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Abstract

In this paper, the backscattering coefficient of a two-dimensional randomly
rough perfectly-conducting surface is investigated using the Kirchhoff approach
with a shadowing function. The rough surface height/slope correlations
assumed to be Gaussian are accounted for in this analysis. The scattering
coefficient is then formulated in terms of a characteristic function for the
integrations over the surface heights, in terms of expected values for the
integrations over the surface slopes. Numerical comparisons of Kirchhoff’s
approach (KA) with the stationary-phase (SP) approximation are made with
respect to the choice of the one-dimensional surface height autocorrelation
function and the shadowing effect. For an isotropic surface the results show
that SP underestimated the incoherent backscattering coefficient compared with
KA. Moreover, when the correlation between the slopes and the heights is
neglected, the shadowing effect may be ignored.

1. Introduction

The problem of electromagnetic scattering from natural surfaces is a matter of great relevance
from both a theoretical and an application point of view. This problem is of interest in many
research areas, including remote sensing of the environment, medical imaging, sonar, optics
and astronomy [1]. The scattering of electromagnetic waves by rough surfaces has been studied
for many years, but no exact closed-form solution has been obtained. Numerical techniques
such as the method of moments can be used to compute the exact solution, but, in general, these
techniques are computationally prohibitive. We can also quote the integral equation based on a
Monte Carlo technique (Thorsos et al [2,3]). Usually, when dealing with practical applications,
approximate models are examined. Among the many surface-scattering theories, the small-
slope approximation (SSA) developed by Voronovich [4] and the perturbation approximation
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can be used (Thorsos and Broschat [5-7] and Berginc and Chevalier [8]). The Kirchhoff
approximation or physical optics, which is the most widely used (Olgivy [1], Ulaby and
co-workers [9, 10] and Beckmann and Spizzichino [11]) is investigated in this paper. This
approach is valid if the radius of curvature at every point on the surface is large relative to the
electromagnetic wavelength X, and if the correlation length L. is larger than A. The Kirchhoff
approximation is used as a starting point for high-frequency analysis when the geometric optics
approximation is obtained by applying the stationary phase method. We can notice that [1]
gives a computable expression for the Kirchhoff integral limited to the class of known surfaces.
To evaluate the Kirchhoff integral involving a nonlinear function of the correlation function is
a difficult exercise.

With Kirchhoff’s approximation, the scattered field from a rough surface is expressed
as an integral over the surface [9] with the integrand depending on five variables: the
surface (two variables), the slopes (two variables) and the height surface. This means that
the determination of the scattering coefficient obtained from averaging the scattered field
multiplied by its conjugate requires ten integrations. Assuming a stationary process of the
surface slope and height joint probability density (the surface height autocorrelation function
depends only on the distance between two points on the surface), the ten integrations are
reduced to eight integrations. However, as it stands, the scattering coefficient integrand remains
a complicated function of the slopes, whereas the heights appear in the exponential phase. For
a monostatic configuration (transmitter and receiver located at the same place corresponding
to the backscattering), the dependence of the scattered field with respect to the surface slopes
can be expressed analytically as functions of the Fresnel coefficients, which also depend on the
slopes. For a perfectly-conducting surface the Fresnel coefficients in vertical and horizontal
polarizations are equal to 1 and —1, respectively. Therefore, the integration over the surface
slopes of the backscattering coefficient can be performed analytically with a surface Gaussian
joint height and slope probability density.

In this paper, by applying the Kirchhoff approximation, the backscattering coefficient by
a perfectly-conducting stationary surface with shadowing effect is computed and compared
with the stationary phase solution. The average of the backscattering coefficient uses a
Gaussian surface slope and height joint probability density function (PDF) defined by Bourlier
et al [12] where the multiple scattering is neglected. Moreover, in the average of the
scattering coefficient, the two-dimensional shadowing effect is introduced. This means that
the PDF with shadow has to be determined. Sancer [13] studied the shadowing effect on the
scattering coefficient obtained from the Kirchhoff theory. He showed that under the geometrical
optics approximation, the shadowing function is statistically independent of the unshadowed
scattering coefficient. Strictly speaking, it is exact only if the shadowing function is assumed
to be independent of height and slope surface. From Smith’s approach [14, 15], Bourlier
et al [12,16] studied the statistical monostatic one- and two-dimensional shadowing functions
with correlation and they showed that they depend on the height and slope surface. For
an uncorrelated process, Smith’s monostatic two-dimensional statistical shadowing function
depends only on the heights with a restriction over the slopes. Since the difference between
the correlated and uncorrelated Smith shadowing functions is very small, the uncorrelated
statistical shadowing function is used.

The plan of this work is as follows. The scattered field is determined from Kirchhoff
theory in section 2. The backscattering coefficient is calculated in section 3 for any surface
height autocorrelation function. In section 4, assuming a Gaussian PDF with correlation [12]
and including the shadowing effect, the previous results are applied to a perfectly-conducting
surface. In the final section, the incoherent backscattering coefficient is simulated for an
isotropic surface, and compared with the stationary phase method.
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Figure 1. Geometry of the problem.

2. Scattered field with Kirchhoff approach

With the Kirchhoff approach, the scattered field is written in terms of the tangential field on a
rough surface. The surface field is then approximated by the field that would be present if the
rough surface were replaced by a planar surface tangential to the point of interest. With this
assumption, the scattered field is expressed as [9]

ES = Kiig A / [ A E — nits A (i A H)explikGiy — i) - 71dS’ )

where K = —jkexp(—jkRy)/(4m Ry), with k being the wavenumber in the medium where
the field is evaluated, R, ranges from the centre of the illuminated area S’ to the point of
observation (see figure 1), #i,, #i; are the unit vectors in the scattered and incident directions,
respectively, defined in spherical coordinates as

7; = sin @ cos X + sin @ sin gy — cos 67

@

7iy = sin B cos @, X + sin O sin @, y + cos 6,2

where X, ¥, 7 are unit vectors in Cartesian coordinates. 7' = x'X + y'y + z'Z is the vector

indicating the location of the surface point according to the centre of the illuminated area. In
(1), the total 72 A E electric and magnetic ni A (1 A H) tangential fields are given by [9]

AAE=[1+Ry)@-D7 AT — (1 — Ry) G -11,)(@ - d)T1Eo

R . R 3
N AH) = —[(1+Ry)(@-d)(ii AT + (1 — Ry) (7 - 1) (@ - )] Eg ¥

where Ej is the magnitude of the incident field with a unit polarization vector a. {Ry, Ry}
denote the Fresnel coefficients in the vertical V and horizontal H polarizations determined with
an incidence angle 6; = arccos[7 - 7i;], where 7 is the unit vector normal to the local surface

defined as 71 = (=y,X — v,y +2)/,/1+y? +y?, where the slopes {y,, y,} are expressed as

{ye = 07//0x', v, = 32//0Y'}. {7, d} are given by 7 = 7i; AJi/||ii; Adi|| and d = 7i; AT,
In the forward scattering alignment (FSA) convention [10] the incident and scattered unit
polarization vectors denote {h;, ¥;, ks, U} defined as

h; = — sin pX + cos ¥ @

V; = h; ATi; = — cos 6 cos X — cos@ singy — sin 7
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and
hy = — sin @,X + cos @5y
Q)

Vg = hy A fiy = cos B cos @ X + cos B sin @,y — sin 6,7

The integrand of (1), which is a complicated function of the slopes {y., y,}, then depends
on two deterministic variables {x’, y’} and three random variables {z’, ., ¥y }. This expression
can be simplified if the backscattered field is studied, which involves that {#; = —n,, v; =
Uy, h: = —h,} and (1) becomes, with dS" = dx’ dy’/(7i - 7)

