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Abstract
In this paper, the backscattering coefficient of a two-dimensional randomly
rough perfectly-conducting surface is investigated using the Kirchhoff approach
with a shadowing function. The rough surface height/slope correlations
assumed to be Gaussian are accounted for in this analysis. The scattering
coefficient is then formulated in terms of a characteristic function for the
integrations over the surface heights, in terms of expected values for the
integrations over the surface slopes. Numerical comparisons of Kirchhoff’s
approach (KA) with the stationary-phase (SP) approximation are made with
respect to the choice of the one-dimensional surface height autocorrelation
function and the shadowing effect. For an isotropic surface the results show
that SP underestimated the incoherent backscattering coefficient compared with
KA. Moreover, when the correlation between the slopes and the heights is
neglected, the shadowing effect may be ignored.

1. Introduction

The problem of electromagnetic scattering from natural surfaces is a matter of great relevance
from both a theoretical and an application point of view. This problem is of interest in many
research areas, including remote sensing of the environment, medical imaging, sonar, optics
and astronomy [1]. The scattering of electromagnetic waves by rough surfaces has been studied
for many years, but no exact closed-form solution has been obtained. Numerical techniques
such as the method of moments can be used to compute the exact solution, but, in general, these
techniques are computationally prohibitive. We can also quote the integral equation based on a
Monte Carlo technique (Thorsos et al [2,3]). Usually, when dealing with practical applications,
approximate models are examined. Among the many surface-scattering theories, the small-
slope approximation (SSA) developed by Voronovich [4] and the perturbation approximation
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can be used (Thorsos and Broschat [5–7] and Berginc and Chevalier [8]). The Kirchhoff
approximation or physical optics, which is the most widely used (Olgivy [1], Ulaby and
co-workers [9, 10] and Beckmann and Spizzichino [11]) is investigated in this paper. This
approach is valid if the radius of curvature at every point on the surface is large relative to the
electromagnetic wavelength λ, and if the correlation length Lc is larger than λ. The Kirchhoff
approximation is used as a starting point for high-frequency analysis when the geometric optics
approximation is obtained by applying the stationary phase method. We can notice that [1]
gives a computable expression for the Kirchhoff integral limited to the class of known surfaces.
To evaluate the Kirchhoff integral involving a nonlinear function of the correlation function is
a difficult exercise.

With Kirchhoff’s approximation, the scattered field from a rough surface is expressed
as an integral over the surface [9] with the integrand depending on five variables: the
surface (two variables), the slopes (two variables) and the height surface. This means that
the determination of the scattering coefficient obtained from averaging the scattered field
multiplied by its conjugate requires ten integrations. Assuming a stationary process of the
surface slope and height joint probability density (the surface height autocorrelation function
depends only on the distance between two points on the surface), the ten integrations are
reduced to eight integrations. However, as it stands, the scattering coefficient integrand remains
a complicated function of the slopes, whereas the heights appear in the exponential phase. For
a monostatic configuration (transmitter and receiver located at the same place corresponding
to the backscattering), the dependence of the scattered field with respect to the surface slopes
can be expressed analytically as functions of the Fresnel coefficients, which also depend on the
slopes. For a perfectly-conducting surface the Fresnel coefficients in vertical and horizontal
polarizations are equal to 1 and −1, respectively. Therefore, the integration over the surface
slopes of the backscattering coefficient can be performed analytically with a surface Gaussian
joint height and slope probability density.

In this paper, by applying the Kirchhoff approximation, the backscattering coefficient by
a perfectly-conducting stationary surface with shadowing effect is computed and compared
with the stationary phase solution. The average of the backscattering coefficient uses a
Gaussian surface slope and height joint probability density function (PDF) defined by Bourlier
et al [12] where the multiple scattering is neglected. Moreover, in the average of the
scattering coefficient, the two-dimensional shadowing effect is introduced. This means that
the PDF with shadow has to be determined. Sancer [13] studied the shadowing effect on the
scattering coefficient obtained from the Kirchhoff theory. He showed that under the geometrical
optics approximation, the shadowing function is statistically independent of the unshadowed
scattering coefficient. Strictly speaking, it is exact only if the shadowing function is assumed
to be independent of height and slope surface. From Smith’s approach [14, 15], Bourlier
et al [12,16] studied the statistical monostatic one- and two-dimensional shadowing functions
with correlation and they showed that they depend on the height and slope surface. For
an uncorrelated process, Smith’s monostatic two-dimensional statistical shadowing function
depends only on the heights with a restriction over the slopes. Since the difference between
the correlated and uncorrelated Smith shadowing functions is very small, the uncorrelated
statistical shadowing function is used.

The plan of this work is as follows. The scattered field is determined from Kirchhoff
theory in section 2. The backscattering coefficient is calculated in section 3 for any surface
height autocorrelation function. In section 4, assuming a Gaussian PDF with correlation [12]
and including the shadowing effect, the previous results are applied to a perfectly-conducting
surface. In the final section, the incoherent backscattering coefficient is simulated for an
isotropic surface, and compared with the stationary phase method.
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Figure 1. Geometry of the problem.

2. Scattered field with Kirchhoff approach

With the Kirchhoff approach, the scattered field is written in terms of the tangential field on a
rough surface. The surface field is then approximated by the field that would be present if the
rough surface were replaced by a planar surface tangential to the point of interest. With this
assumption, the scattered field is expressed as [9]

�Es = K �ns ∧
∫ ∫

[�n ∧ �E − η�ns ∧ (�n ∧ �H)] exp[jk(�ns − �ni) · �r ′] dS ′ (1)

where K = −jk exp(−jkR0)/(4πR0), with k being the wavenumber in the medium where
the field is evaluated, R0 ranges from the centre of the illuminated area S ′ to the point of
observation (see figure 1), �ns, �ni are the unit vectors in the scattered and incident directions,
respectively, defined in spherical coordinates as

�ni = sin θ cosϕ�x + sin θ sin ϕ �y − cos θ�z
�ns = sin θs cosϕs �x + sin θs sin ϕs �y + cos θs�z

(2)

where �x, �y, �z are unit vectors in Cartesian coordinates. �r ′ = x ′ �x + y ′ �y + z′�z is the vector
indicating the location of the surface point according to the centre of the illuminated area. In
(1), the total �n ∧ �E electric and magnetic η�n ∧ (�n ∧ �H) tangential fields are given by [9]

�n ∧ �E = [(1 + RH)(�a · �t)(�n ∧ �t) − (1 − RV )(�n · �ni)(�a · �d)�t]E0

η(�n ∧ �H) = −[(1 + RV )(�a · �d)(�n ∧ �t) + (1 − RH)(�n · �ni)(�a · �t)�t]E0

(3)

where E0 is the magnitude of the incident field with a unit polarization vector �a. {RV ,RH }
denote the Fresnel coefficients in the vertical V and horizontal H polarizations determined with
an incidence angle θ1 = arccos[�n · �ni], where �n is the unit vector normal to the local surface

defined as �n = (−γx �x − γy �y + �z)/
√

1 + γ 2
x + γ 2

y , where the slopes {γx, γy} are expressed as

{γx = ∂z′/∂x ′, γy = ∂z′/∂y ′}. {�t, �d} are given by �t = �ni ∧ �n/‖�ni ∧ �n‖ and �d = �ni ∧ �t .
In the forward scattering alignment (FSA) convention [10] the incident and scattered unit

polarization vectors denote {�hi, �vi, �hs, �vs} defined as

�hi = − sin ϕ�x + cosϕ �y
�vi = �hi ∧ �ni = − cos θ cosϕ�x − cos θ sin ϕ �y − sin θ�z

(4)
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and

�hs = − sin ϕs �x + cosϕs �y
�vs = �hs ∧ �ns = cos θs cosϕs �x + cos θs sin ϕs �y − sin θs�z

(5)

The integrand of (1), which is a complicated function of the slopes {γx, γy}, then depends
on two deterministic variables {x ′, y ′} and three random variables {z′, γx, γy}. This expression
can be simplified if the backscattered field is studied, which involves that {�ni = −�ns, �vi =
�vs, �hi = −�hs} and (1) becomes, with dS ′ = dx ′ dy ′/(�n · �z)

�ES
pq = 2KE0

∫ ∫
Fpq exp{j[qxx ′ + qyy

′ + qzz
′′(x ′, y ′)]} dx ′ dy ′ (6)

with the polarization term Fpq equal to (p = {�hi, �vi}, q = {�hs, �vs})
Fhshi

= −Fhshs
= D0(�n′ · �ns)[RH(�n′ · �vs)2 − RV (�n′ · �hs)

2]

Fvsvi = Fvsvs = D0(�n′ · �ns)[RH(�n′ · �hs)
2 − RV (�n′ · �vs)2]

Fvshi
= Fhsvi = Fvshs

= D0(�n′ · �ns)(�n′ · �vs)(�n′ · �hs)(RH + RV )

(6a)

with �n′ = (−γx �x − γy �y + �z), D0 = 1/‖�ns ∧ �n′‖2, qx = 2k sin θs cosϕs , qy = 2k sin θs sin ϕs

and qz = 2k cos θs . Note that Fvshs
= Fhsvs , as is demanded by reciprocity for backscattering.

