as sea '(_:e’ € density tunc _'0_n ot the sur-
in the monostatic and bistatic configurations. Bourlier et al. [5] ~face roughness is not Gaussian [10]. Therefore, it is necessary
have expressed, from Brown's work [4], the Smith and Wagner to extend the shadowing theory for any density function in order
average shadowing functions, for a one-dimensional surface, to study its effect; such is the purpose of this paper.

whatever the assumed uncorrelated slope and height pdf. They are . _
then completely defined from both integrations over the surface References [11] and [12] proved that the shadowing func

slope pdf. The shadowing function is performed for Gaussian, tON is rigorqusly defined by Rice’s infinite series of integrals.
Laplacian, and exponential slope probability density functions. In [6], Bourlier et al. observe that the approach proposed by
With the method presented in [6], the one-dimensional monostatic \Wagner retains only the first term of these series, whereas the
shadowing function is also compared with the exact solution. Itis  gmith formulation uses the Wagner model by introducing a nor-
obtained by generating the slope-height surfaces. The Gaussian - . . . .
and Laplacian slope pdfs are treated with a Gaussian surface m.aI|.zat|c.)n function. .The average shadowing functlon Wlt.h the
height. The analytical results are extended to a one-dimensional Ricciardi-Sato solution has been calculated with a Gaussian un-
bistatic configuration, and the case of a two-dimensional surface correlated process [6], and since the correlation between the sur-
is investigated with a Gaussian and Laplacian surface slope pdfs. face slopes and heights is ignored, the solution has not physical
The last point is very relevant, because the classical shadowing meaning at grazing incidence angles. Therefore, the Smith and
functions of Smith and Wagner are assumed to be one-dimensional Wagner approaches are used to study the shadowing effect of a
or isotropic. o o
Inde pTerms—EIectromagnet'c scattering by rough surfaces random surface, because the Ricciardi—Sato formulation is not
X i i y rou u , . .
shadowing function. tractablg with correlation. . . .
Classically, the surface is assumed to be one-dimensional
with a stationary Gaussian probability density function (pdf),
. INTRODUCTION and the correlation between the slopes and the heights is

HE shadowing function of random surfaces is originallgmitted. In [5] and [6], the last assumption has been investi-
T introduced as a correction to the unshadowed scatteridgfed for any one-dimensional surface-height autocorrelation
coefficient performed from analytical formulations as the Kirchnction, and it is proved that the discrepancy between the
hoff approach. With the geometric optics approximation derivé@rrelated and uncorrelated results is small. Consequently, in
from the Kirchhoff integral, [7] shows how the shadow can piis paper, the correlation is not investigated, which allows a
introduced in the scattering coefficient from the use of the agimpler formulation of the shadowing function. However, the
erage shadowing function over the surface slopes and heigffigdowing function is determined for any surface slope and
Theoretically, the scattered field Kirchhoff integral and the st&€ight pdf. From Brown's work [4] with & one-dimensional
tistical shadowing function (the average over the slopes and ftéface, Bourlieret al. [5] have expressed the Smith and
heights is not performed) from random surfaces depend on ¥ff@gner monostatic shadowing functions, averaged over the
surface slopes and heights. This means that the statistical stftiface slopes and heights, whatever the slope and height
owing function should be included in scattered field, and tHdf assumed to be uncorrelated. These average monostatic
shadowed scatttering coefficient is obtained from averaging theadowing functions depend then on two integrations over the
shadowed scattered field multiplied by its conjugate. Bouetier Surface slope pdf and independent of the surface height pdf.

mulation. and exponential slope probability density functions. Moreover,

for a Gaussian surface height autocorrelation function of
. . Gaussian surface height pdf, the shadowing functions are
Manuscript received May 29, 2001.

C. Bourlier and J. Saillard are with IRCCyN: UMR no. 6597 CNRS, DivisiorFompared with the gxact solution [6]!. [13]' The _exaCt solution
SETRA, Ecole Polytechnique de I'Université de Nantes, IRESTE, 44306 Naniss calculated numerically by generating the height and slope

Cedex 3, France (e-mail: cbourlie@ireste.fr). , surfaces. Since it is difficult to simulate a surface of exponential
G. Berginc is with DS/DFO, Thomson-CSF Optronique, 78283 (Buyancourtdf the Gaussian and Laplacian slope pdfs are onlv treated

Cedex, France. pat, placian slope pdis are only trea
Publisher Item Identifier S 0018-926X(02)02622-4. in this paper. Note that the relationship between Laplacian