B, =2KEy [ [ Foyexplilas’ +a,y +4.2' 0y d dy ©)

with the polarization term F,, equal to (p = (hi, Ui}, q = {hs, Bs))
Fip = —Fin, = DoGi' - )[Ry (i’ - 5)* = Ry (i’ - hy)’]
Fuy, = Fopy = Dol - i) [Ry (i - hy)* — Ry (i’ - 0,)°] (6a)
Fo = Fuy, = Fyp, = Dol - i) @' 5) @' hy) (R + Ry)

with 71’ = (=X — ¥y +2), Do = 1/|liis A#'||%, g2 = 2k sin 6 cos @5, g, = 2k sin 6; sin g;

and g, = 2k cos 6;. Note that F, ;,, = F,.,, as is demanded by reciprocity for backscattering.
From (5), the scalar products of (6a) are expressed as

' - iy = sin b (y, cos @ + ¥y sin ¢;) — cos b,

=/

n' - Vg = — cos 6 (¥, COS @5 + yy sin ¢g) — sin G (6b)

Uy
i h = —¥y COS @5 + Yy Sin g
and
DO_l = sin? O5[1 + (yy cos @5 — yy sin (px)z] + cos? 95'(%3 + y_vz)
+5in(26;) (yx cos @5 + ¥y sin @). (6¢)

Thus, we can see for a monostatic configuration, that the polarization term F),, remains a
complicated function of the surface slopes.

For a perfectly-conducting surface, we have {Ry = 1, Ry = —1}, and (6a) becomes
Fh hy = Fu_vvx = _ﬁ/ : ﬁs Fvshx =0. (7)

shs

Since the surface is assumed to be perfectly conducting, the cross-polarization is equal to zero,
whereas both polarizations are equal.

3. Backscattering coefficient

The scattering coefficient o, for an extended target can be written as [9]
4 RY(ES, ES%)

Opq = 2 ®)

AO | Eo |

where Ay is the illuminated area, and the symbol (- - -) is the ensemble average. Substituting
(6) into (8), the scattering coefficient is given by

k2
o= [ [ [ ) Epyvic vy exsliaetz =20

x exp{jlgx (x" — x") + g, (y' — y")]} dx'dy" dx" dy” )
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where the symbol *x denotes a complex conjugate. Since the surface is assumed to be
stationary, the surface spatial autocorrelation function depends only on the spatial differences
of variables {u = x' — x”, v = y’ — y”}. Moreover, assuming either that the illuminated
surface size is infinite or much larger than the correlation length, the variables transformation
{u = rcos®, v =rsin®}in (9) leads to the following equation from [9, pp 934-5]:

k2 00 2w
Opqg = ;/0 rdrfo d () explir(q; + g;)"/* cos(® — )] (10)

with

()= / / / / / / Foq (e vy) Fpi (v v explige (2 — 2] p(Viy) AV (10a)

Since Fp, Fy expljq:(z' — z")] depends on the vector \7xTy = [2'2"yx ¥, vyY,] the average

requires six integrations. p(\7xy) denotes the surface height and slope joint probability density
assumed to be Gaussian and expressed in Cartesian coordinates.
In polar coordinates, p(Vy,) becomes p(Vxy) [12, p 272]

p(Vxy) = exp(— VI [Cxy]™ Vxy) (11)

1
2r)*[Cxy]]'/?

where |[Cxy]| is the determinant of the covariance matrix [Cxy] expressed in the
{(0X), (0Y), (0z)} base in polar coordinates {r, ®} (see figure 1) as

B 0)2 Ro 0 R1 0 C16 ]

R() a)2 —Rl 0 _C16 0

0 —R1 02 —R2 0'2 —C36
[Cxy] = X ,r (12)

R] 0 —R2 Ox —C36 Oxy

0 —C16 O‘)z(y —C36 0‘3 —C56

| Ci6 0 —Cy o}, —Cs¢ o}
with
Ry = Rop — cos(2P) Rpz ,
d'Ro;
R1 = R10 — COS(ZCI))Rlz R,‘j = d_ (12(1)
ri
R2 = R2() — COS(ZCD)RQZ
02 =a+ BcosQd
x =@+ oos20) o2 40?2 o? — o?
oy =a — Bcos(QP) o= > B = > (12b)
0)2(}, = —fsin2d
2Ry, sin(2d)

Cio = LR 5 er)

r

2sin(2P

Cy = %(FRIZ — Rp2) (12¢)

Ry cos(2®)
Cs6=—+——
r r

(4R — rRy2).

Ry (r, ®) is the surface height two-dimensional autocorrelation function in polar coordinates,
whereas — R is the surface slope two-dimensional autocorrelation function. {Rgo (), Ro2(r)}
represent the isotropic and anisotropic parts of Ry and @ the azimuthal direction according
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to the (Ox)-direction, which characterizes the anisotropic effect. For example, when a sea
surface is considered, this term corresponds to the wind direction according to the (Ox)-
axis. {0')2( = —R,(0, ®), 0)3 = —Cs6(0, @)} denotes the surface slope variances in the
{(0X), (0Y)} directions, respectively, and 0)2( y = —C36(0, ®) the surface slope cross-variance.
w? = Ro(0, ®) = I)(0) is the surface height variance with Ry, (0) = 0.

From (6a) and (10), we can see that the computation of the backscattering coefficient
requires height numerical integrations over {r, ®, z’, 2", v, ¥}, ¥y, v»}, since the analytical
integrations are impossible. Moreover, the determination of the probability density requires
the inversion of the covariance matrix [Cyy].

The introduction of the shadowing function modifies the surface height {z’, z”} probability
density and carries a restriction over the slope integrations {yx, yy}. Assuming that the surface
is perfectly conducting, the scattering problem is easier to solve because in (7) the polarization
term F),, is simpler. The following section explores this aspect.

4. Backscattering coefficient for a perfectly-conducting surface

For a perfectly-conducting surface, the polarization term F),, is expressed from (7) and the
backscattering coefficient given by (10) becomes ({0, = o4, Ov,n, = 0})

k2 00 2 ) 5 212
Oy, = — rdr (---)expljr(gy +q,) "'~ cos(® — ;)] dP (13)
T Jo 0 ’

with

(--4) =//////[sin95(yx CoS @; + Yy sin @) — cos 6]

x [sin 6, (y; cos g, + v} sin @;) — cos O] explig: (2’ — 2)] p(Vey) dVsy  (13)

10

where the probability density p(\7x),) of vector VXC =[ZZ"veviyy yy’] is the surface height and
slope joint probability density defined in Cartesian coordinates. Since the PDF is known in
polar coordinates, the integral has to be determined in polar coordinates. Thus, rotating by @,
we obtain

Yx = yx cos ® — py sin Yy = vy cos ® — yy sin @

Yy = yx sin @ + yy cos ® ¥y = Vx sin @ + yy cos @ (19
and the integral (13a) becomes, with the Jacobian equal to one,
() = //////[sin Os(yxc + yys) — cos 6;][sin b (yx ¢ + yys) — cos 6s]

x expljg:(z' — 2")] p(Vxy) dVxy (15)
with

¢ = cos(p; — D) s = sin(g; — D). (15a)

Note that the slope integration boundaries of (15) are infinite because the statistical
shadowing function is ignored.

