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Abstract—The small slope approximation (SSA) and the Kirchhoff
approach (KA) are applied to the prediction of microwave sea surface
backscatter for both Ku and C bands for various wind speeds
and incident angles. Numerical results are obtained assuming a
non-directional surface wavenumber spectrum and compared with
azimuthally averaged C- and Ku-band radar backscattering data. The
KA can be obtained rigorously for a perfectly-conducting surface,
whereas for a dielectric surface, either the KA of order one (KA1) or
the stationary phase (SP) method can be used. Numerical results are
obtained assuming a non-directional surface wavenumber spectrum and
compared with azimuthally C and Ku bands radar backscattering data
for incidence angles of interest for remote sensing. Since the SSA and
KA formulations are expressed in polar coordinates, the backscattering
coefficient is expressed in terms of surface height autocorrelation and
its derivatives of one- and second- orders computed from integrating
the sea spectrum multiplied by Bessel functions of the first kind. This
allows to have for KA and first-order SSA (SSA-1), a single numerical
integration over the radial distance instead of four, when the cartesian
coordinates is chosen. Moreover, the azimuthal harmonic magnitudes
of the backscattering coefficient according to the wind direction can
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be performed separately. For an isotropic sea surface assumed to be
perfectly conducting where the KA is valid, the deviation between
SSA and KA models is smaller than the one computed from the SP
model for HH polarization. For the VV polarization, the difference
is greater, since the polarization term of SSA is given by the small
perturbation method, whereas for the KA approach, it is equal to the
Fresnel coefficient. For an anisotropic sea surface, the comparison of
KA with SSA-1 leads to the same conclusion. The isotropic part and
the second azimuthal harmonic of the backscattering coefficient are
also compared with empirical backscattering models CMOD2-I3 and
SASS-II valid in C and Ku bands, respectively.
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1. INTRODUCTION

Observations of microwave backscattering from the sea are important
for understanding the air-sea fluxes that arise from wind acting on
the roughened surface of the ocean and for remote sensing. Analytical
models can be used to compute the normal radar cross section (NRCS)
from stationary sea surface. We can quote the Kirchhoff approach
(KA) [1–4], the small-perturbation model (SPM) [2, 5], the phase
perturbation model [6, 7] (PPM), the full wave method (FWM) [8],
and recently the small slope approximation [9–16] (SSA) developed by
Voronovich.

The most widely used method for relating microwave scattering
to surface roughness is composite-roughness [17] theory. This model
introduces a scale-dividing parameter kd separating small- and large-
scale components of the roughness which can be arbitrarily chosen
within wide limits. There are therefore two terms in the NRCS.
The first one corresponds to the geometrical optics solution (KA in
high-frequency limit valid for a very rough surface) for the large-scale
component (specular reflections), and the second one corresponds to
the Bragg scattering solution (SPM solution valid for a slightly rough
surface) for the small-scale component modulated by tilts of large-scale
waves. The advantage of this method is that it is easily applied. As
illustrated [11], one disadvantage is that the predictions are dependent
on how the surface is partitioned within the choice of kd. A second one
is the difficulty in establishing the accuracy of the theory.

The small slope approximation (SSA) has not the above-men-
tioned drawbacks. For the Gaussian statistics of roughness, the result
can be expressed strictly in terms of a roughness spectrum. The SSA
can be applied to an arbitrary wavelength, provided the tangent of
grazing angles of incident/scattered radiation sufficiently exceeds rms
(root mean square) slopes of roughness. The SSA represents a regular
expansion of the scattering amplitude (or the scattering cross section)
in terms of the roughness slope, and both the first- and the second-
order results of SSA calculations can be obtained. When the difference
between the first- and the second-order results is relatively small, one
can be sure that the solution of the scattering problem is accurate for
the first-order.

Recently the Kirchhoff approach (KA) have been re-examined by
Bourlier et al [18] for an anisotropic perfectly conducting surface in
backscattering configuration. It is important to note that the KA
is often confused with the stationary phase (SP) method which is a
particular case of KA. Indeed, the SP formulation assumes that the
resulting scattering field expression contains only contributions from
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specular points in the surface. This allows to remove the statistical
dependence of the surface slopes involving that the integrations over
the surface slopes is not required. The NRCS depends then only on
the surface height joint characteristic function equal to the Fourier
transform of the surface height joint pdf (probability density function).
Unlike, with the KA approach, the NRCS is formulated in terms of a
surface height characteristic function, and in terms of expected values
for the integrations over the surface slopes. As depicted [18] (see
Figures 3–4), for scattering angles larger than twenty degrees where
the Bragg scattering regime is involved, the NRCS computed from
KA is more greater than the one performed with SP. This behavior is
similar to the one observed by Voronovich [11].

For a dielectric surface, the KA approach can not be tractable
analytically since the dependence over the surface slopes is a com-
plicated function [18]. To have therefore a formulation of KA for
a dielectric rough surface, Bourlier et al [19] extended the scalar
approximation (SA) developed by Ulaby et al [2] to an anisotropic
surface. The SA is obtained by expanding the Kirchhoff integral
over the surface slopes and keeping only the terms of first order.
With these models, the calculation of the backscattering coefficient
used a surface height and slope joint pdf assumed to be Gaussian
given by [20, page 272]. It is expressed from a covariance matrix
of six-dimension, where the elements depend on the surface height
autocorrelation function in polar coordinates and its first and second
derivatives. The autocorrelation function [21] is defined from the
general behavior of ocean-like spectrum proposed by Elfouhaily [22].

Considering an anisotropic sea surface, this paper compares the
normal radar cross section (NRCS) computed from the Kirchhoff (KA)
and scalar (SA) models with the small slope approximation (SSA).
Numerical models are also compared with measurements from the
CMOD2-I3 [23, 24] and Ku SASS-II [25] backscattering models valid
for C and Ku bands, respectively.

The paper is organized as follows. Section 2 presents the
backscattering coefficient derived from KA, SA, and SSA models
by considering the sea spectrum symmetry [22]. In Section 3, the
Elfouhaily et al [22] spectrum is studied. To analyze the sea surface
roughness (product kω with k the incident wave number and ω the
surface rms heights), the surface rms heights and slopes are computed
versus the wind speed. The slope surface is directly related to the
capillary waves which involves the Bragg scattering solution. This
region is also affected by the spreading function of the spectrum. The
Cox and Munk models [27] in upwind and crosswind directions are
compared with the variance slopes computed from integrating the sea
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spectrum multiplied by the square wave number. The shadowing effect
is also analyzed [20]. In Section 4, numerical results are presented for a
perfectly-conducting and dielectric sea surfaces and are compared with
CMOD2-I3 [23, 24] and SASS-II [25] backscattering models valid in C
and Ku bands, respectively. From measurements made in microwave
band [23–26] for co-polarizations pq (VV and HH), the NRCS is model
as σpq = σ0

pq + σ1
pq cosφ + σ2

pq cos(2φ) which depends on the scattering
angle, the wind speed, and the wind direction φ.

2. BACKSCATTERING MODELS

This section presents the Kirchhoff (KA), scalar (SA) and small slope
(SSA) approximations for the derivation of the normal radar cross
section (NRCS). The KA is valid if the radius of curvature at every
point on the surface is large relative to the electromagnetic wavelength
λ, and if the correlation length Lc is larger than λ [1–3]. The KA is
used as a starting point for high-frequency analysis when the geometric
optics approximation is obtained by applying the stationary phase
method. The SA have similar assumptions as KA and assumes that
the surface rms slopes are smaller than 0.25 [2] which is verified for
the sea surface. The SSA can be applied for an arbitrary wavelength,
provided the tangent of grazing angles of incident/scattered radiation
sufficiently exceeds the rms slopes [9–11].

For a backscattering configuration, Bourlier et al [18,19] showed
that the statistical shadowing function [20] can be ignored in the KA
and SA computations. Thus, the shadowing effect is omitted and
Section 3 will prove for the sea surface that this assumption can be
easily verified.

2.1. Incoherent Backscattering Coefficient from Kirchhoff
Approximation

With the Kirchhoff approach, the scattered field is written in terms
of the tangential field on rough surface. The surface field is then
approximated by the field that would be present if the rough surface
was replaced by a planar surface tangential to the point of interest.
With this assumption, the backscattered field is expressed as [2]

	Es = K1	ns ∧
∫∫ [

	n ∧ 	E − η	ns ∧ (	n ∧ 	H)
]
exp(j2K	ns · 	r)dS (1)

K1 = jK exp(−jKR0)/(4πR0), with K the wave number in the
medium where the field is evaluated, R0 range from the center of the
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illuminated area S to the point of observation, 	ns the unit vector in
the scattered direction defined in spherical coordinates as

	ns = sin θ cosϕ	x + sin θ sinϕ	y + cos θ	z (1a)

where (	x, 	y, 	z) are unit vectors in cartesian coordinates. 	r = x	x+ y	y+
z	z is the vector indicating the location of the surface point according
to the center of the illuminated area.