0018-926X/02$17.00 © 2002 IEEE



BOURLIER et al. ONE- AND TWO-DIMENSIONAL SHADOWING FUNCTIONS 313

and Gaussian samples has to be determined. In Section Il
the monostatic case is extended to the bistatic configuration Az

From the approach developed by [5] in Gaussian case, the las \\

Observation

section presents the two-dimensional shadowing function with
Gaussian and Laplacian slope distributions.
F(&o, Yo)
Il. ONE-DIMENSIONAL SURFACE FOR AMONOSTATIC
CONFIGURATION

References [11] and [12] give the rigorous expression of the
statistical shadowing function equal to Rice’s infinite series of 0
integrals. For an uncorrelated Gaussian process, these series ¢
be computed analytically, but as shown [6], the model does no
have physical meaning at grazing incidence angles. Moreover,
when the correlation is introduced, the problem becomes vetiy. 1. lllustration of the monostatic shadowing function.
complicated and is not tractable analytically [14]. Therefore,
the Wagner approach [1], which keeps only the first term of

Rice’s series, and the Smith [2], [3] formulation, which us?\ssvhereg(mF; 1) dl is the conditional probability that the ray in-

. : . ) : . fersects the surface in the inter{al! + dI] and knowing that
Wagner's formulation with the introduction of the normalize he ray does not cross the surface in the intervall[0f is the

function, are then studied for estimating the shadowing eﬁeﬂ'eaviside function. In the Wagner (ind&) and Smith (index
Comparing these models with the exact solution, Bouwsier SJ approacheSQ(9|F~ ) dl is defined as follows:

al. [5], [6] show that with a correlated Gaussian process an

Mean plane

Gaussian and Lorentzian surface height autocorrelation func- 0
tions, there is good agreement between the results. gw (0|1 1) = / (v = 1) x p(&, ¥[S0, o) dv
The exact solution is computed from generating numerically #
the height and slope surfaces and using the algorithm of gs(8|F; 1) = gw (01175 1) )

Brokelman—Hagfors [13] summarized in [6, Fig. 4]. Moreover,

since with the same statistic properties as previously the devia-

tion between the results obtained with and without correlation

is small, in this paper the correlation between the surface slopdsere = &, + pl and p(&, v|¢o, o) is the surface slope

and heights is not investigated. This allows a simpler statistichto, v} and height{¢,, £} conditional joint probability den-

shadowing function and implies that the shadowing effect ity. + = cot @ is the slope of the incident ray. We can notice

independent of the surface autocorrelation function. that Smith introduces a normalization function in the denomi-
This section presents the one-dimensional shadowing fum@tor. The exact formulation @f(¢|F; [) dl is expressed as an

tion for a monostatic configuration obtained from the Wagnéntegral infinite series of Rice (for more details, see [11], [12],

and Smith analysis without correlation. With the aim to estimatd [6]).

the accuracy of their formulations, the exact solution is com- The uncorrelated surface pdf states that

puted from generating the height and slope surfaces. Gaussian,

Laplacian, and exponential slope probability density functions P& 7€, v0) = p(E)p(v)- 3)

are studied in the determination of the analytical shadowing

function. The exact solution is examined for Gaussian andWe can note that the conditional probabilitf¢, |¢o, o) is

Laplacian slope distributions with a surface Gaussian heighflependent of since it does not depend on the surface auto-

00 Lo+l
/7 /7 (€, v[€o, v0) dE dry

pdf of Gaussian surface height autocorrelation function. correlation function. If the correlation is investigated, then the
conditional joint probability density for a Gaussian process is
A. Wagner and Smith Formulations expressed from [6, eq. (14a)].

For an infinite observation length, the statistical shadowing Substituting (3) into (2), we have

function S(6, F) is equal to the probability that the point gw(0|F; 1) = pA x p(&)
F(&, ~v0) on arandom rough surface, of given heighibove (O|F; 1)
the mean plane and with local slope = 9z/3y, is illuminated gs(0|F; 1) = % (4)
as the surface is crossed by an incident beam from incidence / 0 p(§) d¢
angleé (Fig. 1) —oo
o0 with
50, 1) = (=)o |- [~ a@rna] @
0 1 oo
, A=— / (v — wp(v) dv. (4a)
with BoJp
T _Jo, ify>p 1 Since the range of the denominatogef 8| F'; 1) is [0; 1], this
(=) =01 iy <p (12) inverse is [Lpo] , which involvesgs(8|F; 1) > gw (8|F; ).