Assuming an uncorrelated Gaussian process with surface height 7’ of variance w?, surface
slope y of variance 02, and from Smith’s [14, 15] monostatic one-dimensional statistical
shadowing function given by

’ A(v)
SEvav) =T —p)| 1= Lerfe[ = )} 16
@, v,v) (u y)[ 26:r<:<w\/E (16)
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with
eV — 7w erfc(v) 7 cotf
A) = V= —— = (16a)
2vﬁ ﬁg ﬁg
and
0 if y>u=coth
Tu—y) = , (16b)
1 if y<u.

Bourlier et al [12] showed that Smith’s monostatic two-dimensional statistical shadowing
function is expressed from (16) by replacing y in yx and o in ox given by (12b). In [12], the
correlation between the slopes and the heights have been investigated on the average shadowing
function. Since the difference between the correlated and uncorrelated results is small, the
uncorrelated statistical shadowing function is used. This allows for a simpler shadowing
function.

4.1. Ensemble average without shadowing effect

When the shadowing function is not included, the probability density is not modified, and the
integration boundaries over the slopes {yx, yy} are infinite. The ensemble average (15) is then
equal to

o0 o0
<mhw#@/ f(m%$ﬁMWAHf&MWHNMMM@+&MAM
—00 J—00

—tan 6, {c[E4(yx) + E4(yx)] + s[Es(yy) + Es(yp)1} + 1)

x expljq. (z' — 2")1dz dz” (17)
where E4(- - -) denotes the expected value given by
oo o0 oo o0 N
o= [ [ [ [ e anmanaran dy. (17a)
—00 J —00 J—00 J —00

From (A12) and (A13) we show that

(Z" = 2)(cox fi + soy fie)
o(l — fo)

where p(z/, z”) is the surface height joint probability density given by (A9). From (B13),
(B15), (B17) and (B19), we show that

p, 7" (18)

c[Es(yx) + Es(yx)1 + s[Es(yy) + Es(yy)] =

*Eq(yxyy) + 5 Ea(yyyy) + cs[Es(yxyy) + Es(yyyy)]

— Z/,){ (cox fi + 50y fi6)* |:(Z/fo —NE =2"fo) f}
- =1 A= 1) ’
+(020§f2+S203f56+2SCUXUYf36)} (19)
with
fo =Ry’ fi = —Ry/(woy)
fr=—Ry/oy fie = —Ci6/(woy) (19a)

fs6 = —Csg/oy Jf36 = —Cz6/(0y0x).
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Now, the ensemble average (17) requires two integrations over the heights {z’, z”} based
on the calculation of the surface height joint characteristic function x; equal to the Fourier
transform of the surface height joint probability density p(z’, z”) expressed as

1= x(D) (20)
with
1 ’2 7”2 2 r_n
x(G-) = 27‘[602(1 _f2 1/2 ( 2(1 fO —— @+ = 2fz7")
x expljq.(z — z”) dz’ dz”. (21)

Using the following variable transformations:
d=olZ/(+ f)'? = Z"(1 — fo)?]

22
¢ =olZ/(+ f)' 2+ 20 = fo)') 22

X1 becomes

1 o0
X=— / exp(—Z"?) exp[—2jq.wZ" (1 — f)/*1dZ" = exp[—q?w*(1 — fo)].  (23)
\/E —00

Consequently, from (21) and (23), respectively, we can write

” ’ 8Xl . 2
x (" —2) =] 0 — _ZJQZCU (1-— fO)Xl (23a)
and
[fo—"IZ=2"fl o \_ L, _ dn
< »?*[1 — f02]2 1— f()2> =400 = oo (23b)

Therefore, the use of (18), (19), (23a) and (23b) leads to the following ensemble average:

() = cos® 6s[x1 +jxpo1(ox tan 6,) + xpo2(ox tan 6;)*] (24)
with
dx1 cox f1 +soy fie soy fie
XPol1 = ————— =2q.wxi|cfi +
dg; (1l — fo) ox
2o 2sco 0 so 2
Xpo2 = X1< f+ Yf56 + Yf36> 24 ( cfi + ﬂ) (24a)
oy ox afo ox
2.2 2
_ X1[sz2+ s Uy2f56 . scoy fis (Cf1 SUYf16> ]
Ox Ox Oy

where y; corresponds to the obtained term when the stationary phase method is used, and
{xrpo1, xpo2} characterize the functions introduced by the physical optics approach.

For an isotropic surface, Ry, = 0, which means from (12b) and (12¢) that {C1¢ = 0, C3¢ =

0,0, =0y},1e. {fic =0, f3s = 0, 0x = oy}, and (24a) becomes
xpo1 = 2cx1q:wf)
xpor = X1l o+ 5% fso) — A (g:0f)’].

For the Gaussian and power height autocorrelation functions Ry expressed in table 1, with
height variance w?, with a length correlation L., the {fo, fi, fs6, f»} functions are given in
table 1 with respect to u = r/L.. Substituting these equations into (25), the {x1, xro1, Xro2}
functions are obtained with respect to {§ = g,w, u}. It can be noted that the contribution of

{xro1, xpo2} terms is negligible, if ox tan6; < 1, i.e. when the surface RMS slope oy is
much smaller than the slope incident beam p = cot 6;.

(25)
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Table 1.  Derivations of the functions { fo, f1, fs56, f2, | f(;/ (0)|} for Gaussian and power one-
dimensional surface height autocorrelation functions Ry(r).

Definitions Gaussian function Power function
sl ) oleR)
Jo(w) = Rz)(Zr) with u = ch exp(—pu?) m
i) = %% vl = W% u/2p exp(—puz) %
pw = %dj% e lfé_’(lon (:ujgo exp(—pu)(1 = 2pu?) #
1£70)] = "i L . .

4.2. Ensemble average with shadowing effect

The shadowing effect introduced a restriction on the integrations over the slopes {yx, vy},
whereas the range integrations over the slopes {yy, y;} remain {]—oo; oo[, ]—o00; co[}. From
(16b) and according to Bourlier et al’s work [12] (extension of the one-dimensional shadowing
function to the two-dimensional shadowing function), the range of integrations over {yx, yy}
becomes {]—oo; u], ]—o0; nl}, with u = cot6, the incident beam slope. Moreover, the
surface height probability density is modified by the second term of (16) in square brackets.

When the shadowing function is ignored, the ensemble average is given by (24) and (24a).
It depends on the yx; surface height characteristic function expressed from (23), its derivatives
according to {q;, fo}, and expected values { f1, fi6, f2, f36, f56} of the [Cxy] (12) covariance
matrix. Since the shadowing function modified the surface height probability (11), surface
height and slope joint probability density ps(Vxy) with the shadowing effect of the vector
VI, = [Z7"yxyyyryy] has to be determined.