The incoherent scattering coefficient σpq (p and q denote the state
polarization which is either vertical V or horizontal H) for an extended
target can be written as [2]

σpq =
4πR2

0[〈ES
pqE

S′∗
pq 〉 − |〈ES

pq〉|
2]

S|E0|2
(2)

Substituting (1) into (2), Bourlier et al [18] showed in polar coordinates
for a perfectly conducting surface

σKA =
(K cos θ)2

π

∫ ∞
0
rdr

∫ 2π

0
dΦ〈. . .〉KA exp[2jrK sin(θ) cos(φ− Φ)]

(3)
where the symbol 〈. . .〉KA denote the ensemble average under the
Kirchhoff approximation (exponent KA) given by

〈. . .〉KA = exp[−K2
ω(1− f0)][1 + jχ1(σX tan θ) + χ2(σX tan θ)2]

− exp(−K2
ω) (4)

with

Kω = 2Kω cos θ (4a)

χ1 = 2Kω ×
(
cf1 +

sσY f16

σX

)
(4b)

χ2 = c2f2 +
s2σ2

Y f56

σ2
X

+
2scσY f36

σX

−K2
ω

(
cf1 +

sσY f16

σX

)2

(4c)

c = cos(φ− Φ) s = sin(φ− Φ) (4d)

In (4), the exp[. . .] first term corresponds to the surface height
joint characteristic function obtained from a surface height joint pdf
assumed to be Gaussian. The second term exp(−K2

ω) gives the
contribution of the coherent component.
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The normalized functions {f0, f1, f2, f16, f36, f56} are given by


f0 = R0/ω
2

f2 = −R2/σ
2
X

f56 = −C56/σ
2
Y




f1 = −R1/(ωσX)

f16 = −C16/(ωσY )

f36 = −C36/(σY σX)

(5)

where {R0, R1, R2, R16, R36, R56} are expressed as [20, page 272]


R0 = R00 − cos(2Φ)R02

R1 = R10 − cos(2Φ)R12

R2 = R20 − cos(2Φ)R22

Rij =
diR0j

dri
(5a)




C16 =
2R02 sin(2Φ)

r

C36 =
2 sin(2Φ)

r2
(rR12 −R02)

C56 =
R10

r
+

cos(2Φ)
r2

(4R02 − rR12)

(5b)




σ2
X = α + β cos(2φ)

σ2
Y = α− β cos(2φ)

σ2
XY = −β sin 2φ




α =
σ2
x + σ2

y

2

β =
σ2
x − σ2

y

2

(5c)

In (5a), R0(r,Φ) is the surface height two-dimensional autocorrelation
function in polar coordinates, whereas −R2 is the surface slope
two-dimensional autocorrelation function. {R00(r), R02(r)} represent
the isotropic and anisotropic parts of R0, and Φ the azimuthal
direction which characterizes the anisotropic effect. In (5c), {σ2

X =
−R2(0, φ), σ2

Y = −C56(0, φ)} denote the surface slope variances in
the {(0X), (0Y )} directions, respectively, and σ2

XY = −C36(0, φ) the
surface slope cross-variance. {σ2

x, σ
2
y} are the slope variances in upwind

and crosswind directions. As depicted Figure 1, φ is the wind direction.
ω2 = R0(0,Φ) = R00(0) is the surface height variance with R02(0) = 0.

Since the surface is assumed to be perfectly conducting, the NRCS
in VV and HH polarizations are equal. In (5a), the functions Rij(r)
will be expressed from the sea spectrum in Section 3.3.

2.2. Incoherent Backscattering Coefficient from Scalar
Approximation

The scalar approximation consists of approximating the Kirchhoff
integral by a series expansion about the origin of the slopes and retains
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Figure 1. Indication of the different wind directions.

only the first-order term. From Ulaby et al [2, chapter 12] Bourlier et al
[19] proved for a Gaussian anisotropic dielectric random surface that
the backscattering coefficient has the similar form as (3) where the
ensemble average 〈. . .〉SA is

〈. . .〉SA = exp[−K2
ω(1− f0)][|RH,V |2 + jχ1(σX tan θ)

·
(RH,V RH1,V 1)]− exp(−K2
ω)|RH,V |2 (6)

where 
 denotes the real part. Kω, χ1, {c, s} and {f0} are given by
(4a), (4b), (4d) and (5), respectively. RH,V are the Fresnel coefficients
in V (for VV polarization) and H (for HH polarization) polarizations
defined as

RV =
εr cos θ − (εr − sin2 θ)1/2

εr cos θ + (εr − sin2 θ)1/2
RH =

cos θ − (εr − sin2 θ)1/2

cos θ + (εr − sin2 θ)1/2
(6a)

with εr the permittivity of the surface. The permittivity of the air is
assumed to be equal to one.

In (6), RH1,V 1 are expressed as

RV 1 =
cos θ[1− εr + RV (1 + εr)]
εr cos θ + (εr sin2 θ)1/2

RH1 =
2 cos θRH

cos θ + (εr − sin2 θ)1/2
(6b)

In (6), to have a form as +jχ1(σX tan θ), the {RV 1, RH1} coefficients
have been multiplied by −1/(tan θ). Comparing (6) with (4) without
the second-order term (σX tan θ)2, a similar behavior of the ensemble
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average is found. For a perfectly conducting surface, we have RV =
1, RH = −1, RV 1 = 0, RH1 = 0, and for σX tan θ � 1 (slope standard
deviation σX much smaller than the slope cot θ of the scattered field),
the ensemble averages {〈. . .〉SA, 〈. . .〉KA} are equal.

With the stationary (SP) method [2], the ensemble average
(exponent SP ) is

〈. . .〉SP = {exp[−K2
ω(1− f0)]− exp(−K2

ω)}|RH,V |2/(cos θ)4 (7)

It is important to note in [4] that the ensemble average given by (7) is
multiplied by (cos θ)4 inferring on the level of the incoherent scattering
coefficient.

From (7) and (4), for a perfectly conducting surface (|RH,V | = 1),
we can see that 〈. . .〉SP �= 〈. . .〉KA. Therefore, the NRCS computed
from KA and SP methods are different excepted for χ1 = χ2 = 0
with (cos θ)4 = 1. On the other hand, from (4b)–(4c) this is similar
to consider {f1, f2, f16, f36, f56} = 0 involving that the correlation
between the surface heights-slopes ({f1, f16} = 0) and slopes-slopes
({f2, f36, f56} = 0) is assumed to be equal to zero.

2.3. Incoherent Backscattering Coefficient from Small Slope
Approximation

The small-slope approximation is appropriate for scattering from both
large- (the SP regime), intermediate- and small-scale (the Bragg
regime) roughness within a single theoretical scheme. Both the lowest-
order approximation (which we refer to as the SSA-1) and the next-
order approximation (the SSA-2), which includes corrections to the
SSA-1, can be calculated. The SSA was verified in a number of
numerical simulations [15–16].

In [11], Voronovich proposed a formulation of the backscattering
coefficient which combines both SSA-1 and SSA-2. The ensemble
average from SSA approach 〈. . .〉SSA can be then written as

〈. . .〉SSA = |BH,V |2{exp[−K2
ω(1− f0M )]− exp(−K2

ω)} (8)

with

BV =
(εr − 1)[sin2 θ(1− εr)− εr]
[εr cos θ + (εr − sin2 θ)1/2]2

BH = RH (8a)

This formulation is weakly different that the one proposed in [9, 10, 12–
14], and presents the drawback that the cross-polarization is not taken
into account with accuracy. On the other hand, the computer time is
less important for the second order.
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In (8), f0M (r,Φ) is the normalized modified surface height
autocorrelation function in polar coordinates which contains the effect
of SSA-2. For a backscattering configuration, in cartesian coordinates
	rT = [x y], f0M (	r) is defined from the Fourier transform of the surface
roughness spectrum Ψ(	ξ) as (equation (10) of [11] with 	ks = −	k0 for
the backscattering case)

f0M (	r) =
1
ω2

∫∫ ∣∣∣∣∣1− MV,H(	ξ)
8BV,H cos θ

∣∣∣∣∣
2

Ψ(	ξ) exp(j	ξ · 	r)d	ξ (9)

with

MV,H(	ξ) = B1V,1H(−	k0 − 	ξ) + B1V,1H(	k0 + 	ξ) + 4KBV,H cos θ (9a)

where 	k0 = K(	x cosφ sin θ + 	y sinφ sin θ) is the horizontal wave vector
of the incident field according to the wind direction.