From (5), the scalar products of (6a) are expressed as

�n′ · �ns = sin θs(γx cosϕs + γy sin ϕs) − cos θs

�n′ · �vs = − cos θs(γx cosϕs + γy sin ϕs) − sin θs

�n′ · �hs = −γy cosϕs + γx sin ϕs

(6b)

and

D−1
0 = sin2 θs[1 + (γy cosϕs − γx sin ϕs)

2] + cos2 θs(γ
2
x + γ 2

y )

+ sin(2θs)(γx cosϕs + γy sin ϕs). (6c)

Thus, we can see for a monostatic configuration, that the polarization term Fpq remains a
complicated function of the surface slopes.

For a perfectly-conducting surface, we have {RV = 1, RH = −1}, and (6a) becomes

Fhshs
= Fvsvs = −�n′ · �ns Fvshs

= 0. (7)

Since the surface is assumed to be perfectly conducting, the cross-polarization is equal to zero,
whereas both polarizations are equal.

3. Backscattering coefficient

The scattering coefficient σpq for an extended target can be written as [9]

σpq = 4πR2
0〈ES

pqE
S′∗
pq 〉

A0|E2
0 |

(8)

where A0 is the illuminated area, and the symbol 〈· · ·〉 is the ensemble average. Substituting
(6) into (8), the scattering coefficient is given by

σpq = k2

πA0

∫ ∫ ∫ ∫
〈Fpq(γy, γy) F

′∗
pq(γ

′
x, γ

′
y) exp[jqz(z

′ − z′′)]〉

× exp{j[qx(x ′ − x ′′) + qy(y
′ − y ′′)]} dx ′ dy ′ dx ′′ dy ′′ (9)
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where the symbol ∗ denotes a complex conjugate. Since the surface is assumed to be
stationary, the surface spatial autocorrelation function depends only on the spatial differences
of variables {u = x ′ − x ′′, v = y ′ − y ′′}. Moreover, assuming either that the illuminated
surface size is infinite or much larger than the correlation length, the variables transformation
{u = r cos), v = r sin)} in (9) leads to the following equation from [9, pp 934–5]:

σpq = k2

π

∫ ∞

0
r dr

∫ 2π

0
d) 〈· · ·〉 exp[jr(q2

x + q2
y )

1/2 cos() − ϕs)] (10)

with

〈· · ·〉 =
∫ ∫ ∫ ∫ ∫ ∫

Fpq(γx, γy) F
′∗
pq(γ

′
x, γ

′
y) exp[jqz(z

′ − z′′)]p( �Vxy) d �Vxy. (10a)

Since FpqF
′∗
pq exp[jqz(z′ − z′′)] depends on the vector �V T

xy = [z′z′′γxγ ′
xγyγ

′
y] the average

requires six integrations. p( �Vxy) denotes the surface height and slope joint probability density
assumed to be Gaussian and expressed in Cartesian coordinates.

In polar coordinates, p( �Vxy) becomes p( �VXY ) [12, p 272]

p( �VXY ) = 1

(2π)3|[CXY ]|1/2
exp
(− 1

2
�V T
XY [CXY ]−1 �VXY

)
(11)

where |[CXY ]| is the determinant of the covariance matrix [CXY ] expressed in the
{(0X), (0Y ), (0z)} base in polar coordinates {r,)} (see figure 1) as

[CXY ] =




ω2 R0 0 R1 0 C16

R0 ω2 −R1 0 −C16 0

0 −R1 σ 2
X −R2 σ 2

XY −C36

R1 0 −R2 σ 2
X −C36 σ 2

XY

0 −C16 σ 2
XY −C36 σ 2

Y −C56

C16 0 −C36 σ 2
XY −C56 σ 2

Y




(12)

with

R0 = R00 − cos(2))R02

R1 = R10 − cos(2))R12

R2 = R20 − cos(2))R22

Rij = diR0j

dri
(12a)

σ 2
X = α + β cos(2))

σ 2
Y = α − β cos(2))

σ 2
XY = −β sin 2)

α = σ 2
x + σ 2

y

2
β = σ 2

x − σ 2
y

2
(12b)

C16 = 2R02 sin(2))

r

C36 = 2 sin(2))

r2
(rR12 − R02)

C56 = R10

r
+

cos(2))

r2
(4R02 − rR12).

(12c)

R0(r,)) is the surface height two-dimensional autocorrelation function in polar coordinates,
whereas −R2 is the surface slope two-dimensional autocorrelation function. {R00(r), R02(r)}
represent the isotropic and anisotropic parts of R0 and ) the azimuthal direction according
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to the (0x)-direction, which characterizes the anisotropic effect. For example, when a sea
surface is considered, this term corresponds to the wind direction according to the (0x)-
axis. {σ 2

X = −R2(0,)), σ 2
Y = −C56(0,))} denotes the surface slope variances in the

{(0X), (0Y )} directions, respectively, and σ 2
XY = −C36(0,)) the surface slope cross-variance.

ω2 = R0(0,)) = I0(0) is the surface height variance with R02(0) = 0.
From (6a) and (10), we can see that the computation of the backscattering coefficient

requires height numerical integrations over {r,), z′, z′′, γx, γ ′
x, γy, γ

′
y}, since the analytical

integrations are impossible. Moreover, the determination of the probability density requires
the inversion of the covariance matrix [CXY ].

The introduction of the shadowing function modifies the surface height {z′, z′′} probability
density and carries a restriction over the slope integrations {γX, γ ′

X}. Assuming that the surface
is perfectly conducting, the scattering problem is easier to solve because in (7) the polarization
term Fpq is simpler. The following section explores this aspect.

4. Backscattering coefficient for a perfectly-conducting surface

For a perfectly-conducting surface, the polarization term Fpq is expressed from (7) and the
backscattering coefficient given by (10) becomes ({σvsvs = σhshs

, σvshs
= 0})

σvsvs = k2

π

∫ ∞

0
r dr

∫ 2π

0
〈· · ·〉 exp[jr(q2

x + q2
y )

1/2 cos() − ϕs)] d) (13)

with

〈· · ·〉 =
∫ ∫ ∫ ∫ ∫ ∫

[sin θs(γx cosϕs + γy sin ϕs) − cos θs]

×[sin θs(γ
′
x cosϕs + γ ′

y sin ϕs) − cos θs] exp[jqz(z
′ − z′′)]p( �Vxy) d �Vxy (13a)

where the probability density p( �Vxy) of vector �V T
xy = [z′z′′γxγ ′

xγyγ
′
y] is the surface height and

slope joint probability density defined in Cartesian coordinates. Since the PDF is known in
polar coordinates, the integral has to be determined in polar coordinates. Thus, rotating by ),
we obtain

γx = γX cos) − γY sin) γ ′
x = γ ′

X cos) − γ ′
Y sin)

γy = γX sin) + γY cos) γ ′
y = γ ′

X sin) + γ ′
Y cos)

(14)

and the integral (13a) becomes, with the Jacobian equal to one,

〈· · ·〉 =
∫ ∫ ∫ ∫ ∫ ∫

[sin θs(γXc + γY s) − cos θs][sin θs(γ
′
Xc + γ ′

Y s) − cos θs]

× exp[jqz(z
′ − z′′)]p( �VXY ) d �VXY (15)

with

c = cos(ϕs − )) s = sin(ϕs − )). (15a)

Note that the slope integration boundaries of (15) are infinite because the statistical
shadowing function is ignored.

Assuming an uncorrelated Gaussian process with surface height z′ of variance ω2, surface
slope γ of variance σ 2, and from Smith’s [14, 15] monostatic one-dimensional statistical
shadowing function given by

S(z′, γ, v) = ϒ(µ − γ )

[
1 − 1

2 erfc

(
z′

ω
√

2

)]5(v)

(16)
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with

5(v) = e−v2 − v
√
π erfc(v)

2v
√
π

v = µ√
2σ

= cot θ√
2σ

(16a)

and

ϒ(µ − γ ) =
{

0 if γ � µ = cot θ

1 if γ < µ.
(16b)

Bourlier et al [12] showed that Smith’s monostatic two-dimensional statistical shadowing
function is expressed from (16) by replacing γ in γX and σ in σX given by (12b). In [12], the
correlation between the slopes and the heights have been investigated on the average shadowing
function. Since the difference between the correlated and uncorrelated results is small, the
uncorrelated statistical shadowing function is used. This allows for a simpler shadowing
function.