For an uncorrelated Gaussian process with {w = 1,0x = 1,0y = 1}, we have
{Ry, R1, R, Ci6, C36, Cs6, 0xy} = 0 in (12) covariance matrix [Cyy], which involves, from
(11) and (16), that the surface height {£’, £} and slope {¢x, ¢y, ¢y, ¢y} uncorrelated probability
density with shadowing effect is written as

£2 &7 o o g @_ﬁ)

_ 1
Voxy) = —— > _5__ X _ > > _
ps(Voxy) (2n)3eXp( 2 2 27 2 2722

it )] e "

where V[, [£'€"tx ¢} ¢y ¢} ] denotes the transpose uncorrelated vector of V7, .
The correlation is introduced by writing

‘7XY = [CXY]1/2‘7DXY (27)
due to the fact that
E[Vxy VI, 1 = E(Cxy1"*Voxy VL iy [Cxy17/?) = [Cxy] (27a)
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where H is the conjugate transpose. Since the samples {¢', £€”, ¢x, ¢y, ¢y, ¢y} are independent,
the expected value E(Vpxy V) is equal to the identity matrix. For computing the matrix
[Cxy]'/?, we can write

[Cxy] = [VIIZIV] (28)

where [V] is the unitary eigenvectors matrix of [Cyy], [X] is the eigenvalues matrix of [Cyy].
[¥] being diagonal implies that

[Cxy]" = [VIIZ "IV (29)

If we can calculate the eigenvalues and the eigenvectors of the matrix [Cxy], by inverting
(27), this leads to ‘7ny = [CXy]’1/2\7Xy. The components {&', ", ¢x, ¢y, Ly, ¢y} are then
expressed according to {z’, z”, yx, Yx. v, ¥y}. Substituting them into (26), the probability
density with shadowing effect p S(VX y) is determined by

- . dv ps(Voxy)
ps(Vxy) = ps(Vpxy) —emt = 25 70X

XY _ . 30)
avy, I[Cxy]l'/?

Unfortunately, the analytical determinations of the eigenvalues and eigenvectors
of the covariance matrix [Cyxy] are very difficult for a six-dimensional matrix.
Moreover, the scattering coefficient with shadowing effect obtained from the ensemble
average (17), requires integrations over the slopes {yx, ¥y, vy, vy} with range limits of
{I—o0; u], ]—00; ], ]—o0; oo[, ]—o0; oo[} and the integration over the heights multiplied
by the exponential term exp(jg.(z’ — z")].

To solve the problem analytically, the cross-correlation between the heights and the slopes
quantified by {R,, C6} in (12) is assumed to be negligible, leading to the following covariance

matrix:
0)2 Ro
[H] = )
R() w
[H] [0] 2 —R 2 -C
[Cyy] = with X 2 %y 3 31)
[0] [S] —Ry, 0} —Cx oy
[S]1= 5 )
Oxy —C36 Oy —C56
—C36 O)%Y —C56 0)%

where {[H], [S]} are the height and slope covariance matrices, respectively. From (24a), this
assumption is valid from small values of g,w with g, = 2k cos 6, (w is the surface RMS
elevation), i.e. for a rough surface with 47 cos 6,0 < A.

Since {R;, Ci6} = 0 = {f1, fis} = 0, and from (24) and (24a), the ensemble average
with shadowing effect can be expressed as

(++)s = cos® O, xs1 Esa(1) + (ox tan 6,)* xsp02] (32)
with
X / / 7
Xspo2 = —0—?[c2Es4(yxyX) +5?Ess(yryy) + 2scEsa(yxvy)] (32a)
X
and from (C8)

xs1 = |F(g:ov2(1 — fo)/?)]? (32b)



Kirchhoff integral from a two-dimensional randomly rough surface with shadowing effect 101

where the integral function F (- - -) given by (C9) is the surface height characteristic function
equal to the Fourier transform of the surface height probability density modified by the shadow.
If the shadow is ignored then xs; = x; (23). Noting that xspo1 = 0, the expected value
Es4(- - -) with shadowing effect is defined as

m m 00 oo
Ega(-++) =/ d)/x/ dJ/;/(/ dyy/ G- )pWx, vy, vrs vy)dyy  (33)
—00 —00 —00 —00

where the slope surface joint probability density p(yx, ¥y, vy, yy) is characterized by the

covariance matrix [S] (31). When the shadow is not included, involving & — 0o, we obtain

Ess(1) = 1, Ess(yxyy) = —Ry = 0} fo, Esa(yyyy) = —Cse = 03 fse, Esa(yxyy) =

—C36 = 0x0y f56, and (32) (- - -)g is equal to (24) (- - ) with {xs1 = x1, /1 =0, f16 = 0}.
From (D6), (D12) and (D18), we find

—[?Ess(yxyy) + s*Eas(yyyy) + 25cEss(yx vy)]

= 1[1 +erf (o) l[c’og f> + 5707 fs6 + 2c50x0y fi6]

o exp(—ug) [*o3 (1 + f2) + s(03y + 0x0y f36) ]
N3 o1+ f)¥? '
Substituting (32a), (32b), (33a) and (DS5) into (32), the ensemble average with shadowing
effect becomes

<' . '>5 = COS2 93|F(qza)\/§[1 _ fo]l/2)}2

2
X {81 |:l + (ox t.emex)z(&f2 + SZGYJ;56 s O'Yf36)i|
o

(33a)

X ox
&, tan 6, oy 2
- 1+ +s| — + 34
ox(L+ )72 |:C(7X( 12) S( o oy f36 (34)
with
1 2 M
er =l +erf(no)] e =exp(—u3)/2Vm) 1o ox (Lt )17 (344)
If the shadowing function is ignored then {A = 0, up — oo} involving that {&; =

l,e, = 0} and |F|? = exp[—qzza)z(l — fo)]. The ensemble average becomes (---)s =
cos? 6, x1[1+ (o tan 65)% x po2]1, then (24) is found with { f; = 0, fis = 0} since the correlation
between the slopes and heights is neglected.

For an isotropic surface, Ry, = 0, which means from (12b) and (12¢) that {C¢ = 0, C3¢ =
0,0, =o0y},1e.{fic =0, f3s = 0, 0x = oy}, and (34) becomes

(-5 = 08”6, | F(g-0v2(1 — f)»)[ {1 + (ox tan 6,)2(c? fo + 5> fs6)]
—e tanf,cPox (1 + f2)'/2}. (35)

5. Simulations of the backscattering coefficient with and without shadow

This section presents the backscattering coefficients given by (13) with and without shadow
obtained from the ensemble average calculated in the previous section, for an isotropic
perfectly-conducting surface. The results are compared with the stationary phase and
geometrical optics approximations which can be defined as particular cases of Kirchhoff’s
solution. The model is also compared with respect to the choice of the surface height
autocorrelation function.
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5.1. Development

Substituting (24) into (13) with (15a) and (25), for an isotropic surface, the backscattering
coefficient without shadowing effect (exponent US) with u = r/L. (L. denotes the surface
correlation length) is

L2k2 C052 Gs 0 2w )
oUS = Tf uduf expl—q (1 — fo)lexpljr(q; +4;)"/* cos(® — ¢)]
—00 0

{ (ox tan6,)%[ f> + fs6 — (q-wf1)*]
x{1+

2 + 2J(GX tan 95)(qzwfl) COS(@ - 905)

L COS[2(P — )] (ox tan 9;)2[f2 — (q:0f1)* = fsel } 0. 36)
Knowing that
2
Yy = / exp[jx cos(® — ¢;)]dd = 27 Jy(x) (36a)
0

we have

2w 8‘1’0
v, = / cos(P — ¢;) exp[jx cos(® — ¢,)]dD = —ja— =2mjJ1(x)
0 X

2 PV
v, = / [cos(® — ,)]” expljx cos(P — ¢,)]dP = _ja_xl =n[Jo(x) — Jo(x)] (36b)
0

2
s = / cos[2(DP — ¢5)] exp[jx cos(P — ¢;)]dP = 2W; — Wy = —27 J>(x)
0

where J; is the ith-order Bessel function. Since the autocorrelation function is independent of
the direction @, and substituting (36a) and (36b) into (36), the integration over ® leads to

N (ox tan6,)*[ f> + fs6 — (%wfl)]]
2

o¥S = (k, cos@s)Z/ uexp[—qZo*(1 — fo)]{[l
0

X Jo(\/zukc sin ;) — 2(ox tan 6;) (g, wf1)Jq (x/zukc sin 6y)

_ (ox tan 0,)*[ f> — (q:wf1)* — fs6]
2

I, (V2uk, sin 6,) } du (37)

with k., = ﬁkLC. For any surface height autocorrelation function Ry (r) we can write

3’ Ry
ar? |,

_ 0)2 82f0
=0 L ou?

ox Lc

. = w= —Ifé’(0)|1/2' (38)

2 _
oy =

Equation (38) involves g, = (2/| f;/(0)])"/?*k. cos 6, ox.