314 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 3, MARCH 2002

From (1), sincexp(—g¢) is a decreasing function @f, we get nential [4] (indexE) surface slope pdfs with zero mean value
Ss(0, F) < Sw(6, F). Therefore, the statistical shadowingexpressed as follows:
function of Smith is smaller than Wagner’s, whatever the as-

sumed uncorrelated slope and height pdf. This comes from the ( pa(y) = 1 eXp<_'V_2>
fact that Smith introduces a normalization function at the de- ov2n 20°
nominator of (2)gs(6|F; 1) dl conditional probability. 1 V2
We can also note that the Smith and Wagner statistical re(y) = o3 P <— U ) )
shadowing functions depend on the surface stgpand height 7
&o. For a scattering problem from a randomly rough surface, the 3y V34|
scattering coefficient is derived from averaging the scattered pe(y) = S K| ——

electromagnetic field multiplied by its conjugate. Thus, if the

electromagnetic field depends dno, {o}, which is the case wherek, (- --) is one of the modified Bessel functions of order
with the Kirchhoff approach, then the statistical Shad0W|nQne_pE(fy) is obtained from performing the margina| proba_

function has to be included in the electromagnetic field, and thgity of a two-dimensional isotropic exponential distribution
scattering coefficient with shadow is obtained from averagikfined as [4]

the shadowed electromagnetic field. This method is explained

in detail in [8] and [9] and applied on the Kirchoff integral. oo 3(v2 4+ +3)

With the geometric optics approximation, [7] showed that the pe(y) = 202 /_Oo P [_ o

average shadowing function can be used as a correction of the

unshadowed scattering coefficient. We can note that the variances @f ; () are equal to

The average shadowing functiofi(¢) is obtained from (v? x pg 1 g(v)) = o%. Comparing [4, (13)] with (9), the
integrating the statistical shadowing functigi{#, F') over number six is replaced by three since the variangesdfy) has

{0, Y0} to be equal tar? instead ofo? /2.

o e In Fig. 2, Gaussian, Laplacian, and exponential surface slope
_ distributions are plotted versus the slepeith o = 1. It should
56 /700 /700 56, 1) xplGo, v0) deo o () be noted that the Laplacian density shows a much greater prob-
_— . . ability of occurrence of small slopes than the Gaussian and the
Substituting (4) into (1), using (5) and [5, (2.7)] leads to exponential densities. We see that the deviation between the

1 — exp(—A) Laplacian and exponential densities is smaller than the devia-

tion obtained when a Gaussian density is considered.

(6) Substituting (9) into (6) and performing the integration over
the slopesy, the parametergA, A’} are given in Table | ac-
cording tor = u/(0+/2). “erfc” denotes the complementary

with error function. With an exponential distribution, the integration

" overz is computed numerically.
A = / p(7) dv. (6a) In Fig. 3(a), the Wagner and Smith one-dimensional monos-
—oo tatic shadowing functions are represented verdios Gaussian,

dvi.  (10)

Laplacian, and exponential slope distributions. In Fig. 3(b), their
litterence is plotted according to the Smith average shadowing
Winction with a Gaussian slope pdf. For grazing angles corre-
sponding tor — 0, the shadow tends toward zero, whereas
for normal angles > 2, it converges to one, because the sur-

We can see that Wagner and Smith shadowing functio
{Sw, Ss} depend on the surface slope probability densi
function p(v) of root mean square (rmsy within {A, A’}
and onyu. According to the following inequalities (see [15

(4.2.32))): face is entirely illuminated. For values of< 1, with Laplacian
x cl—e? <y aqd equnential dist_ributions, the shadow is larger than that ob-
142 tained with a Gaussian, whereas for- 1.2, the contrary effect
1 1—e* is observed. In each case, the shadow estimated with Wagner
e>0 = g < <! () formulation is greater than that computed with Smith, which is
in agreement with (8), and the deviation between the Laplacian
we have and exponential results is small. In fact, as shown in the next
1 1_ oA section, Wagner's results are overestimated.

< <l = 0<Ss<Sw<A<«1
1+A A gy B. Comparison With the Numerical Shadowing Function or
Exact Shadowing Function

