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Effect of Correlation Between Shadowing and
Shadowed Points on the Wagner and Smith
Monostatic One-Dimensional Shadowing Functions

Christophe Bourlier, Joseph Saillard, and Gérard Berginc

Abstract—The Wagner [1] and Smith [2], [3] classical monos- on a random rough surface of givén height above the mean
tatic one-dimensional (1-D) shadowing functions assume that the plane and with local slopgy = 8z /dy is illuminated, when

joint probability density of heights and slopes is uncorrelated, thus the surface is crossed by a beam incident from direcéion
inducing an overestimation of the shadowing function. The goal of _. .
Fig. 1. It is equal [1]-[3] to

this article is to quantify this assumption. More recently, Ricciardi
and Sato [4], [5] proved that the shadowing function is given rig-

orously by Rice’s infinite series of integrals. We observe that the L .
approach proposed by Wagner retains only the first term of this ~ 5(6, £,L) =T(p — 7o) - exp [—/ g(0|F;1) dl|  with
series, whereas the Smith formulation uses the Wagner model by 0

introducing a normalization function. In this article, we first calcu- 0 si vy>pu

late the shadowing function based on the Ricciardi and Sato work (g —70) = 1 si v < p 1)

for an uncorrelated process. We will see that the uncorrelated re-

sults do not have any physical sense. Next, the Wagner and Smith ) . - -
formulations will be modified in order to introduce the correlation. Whereg(9|F7 l) dl is the conditional probability that the beam

Correlated and uncorrelated results are compared with the refer-  intersects the surface in the intervi&ll + di], given the ray
ence solution, which is determined by generating a surface [8] fora does not cross the surface in the intef@al], T is the Heavi-
Gaussian autocorrelation function. So, we will show that the corre- - side function ang. = cot? denotes the slope of incident beam.

lation improves the results for valuesu < 2, where purepresents — tpgpefore, the averaged shadowing function over the slgpes
the slope of incident ray ando the slopes variance of the surface. ! . o
and over the height&, is given by

Finally, our results will be compared to those given in [9], deter-
mined from the first three terms of Rice’s series, but the shadowing

function used is not averaged over the slopes. S(6,L) = /Oo /Oo S(6, {70}, L) - p(0,7v0) d€o dro
) - ) ) ) )
Index Terms—Electromagnetic scattering by rough surfaces. —00 J—oo

2)
wherep(&o, o) is the joint probability density of heights and
|. INTRODUCTION slopes. In [9], Kapp and Brown only determine the integration
. . . , gver&y. Substituting (1) into (2), we obtain

HE monostatic shadowing function characterizes the sur-

face fraction which is visible by an observant. Work on oo pp
the shadowing function has been going on since the 1960'sin ~ S(6,1) = / / (&0, 70)
order to determine the electromagnetic scattering from a ran- Tee T
domly rough surface. The energy scattered from the total sur- L OlF-1) dil den d 3
face is multiplied by the shadowing function [6]. The analyt- Foxp _/ 9(01E: 1) fo dyo- (3)

ical shadowing function proposed by Beckmann [7] is equal to
the illuminated portion of the surface and it varies from one at Ricciardi and Sato [4], [5] showed that the function is
normal incidence to zero at grazing angle. Brokelman and Hagjven by Rice’s infinite series of integrals (Section I). Wagner
fors [8] suggested that a shadowing function is equal to the fraetains only the first term of the series, whereas Smith uses
tion specular points that are illuminated rather than the fractitime Wagner formulation combined with a normalization func-
of all surface points. They showed that the analytical functidion (Section 1ll). Moreover, they assume that the process is
proposed by Beckman is accurate for grazing and quasi-norrf&dussian and uncorrelated. The Ricciardi and Sato expression
angles of the surface, whereas there is a difference in their i®-calculated assuming an uncorrelated Gaussian process and
sults between those two boundaries. we show that the analytical solution obtained has no physical
For an observation lengthl., the shadowing function meaning. Next, the Wagner and Smith formulations are used in
S(6, F, L) is equal to the probability that the poift(y,vo) order to introduce the correlation. We show that the shadowing
functions are always given in function of only one parameter
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Fig. 1. The monostatic configuration of the shadowing function.