The polarization terms B1V,1H in VV and HH polarizations are
defined as (see appendix of [11])

B1V (	ξ) =
2(εr − 1)

(εrq01 + q02)2

{
1− εr

εrqξ1 + qξ2

[
εrk

2
0ξ

2 − q2
02

(	k0 · 	ξ)2
k2

0

]

+εrk
2q02 + q2

02(qξ1 − qξ2)
}

(9b)

B1H(	ξ) =
2(εr − 1)k2

(q01 + q02)2

{
1− εr

εrqξ1 + qξ2

[
ξ2 − (	k0 · 	ξ)2

k2
0

]
−q02−qξ1+qξ2

}

(9c)

where


q01 = K cos θ

qξ1 = K(1− ξ2/K2)1/2

ξ2 = 	ξ · 	ξ

q02 = K(εr − sin2 θ)1/2

qξ2 = K(εr − ξ2/K2)1/2

k2
0 = 	k0 · 	k0 = (K sin θ)2

(9d)

From (9b)–(9c), we get B1V,1H(−	ξ) = B1V,1H(	ξ), which leads from (9a)
to

1− MV,H(	ξ)
8BV,H cos θ

=
1
2

(
1− B1V,1H(	k0 + 	ξ)

2K cos θ

)
(10)

We can note that B1V,1H(	k0 + 	ξ)/K is dimensionless.
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Substituting (10) into (9), the normalized modified surface height
autocorrelation function becomes in polar coordinates

f0M (r,Φ) =
1

4ω2

∫ 2π

0
dψ

∫ ∞
0

∣∣∣∣1− B1V,1H(ξ, ψ)
2K cos θ

∣∣∣∣
2

·S(ξ, ψ) exp[jξr cos(ψ − Φ)]dξ (11)

where S(ξ, ψ) = ξ ×Ψ(ξ, ψ) is the sea spectrum in polar coordinates.
The fact to substitute in (9b)–(9c) 	ξ by 	k0 + 	ξ involves that


	k0 · 	ξ → k2

0 + 	k0 · 	ξ = k2
0 + k0ξ cos(ψ − φ)

ξ2 → (	k0 + 	ξ)2 = k2
0 + ξ2 + 2k0ξ cos(ψ − φ)

(11a)

In (10), for 	ξ = 	0, we can verified that −B1V,1H(	k0+	ξ)/ (2K cos θ) = 1,
meaning that the square modulus term in (11) is equal to four.
With S(ξ, ψ) = M(ξ)[1 + ∆(ξ) cos(2ψ)]/(2π) (general behaviour of
the sea spectrum, see Section 3.1), the integration over ψ can be
then performed analytically [21], yielding f0M (r,Φ) = f0(r,Φ). This
assumption is similar to consider only the first term of the small slope
approximation. Comparing therefore (8) 〈. . .〉SSA with (6) 〈. . .〉SA
ensemble averages, the backscattering coefficients are different within
the polarizations terms (6a) RV,H and (8a) BV,H , respectively. For
θ = 0, we have |RV (0)| = |RH(0)| = |BV (0)| = |BH(0)| meaning that
the backscattering coefficients are equal.

Since the sea spectrum S(	ξ) is even and B1V,1H(	ξ) is not generally
an even function with (11a) variable transformations, the global
spectrum is not even with respect to 	ξ which involves that f0M (r,Φ)
is not symmetrical as f0(r,Φ).

In Figure 2, the Fresnel coefficients {|RV,H |2} and {
(RH,V RH1,V 1)}
in VV and HH polarizations are plotted versus the scattering angle.
The sea permittivities [28] are equal to εr = 67 + j35 (f = 5.3 GHz
in C band) and εr = 47 + j38 (f = 14 GHz in Ku band). We observe
that {|RV |2, |RH |2}, are larger than {
(RH,V RH1,V 1)}. For the SSA
approach, BH = RH and |BV |2 is not represented because is greater
than one (there is no restriction on the modulus of BV since this is not
a reflection coefficient).

3. SEA SPECTRUM

The computation of the backscattering coefficient requires the
knowledge of either the sea spectrum or the sea surface height
autocorrelation function obtained from the Fourier transform of the
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Figure 2. Fresnel coefficients {|RV,H |2} and {
(RH,V RH1,V 1)} in VV
and HH polarizations versus the scattering angle. The sea permittivity
is εr = 67 + j35 and εr = 47 + j38.

sea spectrum. The ensemble average with KA (equation (4)) and
SA (equation (6)) can be studied within the roughness parameters
Kω = 2Kω cos θ and σX tan θ. K is the incident wave number, ω the
surface height standard deviation, σX the rms of the surface slopes in
the wind direction, and θ the scattering angle. Indeed, according to
the value of these roughness parameters, the integrations over {r,Φ}
of (3) scattering coefficient can be simplified.

In this section, these parameters are analyzed from the Elfouhaily
et al spectrum [22] in microwave region. The shadowing effect is also
addressed.

3.1. Elfouhaily et al Sea Spectrum

The Pierson spectrum [29] is one of the first spectra published in the
literature to describe capillary and gravity waves. The gravity region
has been modified by adding the JONSWAP behavior [30] where the
fetch effect is provided. Since the capillary region does not fit some
physical criteria as the surface slope variance, its behavior has been
investigated. We can quote the Apel spectrum [31] which is a synthesis
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of works done in 80’s and 90’s. Unfortunately as shown Elfouhaily et
al [22], this spectrum does not agree with the slope model proposed by
Cox and Munk [27]. This discrepancy is due to an inaccuracy of the
capillary waves. The set of these aspects are summarized in [21].

In our simulations we used the Elfouhaily et al model for the sea
roughness spectrum, which was recently developed based on available
field and wave-tank measurements, along with physical arguments. It is
important to note that this model was developed without any relation
to remote-sensing data. We avoided some deficiencies of this spectral
model found in [32].

Elfouhaily et al assume a directional spectrum S(k, ψ) defined in
polar coordinates as

S(k, ψ) = M(k)f(k, ψ) (12)

where
M(k) = (BL + BH)/k3 (12a)

and
f(k, ψ) = [1 + ∆(k) cos(2ψ)]/(2π) (12b)

In (12), M(k) denotes the non-directional spectrum (isotropic part)
modulated by the f(k, ψ) spreading function. In (12a), BL and BH

are the respective contributions from low (gravity waves) and high
(capillary waves) wavenumbers.

The low-wavenumber curvature spectrum BL is assumed to obey

BL(k) = αpc(kp)Fp/[2c(k)] (13)

The parameters in (13) are dependent on u10, the wind speed measured
at an altitude of ten meters above the sea, and on inverse wave age
Ω ≈ u10/c(kp) where c(k) is the phase speed and kp is the wave number
of the spectral peak. In (13)

 αp = 6× 10−3Ω1/2 kp = gΩ2/u2
10

c(k) = [g(1 + k2/k2
m)]1/2

(14)

where g is the gravitational constant and km = 363 rad/m. The
function Fp in (13) is given by

Fp = γΓ × exp[−(5k2)/(4k2
p)]× exp{−Ω[(k/kp)1/2 − 1]/

√
10} (15)

where

κ =


 1, 7 0, 84 < Ω ≤ 1

1, 7 + 6 log Ω 1 < Ω ≤ 5

Γ = exp{−[(k/kp)1/2 − 1]2/(2δ2)} δ = 0, 08(1 + 4/Ω3)

(15a)
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The assumed contribution to (12a) at high wavenumbers is

BH(k) = αmc(km)Fm/[2c(k)] (16)

where

αm = 10−2


 1 + ln[uf/c(km)] uf ≤ c(km)

1 + 3 ln[uf/c(km)] uf > c(km)

Fm = exp{−[(k/km)− 1]2/4}
(17)

with c(km) = 23 cm/s. The data used to formulate (17) are limited to
wind speeds u10 < 17.2 m/s. For a neutrally stable atmosphere, the
friction speed uf is obtained in [22] by using the relationships

C10 = (0, 8 + 0, 064u10)× 10−3 uf = C
1/2
10 u10 (18)

where the units of u10 and uf are m/s.
In this study, to obtain spectra consistent with those presented in

[22], an additional factor exp[−(5k2)/(4k2
p)] is inserted on the right-

hand side of (16).
In (12b), the function ∆(k) which characterizes the spreading

function is assumed to be equal to

∆(k) = tanh{a0 + ap[c(k)/c(kp)]2,5 + am[c(km)/c(k)]2,5} (19)

where
a0 = 0, 173 ap = 4 am = 0, 13uf/c(km) (19a)

For the simulations, a fully developed sea is assumed which is similar
to take an inverse wave age Ω equal to 0.84.

In Figures 3–5, the isotropic parts {k−3(BL + BH), k−3BL}, the
curvature isotropic parts {BL+BH , BL}, and the angular part ∆(k) of
the sea spectrum are plotted versus the wave number k, respectively,
with wind speeds u10 = {5, 15}m/s. The vertical lines in Figures 4–5
are placed at wave numbers equal to k = 2K sin θ with θ = {30, 60}◦
for frequencies f = 5.3 GHz (dashed lines) and f = 14 GHz (dashdot
lines). As depicted Figure 3, when the wind speed increases, the
maximum (equal from [21] to 0.00193/k2

p with kp = gΩ2/u2
10) of

the spectrum increases with a shift toward low-wavenumbers (equal
from [21] to 0.98k2

p) because the contribution of the gravity waves
increases. Unlike Figure 4 where the curvature spectrum is represented,
we observe that the total spectrum is weakly affected by the capillary
region (BH term) since k−3(BL + BH) ≈ k−3BL. Indeed from Figure
4, for the curvature spectrum, the capillary region takes place and
strongly increases with the wind speed. In microwave frequencies, this
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Figure 3. Isotropic part of the sea height spectrum versus the wave
number. The wind speed u10 = {5, 15}m/s. In full curve the total
height spectrum (low- and high- wavenumbers) k−3(BL +BH), and in
dashed curve the gravity height spectrum k−3BL (low-wavenumber).

zone is responsible for Bragg backscattering, since the backscattering
coefficient is equal to [2] |BV,H |2 cot4(θ)[BL(2k0) + BH(2k0)]/2 (k0 =
k sin θ and {BV,H} are expressed from (8a)). As shown Figure 5, the
anisotropic effect increases in capillary region with the wind speed.

3.2. Surface Height and Slope Variances

In this subsection, the surface slope variances in upwind σ2
x and

crosswind σ2
y directions are computed from the previous spectrum,

with the aim to compare them with the Cox and Munk model [27].
From equation (4), the comparison of the rms surface slopes σX in the
wind direction with the incident beam slope cot θ allows to quantify the
contribution of the {χ1,2} additional terms provided by the Kirchhoff
approximation.