with {A > 0, A’ > 0}. Equation (8) is in agreement with the
notice on (4). For any uncorrelated process, the Smith shadThe Smith and Wagner approaches assume that the correla-
owing function averaged over the surface slopes and heightsig between the slopes and the heights is negligible. References
then smaller than Wagner’s. [5] and [6] have introduced the correlation with Gaussian sur-
To illustrate the above results, this paper examines the one{fdice pdf for any surface height autocorrelation function. They
mensional Gaussian (indé€X), Laplacian (index’), and expo- compare the results with and without correlation with the nu-
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Fig. 2. Gaussian, Laplacian, and exponential slope surface pdfewtt . o : :
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TABLE | -0.02
PARAMETERS {A, A’} FOR A ONE-DIMENSIONAL SURFACE GAUSSIAN, 0 04 08 1.2 16 2
LAPLACIAN, AND EXPONENTIAL SLOPE PROBABILITY DENSITY FUNCTIONS IN Parameter v
THE MONOSTATIC CASE (b)
A A Fig. 3. (a) One-dimensional monostatic shadowing function versus
v = cot e/(o—\/i) for Gaussian, Laplacian, and exponential slope surface
2 distributions. (b) Difference according to the Smith average shadowing function
. exp(—-v7)- v.ﬁterfc(v) erfe(v) ; i
Gaussian 1- 222 with a Gaussian slope pdf.
2vim
Laplacian -2 - 22v) Substituting (9) into (11), we get
2 ! 2 ! 1 2 V2
Exponential A/:%—l— e x I(x— 1)xK, (xvf6)dx ! + & x IxKl(xv./a)dx —exp| — Je d’}/G =exp| — & d’}/L (12)
v 2 n 2= ﬁ 202 o
] 0

with v = f(vg). Forvyr > 0, the integration of both sides of

merical solution for several surface height autocorrelation fungt2) leads to
tions and show that the discrepancy between the correlated and
uncorrelated curves is small. This is due to the fact that the shad- v V2
owing function with correlation varies weakly with the autocor- erf <—> =1-—exp <— ) (13)
relation function. V2 4

To compare the Wagner and Smith shadowing functions giv\?v'i}h “
by (6) with the numerical solution (obtained from [6, Fig. 4]),
the height and slope surfaces have to be generated. For any sur- P e
face height autocorrelation function, when the surface elevation YL = _ﬁ In [1 —erf <ﬁ>}
pdfis Gaussian, the linearity of the filter leads also to a Gaussian
surface slope pdf. The variable transformation between Lapla-The conditiony; > 0 involves~g > 0. Forvy., < 0, the use
cian-exponentia{~yz, ve } and Gaussiane random variables of the same way as previously leads to
therefore has to be determined. Because it is easy to simulate

erf” the error function. Thus

if vz >0, (14)

numerically a Gaussian white noise, so from [16] the solution is o Yo _
found by solving the following differential equation: TL = V2 In [1 —erf <0\/§ )} with v > 0 5
pa(ve) dva = pr(ve) dyr. (11) -7 [1 Ter <’V_G>} with v < 0.
VL 7 1n erf o2 VG

The exponential case is not treated because there is no an-
alytical solution. Solving the above differential equation, this As shown in Fig. 4(a), the first step is to simulate a Gaussian
problem could be studied numerically. But the numerical errovghite noiseb(:) (100000 samples) of variance one with zero
could affect the profile of the slope pdf, involving a numericainean value (centered on zero). We see a good agreement
error on the numerical solution computation of the average shdbtween the theoretical and numerical results. As depicted in
owing function, since it is very sensitive with respect to the suFig. 4(b), a white noise is characterized by a Dirac autocorre-
face slope distribution. lation function.
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Fig. 4. Statistical properties of the height and slope surfaces of a Gaussian surface height autocorrelation function with a Gaussian haight @iséribngth
correlation isL. = 200 and the number of samples is 100 000.

The second step is to simulate a Gaussian height surface witffhe symbolx is the convolution products(i) denotes the
a surface height autocorrelation functidi(/) assumed to be filter coefficients, equal for a Gaussian autocorrelation function
Gaussian [6]

2 .
Ro(l) = w? exp<_%> (16) w(i) = w /# exp <_i_’;> . (18)
c ™ C

with L. the surface correlation length and the surface height  From Fig. 4(d), the surface height autocorrelation function is
variance. From [6], the height sample§) are computed by well Gaussian with. = 200. As depicted in Fig. 4(c), the lin-
writing that earity of the filter involves a Gaussian height histogram. From
Fig. 4(e), since the height sampleg(¢) are Gaussian repre-
z(4) = b(3) " w(t). (17) sented in Fig. 4(c), the slope samplesi) = dzg(i)/di equal
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Fig. 5. (a) and (b) One-dimensional monostatic shadowing function versus:ot 8/ (cv/2) for a Gaussian surface height pdf with Gaussian and Laplacian
surface slope pdfd, -~ = 200. (c) and (d) Difference between the Smith and Wagner shadowing functions according to the numerical solution.