4.1. Ensemble average without shadowing effect

When the shadowing function is not included, the probability density is not modified, and the
integration boundaries over the slopes {γX, γ ′

X} are infinite. The ensemble average (15) is then
equal to

〈· · ·〉 = cos2 θs

∫ ∞

−∞

∫ ∞

−∞

(
tan2 θs

{
c2E4(γXγ

′
X) + s2E4(γY γ

′
Y ) + cs[E4(γXγ

′
Y ) + E4(γY γ

′
X)]
}

− tan θs
{
c[E4(γX) + E4(γ

′
X)] + s[E4(γY ) + E4(γ

′
Y )]
}

+ 1
)

× exp[jqz(z
′ − z′′)] dz′ dz′′ (17)

where E4(· · ·) denotes the expected value given by

E4(· · ·) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(· · ·)p( �VXY ) dγX dγ ′

X dγY dγ ′
Y . (17a)

From (A12) and (A13) we show that

c[E4(γX) + E4(γ
′
X)] + s[E4(γY ) + E4(γ

′
Y )] = (z′′ − z′)(cσXf1 + sσY f16)

ω(1 − f0)
p(z′, z′′) (18)

where p(z′, z′′) is the surface height joint probability density given by (A9). From (B13),
(B15), (B17) and (B19), we show that

c2E4(γXγ
′
X) + s2E4(γY γ

′
Y ) + cs[E4(γXγ

′
Y ) + E4(γY γ

′
X)]

= p(z′, z′′)
{
(cσXf1 + sσY f16)

2

1 − f 2
0

[
(z′f0 − z′′)(z′ − z′′f0)

ω2(1 − f 2
0 )

− f0

]

+(c2σ 2
Xf2 + s2σ 2

Y f56 + 2scσXσYf36)

}
(19)

with

f0 = R0/ω
2 f1 = −R1/(ωσX)

f2 = −R2/σ
2
X f16 = −C16/(ωσY )

f56 = −C56/σ
2
Y f36 = −C36/(σY σX).

(19a)
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Now, the ensemble average (17) requires two integrations over the heights {z′, z′′} based
on the calculation of the surface height joint characteristic function χ1 equal to the Fourier
transform of the surface height joint probability density p(z′, z′′) expressed as

χ1 = χ(1) (20)

with

χ(· · ·) = 1

2πω2(1 − f 2
0 )

1/2

∫ ∞

−∞

∫ ∞

−∞
(· · ·) exp

[
− 1

2ω2(1 − f 2
0 )

(z′ 2 + z′′ 2 − 2f0z
′z′′)
]

× exp[jqz(z
′ − z′′) dz′ dz′′. (21)

Using the following variable transformations:

z′ = ω[Z′(1 + f0)
1/2 − Z′′(1 − f0)

1/2]

z′′ = ω[Z′(1 + f0)
1/2 + Z′′(1 − f0)

1/2]
(22)

χ1 becomes

χ1 = 1√
π

∫ ∞

−∞
exp(−Z′′ 2) exp[−2jqzωZ

′′(1 − f0)
1/2] dZ′′ = exp[−q2

z ω
2(1 − f0)]. (23)

Consequently, from (21) and (23), respectively, we can write

χ(z′′ − z′) = j
∂χ1

∂qz
= −2jqzω

2(1 − f0)χ1 (23a)

and

χ

(
[z′f0 − z′′][z′ − z′′f0]

ω2[1 − f 2
0 ]2

− f0

1 − f 2
0

)
= −q2

z ω
2χ1 = −∂χ1

∂f0
. (23b)

Therefore, the use of (18), (19), (23a) and (23b) leads to the following ensemble average:

〈· · ·〉 = cos2 θs[χ1 + jχPO1(σX tan θs) + χPO2(σX tan θs)
2] (24)

with

χPO1 = ∂χ1

∂qz

cσXf1 + sσY f16

ω(1 − f0)
= 2qzωχ1

(
cf1 +

sσY f16

σX

)

χPO2 = χ1

(
c2f2 +

s2σ 2
Y f56

σ 2
X

+
2scσY f36

σX

)
− ∂χ1

∂f0

(
cf1 +

sσY f16

σX

)2

= χ1

[
c2f2 +

s2σ 2
Y f56

σ 2
X

+
2scσY f36

σX
− qzω

2

(
cf1 +

sσY f16

σX

)2]
(24a)

where χ1 corresponds to the obtained term when the stationary phase method is used, and
{χPO1, χPO2} characterize the functions introduced by the physical optics approach.

For an isotropic surface, R02 = 0, which means from (12b) and (12c) that {C16 = 0, C36 =
0, σx = σy}, i.e. {f16 = 0, f36 = 0, σX = σY }, and (24a) becomes

χPO1 = 2cχ1qzωf1

χPO2 = χ1[(c2f2 + s2f56) − c2(qzωf1)
2].

(25)

For the Gaussian and power height autocorrelation functions R0 expressed in table 1, with
height variance ω2, with a length correlation Lc, the {f0, f1, f56, f2} functions are given in
table 1 with respect to u = r/Lc. Substituting these equations into (25), the {χ1, χPO1, χPO2}
functions are obtained with respect to {δ = qzω, u}. It can be noted that the contribution of
{χPO1, χPO2} terms is negligible, if σX tan θs � 1, i.e. when the surface RMS slope σX is
much smaller than the slope incident beam µ = cot θs .
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Table 1. Derivations of the functions {f0, f1, f56, f2, |f ′′
0 (0)|} for Gaussian and power one-

dimensional surface height autocorrelation functions R0(r).

Definitions Gaussian function Power function

R0(r) ω2 exp

(
−pr2

L2
c

)
ω2/

(
1 +

r2

L2
c

)p

f0(u) = R0(r)

ω2
with u = r

Lc

exp(−pu2)
1

(1 + u2)p

f1(u) = −1

ωσX

dR0

dr

∣∣∣∣∣
r=uLc

= −1

|f ′′
0 (0)|1/2

df0

du
u
√

2p exp(−pu2)
u
√

2p

(1 + u2)p+1

f56(u) = −1

rωσX

dR0

dr

∣∣∣∣∣
r=uLc

= −1

u|f ′′
0 (0)|1/2

df0

du

√
2p exp(−pu2)

√
2p

(1 + u2)p+1

f2(u) = −1

σ 2
X

d2R0

dr2

∣∣∣∣∣
r=uLc

= −1

|f ′′
0 (0)|

d2f0

du2
exp(−pu2)(1 − 2pu2)

1 − u2(1 + 2p)

(1 + u2)p+2

|f ′′
0 (0)| = σ 2

XL
2
c

ω2
2p 2p

4.2. Ensemble average with shadowing effect

The shadowing effect introduced a restriction on the integrations over the slopes {γX, γ ′
X},

whereas the range integrations over the slopes {γY , γ ′
Y } remain {]−∞; ∞[, ]−∞; ∞[}. From

(16b) and according to Bourlier et al’s work [12] (extension of the one-dimensional shadowing
function to the two-dimensional shadowing function), the range of integrations over {γX, γ ′

X}
becomes {]−∞;µ], ]−∞;µ]}, with µ = cot θs the incident beam slope. Moreover, the
surface height probability density is modified by the second term of (16) in square brackets.

When the shadowing function is ignored, the ensemble average is given by (24) and (24a).
It depends on the χ1 surface height characteristic function expressed from (23), its derivatives
according to {qz, f0}, and expected values {f1, f16, f2, f36, f56} of the [CXY ] (12) covariance
matrix. Since the shadowing function modified the surface height probability (11), surface
height and slope joint probability density pS( �VXY ) with the shadowing effect of the vector
�V T
XY = [z′z′′γXγ ′

XγY γ
′
Y ] has to be determined.

For an uncorrelated Gaussian process with {ω = 1, σX = 1, σY = 1}, we have
{R0, R1, R2, C16, C36, C56, σXY } = 0 in (12) covariance matrix [CXY ], which involves, from
(11) and (16), that the surface height {ξ ′, ξ ′′} and slope {ζX, ζ ′

X, ζY , ζ
′
Y } uncorrelated probability

density with shadowing effect is written as

pS( �VDXY ) = 1

(2π)3
exp

(
−ξ ′ 2

2
− ξ ′′ 2

2
− ζ 2

X

2
− ζ ′ 2

X

2
− ζ 2

Y

2
− ζ ′ 2

Y

2

)

×
[

1 − 1

2
erfc

(
ξ ′
√

2

)]5[
1 − 1

2
erfc

(
ξ ′′
√

2

)]5
(26)

where �V T
DXY [ξ ′ξ ′′ζXζ ′

XζY ζ
′
Y ] denotes the transpose uncorrelated vector of �V T

XY .
The correlation is introduced by writing

�VXY = [CXY ]1/2 �VDXY (27)

due to the fact that

E[ �VXY
�V T
XY ] = E([CXY ]1/2 �VDXY

�V T
DXY [CXY ]H/2) = [CXY ] (27a)
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whereH is the conjugate transpose. Since the samples {ξ ′, ξ ′′, ζX, ζ ′
X, ζY , ζ

′
Y } are independent,

the expected value E( �VDXY
�V T
DXY ) is equal to the identity matrix. For computing the matrix