In order to estimate this hypothesis, the Wagner and Smitthere W,, (1,11, -+, L,—1|F) dli dlz---dl,,—1 is the joint
classical shadowing functions and those calculated with the cprebability that the incident ray of equatia®), = &, + ul,
relation, are compared with the reference solution obtained byosses the surfacé(l,,), with a slope p inferior to the
generating a Gaussian surface (Section 1V). We show that #lepe~,, surface’s abscissg, in the intervals{[l1;{; + dl],
effect of the correlation improves the results and itis negligib[&;l> + dls],---,[ln-1;l.—1 + dl,—1]}, conditionally to
when the parameteris greater than 1.4. Finally, our results willthe knowledge ofF'(&q, vo)- p2n+2(§;é|£0,’yo) is the joint
be compared to those given in [9], found from the first thregrobability density of vectorsS” = [S1,S2, -+, 5,] and
terms of Rice’s series, but their shadowing function is not avefif’ = [v1, 72, -,7n] at abscissa point§ly,ls,---,1.},
aged over the slopes. knowing {£o,~v0}. The problem is slightly different from these
presented by [4] and [5] because the probability density; »
is conditioned in our case by the variablg&, 0}, whereas
[4] and [5] only consider the terrg,.

Ricciardi and Sato [4], [5] show that the functigris given For an uncorrelated Gaussian stationary process and with
by an infinite series Zero meama, 42(S; G|¢, vo) is given by

[I. SATO AND RICCIARDI APPROACHES

+ p2n+2(§;é|£0770)
g8 F:1) = Wi (I|F) - / Wa(ly, 1| F) diy ) LI R
0 — a2 S (42 (5)
(2row)n 2 ~

l l
—‘r/ dlq Wg(lQ,ll,”F) dls
0

L l l where{s?,w?} are the variance of slopes and heights respec-
g (—1yr / i, / il tively. Substituting (5) into (4b)i¥,, becomes
l 0 15 n 52
/ Wl 1y, by 1 [F) dl_y  (43) Wa = exp —2 202
L1 =
1 o0 ’_y2 n
with : [%w A (v— ) exp <_F) dv} - (6)
We obtain after integration over
Wn(lv llv ) ln—l|F)
_ dy / dy / dvn W, =e — v <—> with
/u 1 ) 2 ) XP ; ) w2

(v = W)P2n+2(S; Gléo, v0) (4b) v="t_ A= ¢ —uy/x erfe(v) @)

V2 2uy/m

n

i

%
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Fig. 2. Wagner and Sato—Ricciardi uncorrelated shadowing functions.

with erfc the complementary error function. Substituting (7)
into (4) and doing the different integrations we can write

g =go-exp(—X) with

_< pA )e [_&H—ul)?

P \uyar) Y 22 (8)
- _ A Sotpl\ &

+=3 [erf( wV2 ) erf<w\/§>]

Using relations (8) and (1), the shadowing function integrated 0 05 1 y 115 2 25 3
for an infinite length is given by ey

Amplitude

Fig. 3. Functiong;; for a Gaussian autocorrelation function.
Ssr(0, F) ’
=5(6,F, L— o)

=T (p—"0)exp {exp {—%erfc <

& it is essential to include the correlation. Unfortunately, the com-
\/—ﬂ - 1} . (9) plexity of (4) makes the analytical determination of functipn

wv2 very difficult, indeed impossible. Nevertheless, the analytical

Substituting (9) into (2), the averaged shadowing function @alculations are possible for Wagner's and Smith’s correlated