to zq(i + 1) — 2¢(7) are also Gaussian, and the surface slopeIn Figs. 5(a) and (b) and 6(a) and (b), the Wagner, Smith, and
autocorrelation functiol, (1) is theoretically numerical monostatic one-dimensional shadowing functions are
R 202 /92 12 compared versus, with L = {100, 200} and 100 000 sam-
I A R exp| —— (19) ples.Inparts (c) and (d) are plotted the differences of the Wagner
dl2 L2 L2 L2 . . . . .
c c c and Smith shadowing function according to the numerical solu-
with a surface slope varianeé given by tion. In Table 11, the values of the shadowing function are given,
) with a surface rms slope = 0.3, 8 = 75.7° leadingsr =
_ 2w (20) ot 6/(c+/2) = 0.6. We see with the Smith approach that the
L% results are more accurate than those obtained with the Wagner
(ﬁp_proach, and the discrepancy between the numerical and Smith
ical and numerical surface slope autocorrelation functions. N gta is small. In bOth cases, the _shadowmg effect 'S ove_resn_-
thate = 0.00700, computed numerically, is close to the theo[nated. Thus, the Smith approach is kept as a comparison in this
retical value equal to 0.00707. paper. . . .
As shown in Fig. 4(g), for the last step, we apply (15) for Refgrgnces [5] and [6.]’ with a Gaussmn surface height gnd
computing the samples; (i) of a Laplacian surface slope pOIf.slope. joint pdf and for d_lffererjt surface helgh.t autocorrelation
functions, proved that including the correlation between the

Ry(l) =

02 = —RQ(O)

Fig. 4(f) shows a very good agreement between the theo

Knowing (i), the surface height, (i) is built by writing heights and the slopes slightly improves the shadowing func-
i tion.
20(i) = > vr(d)- (21)
j=1
In Fig. 4(h), the height samplesc (i), z1(¢)} are plotted. lIl. ONE-DIMENSIONAL SURFACE FOR ABISTATIC
In conclusion, they have the same height variance 0.9865 CONEIGURATION

(theoretical value is one) with the same Gaussian height pdf

[Fig. 4(c)], but their slope pdf is different [Fig. 4(e) and (g)]. This section presents the bistatic shadowing function for a
From the surface§z¢ (%), z1.(¢)}, the numerical shadowing one-dimensional rough surface. Since the results obtained with
functions are evaluated by using the algorithm described in f&e Smith formulation are more accurate than Wagner’s formu-
Fig. 4]. lation, only the Smith approach is kept in the following.
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Fig. 6. Same variation as Fig. 5 withc = 100.
TABLE I °° J
VALUES OF THE SHADOW FOR¥ = cot 8/(av/2) = 0.6 | (v = lpal) x p(v) dy
H1

X exp —/Ooop(ﬁ)

Wagner  Smith Numerical

| v | e e

Gaussian  0.752 0.701 0.683 oo oo
Laplacian  0.798 0.755 0.723 o0
| Gy
00#2 Sotpal dio. (23)

From [5, (2.31)], the statistical bistatic shadowing function is / p(7) d’Y/ p(§) d§

given by —o0 —o0
Since the transmitter is defined fgr< 0, the sign ofyg in
501, b2, F) ) T (|p1|+70) is positive and the sloge = cot 6, of the incident
561, F)S(02, F), if 6y € [0;7/2)] case a) ray becomesy; |. The use of (4a) leads to
=< 5(61,F), if 62 € [01;0] case b) (22)
5(6,, F), if 6 € [-7/2;6:[ casec) Ss(01, F) x Ss(62, )

with 8; < 0. Equation (22) involves that the statistical bistatic 00 Ar X ||
shadowing functionS(6,, 8, F') is obtained from two inde- =1I x exp —/ (&) W
pendent statistical monostatic shadowing functions defined with 0 / p(€)de
respect to the locations of the transmitt&®, , /) and the re- —co
ceiverS(6y, F). Consequently, the b) and c) cases are similar to
the monostatic configuration, and case a) has to be investigated. Ao X ji2

Substituting (3) and (2) into (1), the Smith a) case of (22) is e (24)
expressed as / p(&) dé

Ss(br, F) x Ss(6, F) with {A; = A(|pa]), Az = A(u)}, andIl = {1 if v €

=T(|pe1| +v0) X Y12 — v0) [—|pl, p2] else0}. Using the following variable transforma-
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tions{¢' = & + |u1|l, & = & + peol} for each integral ovet,
we get

55(91, F) X 55(92, F)

=1l x expq—(Ay +A2)X/Oo 5,])(75/) d¢’ (25)
MTRGL
Let P be a primitive ofp(¢’)
= [y
h dpP(¢’) _
> | ey P P& - P (@5)
because?(o0) — P(—o0) = 1. We obtain
55(91, F) X 55(92, F)