From the general behavior of the directional sea spectrum,
{σ2

x, σ
2
y} can be expressed as [21]

σ2
x = α + β σ2

y = α− β (20)
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Figure 4. Isotropic part of the curvature sea spectrum versus the
wave number. The wind speed u10 = {5, 15}m/s. In full curve the
total curvature spectrum (low- and high- wavenumber) BL +BH , and
in dashed curve the curvature gravity BL (low-wavenumber).
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Figure 5. Angular part ∆(k) of the sea height spectrum versus the
wave number. The wind speed u10 = {5, 15}m/s.
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Figure 6. At the top, rms surface slopes in upwind σx, and crosswind
directions σy obtained from the Cox-Munk data and computed from
the Elfouhaily spectrum versus the wind speed u10 in m/s defined at
ten meters above the sea. At the bottom, numerical and model rms
surface heights versus u10.

where
α = 1

2

∫ ∞
0
k−1[BL(k) + BH(k)]dk

β = 1
4

∫ ∞
0
k−1[BL(k) + BH(k)]∆(k)dk

(20a)

and for a Gaussian process, the surface slope variance σ2
X(φ) in the

wind direction φ is
σ2
X(φ) = α + β cos(2φ) (21)

We can notice that σ2
X(0) = σ2

x and σ2
X(π/2) = σ2

y .
The Cox and Munk model gives

σ2
x = (3, 16u12 ± 4)10−3 σ2

y = (3 + 1, 92u12 ± 4)10−3 (22)

At the top of Figure 6, the rms surface slopes in upwind σx
and crosswind directions σy obtained from the Cox-Munk model and
computed from the Elfouhaily spectrum are plotted versus the wind
speed u10 in m/s defined at ten meters above the sea. As depicted
Figure 6, the Elfouhaily results which are slightly overestimated are in
agreement with the Cox and Munk ones.
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From the spectrum, the surface height variance ω2 is defined as

ω2 =
∫ ∞
0
k−3[BL(k) + BH(k)]dk (23)

At the bottom of Figure 6, numerical and model [21] (ω2 ≈
193× 10−5/k2

p ≈ 3, 95× 10−5u4,04
10 for a fully developed sea Ω = 0.84)

rms surface heights are represented versus u10. A good fit is observed,
and therefore ω is proportional to the square of the wind speed u10. As
depicted Figure 3, ω2 is not affected by the capillarity waves permitting
to model ω2 with respect to k2

p.
At the top and at the middle of Figure 7, the products σx tan(θ)

and ω cos θ are plotted versus u10, respectively, for scattering angles
θ = {10, 30, 50, 60}◦ of interest for remote sensing. For scattering
angles smaller than 60◦, we can see that the product σx tan(θ) is smaller
than one (u10 ∈ [5; 20] m/s). For wind speed u10 shorter than 10 m/s,
the contribution in (4) of the (σX tan θ)2 becomes then negligible. We
can note that SSA is valid if the incident beam slope 1/ tan θ is larger
than the rms of the surface slopes which is similar to have σX tan θ < 1.

In the range frequencies f ∈ [1; 20] GHz, K ∈ [21; 419] rad/m. As
depicted at the middle of Figure 7, for moderate scattering angles,
the product Kω = 2Kω cos θ increases with the wind speed and can
be larger than one. In (4), (6) and (8), the exponential term exp[. . .]
becomes then small, and for the integration over radial distance r, the
surface height normalized autocorrelation function can be replaced by
its Taylor development of order two, which gives the optics geometrical
approximation. For example, in C band (f = 5.3 GHz), K =
111 rad/m, 2Kω cos θ ∈ [18; 592] with u10 ∈ [5; 20] m/s and θ ∈ [0; 60]◦.
In Ku band (f = 14 GHz), the previous ranges are multiplied by 2.64,
whereas in L band (f = 1.5 GHz), they are divided by 3.53.

3.3. Sea Surface Height Autocorrelation Function

In cartesian coordinates, the surface height autocorrelation function
R0(x, y) is equal to the Fourier transform of the spectrum
Ψ(kx; ky). From (12) general behavior, in polar coordinates, the sea
autocorrelation function R0(r,Φ) is expressed from the sea spectrum
S(k, ψ) = k ×Ψ(k, ψ) as [21]

R0(r,Φ) = R00(r)− cos(2Φ)R02(r) (24)

where 


R00(r) =
∫ ∞
0
M(k)J0(rk)dk

R02(r) =
∫ ∞
0
M(k)∆(k)J2(rk)dk

(25)
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Figure 7. At the top, product σx tan(θ) versus u10. At the
middle, product ω cos θ versus u10. At the bottom, parameter v =
1/(σx tan(θ)

√
2) versus u10. For three figures, the scattering angle

θ = {10, 30, 50, 60}◦.

R00(r) is the isotropic part, whereas R02(r) denotes the anisotropic
part. Jn is the nth order Bessel function of the first kind. Unlike Funk
et al [4], the integration over ψ is performed analytically involving
a dependence in cos(2Φ). As the sea spectrum, the autocorrelation
function is both even with respect to the upwind and crosswind
directions.

From simulations with u10 ∈ [2; 17] m/s, R0(r,Φ) can be modeled
as [21] 


R00(r) = ω2 cos

(
r

L′0

)
/

[
1 +

(
r

L0

)2
]

R02(r) = ω2AJ2

(
r

L′2

)
/

[
1 +

(
r

L2

)2
] (26)
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Figure 8. Comparison of the modeled surface normalized height
autocorrelation function with the numerical one for wind directions
Φ = {0, 45, 90}◦ and wind speeds u10 = {5, 15}m/s.

where
 ω2 = 3, 953× 10−5u4,04

10 L0 = 0, 154u2,04
10 L′0 = 0, 244u1,91

10

A = 3, 439u0,11
10 L2 = 0, 157u1,95

10 L′2 = 0, 138u2,05
10

(26a)
Figure 8 Compares the modeled surface normalized height auto-

correlation function (equation (26)) with the numerical one ((equation
(25)) versus the radial distance r for wind directions Φ = {0, 45, 90}◦
and wind speeds u10 = {5, 15}m/s. A good fit is observed between
the numerical and modeled results. The vertical dashed lines are
located at distance r corresponding to L0 = 0, 154u2,04

10 and 5L0. Note
that the correlation length LC increases very quickly with the wind
speed and there is a significant range of negative values not present
in most correlation functions for land surfaces. The correlation length
can not be equal to L0 since with respect to the wind direction, the
autocorrelation function can be close to one (0.6 with Φ = 90◦). On
the other hand, for r = 5L0 the autocorrelation function is close to
zero which allows to take LC = 5L0. For u10 = {5, 15}m/s, we have
LC = {20, 192} meters.
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The negative values of the autocorrelation function comes from the
fact that the sea gravity spectrum reaches a maxima located around of
kp. This means that the sea spectrum can be expressed as a convolution
product of a Dirac distribution centered around kp by the spectrum
centered in zero. The autocorrelation function is then equal to the
product of the Fourier transforms of the sea spectrum and the Dirac
function which explains the oscillatory behavior of R0(r,Φ).

The computation of the backscattering coefficient with the Kirch-
hoff approximation requires also the knowledge of {R10, R12, R20, R22}
defined as Rij = diR0j/dr

i (see equation (5a)). From (25), we can
write


R10 =

dR00

dr
= −

∫ ∞
0
kM(k)J1(rk)dk

R12 =
dR02

dr
=

1
2

∫ ∞
0
kM(k)∆(k)[J1(rk)− J3(rk)]dk

(27)

and


R20 =
d2R00

dr2
= −1

2

∫ ∞
0
k2M(k)[J0(rk)− J2(rk)]dk

R22 =
d2R02

dr
=

1
4

∫ ∞
0
k2M(k)∆(k)[J0(rk)− 2J2(rk) + J4(rk)]dk

(28)
The surface slope variance σ2

X(φ) in the wind direction is defined
as −R2(0, φ) = −[R20(0) − cos(2φ)R22(0)]. Comparing then (20a)–
(21) with (28) and knowing that {J0(0) = 1, J2,4(0) = 0}, the same
relationship is found.

Figure 9 compares the modeled isotropic {f10 = −R10/(ωσX), f20

= −R20/(ωσX)} (on the left) and anisotropic {f12 = −R12/σ
2
X , f22 =

−R22/σ
2
X} (on the right) parts with the numerical ones for wind speeds

u10 = {5, 15}m/s. σX is chosen equal to α (wind direction equal
to 45 degrees), ω is computed from (26a) and the modeled isotropic
and anisotropic parts are provided by [20, table 2.5]. As depicted
Figure 9, there is a discrepancy between the numerical and modeled
results, because in (25) modeling of the surface height autocorrelation
function R0(r,Φ), the capillary region is omitted due to the attenuation
in k−3 according to S(k) (see Figure 3 with (12)). With the first
and second derivatives of R0(r,Φ) expressed from (27)–(28), this
attenuation becomes {k−2, k−1}, respectively, which involves that the
capillary region can not be ignored. We can also explain this deviation
by the fact that there are several functions which can be modeled
R0(r,Φ) with very different derivatives.
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Figure 9. Comparison of the modeled isotropic {f10, f20} (on the left)
and anisotropic {f12, f22} (on the right) parts with the numerical ones
for wind speeds u10 = {5, 15}m/s.