The functions {fy, fi, f2, fs6, | fo'(0)|} for Gaussian and power surface height
autocorrelation functions of parameter p are expressed in table 1 with respect to u, and plotted
in figure 2. Itis interesting to study these autocorrelation functions because they have the same
slope variance and are used in the literature [10].
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Figure 2. Functions {foy, f1, f2, fs6} versus u = r/L. for Gaussian and power surface height
autocorrelation functions with p = 1 and 1.5.

From (35), and using the same method, the scattering coefficient with shadow (exponent
S) is expressed as

‘”=@wmﬁffwmn%m@a—ﬁwmz
0

2 _ 12
X{81[2+(Uxtan9s) (f2+ fs6)] — extanOs0x (1 + f2) Jo(v/3uk, sin6,)

2

_&i(ox tan 6,)2(f> — fs6) — €2 tanOsox (1 + f)1/?
2

Jo(N2uk, sin 05)} du (39)

with g-0v/2(1 = fo)'/2 = 2k, cos b ox (1= fo) /1 f O)'2. As{fo, fi, far fseh (F, €1, €2}
also depends on u.

The stationary phase approximation (index SP) assumes that the electromagnetic
field is scattered around the specular direction, which means in (15) that {yxc, yyc} =

—tan 6, corresponding to the orthogonal direction of incident beam u = cot6f,, and
{yys,yys} = 0. Therefore, the ensemble average does not depend on the slopes and
becomes

expl—gZw*(1 — fo)]
cos? 0, ’

1 00 oo
<. . > — —— / / exp[jqz(zl _ Z//)]p(Z,, Z//) dZ/ dZ” — (40)
cos? 0 J_ o Joo
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gure 3. Normalized incoherent backscattering coefficients {01 O N: Orsp»OGo) in dB

without shadowing effect versus the scattering angle 6; for ox = 0.3 and k = {30, 40, 50, 60}
with a Gau%%ian surface height autocorrelation function (p = 1). oUS . the circle curve; Ull]/ 1\51 full
curve; “s P , broken curve and aG 0O+ CTOSS curve.

Substituting (40) into (13) and performing the integration over ®, we obtain

2

k2 [ .
ols = M /0 uJo(~2uk, sin6,) exp[—q’w* (1 — fo)ldu. (41)

The geometrical optics approximation (index GO) or high-frequency limit is obtained by
approximating fj by the first two terms of its Taylor series expansion about the origin. 1 — fj
then becomes 1 — | f(0) |u?/2 + O(u*) in the integral (41) and the integration over u leads to

1 tan’ 0,

Us _ S
o —exp| ——— ). 42
G0 262 cost b p( 205 ) 42

Consequently, O'GO depends only on the surface slope variance ox and on the scattering angle
O;.
5.2. Simulations of the incoherent backscattering coefficient

The Kirchhoff approximation is valid if {kL, > 27, kR, > 2m}, where k is the wavenumber
and R, is the surface mean curvature radius which is equal for Gaussian and power surface
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Figure 4. Same simulations as in figure 3 but with ox = 0.1.
height autocorrelation functions with p = 1 and small slope oy = \/ia)/ L. [17]
kL, kL,
kR.G = R.r 43)

1.950x (1 +302/4)

T 2.760x(1+302/4)

In the literature [1] the condition kR, = 2m is replaced either by kR, cos6; > 2m or
kR.(cos6)® > 2m, which is the most often quoted restriction on the applicability of the
Kirchhoff theory.

The scattered intensities from a random surface can, in general, be decomposed into
coherent and incoherent components. The coherent component o ,,c mostly contributes in the
specular direction, whereas the incoherent component o,,; contributes in all directions, and
we can write [18]

Opql = Opg — OpgC (44)
where the coherent component o, ¢ is calculated from averaging |(- - -)¢ |? defined as
2
el = ‘ [ [ [tsin6utrse + vs) = costu1explia.p@' v ) &2 dpany| @)
with
4 RS(ES )
Opge = ——————. (45a)

Ag|Eo?
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Figure 5. Normalized incoherent backscattering coefficient o IU S in dB versus the scattering angle
65 with Gaussian (full curve with p = 1, broken curve with p = 1.5) and power (circle curve with
p = 1, cross curve with p = 1.5) surface height autocorrelation functions. The parameters are the
same as in figure 3.

From (15), we can show that

(el = () it {fo. fi. f2. fre: f36, fs6} =0 (40)

which is similar to neglecting the correlation. Consequently, from (37), (39), (41), the

coherent components without shadow o 2%, with shadow o, and under the stationary phase

approximation of, SSP are expressed as

oo
§ = (k. cos 6,)* exp(—qo?) f uJo(V 2uk, sin 6;) du (46a)
0
F 2 2 00
og = (k. cos 93)2M / u{Jo(\/EukC sin6y)(2e; — g tan B;0x)
0
+J2(«/§ukc sin 6;)é&, tan 0;0)(} with o = u/ox in {ey, €} (46b)
ol = ol (460)

For the simulations, k. = ~/2kL. is chosen such that the criteria {kL. > 27, kR, > 27}
are valid.

In figures 3 and 4, equation (44), the normalized incoherent backscattering coefficients
{O‘IU S, UIUS‘}, ag g} ((37) minus (46a), circle curve; (41) minus (46c¢), broken curve; (42), cross
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Figure 6. Normalized incoherent scattering coefficients a,U S (full curve), a,UUSN (broken curve)
and UIS (circle curve) in dB versus the scattering angle 65 for ox = 0.4 and k. = {30, 40, 50, 60}
with a Gaussian surface height autocorrelation function.

curve, respectively) and UFUSN = O’IUS with f; = 0 are plotted versus the scattering angle

0s. k. = {30, 40, 50, 60}, ox = {0.3,0.1}, with a Gaussian surface height autocorrelation
function (p = 1). The incoherent scattering coefficients are normalized by the maximum of
O'IU 5. As expected, the backscattering curve drops off more slowly with increasing angle as the
surface RMS slope increases. If the surface RMS slope oy decreases, o }{/SN is similar to oIUSSP,
and UIUSfD tends to ag g. The deviation between O’IU 5 and U,UUSN increases with the scattering
angle, and /% is larger than o);;y. Consequently, when the correlation between the slopes
and the heights is ignored, the incoherent component is smaller. This underestimation, which
is not noticeable in relation to k., decreases when the surface slope decreases, because the
ox tan f; term in equation (37) becomes smaller.

In figure 5, the normalized incoherent backscattering coefficient o IUS in dB is represented
versus the scattering angle 6, for ox = 0.3 and k. = {30, 40, 50, 60} with Gaussian (full curve
with p = 1, broken curve with p = 1.5) and power (circle curve with p = 1, cross curve with
p = 1.5) surface height autocorrelation functions. Although the functions { fy, f1, f2, fs¢} are
different according to the autocorrelation function (see figure 2), the incoherent backscattering
coefficient does not vary with the autocorrelation function. This behaviour may be explained
by the fact that the parameter k. is sufficiently large that the functions { fy, f1, f2, fs6} can
be approximated by the first two terms of its Taylor series expansion about the origin. This
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Figure 7. Same variation as in figure 6 with ox = 0.1.

involves the functions becoming the same, because they have the same series development. It
is interesting to note that we have a generalization of the geometrical optics. Simulations with
ox = 0.1 give the same behaviour.