— I x |P(¢) — P(—o0)| M+, (26)

Substituting (26) into (5), the Smith average bistatic shad-

owing function is expressed as

Ss(6, ) = [ | 1P - P ) dfso}
<[ . (@)

The integration ovef, leads to

1 H2
500009 =

—lp1l

p(v0) dy.  (28)

Writing that

/Oo p(v0) dvo =1

ade o)

= /_Wl (o) dyo + /W p(70) do

oo —0

2
- [ pondn. (29)
—lp1l
From (6a), we have finally
A +A -1
Ss(by, 6y) = L1 ——2 = 30
SO0 0= iR+, o
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(A, = AL+ A =1 Ay = A+ As}
if 62 € [0; 7/2]

{A, = A1 A=At}
if 65 € [91; 0[

{A, = Ay, Ay = As}

\ if 65 € [—7r/2; 91[

with

(1)

We can note for the a) case th8t(6,, 62) # Ss(f1) X
Ss(f2). The form of (31) is similar to (6) with new values of
{A, A’}. With the Wagner approach, we can show that the form
is also similar.

Using equations of Table | for Gaussian, Laplacian, and ex-
ponential surface slope distributions, the functiéns, A;} are
expressed with respect to

cot |6;]

vV, = . 3la
o2 (31a)
Equation (31) then becomes
A/
Ss(v1, 12) = 1 —i—bAb
({A, =A+ A, -1, Ay = A1 + Ay}
if 1% Z 0

if —11 < —10 <0
{Ay = Az, Ay = Ag}

\ if —oo < —1p < —11.

(32)

Applying the same approach as the monostatic case, in
Fig. 7(a) and (b), the Smith bistatic shadowing function is
compared with the numerical one versus the parametavith
|v1| = {0.4, 1.2}, for Gaussian and Laplacian slopes, whereas
the height surface is Gaussiahg = 200. The height and
slope surfaces are the same as in Fig. 4. In Fig. 7(c) and (d),
the difference between the Smith and numerical solutions is
plotted. As shown, Smith’s results are weakly overestimated,
and this overestimation increases whey] decreases.

IV. TWO-DIMENSIONAL SHADOWING FUNCTION

From [5], which has treated only the Gaussian process, in this
section the Smith one-dimensional shadowing function is ex-
tended to two-dimensional surfaces. At first, with a Gaussian
process and for a monostatic configuration, the method is ex-
posed and applied to a Laplacian process. The last subsection
extends the model to a bistatic configuration for both processes.
This point is very relevant, because in the literature, except [5],

with {A] = A(Ju1]) and Ay = A’(pe)}. Since b) and c) of the surface is assumed to be either one-dimensional or isotropic.
(22) are monostatic cases, the Smith average bistatic shadowinghe numerical solution of the average shadowing function

function is expressed as

Ay

Ss(0:1, 62) = T A,

cannot be treated because it requires the generation of a two-di-
mensional surface. To have a good representation of the sur-
face statistics such as the surface height autocorrelation func-
tion and its distribution, an important number of surface samples
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Le =200, |v1| Lc=200, |v1|-12
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Fig. 7. (a) and (b) One-dimensional bistatic shadowing function versus cot |5|/(o+/2) with |v1| = {0.4, 1.2}, for a Gaussian surface height pdf with
Gaussian and Laplacian surface slope pfifs,= 200. (c) and (d) Difference between the Smith and numerical solutions.

+ Smith:G
O Smith:L

is required. With a one-dimensional surface, we have chosghich involves that the autocorrelation functidi(x, y) ob-

N = 100000, which implies that with a two-dimensional sur-tained from the inverse Fourier transform of the spectrum is
face, we have to generate a matrix Gaussian white mjspof even according td(Ozx), (Oy)} directions. This means that
dimensionN x N.From (17), the convolution product with the Ry(x, v) depends o{X = z2, Y = »?}. The “even” may be
filter coefficients also has to be computed. To improve the corobtained withi{ X = |z|, Y = |y|}, but Ro(«, ¥) is not deriv-
puter time, we could make this operation in the Fourier domaatle at zero. Therefore, the surface cross—variazrigeis equal
and use an algorithm of fast Fourier transform, but the size tof zero, since it is equal to