For the computation of the backscattering coefficient, the mod-
eling of R0(r,Φ) can be used, and the computations of its first and
second derivatives have to be obtained from numerical evaluations of
(27)–(28).

3.4. Shadowing Function

For a backscattering configuration, the shadowing function character-
izes the surface fraction which is visible from the receiver. A study
regarding the shadowing function has been done with Smith [33, 34]
and Wagner [35]. These authors determined the shadowing function
for a one-dimensional stationary stochastic process. Bourlier et al [20,
36] extended their results for a two-dimensional stationary surface by
including the correlation between the surface heights and slopes. They
also noted that Smith’s results are more accurate than Wagner’s. Since
the difference between the correlated and uncorrelated Smith’s shad-
owing functions is very small, the uncorrelated statistical shadowing
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function can be used with a good approximation.
As shown Bourlier et al [18, 19], for a scattering problem, the

shadowing function modifies the height distribution and carries a
restriction over the surface slopes. With the Smith formulation, the
surface joint height and slope distribution with shadow pSh(ζX , h) is
then written as [18]

pSh(h, ζX) = p(h, ζX)×Υ(v − ζX)
[
1− 1

2
erfc(h)

]Λ(v)

(29)

where p(ζX , h) is the unshadowed distribution assumed to be Gaussian

p(h, ζX) = exp(−ζ2
X − h2)/π (29a)

ζX is the surface slope normalized by σX
√

2 (σX given by (21)), and
h the surface elevation normalized by ω

√
2. In (29)

Λ(v) = [exp(v2)− v
√
πerfc(v)]/(2v

√
π) v = cot θ/(

√
2σX) (29b)

Υ(x) = 1 if x ≥ 0 else 0 (29c)

where Υ(x) is the Heaviside function. The shadowing function involves
therefore a restriction over the surface slopes within the term Υ(v−ζX),
and modifies the height distribution due to the term, [1−erfc(h)/2]Λ(v).

In Figure 10, the shadowed surface slope (pSh(ζX) = p(ζX)Υ(v −
ζX) term of (29) plotted on the left) and height (pSh(h) = p(h)[1 −
erfc(h)/2]Λ(v) term of (29) plotted on the right) distributions are
compared with the unshadowed one (crosses curve) according to the
parameter v and versus the normalized slope ζX and height h. We
see that the area of pSh(ζX) is inversely proportional of v and for
v = 0, only the negative values of pSh(ζX) are taken into account.
Since p(ζX = 2) = 0.01, for v larger than 2 the shadowing effect on
the surface slopes is negligible. As depicted in Figure 10 (right), the
shadowing effect on the surface height distribution increases when v
decreases due to the fact that (29b) Λ increases, and for v ≥ 2, the
shadowing effect can be ignored.

In conclusion, if v ≥ 2, then the shadowing effect on the surface
heights and slopes can be omitted and pSh(h, ζX) ≈ p(h, ζX).

At the bottom of Figure 7, the parameter v = 1/(σx tan θ
√

2)
is plotted versus u10, with scattering angles θ = {10, 30, 50, 60}◦.
Since v is greater than 1.6, the shadowing effect can be neglected
for the computation of the backscattering coefficient. This result is
in agreement with articles [18, 19] which explains how the shadowing
function can be accounted for the Kirchhoff approximation. As proved
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Figure 10. Comparison of the shadowed and unshadowed
distributions of the surface slopes (left) and heights (right) according
to the parameter v and versus the normalized surface slopes ζX and
heights h.

by Sancer [37], with the geometrical optics approximation, the average
shadowing function (integrations over {h, ζX} of (29)) can be used and
it is equal to S(v) = [1 + erfc(v)]/{2[1 + Λ(v)]}. Then S(1.6) = 0.986.

4. NUMERICAL RESULTS

In this section, the incoherent backscattering models presented in
Section 2 are computed from the sea directional spectrum given in
Section 3. To compare the Kirchhoff approach (KA) with the small
slope approximation (SSA), in the first subsection, the sea surface is
assumed to be perfectly conducting with an isotropic spectrum. In
Subsection 2, the models are compared for a dielectric sea surface, and
in Subsection 3, the effect of the wind direction is analyzed within
the CMOD2-I3 and SASS-II backscattering models valid in C and Ku
bands, respectively.
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4.1. Perfectly-Conducting Surface with an Isotropic Sea
Spectrum

For an isotropic surface, the anisotropic part of the sea surface
spectrum is equal to zero involving in (12b) that ∆(k) = 0 and the
spectrum depends only on the wave number k. This means from (5a),
{Ri2} = 0, σX = σY = σx), and from (5b), {C16, C36} = 0, C56 =
R10/r. The {χ1, χ2} terms of (4b)–(4c) becomes then

χ1 = 2Kω × cf1 χ2 = c2f2 + s2f56 −K2
ω(cf1)2 (29d)

We can also notice that fi = fi0.
Knowing that

Ψ0 =
∫ 2π

0
exp[jx cos(φ− Φ)]dΦ = 2πJ0(x) (30)

we have


Ψ1 =
∫ 2π

0
cos(φ− Φ)× exp[jx cos(φ− Φ)]dΦ

= −j ∂Ψ0

∂x
= 2πjJ1(x)

Ψ2 =
∫ 2π

0
[cos(φ− Φ)]2 × exp[jx cos(φ− Φ)]dΦ

= −j ∂Ψ1

∂x
= π[J0(x) + J2(x)]

Ψ3 =
∫ 2π

0
cos[2(φ− Φ)]× exp[jx cos(φ− Φ)]dΦ

= 2Ψ2 −Ψ0 = −2πJ2(x)

(30a)

Substituting (29d) into (4), we show with the use of (30a) that
the integration over Φ of (3) incoherent backscattering coefficient with
the Kirchhoff approximation leads to

σKA = 2(K cos θ)2 exp(−K2
ω)

∫ ∞
0

(
exp(K2

ωf0){J0(xr)

·[1 + (σX tan θ)2(f2 + f56 − f2
1K

2
ω)/2]

−2J1(xr)(σX tan θ)f1Kω − J2(xr)(σX tan θ)2

·(f2 − f56 − f2
1K

2
ω)/2} − J0(xr)

)
rdr (31)

where
x = 2K sin(θ) (31a)
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With the stationary phase (SP) method, the incoherent backscat-
tering coefficient is from (7)

σSP = 2(K/ cos θ)2 exp(−K2
ω)|RH,V |2

∫ ∞
0
rJ0(xr)[exp(K2

ωf0)− 1]dr

(32)
with RV = 1 and RH = −1 for a perfectly conducting. For
a sufficiently rough surface (Kω � 1), the geometrical optics ap-
proximation (exponent GO) or high-frequency limit is obtained by
approximating f0 by the first two terms of its Taylor series expansion
about the origin. The integration over r of (32) leads to

σGO = |RH,V |2 exp[− tan2 θ/(2σ2
x)]/(2σ

2
x cos4 θ) (33)

For the small slope approximation, the incoherent backscattering
coefficient σSSA required the computation of (11) modified surface
height autocorrelation f0M (r,Φ). From (9b)–(9c) and (11a), ΞV,H =
1−B1V,1H(ξ, ψ)/(2K cos θ) can be written as



ΞV = 1 +
K2[ξ2 cos2(ψ−φ)−ξ2+K2]−k2

0[ξ
2+2ξk0 cos(ψ−φ)+k2

0]
[K2−ξ2−k2

0−2k0ξ cos(ψ−φ)]1/2(K2−k2
0)1/2(K2+k2

0)

ΞH = 1 +
K2 − [ξ cos(ψ − φ) + k0]2

[K2 − ξ2 − k2
0 − 2k0ξ cos(ψ − φ)]1/2(K2 − k2

0)1/2
(34)

We can note for ξ = 0, the above equations are equal to 2. Although
the sea spectrum is assumed to be isotropic, the integration over ψ
of (11) can not be performed analytically. Substituting (11) into (8),
and using (3), the normal radar cross section with the small slope
approximation (exponent SSA) is

σSSA =
(K cos θ)2 exp(−K2

ω)|BH,V |2
π

·
∫ ∞
0
rdr

∫ 2π

0
exp[2jrK sin(θ) cos(Φ− φ)]

·
(

exp
{

K2
ω

8πω2

∫ ∞
0
M(ξ)dξ

∫ 2π

0
|Ξ(ξ, ψ − φ)|2

· exp[jξr cos(ψ − Φ)]dψ
}
− 1

)
dΦ (35)

For given wind direction φ and k0 = K sin θ, the computation of σSSA

requires therefore four-fold integrations over {ψ, ξ,Φ, r} demanding an
extensive computer time.



Microwave analytical backscattering models 57

For an isotropic surface, we have S(ξ, ψ) = M(ξ)/(2π), and for
a perfectly conducting BH = −1, BV = −[sin2(θ) + 1]/ cos2(θ) which
are equal to the polarization terms of the small perturbation method
[2].

The first-order SSA solution (exponent SSA0) is obtained when in
(34), ξ = 0 meaning that {ΞV,H} = 2. Substituting these relationships
into (35), the integration over ψ leads to 8πJ0(ξr). The integration
over ξ corresponds then to the isotropic part of the surface height
autocorrelation function R00(r) (see equation (25)). Performing the
integration over Φ, we obtain finally the same form as with the
stationary method

σSSA0 = 2(K cos θ)2|BH,V |2 exp(−K2
ω)

∫ ∞
0
rJ0(xr)[exp(K2

ωf0)− 1]dr

(36)
The comparison of (36) with (32) yields σSSA0 = σSP (cos θ)4|BH,V /
RH,V |2.