In figures 6 and 7, the normalized incoherent scattering coefficients oS (full curve), 055,
(broken curve), 0,5 (circle curve (39) minus (46b)) in dB are plotted versus the scattering angle
0; foroxy = {0.4, 0.1} and k. = {30, 40, 50, 60} with a Gaussian surface height autocorrelation
function. As depicted in figures 6 and 7, o Il{/SN is in agreement with (TIS . This means that the
shadowing effect may be ignored due to the fact that the backscattering coefficient is very
small when the shadowing function becomes important. Indeed, the parameter (16a) A which
characterizes the shadowing effect according to the heights, varies between [0; 0.0533] for
{ox = 0.4, 6, e [0;60]°}, which implies with (C9) that [1 — erfc(X/2)]* remains equal to
one. Moreover, the parameter g in (34a) with 1 /oy tan 65 € [1.443; infinity] is so large that
the {1, &;} functions corresponding to the shadowing effect on the slopes do not disturb the
unshadowed scattering coefficient.

We can note that o assumes that the correlation between the slopes and the heights is
negligible, which explains the deviation between o} and or5. It will be interesting to compare
these in magnitude when the correlation is introduced, because the unshadowed incoherent

scattering coefficient o/® decreases less slowly than that obtained without correlation
Us
O

IUN
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6. Conclusion

The backscattering from a two-dimensional randomly rough perfectly-conducting surface has
been investigated using Kirchhoff’s approach (KA) with shadowing effect. For a non-perfectly-
conducting surface with a slope and height joint Gaussian stationary process and for any surface
height autocorrelation function, the scattering coefficient obtained from the Kirchhoff integral
requires eight integrations. This means that the problem cannot be solved analytically and
numerically without additional assumptions. Moreover, the introduction of the shadowing
function involves that the surface height and slope joint probability density function has to be
determined considering the shadowing function.

For a monostatic configuration with a perfectly-conducting surface, seven integrations
can be performed analytically for an isotropic surface, instead of six for a two-dimensional
surface. With the inclusion of the shadowing function, the number of numerical integrations
increases by one.

For an isotropic surface, the simulations show that k., = «/EkLC and oy tan 0,, where k
is the wavenumber, L. the surface correlation length, ox the surface slope standard deviation,
are relevant parameters for estimating the agreement between the results obtained from the
Kirchhoff approximation and those computed from the stationary phase (SP) and geometrical
optics approximations. The Kirchhoff theory is valid if the parameter kL. = k./+/2 and the
surface curvature radius are larger than 2.

With Gaussian and power surface height autocorrelation functions, the simulations
show that the incoherent backscattering coefficient is barely noticeable according to
the autocorrelation function. Moreover, it is interesting to note that the stationary
phase method underestimated the incoherent backscattering coefficient. This deviation
between the results obtained from SP and KA decreases when the surface slope variance
decreases.

Assuming that the correlation between the heights and the slopes is negligible (it is often
the case for the different spectra we used), it is observed that the backscattering coefficient
calculated with shadow is similar to that obtained without shadow. This comes from the fact
that when the shadowing effect becomes important, the incoherent component is small. It will
be interesting to apply the same method with correlation.

The prospect of this work may be the study of the dielectric surface for one- and two-
dimensional surfaces. We have seen that the effect of the shadowing function may be small
for a backscattering configuration, but we believe that for a bistatic configuration the effect
of the shadowing function cannot be ignored. Since it is very difficult to solve the Kirchhoff
integral for any configuration, it will be interesting to use the exposed method for one- and
two-dielectric surfaces with the stationary phase approximation in order to verify the previous
comment.

Appendix A. Expected values of first order without shadow

This appendix presents the calculus of the following expected values E4(yx), E4(yy), E4(yy)
and E4(yy) when the shadowing effect is not investigated. Firstly, the expected value
E4(yx) is performed, and we show that the others are obtained from E4(yx) by variable
transformations.

We need to solve the following integral over yx:

o0 o0 o0 o0
E4(yx) 2/ yx dyx [/ / / p. 2" vx. vy vr. vy) dyy dyy dy%}- (A1)
- —00 J —00 J —00

[e¢]
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The term between brackets corresponds to the marginal probability integrated over
{yx. v, vy} and is equal to the probability density p(z’, z”, yx) given by

!/

Z
! 1 17 — "
p 2" yx) = G RIMI exp | =5[22 yx M1 | z (A2)
Yx
where [M] is (12) [Cxy] partitioned matrix defined as
0)2 Ro 0
Ml=| Ry ®* —Ri |. (A3)
0 —R1 O‘)%

The inversion of the matrix [M] leads to
1

p, 2" yx) = @ RIM

y exp|:— Mi112'% + Minz"? + 2Mi122/ 2" + Misyg + 2(Mj132 + M523Z”)Vx]

2[[M]]
(A4)

with
My = 0?02 (1 — f7) M, = —w*0l fo fo = Ro/o?
My = w’o} M3 = ooy fo fi fi = —Ri/(wox) (AS)
Mizs = o*(1 = f§) Mins = —w’ox fi M]| = oo (1= f7 = f§)
where |[[M]] is the determinant of [M]. Writing that

P, 2 yx) = W exp(—ayx — 2byx — ). (A6)

Identifying this equation with (A4) and using the following relationship:

/: yx exp(—ayy — 2byx — ¢)dyx = —l;}/—f em(%z - C> (AT)
with a > 0, we show that the expected value E4(yx) is

Ei(yx) = %__é/)ﬁ”p(zz ) (A8)
where p(z/, 7) is the surface height joint probability expressed as
p, 7" = _ exp|:—;(z’2 +7"2 — 2foz’z”)]. (A9)

2ra?(l — fHI2 20%(1 — f3)

The calculation of b>/a — ¢ in (A7) is not required due to the fact that it has to be equal to
the exponential term of p(z/, 7). When f; = 0, which is similar to neglecting the correlation
between the heights and the slopes, and since the surface slope mean m,, is assumed to be
equal to zero, we have E4(yx) =m,, =0.
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The computation of E4(yy) is obtained from the marginal probability p(z’,z”, )
characterized by the following covariance matrix:

602 Ro R]
M1=| Ry «* 0 |[. (A10)
Rl 0 O')%

Comparing (A10) with (A3), the covariance matrix [ M'] is obtained from [ M ] by swapping
7/ in z” and R in —R,;. Therefore, from (A8) we obtain

_oxfi@ =" fo)

Eq(yx) = o= f2) p, 7). (A11)
Consequently,
Ex(y) + Ea(y}) = %_;O)Z)p(zx ). (A12)

Using the same method as the derivations of {E4(yx), E4(yy)}. the expected values
{E4(yy), E4(yy)} are computed from (A12) by swapping f; in fi¢ = —Cis/(woy), thus

oy fis(z" —2')

E4(yy) + Es(yy) = o — 7o)

p, 7). (A13)

Appendix B. Expected values of second order without shadow

This appendix presents the calculus of the following expected values E4(yxyy), Es(yrvy).
E4(yxyy) and E4(yyyy) without a shadowing effect. Firstly, the expected value E4(yxyy)
is performed, and we show that the others are obtained from E4(yxyy) by variable
transformations.