functions.
—e—M —
Ssr(v) = [1 - erfc(v)} [El( <) - L2 1)} with
2 Ae Ill. W AGNER AND SMITH APPROACHES WITHCORRELATION
oo —st
Ei(z) = / ¢ dt. (10) The Wagner function [1] is given by the first terbi; (1| F)
1 ¢ of the series (4)
The Wagner shadowing function [1] obtained from [4] and 00
[5] first term is given by gw(0|F;1) = Wi (I|F) = / (y1—p)pa(&otpl; v1)|&o) dyi-
7
erfc(v 1—eA (13a)
Sw(v) = [1 - (2:( )} < A ) . (11)  smith [2], [3] uses the Wagner formulation by introducing a

normalization function
Fig. 2 represents the Wagner ((10)) and Sato—Ricciardi ((11)) -
functions. We observe an identical behavior of these two curves Z (11 — )pal€o + 1 |€0,70) dmn
for v > 0.6; on the other hand, it differs for lower values corre- ’ ’
sponding to grazing incidence angles and we can write gs(0|F; 1) = —~

0 Eotpl :
/ / p(&1, 11180, 70,70) dé1 dm
T (13b)
Physically, the shadowing function is equal to zero at the A correlated Gaussian stationary process with zero mean is
grazing angled = 90°, which involves that when the corre-defined as follows:
lation is not introduced, the Sato and Ricciardi uncorrelated re-
sults are not correct at grazing angles. On the other hand, the(&1,711€0,70)
Wagner result is accurate but overestimates the shadowing func- ow

tion. The phenomenon modeling is not being accurate enough, 2/ M

Ssr(0)=¢"1/2=0,184 and S (0)=0. (12)

2 2
exp(—% VT[C]—1V+§—°+E) (14a)

202 202
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with Using the same method, the determination of the Smith con-
ditional probability leads to (16a), shown at the bottom of the
r&o page, with
V=% and ) 1
Yo Al = (011033 — Clg)Dl —_— = 1
- By = [£0(C12Ch3 + C14C. )2033]\41
_ 9 1 = [€o(C12C33 + C14C03
;; fg _(])? ]f)l +70(C13Cs4 — C14D33)] Dy (16b)
€1=1% “r .2 _g (14b) C1 = [6(C11Cs3 — CF,) +75(C35 — C3y)
t . + 26070(C13C33 — C14C34)] D1
_Rl 0 _R2 g

. . . . The function introduced at the denominator of (16a) repre-
where £, is the spatial autocorrelation function assumed EV&lents the Smith normalization. In the Gaussian case, the auto-
and derivate at zerd,?;, R»} its first and second derivatives. .. 1otion function is ' ’

The heights variance? is equal toRy(0) and the slopes vari-
ances? is —R»(0). M is the determinant of the covariance ma-
trix [C], and R1(0) = 0. Substituting (14b), (14a) into (13a),

and perfoming the integration ovey, we obtain

R,(y) = w? exp(—yQ) with 3= L

I 17

whereL. is the correlation length. The firgt; and second?,
derivatives are defined as follows:

aw (0]F;1)

2 2 2 2
_ow exp[—D — p(pA +2B)| Ru(y) = 2w vt and Ra(y) = _2u12 (1-2¢%)c Y.
dr AV Le Le (18)
(B—i—uA)Q}B—i—uA <B+LLA>:| - . .
- |1—+/me erfc Substituting (17), (18) into (15c), we obtain
[ NZ3 Xp|: T A r Ja g (17), (18) (15¢)
(153) (Cu _ 1 fu
. 2M1 o 2w2 f]w
with (15b), shown at the bottom of the page, and Ci2 1 fio
2M, 202 fu
Ciy = w(o* — R3) + Rio® Co _ 1 Js
Ci2 = Ro(R3 — 0*) — RiR» 2C,M1 2? fu with
013 = Rl (R00'2 — LUQRQ) 34 S E
2 2 2 2M, 202 fu
{ Cia = Ry(w?0® + Rf — RoR») Cis 1 fis
. 033 = 02(R3 — w4) - R%wQ (15C) M = \/— N
1 20w fm
034 = Rg(w4 — R%) + R%RO 014 _ 1 E
L 2My 20w [
A —_ % —_ 0323 B C§4
2M wt— R3
B §oCq — 5;?}3 + 70034 €1 = o+ pl (15b)
D (&8 +&1)C11 + 26061 Ci2 +270(60Ci3 — 61C1a) +7%5C3 &8 5
2M 2w? 207
2
exp[—D —v(vA+2B)] |1 — /7 exp [(B—i_NA)} Btnd erfC<B+NA>
1 [A; A VA VA