Approximating (34) |ΞV,H |2 by the first term of its Taylor series
expansion about the origin ξ = 0, and applying the same way as
previously, we show in appendix A

σSSA1 = 2(K cos θ)2|BH,V |2 exp(−K2
ω)

∫ ∞
0
{exp(K2

ωf00)

·J0(xr −K2
ωf10σx/[ωKV,H ])− J0(xr)}rdr (37)

where {f00 = f0, f10 = f1} (isotropic surface) and {KV,H} are defined
from (A5).

In the numerical examples presented in this section, the isotropic
wavenumber spectrum of Section 3.1 for a fully developed sea with
Ω = 0.84 is assumed.

Figure 11 presents predictions of (31) σKA Kirchhoff approxima-
tion (full curve), (32) σSP phase stationary (chain curve) and (33)
σOG optics geometric scattering (circle curve) normal radar cross sec-
tions. Also shown in this figure are the predictions of small slope
approximation term (36) of σSSA0 (symbols plus) and the small per-
turbation method (symbols x-marks). Only the HH polarization case
is depicted (the VV case is discussed later for a dielectric surface). At
the top and at the bottom of Figure 11, the NRCS is plotted for C
(f = 5.3 GHz) and Ku bands (f = 14 GHz), respectively, with wind
speeds u10 = {5, 15}m/s.

At near-nadir scattering angles, the KA, SP, SSA0 models are
similar, whereas the OG solution is overestimated by several dB. As
discussed [11, 14], the deviation come from the fact that the wave
spectral components k > 2K may contribute significantly to the RMS
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Figure 11. HH normal radar cross section in C (f = 5.3 GHz, at the
top) and Ku Bands (f = 14 GHz, at the bottom) versus the scattering
angle for wind speeds u10 = {5, 15}m/s with an isotropic sea surface
assumed to be perfectly conducting. Kirchhoff approximation σKA in
full curve, stationary phase σSP in chain curve, optics geometric σOG

in circle curve, first-order small slope approximation σSSA0 in symbols
plus, and the small perturbation method in symbols x-marks.

slope but contribute negligibly to scattering. A smooth transition at
scattering angles of 20–40 degrees where the geometric-optics regime
becomes not valid and where the Bragg scattering regime predominates
is observed. In this region, the deviation between the KA and SSA0
models increases with the scattering angle, and the SP results are
underestimated. In fact with KA, there are numerical problems for
large incidence angles. Since for the HH polarization, BH = −1, we
get σSP = σSSA0/(cos θ)4 with explains the overprediction of SP.

Figure 12 compares the SSA0 results with (37) SSA1 ones for VV
and HH polarizations with the same parameters as Figure 11. Unlike
with the Kirchhoff approach, for a perfectly-conducting surface, the
SSA model for the VV polarization is larger than the HH one because
the polarization terms {BV,H} are different. We can also see that
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Figure 12. Comparison of the SSA0 results with SSA1 ones for VV
and HH polarizations with the same parameters as Figure 11.

the discrepancy between the SSA0 and SSA1 models increases with
the scattering angle, involving that the SSA1 model is not similar to
the rigorous SSA solution. This solution will be discussed for a two-
dimensional dielectric surface.

When the isotropic part of (26) sea surface height modeled
autocorrelation function R00(r) is used, the NRCS is very different than
the one computed from (25). Therefore, for the simulations R00(r) is
computed numerically from (25). This explains by the fact that around
zero, R00(r) has to be very accurate for observing the Bragg regime.

4.2. Dielectric Surface with an Isotropic Sea Spectrum

As shown Bourlier et al [18], for a dielectric surface, the integrand in
the Kirchhoff integral is a very complicated function involving that the
integrations over the statistical variables (heights and slopes) can not
be performed analytically. On the other hand, the SA model presented
in this subsection can be used.

Using the same way as previously, the incoherent backscattering
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coefficient under the scalar approximation σSA is from (6)

σSA = 2(K cos θ)2 exp(−K2
ω)|RH,V |2

∫ ∞
0
rdr

·
(

exp(K2
ωf0){J0(xr)− 2J1(xr)(σX tan θ)f1Kω

·
(RH,V RH1,V 1)/|RH,V |2 − J0(xr)}
)

(38)

For the SSA1 model, equation (37) is similar, where the {KV ,KH}
are expressed from (9b)–(9c) (see appendix A) as

KH = 

[

q2
01q02

k0(q01 − q02)

]
(38a)

KV = 

{

K2(q2
02 + εrk

2
0)q02(k2

0 −K2)(q01q02 + k2
0)

k0(q01 − q02)[q3
01q

3
02 + K2k4

0 + k2
0(q

3
01q02 − 2εrK4)]

}
(38b)

where {q01, q02, k0} are given by (9d).
Figures 13–14 represents the NRCS of SA (full curve), SSA0 (chain

curve), SP (circle curve), OG (plus curve) versus the scattering angle
for VV and HH polarizations in C (f = 5.3 GHz, εr = 67 + j35 [28],
at the top) and Ku Bands (f = 14 GHz, εr = 47 + j38 [28], at the
bottom). The wind speeds u10 = {5, 15}m/s.

For the HH polarization, since RH = BH , the deviation between
the SA and SSA0 models is smaller than the one obtained for VV
polarization. For the VV polarization, |BV | > |BH | which explains
in Figure 15 that the scattering coefficient in VV polarization is
greater than the one computed for HH polarization. In fact we have
σSSA0
V V /σSSA0

HH = |BH/BV |2.
Voronovich [11, Figures 1-(e) and 1-(f)] have compared the SSA0

and (35) SSA models with the same parameters as (c)–(d) of Figure
15 (f = 14 GHz and u10 = {5, 15}m/s). He observed for scattering
angles θ ∈ [0; 60]◦ that the SSA0 and SSA scattering coefficients are
similar for the VV polarization, whereas for the HH polarization, the
difference σSSA

HH −σSSA0
HH > 0 increases with the wind speed, but remains

within about 2 dB which is observed in Figure 15 with the σSSA1
HH model.

Therefore, σSSA0 ≈ σSSA with an accuracy of order 2 dB. McDaniel
[14, Figures 4–5] with u10 = {5, 10}m/s and f = 5.3 GHz, observed a
deviation σSSA − σSSA0 > 0 less smaller than 0.8 dB. Therefore, the
SSA1 model is not sufficient for the HH polarization to account for the
SSA formulation. Nevertheless, σSSA0 ≈ σSSA allowing to compute
rapidely the backscattering coefficient, since the SSA requires four-fold
integrations.
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Figure 13. VV normal radar cross section in C (f = 5.3 GHz, εr =
67+ j35, at the top) and Ku Bands (f = 14 GHz, εr = 47+ j38, at the
bottom) versus the scattering angle for wind speeds u10 = {5, 15}m/s
with a dielectric isotropic sea surface.

4.3. Dielectric Surface with an Anisotropic Sea Spectrum

From measurements made in microwave band [23–26] for co-polariza-
tions pq (VV and HH), the NRCS is given as

σpq = σ0
pq + σ1

pq cosφ + σ2
pq cos(2φ) (39)

In (39), the mean backscatter σ0
pq mainly carries the information of the

wind speed, σ1
pq describes the upwind and downwind asymmetry, and

σ2
pq accounts for the difference in backscatter extrema. We get




σ0
pq = (σu

pq + σd
pq + 2σc

pq)/4

σ1
pq = (σu

pq − σd
pq)/2

σ2
pq = (σu

pq + σd
pq − 2σc

pq)/4

(39a)
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(d) : u_10=15 m/s, f=14.0 GHz - Pol HH

Figure 14. Same variation as Figure 13 for HH polarization.

where {σu
pq, σ

c
pq, σ

d
pq} are the backscattering coefficients in upwind

(φ = 0◦), crosswind (φ = 90◦) and downwind directions (φ = 180◦),
respectively.

In paper [11, 14], the effect of the wind direction φ is studied
numerically from the previous model. The originality of this subsection
is to give an analytical representation of the {(σ0,1,2

pq } terms from the
SSA0 and SA approaches.

For a two-dimensional sea surface, the general behavior of the
sea surface height autocorrelation function R0(r,Φ) is expressed as
(24) R0(r,Φ) = R00(r) − cos(2Φ)R02(r), where the isotropic R00(r)
and anisotropic R02(r) parts are given by (25). Substituting these
equations into (35), the integration over ψ yields then for the SSA0
approach (|Ξ(ξ, ψ − φ)| = 2 which means ξ = 0)

σSSA0 =
(K cos θ)2 exp(−K2

ω)|BH,V |2
π

∫ ∞
0
rdr

∫ 2π

0
exp[jxr cos(Φ− φ)]

·(exp{K2
ω[f00(r)− cos(2Φ)f02(r)]} − 1)dΦ (40)
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Figure 15. Comparison of the SSA0 model with SSA1 one for VV
and HH polarizations. At the top f = 5.3 GHz, and at the bottom
f = 14 GHz.

where x is given by (31a), f00 = R00/ω
2 and f02 = R02/ω

2. The use
of (B4) leads to

σSSA0 = 2(K cos θ)2|BH,V |2
∫ ∞
0
rdr

{
exp{−K2

ω[1− f00(r)]}

·
[
J0(xr)I0(x1) + 2

∞∑
n=1

cos(2nφ)J2n(xr)In(x1)

]

−J0(xr) exp(−K2
ω)

}
(41)

with
x1(r) = K2

ωf02(r) = (2Kω cos θ)2f02(r) (41a)

with {Jn, In} the nth-order Bessel function of the first and second kinds,
respectively.