We need to solve the following integral over yx yy:

o0 o0 o0 o0
E4(yxvy) =/ / yxvy dyx dyy U / p 2" vx. vy vy vy) dyy dyy]. (B1)
—00 J—c0 —00 J —00

The term between brackets corresponds to the marginal probability integrated over
{yx. yr} and equal to the probability density p(z’, z”, yx, yy) given by

P, 2 yx. vy) = 75 exp | =3l yxpylICl! (B2)

1
@m)%|[C|

where [C] is (12) [Cxy] partitioned matrix defined as

[C]= . (B3)
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The inversion of the covariance matrix [C] leads to

2 2 2 2
7 7Cin +7"7Cina + v Cizs + vy Cisa

/ " Yy — 1
p(, 7", vx, )/y) = (271)2|[C]|1/2 exp[_

2|[C]l
22/2"Cina + 2yxyy Ciza + 22/ (yx Cins + vy Cing) + 22" (yx Cins + V)//Ci24)]
2|[C]l
(B4)
with
Cinn Cin Ciz Cis
(7 = 1 Ciiz Cin Cixz Cin (BS)
I[CI'| Ciizs Cinz Cizz Ciza
Ciis Cisa Cizg Cisg

where {C;jx, |[C]|} are given by
Cint = w’(030y — C3¢) — oy R}
Ciny = w* (0307 — C3g) — 03 Cie

Cii2 = Ro(C3s — 0307) — R C16C36

Cii3 = —0¢RoR; — @*C16C36
Cizg = 03 RyC16 + @’ R C36

Citg = C16(R} — w*03) — RyR|Cs6

Cizz = op(w* — RY) — 0?3, Cizz = Ri(w*0} — C¥) + RyC16C6 (B6)
Ciz3Cizg — C
Cias = 03 (0" — RY) — *R} [C] =~ i
w* — R
Ciza = Cis(@” — R§) + RoR; Ci6.
Using (A7) and the same form as (A6) according to yy, the integration over yy leads to
—J7 ®© b?
E = b1 + yxby) exp| — — d B7
+(yxvy) anrica e | vx(bi+yxby)exp| — —c Jdyx (B7)
with
g Ciss
2|[C]
Z'Cita +7"Cing Cizs
b = ———— 2= T b= b +yxby B8
21[C]] 20C]] (B8)
. 22Ci1 +2"%Cing + 222" Cing + 2yx (2'Citz + 2 Ciz) + 3 Cins

2|[cll

To perform the integration over yy, the exponential term b*/a — c is written as
—a'y2 — 2b'yx — ¢/, and using (A7) and the following expression:

o0
with
_ Ciz3Cias — Ch,
2[[C1ICiaa

b/

* ’ / U ﬁ 2 U ’ /
[ y)% exp(—a y)% —2b'yx —c)dyx = 50572 exp(; —c)(a +2b'?)

(B9)

(B10)

_ Z(CiaaCirz — Ci34Ci1a) + 2" (CiaaCinz — Ci34Cin4)

2|[C]ICis4
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we show that

by by b b'?
Es(yxyy) = Sl 2 a2 [2b<b_2 — ;) — 1:| exp<7 - ). (BI1)

The determination of b’ /a’ — ¢’ is not required because it corresponds to the exponential
term of the surface height joint probability density p(z’, z”) given by (A9). This involves that

exp(b'?/a’ — ') = 2w Jo* — R} p(Z, 2") with Ry = w? f,. Substituting (B8) and (B10) into
(B11), we have

E4(yxyy) =+ o* — R} (%)yzp(ﬂ N {=Ciss + [[2/(Ci34Ci1a — CiaaCi13)
i33Ciza — Ciyy
+2"(Ci34Cina — CiaaCi23)1[2 (Ci34Ci13 — Ci33Ci14)
+2"(Ci3aCiny = Cins Coo | [IICN(CinsCraa = CE] ). (B12)
Substituting (B6) into (B12), we show

p(, 2" { Ci6R1(Z Ry — Z'0?)(Z'w? — 2" Ry)
ot — Rg ot — Ré

Es(yxyy) = — [C16R1 Ry + C36(0* — RS)]}-

(B13)

If Ry =0and Ci6 = 0, then E4(yxyy) = —C36p(z’, "), which corresponds to the slope
cross-correlation when the correlation between the heights and the slopes is neglected.
The computation of E4(yxyy) is obtained from the marginal probability p(z’, z”, vy, vv)
characterized by the following covariance matrix:
a)z Ro R1 0
R() Ll)2 0 —C1(,
R1 0 0')2( —C36
0 —Cis —Cyx o}

[C] = (B14)

Comparing (B14) with (B3), the covariance matrix [C’] is obtained from [C] by swapping
7 in z” and {R;, Ci¢} in {—R;, —C6}. Therefore, from (B13) we obtain

E4s(yyyy) = Ea(yxyy). (B15)

The determination of E4(yxyy) is obtained from the marginal probability p(z’, z”, yx, )
characterized by the following covariance matrix:
w?> Ry 0 Ry
Ry o* =Ry 0
0 R 0)% —R,
Rl 0 —-R, o}

[Ci] = (B16)

Comparing (B16) with (B3), the covariance matrix [C;] is obtained from [C] by making
{Ci6 = Ry, C36 = Ry, 03 = 0)2(}. Therefore, from (B13) we have

, p(Z/, Z//) Rlz(Z/RO _ Z//U)z)(Z/CUZ _ Z//Ro)
Ey(yxyy) =

PR p— —[RfR0+R2(a)4—R§)]}. (B17)
— o ()



114 C Bourlier et al

The expected value E4(yyyy) is computed from the covariance matrix

a)2 Ro 0 C]6
, RO U)z —C16 0
[C}] = ) : (BI8)
0 —C16 Oy —CS()
C16 0 —C56 O')%
Comparing (B18) with (B16), the covariance matrix [C{] is obtained from [C;] by making
{R| = Cy4, Ry = Cs¢}. Therefore, from (B17) we have

p(z/’ Z//) C126(Z/R0 _ Z//a)Z)(Z/wZ _ Z//RO)
w* — R} w* — R}

Es(yyyy) = — [C¥Ro + Csg(w”* — Ré)]}.

(B19)

Appendix C. Characteristic function with shadowing effect

This appendix presents the derivation of the surface height joint characteristic function,
with a shadowing effect, determined from the method exposed in subsection 4.2 by making
Vixy =€'8"], V{y = ['z"], and [Cxy] = [H].