Bf & % A&+ By
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Initial state i=1

d_Z,‘ _ (Ziy 1= 20)

dy 248y

Derivate

A =z,—(j-i) -Ay-cotb

Shadowing straight line

Sequence repeated until i=N

N is a number of samples

Fig. 4. Algorithm of shadowing function.

( Farly) = f33(y) — f3u(y) Therefore, the Smith and Wagner conditional probabil-
M 1— (32—2%/2 ities depend on four variablegh,p,v,y} and functions
fuly) =1—c 2 (1 — 22 + 4y*) {fi;(); fa(y)}. According to (3), the averaged shadowing
Fr2(y) = e (1= 242) — ¥ function, for a Gaussian stationary process with mean zero and
fas(y) =1— @—2y2(1 + 22) (19)  for infinite observation length, is given by
faaly) =¥ (27 + 72" — 1) 2 2
— 9,3,—2y° 1 R
fualy) = 2"V 5(6) = / / exp <—§—°2 - L%)
 fra(y) =ye ¥ (1 —e~20). 2row J_oo J_ooo 2w 20
Using (19), (15b), and (16b) and making the variables trans- - €Xp <—/ g(O|F51) dl) déo dyo.  (22)
formations 0
Using the variables transformation of (20), (22) becomes
£o 3
h=—= ——i—hl:h—l—y\/iv
R " @) gy =t [T eplen? - (0 —p)?
—— =v—p with v=—-
o th N> T A p p

we obtain (21), shown at the bottom of the next page. "exXp [_LC /0 9y, h.p, v) dy} dh dp. (23)
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The integration interval of function is defined between zero with
and the infinite. In order to reduce this domain, the integral is

separated into two parts

Yt
o o J(hp) = exp [—@—p)?—Lc | st bpo) aol
/ gdy:/ gdy+/ gdy=G+G,. (24) { o T
0 0

Y

The transition integration boundagy is obtained when

o _J1 fori=3j
ﬁj_@f‘{Ofmi¢j (29)

The termsf;; (19) are represented in Fig. 3 versus the re
duced variablg.. We observe that the intercorrelation functions
{f12; f34; f13; f14} @are very weak foy > 3 and that the correla-
tion functions{ f11; f33} become independent gfand are equal

I(h) = exp[—h? — Grws(h,v)]

(28b)
Wagner and Smith assume = 0 leading to
1—e™™F

Swwy = T 1
with  F(v) =1 — = erfe(v).

Ss(v) = £ 2

s A+1

(29)

Table | summarizes the calculations of the averaged one-di-

to one, thereforey, = 3. In fact, (25) corresponds to Wagnelmensional (1-D) monostatic shadowing function over the slopes

and Smith hypothesis, moreover, they assumeithat 0. Sub-
stituting (25) into (21), we obtain

— L2 2 _ 2
D_h +hl+(v p) 01:h2+(v_p)2

B+ uA B
= 1
VA 7?_0
Vim _ 1 . A /3
W\/§f33 7T\/§ VA =1 p Il = o

1(pA +2B) = v*?

(26)

Substituting (26) into (15a), (16a) and into (245w, Gis}
are given by

Gyw (h,v) = % erfo(h + yv/2v)

_erfe(h + yt\/ﬁv)] : (27)

Gts(h,v) =—1In [1 2

p and over the heights for a Gaussian autocorrelation func-
tion. This determination requires three linked integrations. The
first calculates the exact integration of functigon the interval
[0;4:]- The second one is made ovéth, p) according to the
variablep. Thus, the last result obtained is multiplied b )
and integrated ovek. The Wagner and Smith classical shad-
owing functions do not take into account the correlation, i.e.,
y+ IS equal to zero. This involves that thEh, p) integration
overp becomes independenthfthen the two integrations over
{p,h} of {J(p),I(h)} are independent and resolved analyti-
cally ((29)). Finally, the shadowing function depends on only
one parameter = ;/o+/2, wherey represents the slope of in-
cident beam and the slopes root mean square.