In Figure 16, the exp{−(2Kω)2[1 − f00(r)]} × In[(2Kω)2f02(r)]
(x1(r) = (2Kω)2f02(r) for θ = 0) function is plotted versus the radial
distance r for wind speeds u10 = 5 m/s (at the top) and u10 = 15 m/s
(at the bottom) with frequencies f = {5.3, 14}GHz. n = {0, 1, 2}. We
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Figure 16. Variation of exp{−(2Kω)2[1 − f00(r)]} × In[K2
ωf02(r)]

function versus the radial distance r for wind speeds u10 = 5 m/s
(at the top) and u10 = 15 m/s (at the bottom) with frequencies
{f = 5.3, 14}GHz, n = {0, 1, 2}.

observe that the term of order n = 2 can be neglected. Moreover, in
(41) around of zero, the J2n�=0(xr) functions with x = 2K sin θ is close
to zero which decreases the term in the symbol Σ. This involves that
the backscattering coefficient can be written as (39) (the subscript pq
is understood)

σSSA0 = σSSA0,0 + σSSA0,1 cosφ + σSSA0,2 cos(2φ) (42)

where

σSSA0,0 = 2(K cos θ)2|BH,V |2 exp(−K2
ω)

·
∫ ∞
0
rJ0(xr)[I0(x1) exp(K2

ωf00)− 1] (42a)

σSSA0,1 = 0 (42b)

σSSA0,2 = 4(K cos θ)2|BH,V |2 exp(−K2
ω)

∫ ∞
0
r exp(K2

ωf00)J2(xr)I1(x1)

(42c)
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If the surface is assumed to be isotropic,then x1 = 0, meaning
that {I0(x1), I1(x1)} = {1, 0}. σSSA0,2 is then equal to zero and
σSSA0,0 = σSSA0 (equation (36)). We can notice that σSSA0,1 = 0 since
the sea spectrum is assumed to be even in the upwind and crosswind
directions due to the behavior in cos(2Φ).

With the SSA model, Voronovich [11, Figures 2 and 4] showed
in Ku and C bands for wind speeds u10 = {5, 10, 15}m/s that the
backscattering coefficient in the upwind and downwind directions
coincide, involving from (39a) σSSA,1 = 0. Therefore, although
(11) modified autocorrelation function is not symmetrical, σSSA is
symmetrical.

As discussed by Fung [39], the asymmetry of the radar cross
section can be studied within the skewness effect. The sea spectrum is
then represented by its real part which is centro-symmetric whereas its
imaginary part is not equal to zero and it is an antisymmetric function.
The spectrum is then Hermitian.

Substituting (4d), (5), (5a), (5b) into (4b), we get

σXχ1 = −4K cos θ × {cos(φ− Φ)[R10 − cos(2Φ)R12]
+2 sin(φ− Φ)R02 sin(2Φ)/r} (43)

The use of (6) with (3) leads to

σSA =
(K cos θ)2 exp(−K2

ω)|RH,V |2
π

·
∫ ∞
0
rdr

∫ 2π

0
dΦ〈. . .〉SA exp[jxr cos(Φ− φ)] (44)

where

〈. . .〉SA = exp{K2
ω[f00(r)− cos(2Φ)f02(r)]}

·{1− 4j sin(θ)K
(RH,V RH1,V 1)/|RH,V |2
·{cos(φ− Φ)[R10 − cos(2Φ)R12]
+2 sin(φ− Φ)R02 sin(2Φ)/r}} − 1 (45)

where σSA is the incoherent backscattering coefficient under the scalar
approximation (SA).

Substituting (45) into (44) and making the integration over Φ we
show

σSA = 2(K cos θ)2 exp(−K2
ω)|RH,V |2

∫ ∞
0
{exp(K2

ωf00)

·[C0 − 4K sin θ
(RH,V RH1,V 1)

·(R10C1 −R12C2 + 2R02S2/r)/|RH,V |2]− J0(xr)}rdr (46)
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(d) : u_10=15 m/s, f=14.0 GHz - Pol VV

Figure 17. VV normal radar cross sections {σ ,0
V V , σ

,2
V V } of {SSA0,SA}

in C (f = 5.3 GHz, εr = 67 + j35, at the top) and Ku Bands
(f = 14 GHz, εr = 47 + j38, at the bottom) versus the scattering
angle for wind speeds u10 = {5, 15}m/s with a dielectric anisotropic
sea surface.

where Ci(a, b, φ) and S2(a, b, φ) with {a = xr, b = K2
ωf02(r)} are given

in appendix B. Expanding Ci, and S2, we can show that they expressed
with respect to even harmonics cos(2nφ). Consequently, as the SSA0
approach, the cosφ term in (39) is equal to zero.

The identification of (46) with (39) yields

σSA,0 = 2(K cos θ)2 exp(−K2
ω)|RH,V |2

∫ ∞
0
{exp(K2

ωf00)

·[J0I0 + 4 sin θK
(RH,V RH1,V 1)/|RH,V |2
·I1(R10J0 + R12J1)]− J0}rdr (46a)

σSA,1 = 0 (46b)

σSA,2 = 2(K cos θ)2 exp(−K2
ω)|RH,V |2

∫ ∞
0
{2J2I1 + 4 sin θK

·
(RH,V RH1,V 1)/|RH,V |2{[I0 + I2][R10J2 + R12(J3 − J1)/2]

+4R02J2I0/(xr2)}}r exp(K2
ωf00)dr (46c)
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(d) : u_10=15 m/s, f=14.0 GHz - Pol HH

Figure 18. Same variation as Figure 17 for HH polarization.

where {Ji(. . .), Ii(. . .)} depend on {xr, x1 = K2
ωf02(r)}, respectively.

Figures 17–18 shows the predictions of the VV and HH normal
radar cross sections {σ′0, σ′2} of {SSA0,SA} in C (f = 5.3 GHz, εr =
67+ j35, at the top) and Ku Bands (f = 14 GHz, εr = 47+ j38, at the
bottom) versus the scattering angle for wind speeds u10 = {5, 15}m/s
with a dielectric anisotropic sea surface. As for an isotropic surface,
for HH polarization the {σSSA0,2

HH , σSA,2
HH } models coincide, whereas for

the VV polarization the SA results are underestimated. When the
scattering angle is close to the zero, σSSA0,2 ≈ σSA,2 and σ′2 can be
neglected, meaning that the backscattering coefficient does not depend
on the wind direction.

In Figure 19, with the same parameters as Figures 17–18, for VV
and HH polarizations, the SSA0 model is plotted versus the scattering
angle with wind direction φ = {0, 90}◦.

In Figure 20, the VV normal radar cross sections {σSSA0,0
V V , σSSA0,2

V V }
in C band are compared versus the scattering angle with experimental
data. θ ∈ [18; 58]◦, the wind speeds u10 = {5, 10, 15, 20}m/s and a
dielectric anisotropic sea surface is considered. Experimental data are
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(a) : u_10= 5 m/s, f=5.3 GHz - Pol VV and HH

Figure 19. Comparison of the VV and HH normal radar cross section
of the SSA0 model for wind direction φ = {0, 90}◦. The parameters
are the same as Figures 17 and 18.

calculated according to the CMOD2-I3 model (there is no model for the
HH polarization for the C band). For small wind speeds, σSSA0,2

V V over-
predicts the measurements at low incidence angles and underpredicts it
at high angles of incidence. For the isotropic part, σ′V V

0 underestimates
the experimental data.

In Figure 21, the comparison of the experimental data for φ =
{0, 180}◦ shows that the upwind and downwind asymmetry described
by σ′pq

1 is slightly.
In Figure 22, the backscattering coefficients {σSSA0,0, σSSA0,2} for

VV (one the left) and HH (on the right) polarizations in Ku band
are compared with experimental data (SASS-II model [25]) versus
the scattering angle. The wind speeds u10 = {5, 10, 15}m/s. The
deviation between the results and the measurements is greater for the
HH polarization and decreases with the wind speed. As Figure 20,
σSSA0,2 overpredicts the measurments. In a brief report, Voronovich
et al [40] note comparable disparities between small-slope predictions
and measured directionality at low incidence angles.
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Figure 20. Comparison of the VV normal radar cross sections
{σSSA0,0

V V , σSSA0,2
V V } in C band with experimental data versus the

scattering angle. The wind speeds u10 = {5, 10, 15, 20}m/s and a
dielectric anisotropic sea surface is considered. Experimental data are
calculated according to the CMOD2-I3 model (there is no model for
the HH polarization for the C band).

5. CONCLUSION AND DISCUSSION

We have calculated the backscattering cross section as a function of
incidence angle in the upwind, downwind and cross-wind directions
for Ku and C bands for three wind speeds of 5, 10 and 15 m/s and
compared the results with averaged experimental data provided by
the empirical models SASS-II [25] and CMOD2-I3 [24]. Calculations
were performed with the help of the small-slope (SSA) [9–11] and
the Kirchhoff (KA) approximations. Sea roughness was assumed to
obey Gaussian statistics and the Elfouhaily et al [22] spectrum of
roughness was used in numerical calculations. It is shown with the
KA approach that the shadowing effect can be omitted for scattering
angles of interest of remote sensing.