The [V'] unitary eigenvectors and the [X] eigenvalues matrix of (31) [H] is then

A0 1| 11 A= (1 = fo)
[Z]= [Vl=— 2 (CDH
0 A «/E -1 1 M =w (1+f0)
Since the covariance matrix is Hermitian the eigenvalues A;¢pi:27 = 0. Using (29) with
n= —% and inverting (27), the height uncorrelated samples {£', £”} are expressed from the

height correlated samples {z/, 7"} as

1 1 1 1
]| VRV va YR |[ 7
é_-// - 1 1 1 1 7" . (C2)

I T Ve

Substituting (C2) into (26) and using (30), we show that the surface height joint probability
density with shadowing effect is expressed as follows:

ps(Z', 7" = p z”){ [1 - lerfc(Mﬂ [1 -1 erfc(M)] }A (C3)
T me ? V2 ? V2

with

1 1 1
b= 5[0 — o2 fo)l/z} (C4)

o | 1 1
2T 5[0 —fol2 +fo)'/2}

The second term of (C3) denotes the shadowing effect. If fy = O corresponding to the
heights uncorrelated case, then {b; = 1, b, = 0}, the second term of (C3) then becomes equal
to that of (26), withw = 1 and {§¢' =7/, &" = 7}.
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Substituting (C3) into (21), the surface height joint characteristic function with shadow
becomes

o) =) L, 1 b]Z/_sz”)iH: 1 <b1Z//_b2Z/>i|}A
= Z,2 1——-erfc|{ ———— 1——-erfc|] ————
X! /—oo /—oo p( )H: 2 ( a)ﬁ 2 a)ﬁ

x explig, (z' — z")1dz" dz". (Cs)

In order to simplify the first double integral xgs;, the following variable transformations
are used:

Z/ = —blZ/ — bZZN Z,/ = —blZN _ bZZ/ (C6)
a)ﬁ w\/z
which leads to
b1 Z' +b, 7" b, 7' +bZ"
d=oV2—2 Y=oV (C7)
by —b; by —b;

Substituting (C6) and (C7) into xs; with the Jacobian equal to 2w*(1 — f)!/? and using
the definitions of (C4) {b;, b,}, we prove that

xsi = | Fla:ov2yT=fo)|’ (C8)
with
F(--)= L /OO expl(-- ) Z'Texp(—Z')[1 — L erfe(z)]" dZ’ (C9)
VOGN 2 '

The variable transformations allow transformation of a double integral into two
independent simple conjugate integrals. If the shadowing function is ignored which is similar
to having A = 0, then the integration over Z' can be determined analytically and gives
exp[—q?wz(l — fo)] corresponding to the x; term of (23).

Appendix D. Expected values of first and second orders with shadowing effect

This appendix presents the calculus of the expected values Eg4(- - -) with a shadowing effect
defined by (33).
The expected value Eg4(1) is defined as follows:

R o oo
Eg(1) =f / dyx d)/;}[f / P(yx, vy vv. vy) dyy dﬁ] (D1)
—o00 J —00 —o00 J—00

The term between brackets corresponds to the marginal probability integrated over {yy, yy }
and is equal to the probability density p(yx, yy) expressed as

]
2oy (1 — fH12 2031 — f3)
Substituting (D2) into (D1) and applying the following variable transformations:
yx = ox[X(1+ ) = X'(1 - )]
vy = ox[X(1+ )2+ X1 = )]

the integral (D1) with the Jacobian equal to 202 (1 — f7)!/? becomes

Py, vx) = vy + vy — 2fmy§)] (D2)

(D3)

1 wlox(1+ )12 ]
Egi(1) = — / dx / exp(—X% — X'%)dx'. (D4)
T J- —00

[ee]
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Performing the integration over {X, X'}, we obtain

I S
ox(1+ f)!/?

Using the same method as previously, we prove that the expected value Eg4(yyyx) is

Esq(1) = 3[1 +erf(10)] Mo (D5)

2
“Xzf 211+ erf(p)] —

oz (1+ f2)po exp(—pu3)
N3 '
If the shadowing function is ignored, which is the same as making wy — o0, then

Ess(yxyx) = 03 fo.
The expected value Eg4(yy) is defined as

Esa(yyxyx) = (D6)

Iz n o0 oo
Esa(yy) =/ dyx/ dV;’(/ yy dyy [/ P(VX,J/;,(,Vy,)/{z)dVY:|- (D7)
—00 —0Q —00 —00

The term between brackets corresponds to p(yx, ¥y, yy), the marginal probability
integrated over yy characterized by (31) [S] partitioned matrix is expressed as
o )2( - R2 — C 36
[Si1=| —Ry o3 o} | (D8)
—Cs oxy 0}

Applying the same method as appendix A, and performing the integration over y, we
show that

1 TR
Egs(yy) = m/_w /_OO[J/;’((G;Z(Y — oxoy f2 f36)

+yx(ox0y f36 — oy )1 (vx, vy) dyx dyg (DY)

where { f2, f3¢} are given by (19a).
The expected value Eg4(yxyy) is given by

Lo opr poo
Ess(yxyy) = / / / vx vy P(¥x, vx» vy) dyx dyy dyy. (D10)
—00 J —00 J —00
From (D9), the integration over yy, leads to
1 noopu
Ess(yxyy) = ﬁ[ / vxlyx o3y — ox0y f2f36) + vx(0x0y f36 — oy )]
Ux(l - fz) —00 J —c0

x p(yx, yx) dyx dyy. (D11)

Using the variable transformation (D3), and performing the integration over {X, X'}, we
have

ox0y f36 fo exp(—p?)
Esi(yxyy) = ————[1 +erf(1o)] — (0gy + 0x0y f36) —————. (D12)
27w
If the shadowing function is ignored, which is the same as making ©o — oo, then
Esi(yxyy) = oxoy fzs = —Csg, corresponding to the cross-slope correlation.

The last expected value to calculate is Es4(yyyy) defined as

Iz u 00 poo
Esu(yyyy) = / dyxf dyy U / Yy P(Vx, Yy, Vv, vy) dyy dy;]. (D13)
—00 —00 —o0 J —00



Kirchhoff integral from a two-dimensional randomly rough surface with shadowing effect 117

The integrations over {yy, yy} are similar to those made in (Bl), with {z' = yx,
7" = yy,vx = yr}. However, in this case, the covariance matrix [S] is defined from (31)
instead of (B3). Consequently, from (B12), the integrations over {yy, yy} lead to

s 32
Vox — R%(%) p(vx. vy)

1335134 — Sy

x{—Siza + [[x (Si3aSi1a — SiaaSi13) + v (SizaSioa — SiaaSi23)]

X[y (SizaSits — Si338i14) + ¥x (Si3aSin3 — Si335124)]1]

x[ILS11(Si33Sias — $30] '} (D14)
where §;;; are the elements of the [S] inverse covariance matrix given by
Sit1 = Sin = 03(0y — C36) — 07 (y + C3g) + 203y C36Cs6
Siz3 = Siaq = 07 (0y — R3) + 053 (0yy + Cig) + 2035, RaCsg
Sit2 = Ra(oy — C%) + Csg(oyy + C36) — 203,05 Cag
Siza = Css(0y — R3) + Ry(oyy + C3) — 203,05Cs36 (D15)
Si13 = Sina = Ra(07C36 — 03y Css) + 03 (C36Cs6 — 0705%y) + 0y (0xy — C36)
Sita = Siz3 = Ry(C36Cs6 — 030gy) + 03 (07 C36 — 03y Cs6) + Cag(0yy — Cx)
811 = (53 — S34)/ (0% — R3).

Substituting (D15) into (D14), we show that

/ 1 H K ’
Esq(yyyy) = Mf_oo /_oop(yx, Yx)
x{—[Cse(ay — R3) + Ry(oyy + C3¢) — 203,053 C36]
+[[(C36Ry — 05y03)vx + (05 C36 — 03y R V¢ I[(C36 Ry — 05y 03) vk

+(03Cs6 — 03y R)yx]][of — R3] ™'} dyx dyy. (D16)

Using the variable transformation (D3), and performing the integration over {X, X'}, we
obtain

, (OFF; (02y — C36)* poexp(—ud)
E =——[1+erf — . D17
sa(yyryy) > [1 +erf(uo)] Y W (D17)
The use of (19a) leads to
. o} fs (0%y +0x0y f36)? 1o exp(—ug)
Ess(yyyy) = [1+erf(uo)] — (D18)

2 o3 (1+ f2) 27

If the shadowing function is ignored, which is the same as making wy — 00, then
Es4(yyyy) = —Cse.
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