[CXY ]1/2, we can write

[CXY ] = [V ][?][V ]T (28)

where [V ] is the unitary eigenvectors matrix of [CXY ], [?] is the eigenvalues matrix of [CXY ].
[?] being diagonal implies that

[CXY ]n = [V ][?n][V ]T . (29)

If we can calculate the eigenvalues and the eigenvectors of the matrix [CXY ], by inverting
(27), this leads to �VDXY = [CXY ]−1/2 �VXY . The components {ξ ′, ξ ′′, ζX, ζ ′

X, ζY , ζ
′
Y } are then

expressed according to {z′, z′′, γX, γ ′
X, γY , γ

′
Y }. Substituting them into (26), the probability

density with shadowing effect pS( �VXY ) is determined by

pS( �VXY ) = pS( �VDXY )
d �VDXY

d �V T
XY

= pS( �VDXY )

|[CXY ]|1/2
. (30)

Unfortunately, the analytical determinations of the eigenvalues and eigenvectors
of the covariance matrix [CXY ] are very difficult for a six-dimensional matrix.
Moreover, the scattering coefficient with shadowing effect obtained from the ensemble
average (17), requires integrations over the slopes {γX, γ ′

X, γY , γ
′
Y } with range limits of

{]−∞;µ], ]−∞;µ], ]−∞; ∞[, ]−∞; ∞[} and the integration over the heights multiplied
by the exponential term exp[jqz(z′ − z′′)].

To solve the problem analytically, the cross-correlation between the heights and the slopes
quantified by {R1, C16} in (12) is assumed to be negligible, leading to the following covariance
matrix:

[CXY ] =
[

[H ] [0]

[0] [S]

]
with




[H ] =
[

ω2 R0

R0 ω2

]

[S] =




σ 2
X −R2 σ 2

XY −C36

−R2 σ 2
X −C36 σ 2

XY

σ 2
XY −C36 σ 2

Y −C56

−C36 σ 2
XY −C56 σ 2

Y




(31)

where {[H ], [S]} are the height and slope covariance matrices, respectively. From (24a), this
assumption is valid from small values of qzω with qz = 2k cos θs (ω is the surface RMS
elevation), i.e. for a rough surface with 4π cos θsω � λ.

Since {R1, C16} = 0 ⇒ {f1, f16} = 0, and from (24) and (24a), the ensemble average
with shadowing effect can be expressed as

〈· · ·〉S = cos2 θs[χS1ES4(1) + (σX tan θs)
2χSPO2] (32)

with

χSPO2 = −χS1

σ 2
X

[c2ES4(γXγ
′
X) + s2ES4(γY γ

′
Y ) + 2scES4(γXγ

′
Y )] (32a)

and from (C8)

χS1 = |F(qzω
√

2(1 − f0)
1/2)|2 (32b)



Kirchhoff integral from a two-dimensional randomly rough surface with shadowing effect 101

where the integral function F(· · ·) given by (C9) is the surface height characteristic function
equal to the Fourier transform of the surface height probability density modified by the shadow.
If the shadow is ignored then χS1 = χ1 (23). Noting that χSPO1 = 0, the expected value
ES4(· · ·) with shadowing effect is defined as

ES4(· · ·) =
∫ µ

−∞
dγX

∫ µ

−∞
dγ ′

X

∫ ∞

−∞
dγY

∫ ∞

−∞
(· · ·)p(γX, γ ′

X, γY , γ
′
Y ) dγ ′

Y (33)

where the slope surface joint probability density p(γX, γ
′
X, γY , γ

′
Y ) is characterized by the

covariance matrix [S] (31). When the shadow is not included, involving µ → ∞, we obtain
ES4(1) = 1, ES4(γXγ

′
X) = −R2 = σ 2

Xf2, ES4(γY γ
′
Y ) = −C56 = σ 2

Y f56, ES4(γXγ
′
Y ) =

−C36 = σXσYf56, and (32) 〈· · ·〉S is equal to (24) 〈· · ·〉 with {χS1 = χ1, f1 = 0, f16 = 0}.
From (D6), (D12) and (D18), we find

−[c2E4S(γXγ
′
X) + s2E4S(γY γ

′
Y ) + 2scE4S(γXγ

′
Y )]

= 1
2 [1 + erf(µ0)][c

2σ 2
Xf2 + s2σ 2

Y f56 + 2csσXσYf36]

−µ exp(−µ2
0)

2
√
π

[c2σ 2
X(1 + f2) + s(σ 2

XY + σXσYf36)]2

σ 3
X(1 + f2)3/2

. (33a)

Substituting (32a), (32b), (33a) and (D5) into (32), the ensemble average with shadowing
effect becomes

〈· · ·〉S = cos2 θs
∣∣F(qzω

√
2[1 − f0]1/2)

∣∣2
×
{
ε1

[
1 + (σX tan θs)

2

(
c2f2 + s2 σ

2
Y f56

σ 2
X

+ 2cs
σY f36

σX

)]

− ε2 tan θs

σX(1 + f2)3/2

[
cσX(1 + f2) + s

(
σ 2
XY

σX
+ σYf36

)]2}
(34)

with

ε1 = 1
2 [1 + erf(µ0)] ε2 = exp(−µ2

0)/(2
√
π) µ0 = µ

σX(1 + f2)1/2
. (34a)

If the shadowing function is ignored then {5 = 0, µ0 → ∞} involving that {ε1 =
1, ε2 = 0} and |F |2 = exp[−q2

z ω
2(1 − f0)]. The ensemble average becomes 〈· · ·〉S =

cos2 θsχ1[1+(σX tan θs)
2χPO2], then (24) is found with {f1 = 0, f16 = 0} since the correlation

between the slopes and heights is neglected.
For an isotropic surface, R02 = 0, which means from (12b) and (12c) that {C16 = 0, C36 =

0, σx = σy}, i.e. {f16 = 0, f36 = 0, σX = σY }, and (34) becomes

〈· · ·〉S = cos2 θs
∣∣F(qzω

√
2(1 − f0)

1/2)
∣∣2{ε1[1 + (σX tan θs)

2(c2f2 + s2f56)]

−ε2 tan θsc
2σX(1 + f2)

1/2
}
. (35)

5. Simulations of the backscattering coefficient with and without shadow

This section presents the backscattering coefficients given by (13) with and without shadow
obtained from the ensemble average calculated in the previous section, for an isotropic
perfectly-conducting surface. The results are compared with the stationary phase and
geometrical optics approximations which can be defined as particular cases of Kirchhoff’s
solution. The model is also compared with respect to the choice of the surface height
autocorrelation function.
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5.1. Development

Substituting (24) into (13) with (15a) and (25), for an isotropic surface, the backscattering
coefficient without shadowing effect (exponent US) with u = r/Lc (Lc denotes the surface
correlation length) is

σUS = L2
ck

2 cos2 θs

π

∫ ∞

−∞
u du

∫ 2π

0
exp[−q2

z ω
2(1 − f0)] exp[jr(q2

x + q2
y )

1/2 cos() − ϕs)]

×
{

1 +
(σX tan θs)

2[f2 + f56 − (qzωf1)
2]

2
+ 2j(σX tan θs)(qzωf1) cos() − ϕs)

+
cos[2() − ϕs)](σX tan θs)

2[f2 − (qzωf1)
2 − f56]

2

}
d). (36)

Knowing that

B0 =
∫ 2π

0
exp[jx cos() − ϕs)] d) = 2πJ0(x) (36a)

we have

B1 =
∫ 2π

0
cos() − ϕs) exp[jx cos() − ϕs)] d) = −j

∂B0

∂x
= 2π jJ1(x)

B2 =
∫ 2π

0
[cos() − ϕs)]

2 exp[jx cos() − ϕs)] d) = −j
∂B1

∂x
= π [J0(x) − J2(x)]

B3 =
∫ 2π

0
cos[2() − ϕs)] exp[jx cos() − ϕs)] d) = 2B2 − B0 = −2πJ2(x)

(36b)

where Ji is the ith-order Bessel function. Since the autocorrelation function is independent of
the direction ), and substituting (36a) and (36b) into (36), the integration over ) leads to

σUS = (kc cos θs)
2
∫ ∞

0
u exp[−q2

z ω
2(1 − f0)]

{[
1 +

(σX tan θs)
2[f2 + f56 − (qzωf1)]

2

]

×J0(
√

2ukc sin θs) − 2(σX tan θs)(qzωf1)J1(
√

2ukc sin θs)

− (σX tan θs)
2[f2 − (qzωf1)

2 − f56]

2
J2(

√
2ukc sin θs)

}
du (37)

with kc = √
2kLc. For any surface height autocorrelation function R0(r) we can write

σ 2
X = −∂2R0

∂r2

∣∣∣∣
r=0

= −ω2

L2
c

∂2f0

∂u2

∣∣∣∣
u=0

⇒ ω = σXLc

|f ′′
0 (0)|1/2

. (38)

Equation (38) involves qzω = (2/|f ′′
0 (0)|)1/2kc cos θs σX.