the memory remains insufficient. Moreover, since the Fourier

2
transform is valid in Cartesian coordinates and the shadowing 02 = 9 [~Ro (2%, 4%)]| =0 = 0. (34)
function is expressed in polar coordinates, the surface cross-sec- Y Oxdy y=0
tion in the azimuthal directior has to be evaluated. Consequently, (33) becomes
A. Monostatic Configuration 1 2 2
. _ ( ) = _ e Ty (35)
For a two-dimensional surface, the slope pgf.., v,), as- Pl W) = aropo, P\ 202 207

sumed to be Gaussian, is expressed as follows:
1 With Laplacian and exponential two-dimensional surface
< [ve wllC1™ ! [;D slope probability density functions, we get
Yy

pa(Ver V) = o \/—

(33) 1 V2 V2
pie, ) = 5o e V2 IWIVEY (g
with 720y s 7y
02 02’ ,YQ ryg
=7 Ty ) = — Jzo w )
[C]= [02 o2 } (332) pe(te: W) 2,0, expl 3 <O’£ + o? (37)
Y Yy

where{~., v, } denote the surface slopes of variafe€, o2} The two-dimensional shadowing function is characterized in
inthe {(Ox), (Oy)} directions (Fig. 8), respectivel{C] is the polar coordinates by the azimuth angl§observation direction
covariance matrix of determinafit”]|. To have a real surface according to(Oz)] and the incidence anglé (Fig. 8). For a
without an imaginary part, its spectrum has to be Hermitianpnstant directiom, the issue is one-dimensional. The idea [5]
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z Substituting (36) and (38) into (39) and performing the inte-
gration overyx, we show with a Laplacian slope pdf that the
0 Surface marginal probabilitypy,(vx) is

lyx|V2 lyx | V2
Ucexp| === | —usexp| - —
C S

V2(u - u2)

pr(vx) =

(41)
with

U = O, COS P Uy = 0y SN, (41a)

We can verify thatt';, (v%) = Eg(v%) = 0%, with E(---)
the expected value. Since the marginal probability is not expo-
nential as (9){A, A’} has to be performed from (4a) and (6a)
is to extend the one-dimensional results to the two-dimensioggth v = ~y, and we show (42) at the bottom of the page.

Fig. 8. Two-dimensional configuration.

surface by executing a rotation of an anglaround theO~) Since the integration overy is impossible with an exponen-
axis. tial surface slope pdf, its marginal probability is not performed,
To determine the slope probability densitfyx, vy) inthe  and the Gaussian and Laplacian profiles are only studied.
direction ¢, we make a base transformatigiX, Y, z). The  In Fig. 9, the Smith monostatic two-dimensional shadowing
former coordinates ., v,} are expressed by the new onesunction is plotted versugep, 6} in degrees with Gaussian and
{7vx,w}as Laplacian slope distributions. As shown in Fig. 9(a) and (b),
_ with {0, = 0.3, o, = 0.25}, the shadow increases weakly with
{ Yo = Yx COSP — Yy sin ¢ (38) ¢ andincreases with, because the ratio of illuminated surface
Yy = Vx sin ¢ + vy cos $ decreases. As the one-dimensional surface (Fig. 3), the shadow

) ) ) with a Laplacian process is slightly larger than that obtained
with {7x, vy} the surface slopes in tH€O.X), (OY)} direc- \yith a Gaussian process. From Fig. 9(c) and (d) With = 0.3,
tions (Fig. 8). Substituting (38) into (35), the marginal proba(;y = 0.20}, when the shadow is close to one, the contrary

bility p(vyx) defined as effect is observed. Since, is smaller than Fig. 9(a) and (b),
00 the anisotropic effect is more important. Comparing Fig. 9(e)
p(yx) = / p(vx, 1) dyy (39) and (f) for{o, = 0.25, o, = 0.20} with Fig. 9(c) and (d), the
—oo shadowing function is greater because the surface rms slope is
smaller.

is then equal for a Gaussian process to [5, 2.41]
B. Bistatic Configuration

1 7% . . . .
PG (Vx) = ST €xp 552 (40) Since with a Gaussian surface slope pdf the marginal proba-
oxven X bility remains Gaussian with a varianeg- given by (40a), the
with bistatic configuration is obtained from the substitutionpfn
(31a) by

0% = (0, co8¢)? + (o, sin $)*. (40a) cot |6;] 43)
l‘/i =
V20 x(¢i)

The marginal probability; (vx ) in the directiong is also a
Gaussian function with varianeg.. Consequently, for a mono- where{¢;, ¢»} denote the transmitter and receiver azimuthal
static configuration with a Gaussian slope pdf, the two-dimedirections, respectively, ang} their incidence angles. Substi-
sional shadowing function is obtained from the one-dimensiortating »; into (32), the Smith two-dimensional bistatic shad-
shadowing function by replacing in (4a) and (Gay ox (¢).  owing function is calculated with respect{6;, ¢;; oo, o, }.