For an isotropic sea surface assumed to be perfectly conducting,
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Figure 21. Comparison of the VV normal radar cross section
σSSA0
V V in C band with experimental data (CMOD2-I3 model) versus

the scattering angle for wind speeds u10 = {5, 10, 15, 20}m/s and
φ = {0, 90, 180}◦. A dielectric anisotropic sea surface is considered,
and σSSA0

V V with φ = 180◦ is not plotted since it is equal to the one
computed for φ = 0◦.

the Kirchhoff approximation (KA) can be performed rigorously [18]
without additional assumptions widely used in order to obtain the
stationary phase (SP) method [19]. The simulations show that the first-
order SSA approach denoted as SSA0 describes both the two regimes
come from the gravity and capillary waves. At nadir-scattering angles,
the SSA0 backscattering coefficient is close to the SP model which
gives the contribution of the gravity waves, whereas for intermediate
scattering angles, the Bragg regime is observed due to the capillary
waves. With the KA formulation, a transition is observed with an
underestimation of the radar cross section. Since the copolarization
terms of SSA0 are equal to the ones of the small perturbation
method, the backscattering coefficient for co-polarizations are not
equal, whereas with the KA model, they are equal.
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Figure 22. Comparison of the VV (on the left) and HH (on the
right) normal radar cross sections {σSSA0,0

V V , σSSA0,2
V V } in Ku band with

experimental data (SASS-II model) versus the scattering angle. The
wind speeds u10 = {5, 10, 15}m/s and a dielectric anisotropic sea
surface is considered.

For isotropic and anisotropic sea dielectric surfaces, the NRCS
computed from the SA (KA of first-order according to the surface
slopes) is similar to that SSA0 for HH polarization. The use of the polar
coordinates allows to have an analytical expression of the harmonic
magnitudes with respect to the wind direction. The backscattering
coefficient requires then a single integration over the radial distance
instead of four-fold integrations in cartesian coordinates with the SSA
formulation. Since the sea spectrum is assumed to be symmetrical and
real, with the SSA and SA approaches, the effect of the first azimuthal
harmonic is nil.

The mean deviation given in Table 1 between the SSA0 results
and measurements in C [24] and Ku [25] bands increases with the wind
speed. As shown [14, 40] better agreement with measurements could
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u10 in m/s 5 10 15 20

σSSA0,0
V V in dB 1.5 0.7 1.5 2.9

σSSA0,2
V V in dB 2.2 2.1 2.0 2.3

Table 1. Mean deviations σSSA0,0
V V , σSSA0,2

V V between the SSA0 model
and experimental data in C band for the VV polarization.

u10 in m/s 5 10 15

σSSA0,0
V V in dB 1.0 1.4 1.1

σSSA0,2
V V in dB 3.7 2.5 2.3

σSSA0,0
HH in dB 2.5 2.6 3.0

σSSA0,2
HH in dB 4.8 3.3 2.8

Table 2. Mean deviations σSSA0,0
V V,HH , σSSA0,2

V V,HH between the SSA0 model
and experimental data in Ku band for the VV and HH polarizations.

be obtained by modifying the sea spectrum. The modification means
a more directional spectrum for long waves (at near-nadir scattering
angles, the magnitude of the second azimuthal harmonic decreases),
and a less directional spectrum for shorter waves (in the Bragg regime,
the magnitude of the second azimuthal harmonic increases). This is
consistent with Figure 6, where the surface slope standard deviations
overestimate weakly the Cox and Munk models.

APPENDIX A. NORMAL RADAR CROSS SECTION OF
SSA BY APPROXIMATING {|ΞV,H |2} BY THE FIRST
TERM OF ITS TAYLOR SERIES

Approximating (34) {ΞV,H} by the first term of its Taylor series
expansion about the origin ξ = 0, we get

ΞV ≈ 2
[
1 +

k0ξ cos(ψ − φ)
2(k2

0 + K2)

]
ΞH ≈ 2

[
1 +

k0ξ cos(ψ − φ)
2(k2

0 −K2)

]
(A1)
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This involves that

|ΞV |2 ≈ 4
[
1 + ξ cos(ψ − φ)


(
k0

k2
0 + K2

)]

|ΞH |2 ≈ 4
[
1 + ξ cos(ψ − φ)


(
k0

k2
0 −K2

)]
(A2)

Using the following relationship
∫ 2π

0
[1 + ξ′ cos(ψ − φ)] exp[jξr cos(ψ − φ)]dψ =

2π[J0(ξr) + jξ′J1(ξr) cos(Φ− φ)], (A3)

Substituting (A2) into (35), and performing the integration over ψ, the
exponential term exp{. . .} of (35) is then expressed as

exp

{
K2

ω

ω2

∫ ∞
0

[
M(ξ)J0(ξr) +

j cos(Φ− φ)
KV,H

ξM(ξ)J1(ξr)

]
dξ

}
(A4)

where
KV = 
[(k2

0 + K2)/k0] KH = 
[(k2
0 −K2)/k0] (A5)

The integration over ξ is expressed from {R00(r), R10(r)} given by (25)
and (27). Substituting then (A4) into (35), we get

σSSA1 =
(K cos θ)2 exp(−K2

ω)|BH,V |2
π

·
∫ ∞
0
rdr

∫ 2π

0
exp[2jrK sin(θ) cos(Φ− φ)](exp{K2

ω

·[f00(r)− jσxf10(r) cos(Φ− φ)/(ωKV,H)]} − 1)dΦ (A6)

where
f00(r) = R00(r)/ω2 f10(r) = −R10(r)/(ωσx) (A7)

The integration over Φ leads then to

σSSA1 = 2(K cos θ)2 exp(−K2
ω)|BH,V |2

∫ ∞
0
{exp(K2

ωf00)

·J0(2rK sin θ −K2
ωf10σx/[ωKV,H ])

−J0(2rK sin θ)}rdr (A8)
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APPENDIX B. ANGULAR INTEGRATIONS FOR A
TWO-DIMENSIONAL SEA SURFACE

We need to solve the following integral over Φ

C0(a, b, φ) =
1
2π

∫ 2π

0
exp[ja cos(Φ− φ)− b cos(2Φ)]dΦ (B1)

The complex exponential can be expressed as [38]


exp[ja cos(Φ− φ)] =
∞∑

m=−∞
jmJm(a) exp[jm(Φ− φ)]

= J0(x) + 2
∑∞

m=1 j
mJm(a) cos[m(Φ− φ)]

exp[−b cos(2Φ)] =
∞∑

n=−∞
jnJn(jb) exp(2jnΦ)

= J0(jy) + 2
∑∞

n=1 j
nJn(jb) cos(2nΦ)

(B2)
where Jm is the Bessel function of the first kind and order m.
Substituting (B2) into (B1) and performing the integration over Φ
we show

C0 = J0(a)J0(by) + 2
∞∑

m=1

∞∑
n=1

δ(m− 2n) cos(2nφ)Jm(a)Jn(jb)jm+n

(B3)
where δ is the Dirac function. Using the relation Jn(jb) = jnIn(b)
where In denotes the Bessel function of the second kind and order n,
we obtain

C0(a, b, φ) = J0(a)I0(b) + 2
∞∑
n=1

cos(2nφ)J2n(a)In(b) (B4)

The computation of the normal cross section requires the know-
ledge of the following integrals

C1(a, b, φ) =
∫ 2π

0
j cos(Φ− φ) exp[ja cos(Φ− φ)− b cos(2Φ)]dΦ (B5)

C2(a, b, φ) =
∫ 2π

0
j cos(2Φ) cos(Φ− φ) exp[ja cos(Φ− φ)− b cos(2Φ)]dΦ

(B6)

S1(a, b, φ) =
∫ 2π

0
sin(2Φ) exp[ja cos(Φ− φ)− b cos(2Φ)]dΦ (B7)
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S2(a, b, φ) =
∫ 2π

0
j sin(Φ− φ) sin(2Φ) exp[ja cos(Φ− φ)− b cos(2Φ)]dΦ

(B8)

Noting from (B1) that C1 = ∂C0/∂a and C2 = −∂C1/∂b, we show
from (B4)

C1(a, b, φ) = −J1(a)I0(b) +
∞∑
n=1

cos(2nφ)

·[J2n−1(a)− J2n+1(a)]In(b) (B9)

C2(a, b, φ) = J1(a)I1(b)−
1
2

∞∑
n=1

cos(2nφ)

·[J2n−1(a)− J2n+1(a)][In−1(b) + In+1(b)] (B10)

Using (B2), and the same way as C0, we get

S1(a, b, φ) =
1
2j

∞∑
n=−∞

In(b) exp(2jnφ)[J2−2n(a) exp(−2jφ)

−J−2−2n(a) exp(2jφ)] (B11)

Noting from (B7)–(B8) that aS2 = ∂S1/∂φ, we show

S2(a, b, φ) =
1
a

∞∑
n=−∞

In(b) exp(2jnφ)[J2−2n(a)(n− 1) exp(−2jφ)

−J−2−2n(a)(n + 1) exp(2jφ)] (B12)
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