The functions {f0, f1, f2, f56, |f ′′
0 (0)|} for Gaussian and power surface height

autocorrelation functions of parameter p are expressed in table 1 with respect to u, and plotted
in figure 2. It is interesting to study these autocorrelation functions because they have the same
slope variance and are used in the literature [10].
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Figure 2. Functions {f0, f1, f2, f56} versus u = r/Lc for Gaussian and power surface height
autocorrelation functions with p = 1 and 1.5.

From (35), and using the same method, the scattering coefficient with shadow (exponent
S) is expressed as

σS = (kc cos θs)
2
∫ ∞

0
u|F(qzω

√
2(1 − f0)

1/2)|2

×
{
ε1[2 + (σX tan θs)

2(f2 + f56)] − ε2 tan θsσX(1 + f2)
1/2

2
J0(

√
2ukc sin θs)

−ε1(σX tan θs)
2(f2 − f56) − ε2 tan θsσX(1 + f2)

1/2

2
J2(

√
2ukc sin θs)

}
du (39)

with qzω
√

2(1−f0)
1/2 = 2kc cos θs σX(1−f0)

1/2/|f ′′
0 (0)|1/2. As {f0, f1, f2, f56}, {F, ε1, ε2}

also depends on u.
The stationary phase approximation (index SP) assumes that the electromagnetic

field is scattered around the specular direction, which means in (15) that {γXc, γ ′
Xc} =

− tan θs corresponding to the orthogonal direction of incident beam µ = cot θs , and
{γY s, γ ′

Y s} = 0. Therefore, the ensemble average does not depend on the slopes and
becomes

〈· · ·〉 = 1

cos2 θs

∫ ∞

−∞

∫ ∞

−∞
exp[jqz(z

′ − z′′)]p(z′, z′′) dz′ dz′′ = exp[−q2
z ω

2(1 − f0)]

cos2 θs
. (40)
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Figure 3. Normalized incoherent backscattering coefficients {σUS
I , σUS

IUN , σUS
ISP , σ

US
GO } in dB

without shadowing effect versus the scattering angle θs for σX = 0.3 and k = {30, 40, 50, 60}
with a Gaussian surface height autocorrelation function (p = 1). σUS , the circle curve; σUS

UN , full
curve; σUS

SP , broken curve and σUS
GO , cross curve.

Substituting (40) into (13) and performing the integration over ), we obtain

σUS
SP = k2

c

cos2 θs

∫ ∞

0
uJ0(

√
2ukc sin θs) exp[−q2

z ω
2(1 − f0)] du. (41)

The geometrical optics approximation (index GO) or high-frequency limit is obtained by
approximating f0 by the first two terms of its Taylor series expansion about the origin. 1 − f0

then becomes 1 − |f ′′
0 (0)|u2/2 + O(u4) in the integral (41) and the integration over u leads to

σUS
GO = 1

2σ 2
X cos4 θs

exp

(
− tan2 θs

2σ 2
X

)
. (42)

Consequently, σUS
GO depends only on the surface slope variance σX and on the scattering angle

θs .

5.2. Simulations of the incoherent backscattering coefficient

The Kirchhoff approximation is valid if {kLc > 2π, kRc > 2π}, where k is the wavenumber
and Rc is the surface mean curvature radius which is equal for Gaussian and power surface
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Figure 4. Same simulations as in figure 3 but with σX = 0.1.

height autocorrelation functions with p = 1 and small slope σX = √
2ω/Lc [17]

kRcG = kLc

1.95σX(1 + 3σ 2
X/4)

kRcL = kLc

2.76σX(1 + 3σ 2
X/4)

. (43)

In the literature [1] the condition kRc = 2π is replaced either by kRc cos θs > 2π or
kRc(cos θs)3 > 2π , which is the most often quoted restriction on the applicability of the
Kirchhoff theory.

The scattered intensities from a random surface can, in general, be decomposed into
coherent and incoherent components. The coherent component σpqC mostly contributes in the
specular direction, whereas the incoherent component σpqI contributes in all directions, and
we can write [18]

σpqI = σpq − σpqC (44)

where the coherent component σpqC is calculated from averaging |〈· · ·〉C |2 defined as

|〈· · ·〉C |2 =
∣∣∣∣
∫ ∫ ∫

[sin θs(γXc + γY s) − cos θs] exp(jqzz
′)p(z′, γX, γY ) dz′ dγX dγY

∣∣∣∣
2

(45)

with

σpqC = 4πR2
0 |〈ES

pq〉|2
A0|E0|2 . (45a)
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Figure 5. Normalized incoherent backscattering coefficient σUS
I in dB versus the scattering angle

θs with Gaussian (full curve with p = 1, broken curve with p = 1.5) and power (circle curve with
p = 1, cross curve with p = 1.5) surface height autocorrelation functions. The parameters are the
same as in figure 3.

From (15), we can show that

|〈· · ·〉C |2 = 〈· · ·〉 if {f0, f1, f2, f16, f36, f56} = 0 (46)

which is similar to neglecting the correlation. Consequently, from (37), (39), (41), the
coherent components without shadow σUS

C , with shadow σS
C , and under the stationary phase

approximation σUS
CSP are expressed as

σUS
C = (kc cos θs)

2 exp(−q2
z ω

2)

∫ ∞

0
uJ0(

√
2ukc sin θs) du (46a)

σS
C = (kc cos θs)

2 |F(qzω
√

2)|2
2

∫ ∞

0
u du

{
J0(

√
2ukc sin θs)(2ε1 − ε2 tan θsσX)

+J2(
√

2ukc sin θs)ε2 tan θsσX
}

with µ0 = µ/σX in {ε1, ε2} (46b)

σUS
CSP = σUS

C . (46c)

For the simulations, kc = √
2kLc is chosen such that the criteria {kLc > 2π, kRc > 2π}

are valid.
In figures 3 and 4, equation (44), the normalized incoherent backscattering coefficients

{σUS
I , σUS

ISP , σ
US
GO} ((37) minus (46a), circle curve; (41) minus (46c), broken curve; (42), cross
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Figure 6. Normalized incoherent scattering coefficients σUS
I (full curve), σUS

IUN (broken curve)
and σS

I (circle curve) in dB versus the scattering angle θs for σX = 0.4 and kc = {30, 40, 50, 60}
with a Gaussian surface height autocorrelation function.

curve, respectively) and σUS
IUN = σUS

I with f1 = 0 are plotted versus the scattering angle
θs . kc = {30, 40, 50, 60}, σX = {0.3, 0.1}, with a Gaussian surface height autocorrelation
function (p = 1). The incoherent scattering coefficients are normalized by the maximum of
σUS
I . As expected, the backscattering curve drops off more slowly with increasing angle as the

surface RMS slope increases. If the surface RMS slope σX decreases, σUS
IUN is similar to σUS

ISP ,
and σUS

ISP tends to σUS
GO . The deviation between σUS

I and σUS
IUN increases with the scattering

angle, and σUS
I is larger than σUS

IUN . Consequently, when the correlation between the slopes
and the heights is ignored, the incoherent component is smaller. This underestimation, which
is not noticeable in relation to kc, decreases when the surface slope decreases, because the
σX tan θs term in equation (37) becomes smaller.

In figure 5, the normalized incoherent backscattering coefficient σUS
I in dB is represented

versus the scattering angle θs for σX = 0.3 and kc = {30, 40, 50, 60} with Gaussian (full curve
with p = 1, broken curve with p = 1.5) and power (circle curve with p = 1, cross curve with
p = 1.5) surface height autocorrelation functions. Although the functions {f0, f1, f2, f56} are
different according to the autocorrelation function (see figure 2), the incoherent backscattering
coefficient does not vary with the autocorrelation function. This behaviour may be explained
by the fact that the parameter kc is sufficiently large that the functions {f0, f1, f2, f56} can
be approximated by the first two terms of its Taylor series expansion about the origin. This
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Figure 7. Same variation as in figure 6 with σX = 0.1.

involves the functions becoming the same, because they have the same series development. It
is interesting to note that we have a generalization of the geometrical optics. Simulations with
σX = 0.1 give the same behaviour.

In figures 6 and 7, the normalized incoherent scattering coefficients σUS
I (full curve), σUS

IUN

(broken curve), σS
I (circle curve (39) minus (46b)) in dB are plotted versus the scattering angle

θs for σX = {0.4, 0.1} and kc = {30, 40, 50, 60} with a Gaussian surface height autocorrelation
function. As depicted in figures 6 and 7, σUS

IUN is in agreement with σS
I . This means that the

shadowing effect may be ignored due to the fact that the backscattering coefficient is very
small when the shadowing function becomes important. Indeed, the parameter (16a) 5 which
characterizes the shadowing effect according to the heights, varies between [0; 0.0533] for
{σX = 0.4, θs ∈ [0; 60]◦}, which implies with (C9) that [1 − erfc(X/2)]5 remains equal to
one. Moreover, the parameter µ0 in (34a) with 1/σX tan θs ∈ [1.443; infinity] is so large that
the {ε1, ε2} functions corresponding to the shadowing effect on the slopes do not disturb the
unshadowed scattering coefficient.