( 3 N\/§ 3 N\/§
u; exp| — " —ujexp| — "
C S
A
8 2v/2p(u2 — u2)

osm(2)] e ()]
e |1 =5 exp| — " —u; |1 —Sexpl - "
A= .

(R (w2 — u2)

C 5

(42)
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(a) : Gaussian {sigma_x=0.30,sigma_y=0.25} (b) : Laplacian {sigma_x=0.30,sigma_y=0.25}
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Fig. 9. Two-dimensional monostatic shadowing function with Gaussian and Laplacian slope pdfs.

With a Laplacian surface slope pdf, the Smith two-dimersurface slope probability density functions. We can note that
sional bistatic shadowing function is computed from (32) artie shadowing function increases with because the surface
(42), where{ye = cot 8, u, = o, cos¢, u, = oysing} is re- variance slope in the, direction decreases.
placed by{|u;| = cotb;, u, = o,cos¢;, uy = oysing;}
according to the transmittéi = 1) or the receive(i = 2).

In Fig. 10, the Smith two-dimensional bistatic shad-
owing function is plotted versus the location of the receiver The shadowing theory developed by [1]-[3] is investigated in
{62, ¢} for fixed location of the transmittef; = 70° and this paper for any surface height and slope uncorrelated pdf. As
¢1 = {0, 90}°. The surface rms slopes arg = 0.3, 0, = 0.2 shown by [5] and [6], when the correlation is ignored, the statis-
with Gaussian [Fig. 10(a)—(c)] and Laplacian [Fig. 10(b)—(d}Jcal shadowing function does not depend on the surface height

V. CONCLUSION
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(a) Gaussian and {|teta1|=70°,phi1= 0°} (b) : Laplacian and {|teta1|=70°,phi1= 0°}
907 —r — — ' ; ’
O R
mmxﬁmmmysg:
N S 3
8 30 °
2 2
gk g
D : ot : @
o-1 O s o S g
]
< . °
5-30 3
£ £
-50
-70 |
_gog : . SHa i
0 15 30 45 60 75 90 0 15 30 45 60 75 90
Azimuthal direction phi2 Azimuthal direction phi2

(c) : Gaussian and {|teta1|=70°,phi1=90°} () : Laplacian and {lteta1|=70" phi1=90°}

3 3
2 ]
o °
3 Q2
g g 10
Q) &
% §—10
3 B_
£ 2
—-50
-70;
: -90L§; — 0 : ; !
0 15 30 5 60 75 90 0 15 30 45 60 75 90
Azimuthal direction phi2 Azimuthal direction phi2

Fig. 10. Smith two-dimensional bistatic shadowing function versus the location of the repgives. } for a constant location of the transmitgt,, ¢} with
o, = 0.3 ando, = 0.2.

autocorrelation function. This allows a simpler shadowing fun&aussian and Laplacian anisotropic surface slope distributions.
tion, and we show in this paper that it depends only on the sdmerefore, in this paper, we have developped a two-dimen-
face slope pdf. sional shadowing function that can be used in the Kirchhoff

To illustrate the method with a one-dimensional surface, tiiermulation. With the geometric optics approximation, [7]
average shadowing function is applied for Gaussian, Laplacigmoved that the shadowed scattering coefficient can be obtained
and exponential slope distributions. The comparison of tlfim multiplying the unshadowed scattering coefficient by
Smith and Wagner monostatic shadowing functions with thike average shadowing function. However, with the Kirchhoff
numerical solution [13] shows that the Wagner results are ovémtegral, to take into account the shadowing effect, the statistical
estimated, whereas the Smith results are close to the numergteddowing function has to be integrated in the electromagnetic
solution. In fact, we show mathematically for an arbitrarfield. This means that the scattering coefficient with shadow is
surface slope pdf that the Smith statistical shadowing functiperformed by averaging the shadowed field by its conjugate.
is smaller than Wagner's, involving that the average is al§this approach is explained in detail in [8] and [9] with a
smaller. The numerical solution [6] is obtained from generatinaussian process.
Gaussian and Laplacian slope distributions with a Gaussian
height pdf. Since it is easy to generate Gaussian samples, the
relationship between Laplacian and Gaussian samples has to be
determined, which is similar to solving a differential equation ACKNOWLEDGMENT
[16]. The method is extended to the bistatic configuration.

Considering a two-dimensional rough surface, the analysisThe authors would like to thank the reviewers of this paper
is extended to monostatic and bistatic configurations wifor their relevant comments.
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