We can note that σS
I assumes that the correlation between the slopes and the heights is

negligible, which explains the deviation between σS
I and σUS

I . It will be interesting to compare
these in magnitude when the correlation is introduced, because the unshadowed incoherent
scattering coefficient σUS

I decreases less slowly than that obtained without correlation
σUS
IUN .
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6. Conclusion

The backscattering from a two-dimensional randomly rough perfectly-conducting surface has
been investigated using Kirchhoff’s approach (KA) with shadowing effect. For a non-perfectly-
conducting surface with a slope and height joint Gaussian stationary process and for any surface
height autocorrelation function, the scattering coefficient obtained from the Kirchhoff integral
requires eight integrations. This means that the problem cannot be solved analytically and
numerically without additional assumptions. Moreover, the introduction of the shadowing
function involves that the surface height and slope joint probability density function has to be
determined considering the shadowing function.

For a monostatic configuration with a perfectly-conducting surface, seven integrations
can be performed analytically for an isotropic surface, instead of six for a two-dimensional
surface. With the inclusion of the shadowing function, the number of numerical integrations
increases by one.

For an isotropic surface, the simulations show that kc = √
2kLc and σX tan θs , where k

is the wavenumber, Lc the surface correlation length, σX the surface slope standard deviation,
are relevant parameters for estimating the agreement between the results obtained from the
Kirchhoff approximation and those computed from the stationary phase (SP) and geometrical
optics approximations. The Kirchhoff theory is valid if the parameter kLc = kc/

√
2 and the

surface curvature radius are larger than 2π .
With Gaussian and power surface height autocorrelation functions, the simulations

show that the incoherent backscattering coefficient is barely noticeable according to
the autocorrelation function. Moreover, it is interesting to note that the stationary
phase method underestimated the incoherent backscattering coefficient. This deviation
between the results obtained from SP and KA decreases when the surface slope variance
decreases.

Assuming that the correlation between the heights and the slopes is negligible (it is often
the case for the different spectra we used), it is observed that the backscattering coefficient
calculated with shadow is similar to that obtained without shadow. This comes from the fact
that when the shadowing effect becomes important, the incoherent component is small. It will
be interesting to apply the same method with correlation.

The prospect of this work may be the study of the dielectric surface for one- and two-
dimensional surfaces. We have seen that the effect of the shadowing function may be small
for a backscattering configuration, but we believe that for a bistatic configuration the effect
of the shadowing function cannot be ignored. Since it is very difficult to solve the Kirchhoff
integral for any configuration, it will be interesting to use the exposed method for one- and
two-dielectric surfaces with the stationary phase approximation in order to verify the previous
comment.

Appendix A. Expected values of first order without shadow

This appendix presents the calculus of the following expected values E4(γX), E4(γ
′
X), E4(γY )

and E4(γ
′
Y ) when the shadowing effect is not investigated. Firstly, the expected value

E4(γX) is performed, and we show that the others are obtained from E4(γX) by variable
transformations.

We need to solve the following integral over γX:

E4(γX) =
∫ ∞

−∞
γX dγX

[∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
p(z′, z′′, γX, γ ′

X, γY , γ
′
Y ) dγ ′

X dγY dγ ′
Y

]
. (A1)
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The term between brackets corresponds to the marginal probability integrated over
{γ ′

X, γY , γ
′
Y } and is equal to the probability density p(z′, z′′, γX) given by

p(z′, z′′, γX) = 1

(2π)3/2|[M]|1/2
exp


− 1

2 [z′z′′γX][M]−1




z′

z′′

γX




 (A2)

where [M] is (12) [CXY ] partitioned matrix defined as

[M] =




ω2 R0 0

R0 ω2 −R1

0 −R1 σ 2
X


. (A3)

The inversion of the matrix [M] leads to

p(z′, z′′, γX) = 1

(2π)3/2|[M]|1/2

× exp

[
−Mi11z

′ 2 + Mi22z
′′ 2 + 2Mi12z

′z′′ + Mi33γ
2
X + 2(Mi13z

′ + Mi23z
′′)γX

2|[M]|
]

(A4)

with

Mi11 = ω2σ 2
X(1 − f 2

1 ) Mi12 = −ω2σ 2
Xf0 f0 = R0/ω

2

Mi22 = ω2σ 2
X Mi13 = ω3σXf0f1 f1 = −R1/(ωσX)

Mi33 = ω4(1 − f 2
0 ) Mi23 = −ω3σXf1 |[M]| = ω4σ 2

X(1 − f 2
1 − f 2

0 )

(A5)

where |[M]| is the determinant of [M]. Writing that

p(z′, z′′, γX) = 1

(2π)3/2|[M]|1/2
exp(−aγ 2

X − 2bγX − c). (A6)

Identifying this equation with (A4) and using the following relationship:∫ ∞

−∞
γX exp(−aγ 2

X − 2bγX − c) dγX = −b
√
π

a3/2
exp

(
b2

a
− c

)
(A7)

with a > 0, we show that the expected value E4(γX) is

E4(γX) = σXf1(z
′′ − z′f0)

ω(1 − f 2
0 )

p(z′, z′′) (A8)

where p(z′, z′′) is the surface height joint probability expressed as

p(z′, z′′) = 1

2πω2(1 − f 2
0 )

1/2
exp

[
− 1

2ω2(1 − f 2
0 )

(z′ 2 + z′′ 2 − 2f0z
′z′′)
]
. (A9)

The calculation of b2/a − c in (A7) is not required due to the fact that it has to be equal to
the exponential term of p(z′, z′′). When f1 = 0, which is similar to neglecting the correlation
between the heights and the slopes, and since the surface slope mean mγX is assumed to be
equal to zero, we have E4(γX) = mγX = 0.
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The computation of E4(γ
′
X) is obtained from the marginal probability p(z′, z′′, γ ′

X)

characterized by the following covariance matrix:

[M ′] =




ω2 R0 R1

R0 ω2 0

R1 0 σ 2
X


. (A10)

Comparing (A10) with (A3), the covariance matrix [M ′] is obtained from [M] by swapping
z′ in z′′ and R1 in −R1. Therefore, from (A8) we obtain

E4(γ
′
X) = −σXf1(z

′ − z′′f0)

ω(1 − f 2
0 )

p(z′, z′′). (A11)

Consequently,

E4(γX) + E4(γ
′
X) = σXf1(z

′′ − z′)
ω(1 − f0)

p(z′, z′′). (A12)

Using the same method as the derivations of {E4(γX), E4(γ
′
X)}, the expected values

{E4(γY ), E4(γ
′
Y )} are computed from (A12) by swapping f1 in f16 = −C16/(ωσY ), thus

E4(γY ) + E4(γ
′
Y ) = σYf16(z

′′ − z′)
ω(1 − f0)

p(z′, z′′). (A13)

Appendix B. Expected values of second order without shadow

This appendix presents the calculus of the following expected values E4(γXγ
′
Y ), E4(γY γ

′
X),

E4(γXγ
′
X) and E4(γY γ

′
Y ) without a shadowing effect. Firstly, the expected value E4(γXγ

′
Y )

is performed, and we show that the others are obtained from E4(γXγ
′
Y ) by variable

transformations.
We need to solve the following integral over γXγ ′

Y :

E4(γXγ
′
Y ) =

∫ ∞

−∞

∫ ∞

−∞
γXγ

′
Y dγX dγ ′

Y

[∫ ∞

−∞

∫ ∞

−∞
p(z′, z′′, γX, γ ′

X, γY , γ
′
Y ) dγ ′

X dγY

]
. (B1)

The term between brackets corresponds to the marginal probability integrated over
{γ ′

X, γY } and equal to the probability density p(z′, z′′, γX, γ ′
Y ) given by

p(z′, z′′, γX, γ ′
Y ) = 1

(2π)2|[C]|1/2
exp


− 1

2 [z′z′′γXγ ′
Y ][C]−1




z′

z′′

γX

γ ′
Y





 (B2)

where [C] is (12) [CXY ] partitioned matrix defined as

[C] =




ω2 R0 0 C16

R0 ω2 −R1 0

0 −R1 σ 2
X −C36

C16 0 −C36 σ 2
Y


. (B3)
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The inversion of the covariance matrix [C] leads to

p(z′, z′′, γX, γ ′
Y ) = 1

(2π)2|[C]|1/2
exp

[
−z′ 2Ci11 + z′′ 2Ci22 + γ 2

XCi33 + γ ′ 2
Y Ci44

2|[C]|

−2z′z′′Ci12 + 2γXγ ′
YCi34 + 2z′(γXCi13 + γ ′

YCi14) + 2z′′(γXCi23 + γ ′
YCi24)

2|[C]|
]
(B4)

with

[C]−1 = 1

|[C]|




Ci11 Ci12 Ci13 Ci14

Ci12 Ci22 Ci23 Ci24

Ci13 Ci23 Ci33 Ci34

Ci14 Ci24 Ci34 Ci44


 (B5)

where {Cijk, |[C]|} are given by

Ci11 = ω2(σ 2
Xσ

2
Y − C2

36) − σ 2
YR

2
1 Ci13 = −σ 2

YR0R1 − ω2C16C36

Ci22 = ω2(σ 2
Xσ

2
Y − C2

36) − σ 2
XC

2
16 Ci24 = σ 2

XR0C16 + ω2R1C36

Ci12 = R0(C
2
36 − σ 2

Xσ
2
Y ) − R1C16C36 Ci14 = C16(R

2
1 − ω2σ 2

X) − R0R1C36

Ci33 = σ 2
Y (ω

4 − R2
0) − ω2C2

16 Ci23 = R1(ω
2σ 2

Y − C2
16) + R0C16C36

Ci44 = σ 2
X(ω

4 − R2
0) − ω2R2

1 |[C]| = Ci33Ci34 − C2
i34

ω4 − R2
0

Ci34 = C36(ω
4 − R2

0) + R0R1C16.

(B6)

Using (A7) and the same form as (A6) according to γ ′
Y , the integration over γ ′

Y leads to

E4(γXγ
′
Y ) = −√

π

(2π)2|[C]|1/2a3/2

∫ ∞

−∞
γX(b1 + γXb2) exp

(
b2

a
− c

)
dγX (B7)

with

a = Ci44

2|[C]|
b1 = z′Ci14 + z′′Ci24

2|[C]| b2 = Ci34

2|[C]| b = b1 + γXb2

c = z′ 2Ci11 + z′′ 2Ci22 + 2z′z′′Ci12 + 2γX(z′Ci13 + z′′Ci23) + γ 2
XCi33

2|[C]| .

(B8)

To perform the integration over γX, the exponential term b2/a − c is written as
−a′γ 2

X − 2b′γX − c′, and using (A7) and the following expression:∫ ∞

−∞
γ 2
X exp(−a′γ 2

X − 2b′γX − c′) dγX =
√
π

2a′5/2
exp

(
b′ 2

a′ − c′
)
(a′ + 2b′ 2) (B9)

with

a′ = Ci33Ci44 − C2
i34

2|[C]|Ci44

b′ = z′(Ci44Ci13 − Ci34Ci14) + z′′(Ci44Ci23 − Ci34Ci24)

2|[C]|Ci44

(B10)
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we show that

E4(γXγ
′
Y ) = b2

8π |[C]|1/2(aa′)3/2

[
2b

(
b1

b2
− b′

a′

)
− 1

]
exp

(
b′ 2

a′ − c′
)
. (B11)

The determination of b′ 2/a′ − c′ is not required because it corresponds to the exponential
term of the surface height joint probability density p(z′, z′′) given by (A9). This involves that

exp(b′ 2/a′ − c′) = 2π
√
ω4 − R2

0 p(z
′, z′′) with R0 = ω2f0. Substituting (B8) and (B10) into

(B11), we have

E4(γXγ
′
Y ) =

√
ω4 − R2

0

( |[C]|
Ci33Ci34 − C2

i34

)3/2

p(z′, z′′)
{−Ci34 +

[
[z′(Ci34Ci14 − Ci44Ci13)

+z′′(Ci34Ci24 − Ci44Ci23)][z
′(Ci34Ci13 − Ci33Ci14)

+z′′(Ci34Ci23 − Ci33Ci24)]
][|[C]|(Ci33Ci44 − C2

i34)
]−1}

. (B12)

Substituting (B6) into (B12), we show

E4(γXγ
′
Y ) = p(z′, z′′)

ω4 − R2
0

{
C16R1(z

′R0 − z′′ω2)(z′ω2 − z′′R0)

ω4 − R2
0

− [C16R1R0 + C36(ω
4 − R2

0)]

}
.

(B13)

If R1 = 0 and C16 = 0, then E4(γXγ
′
Y ) = −C36p(z

′, z′′), which corresponds to the slope
cross-correlation when the correlation between the heights and the slopes is neglected.

The computation of E4(γXγ
′
Y ) is obtained from the marginal probability p(z′, z′′, γ ′

X, γY )

characterized by the following covariance matrix:

[C ′] =




ω2 R0 R1 0

R0 ω2 0 −C16

R1 0 σ 2
X −C36

0 −C16 −C36 σ 2
Y


. (B14)

Comparing (B14) with (B3), the covariance matrix [C ′] is obtained from [C] by swapping
z′ in z′′ and {R1, C16} in {−R1,−C16}. Therefore, from (B13) we obtain

E4(γY γ
′
X) = E4(γXγ

′
Y ). (B15)

The determination ofE4(γXγ
′
X) is obtained from the marginal probabilityp(z′, z′′, γX, γ ′

X)

characterized by the following covariance matrix:

[C1] =




ω2 R0 0 R1

R0 ω2 −R1 0

0 R1 σ 2
X −R2

R1 0 −R2 σ 2
X


. (B16)

Comparing (B16) with (B3), the covariance matrix [C1] is obtained from [C] by making
{C16 = R1, C36 = R2, σ

2
Y = σ 2

X}. Therefore, from (B13) we have

E4(γXγ
′
X) = p(z′, z′′)

ω4 − R2
0

{
R2

1(z
′R0 − z′′ω2)(z′ω2 − z′′R0)

ω4 − R2
0

− [R2
1R0 + R2(ω

4 − R2
0)]

}
. (B17)
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The expected value E4(γY γ
′
Y ) is computed from the covariance matrix

[C ′
1] =




ω2 R0 0 C16

R0 ω2 −C16 0

0 −C16 σ 2
Y −C56

C16 0 −C56 σ 2
Y


. (B18)

Comparing (B18) with (B16), the covariance matrix [C ′
1] is obtained from [C1] by making

{R1 = C16, R2 = C56}. Therefore, from (B17) we have

E4(γY γ
′
Y ) = p(z′, z′′)

ω4 − R2
0

{
C2

16(z
′R0 − z′′ω2)(z′ω2 − z′′R0)

ω4 − R2
0

− [C2
16R0 + C56(ω

4 − R2
0)]

}
.

(B19)

Appendix C. Characteristic function with shadowing effect

This appendix presents the derivation of the surface height joint characteristic function,
with a shadowing effect, determined from the method exposed in subsection 4.2 by making
�V T
DXY = [ξ ′ξ ′′], �V T

XY = [z′z′′], and [CXY ] = [H ].
The [V ] unitary eigenvectors and the [?] eigenvalues matrix of (31) [H ] is then

[?] =
[

λ1 0

0 λ2

]
[V ] = 1√

2

[
1 1

−1 1

] {
λ1 = ω2(1 − f0)

λ2 = ω2(1 + f0).
(C1)

Since the covariance matrix is Hermitian the eigenvalues λi∈[1;2] � 0. Using (29) with
n = − 1

2 and inverting (27), the height uncorrelated samples {ξ ′, ξ ′′} are expressed from the
height correlated samples {z′, z′′} as

[
ξ ′

ξ ′′

]
=




1√
λ1

+
1√
λ2

1√
λ1

− 1√
λ2

1√
λ1

− 1√
λ2

1√
λ1

+
1√
λ2



[

z′

z′′

]
. (C2)

Substituting (C2) into (26) and using (30), we show that the surface height joint probability
density with shadowing effect is expressed as follows:

pS(z
′, z′′) = p(z′, z′′)

{[
1 − 1

2 erfc

(
b1z

′ − b2z
′′

ω
√

2

)][
1 − 1

2 erfc

(
b1z

′′ − b2z
′

ω
√

2

)]}5
(C3)

with

b1 = 1

2

[
1

(1 − f0)1/2
+

1

(1 + f0)1/2

]

b2 = 1

2

[
1

(1 − f0)1/2
− 1

(1 + f0)1/2

]
.

(C4)

The second term of (C3) denotes the shadowing effect. If f0 = 0 corresponding to the
heights uncorrelated case, then {b1 = 1, b2 = 0}, the second term of (C3) then becomes equal
to that of (26), with ω = 1 and {ξ ′ = z′, ξ ′′ = z′′}.



Kirchhoff integral from a two-dimensional randomly rough surface with shadowing effect 115

Substituting (C3) into (21), the surface height joint characteristic function with shadow
becomes

χS1 =
∫ ∞

−∞

∫ ∞

−∞
p(z′, z′′)

{[
1 − 1

2
erfc

(
b1z

′ − b2z
′′

ω
√

2

)][
1 − 1

2
erfc

(
b1z

′′ − b2z
′

ω
√

2

)]}5
× exp[iqz(z

′ − z′′)] dz′ dz′′. (C5)

In order to simplify the first double integral χS1, the following variable transformations
are used:

Z′ = b1z
′ − b2z

′′

ω
√

2
Z′′ = b1z

′′ − b2z
′

ω
√

2
(C6)

which leads to

z′ = ω
√

2
b1Z

′ + b2Z
′′

b2
1 − b2

2

z′′ = ω
√

2
b2Z

′ + b1Z
′′

b2
1 − b2

2

. (C7)

Substituting (C6) and (C7) into χS1 with the Jacobian equal to 2ω2(1 − f 2
0 )

1/2 and using
the definitions of (C4) {b1, b2}, we prove that

χS1 = ∣∣F(qzω
√

2
√

1 − f0)
∣∣2 (C8)

with

F(· · ·) = 1√
π

∫ ∞

−∞
exp[(· · ·)Z′] exp(−Z′ 2)

[
1 − 1

2 erfc(Z′)
]5

dZ′. (C9)

The variable transformations allow transformation of a double integral into two
independent simple conjugate integrals. If the shadowing function is ignored which is similar
to having 5 = 0, then the integration over Z′ can be determined analytically and gives
exp[−q2

z ω
2(1 − f0)] corresponding to the χ1 term of (23).

Appendix D. Expected values of first and second orders with shadowing effect

This appendix presents the calculus of the expected values ES4(· · ·) with a shadowing effect
defined by (33).

The expected value ES4(1) is defined as follows:

ES4(1) =
∫ µ

−∞

∫ µ

−∞
dγX dγ ′

X

[∫ ∞

−∞

∫ ∞

−∞
p(γX, γ

′
X, γY , γ

′
Y ) dγY dγ ′

Y

]
. (D1)

The term between brackets corresponds to the marginal probability integrated over {γY , γ ′
Y }

and is equal to the probability density p(γX, γ
′
X) expressed as

p(γX, γ
′
X) = 1

2πσ 2
X(1 − f 2

2 )
1/2

exp

[
− 1

2σ 2
X(1 − f 2

2 )
(γ 2

X + γ ′ 2
X − 2f2γXγ

′
X)

]
. (D2)

Substituting (D2) into (D1) and applying the following variable transformations:

γX = σX[X(1 + f2)
1/2 − X′(1 − f2)

1/2]

γ ′
X = σX[X(1 + f2)

1/2 + X′(1 − f2)
1/2]

(D3)

the integral (D1) with the Jacobian equal to 2σ 2
X(1 − f 2

2 )
1/2 becomes

ES4(1) = 1

π

∫ µ/σX(1+f2)
1/2

−∞
dX
∫ ∞

−∞
exp(−X2 − X′ 2) dX′. (D4)
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Performing the integration over {X,X′}, we obtain

ES4(1) = 1
2 [1 + erf(µ0)] µ0 = µ

σX(1 + f2)1/2
. (D5)

Using the same method as previously, we prove that the expected value ES4(γ
′
XγX) is

ES4(γ
′
XγX) = σ 2

Xf2

2
[1 + erf(µ0)] − σ 2

X(1 + f2)µ0 exp(−µ2
0)

2
√
π

. (D6)

If the shadowing function is ignored, which is the same as making µ0 → ∞, then
ES4(γ

′
XγX) = σ 2

Xf2.
The expected value ES4(γ

′
Y ) is defined as

ES4(γ
′
Y ) =

∫ µ

−∞
dγX

∫ µ

−∞
dγ ′

X

∫ ∞

−∞
γ ′
Y dγ ′

Y

[∫ ∞

−∞
p(γX, γ

′
X, γY , γ

′
Y ) dγY

]
. (D7)

The term between brackets corresponds to p(γX, γ
′
X, γ

′
Y ), the marginal probability

integrated over γY characterized by (31) [S] partitioned matrix is expressed as

[S ′
1] =




σ 2
X −R2 −C36

−R2 σ 2
X σ 2

XY

−C36 σ 2
XY σ 2

Y


. (D8)

Applying the same method as appendix A, and performing the integration over γ ′
Y we

show that

ES4(γ
′
Y ) = 1

σ 2
X(1 − f 2

2 )

∫ µ

−∞

∫ µ

−∞
[γ ′

X(σ
2
XY − σXσYf2f36)

+γX(σXσYf36 − σ 2
XYf2)]p(γX, γ

′
X) dγX dγ ′

X (D9)

where {f2, f36} are given by (19a).
The expected value ES4(γXγ

′
Y ) is given by

ES4(γXγ
′
Y ) =

∫ µ

−∞

∫ µ

−∞

∫ ∞

−∞
γXγ

′
Yp(γX, γ

′
X, γ

′
Y ) dγX dγ ′

X dγ ′
Y . (D10)

From (D9), the integration over γ ′
Y leads to

ES4(γXγ
′
Y ) = 1

σ 2
X(1 − f 2

2 )

∫ µ

−∞

∫ µ

−∞
γX[γ ′

X(σ
2
XY − σXσYf2f36) + γX(σXσYf36 − σ 2

XYf2)]

×p(γX, γ
′
X) dγX dγ ′

X. (D11)

Using the variable transformation (D3), and performing the integration over {X,X′}, we
have

ES4(γXγ
′
Y ) = σXσYf36

2
[1 + erf(µ0)] − (σ 2

XY + σXσYf36)
µ0 exp(−µ2)

2
√
π

. (D12)

If the shadowing function is ignored, which is the same as making µ0 → ∞, then
ES4(γXγ

′
Y ) = σXσYf36 = −C36, corresponding to the cross-slope correlation.

The last expected value to calculate is ES4(γY γ
′
Y ) defined as

ES4(γY γ
′
Y ) =

∫ µ

−∞
dγX

∫ µ

−∞
dγ ′

X

[∫ ∞

−∞

∫ ∞

−∞
γY γ

′
Yp(γX, γ

′
X, γY , γ

′
Y ) dγY dγ ′

Y

]
. (D13)
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The integrations over {γY , γ ′
Y } are similar to those made in (B1), with {z′ = γX,

z′′ = γ ′
X, γX = γY }. However, in this case, the covariance matrix [S] is defined from (31)

instead of (B3). Consequently, from (B12), the integrations over {γY , γ ′
Y } lead to

√
σ 4
X − R2

2

( |[S]|
Si33Si34 − S2

i34

)3/2

p(γX, γ
′
X)

×{−Si34 +
[
[γX(Si34Si14 − Si44Si13) + γ ′

X(Si34Si24 − Si44Si23)]

×[γ ′
X(Si34Si13 − Si33Si14) + γX(Si34Si23 − Si33Si24)]

]
×[|[S]|(Si33Si44 − S2

i34)
]−1}

(D14)

where Sijk are the elements of the [S] inverse covariance matrix given by

Si11 = Si22 = σ 2
X(σ

4
Y − C2

56) − σ 2
Y (σ

4
XY + C2

36) + 2σ 2
XYC36C56

Si33 = Si44 = σ 2
Y (σ

4
X − R2

2) + σ 2
X(σ

4
XY + C2

36) + 2σ 2
XYR2C36

Si12 = R2(σ
4
Y − C2

56) + C56(σ
4
XY + C2

36) − 2σ 2
XYσ

2
XC36

Si34 = C56(σ
4
X − R2

2) + R2(σ
4
XY + C2

36) − 2σ 2
XYσ

2
XC36

Si13 = Si24 = R2(σ
2
YC36 − σ 2

XYC56) + σ 2
X(C36C56 − σ 2

Y σ
2
XY ) + σ 2

XY (σ
4
XY − C2

36)

Si14 = Si23 = R2(C36C56 − σ 2
Y σ

2
XY ) + σ 2

X(σ
2
YC36 − σ 2

XYC56) + C36(σ
4
XY − C2

36)

|[S]| = (S2
i33 − S2

i34)/(σ
4
X − R2

2).

(D15)

Substituting (D15) into (D14), we show that

ES4(γY γ
′
Y ) = 1

σ 4
X − R2

2

∫ µ

−∞

∫ µ

−∞
p(γX, γ

′
X)

×{−[C56(σ
4
X − R2

2) + R2(σ
4
XY + C2

36) − 2σ 2
XYσ

2
XC36]

+
[
[(C36R2 − σ 2

XYσ
2
X)γX + (σ 2

XC36 − σ 2
XYR2)γ

′
X][(C36R2 − σ 2

XYσ
2
X)γ

′
X

+(σ 2
XC36 − σ 2

XYR2)γX]
][
σ 4
X − R2

2

]−1}
dγX dγ ′

X. (D16)

Using the variable transformation (D3), and performing the integration over {X,X′}, we
obtain

ES4(γY γ
′
Y ) = −C56

2
[1 + erf(µ0)] − (σ 2

XY − C36)
2

σ 2
X − R2

µ0 exp(−µ2
0)

2
√
π

. (D17)

The use of (19a) leads to

ES4(γY γ
′
Y ) = σ 2

Y f56

2
[1 + erf(µ0)] − (σ 2

XY + σXσYf36)
2

σ 2
X(1 + f2)

µ0 exp(−µ2
0)

2
√
π

. (D18)

If the shadowing function is ignored, which is the same as making µ0 → ∞, then
ES4(γY γ

′
Y ) = −C56.
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