IV. SIMULATIONS

In order to estimate the introduced hypothesis, the shadowing
function is determined numerically by generating the surface

Using (24) and (23), the Wagner and Smith shadowing funk8l- It is the reference solution because it does not assume any

tions are defined as follows:

wﬂw:%/m

—o

J(h)[Jﬁoo J(h,p)dp} dh  (28a)

hypothesies. The surfac€i) is generated by applying to the
input of the filter of impulse response+), a Gaussian white

noiseb(¢) of unitary variance with zero mean, which involves
thats(¢) = b(¢)*r(¢), wherex denotes the convolution product.

D=

( (R% + h2) fi1 + 2Ry f12 + 2v2(v — p)(Rfiz — h1fia) + (v — p)? fa3

Sy

P)faa + vf33 Leow Vim

VA

B+ pA _ V2(hfia — hifis) + (v —
V faafur
02 faz + 2v20(h fia — b1 f13) + 20 fza(v — p)

47TA\/M - 7T\/§f33

p(pA +2B) =

2 fi1fss — 214

C
' s o

+ (v —p)

W I )
Foafu T 2Mo—p)

By h{(fizfas +2f1afis) + (v — p)V2(fiafas — frafas)

f
y 3 fiafss = fufs (21)

f33f]\4

VAL

VAE = h fi1fas — 2%
L Jaafar

V fasfa(fi1f3s — 2f1s)
L

AV
T A 7

Viifz =2/
Ja3
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Fig. 5. Random surface generation of Gaussian autocorrelation function.
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Fig. 6. One-dimensional monostatic shadowing function.

For a Gaussian autocorrelation function of unitary variance,

impulse response is given by
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In order to estimate the hypothesis introduced by Wagner and
Smith, the uncorrelated (29) and correlated (Table I) shadowing
functions are compared with the reference solution. Fig. 6 de-
picts the different shadowing functions. The reference solution
is in solid line, the Wagner and Smith results without the cor-
relation are plotted in dotted line, whereas the correlation is in-
cluded in crosses and circles. We observe that the effect of the
correlation decreases the values of the shadowing function with
an identical behavior. In Fig. 7, the absolute error between the
reference solution and the Wagner and Smith shadowing func-
tions are shown. For values of> 1.4, the effect of the correla-
tion is negligible, corresponding to incidence angles inferior or
equal tod = atar(0.5/0), wheres? is the slopes variance. For
values ofv < 1.4, the correlation divides the absolute error by
about three (Table Il). The results obtained by Smith are better
than those determined by Wagner.The shadowing functionis de-
termined numerically by applying the algorithm of Fig. 4 [8].
itdhe output and input signals of the filter are represented at the
top of Fig. 5 for a Gaussian autocorrelation function. The white
noise generated is composedi6b 000 = 500L.samples and
the correlation lengtlL. is equal to 200. The first two figures
represent the input and the output normalized histograms, com-
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TABLE |
WAGNER'S AND SMITH'S SHADOWING FUNCTIONS FOR AGAUSSIAN AUTOCORRELATION FUNCTION

S(v) = = Il(h)ﬁl(h p)dp}dh

—o0

Shadowing
function Ye
I(h) = expl-K> -G J(hp) = CXP[—(v—p)Z-LIg(y, b p, V)dy}
0
Integration hel-33] pel03+v] y, =3
s, 2 § = 1_3_*'_”.4
gwl, = Wig-e " [1-¢" Jaserfe($)]  with JA
Sy = D+ p(uA +2B)
WAGNER s SRS by f13)+ 0= P)fag + VS 3 W - N
function: gy, L, Foln LT
and Lp o DA 2 S e 220 pYBS b S ) o0 sy a o
Y
szﬁ + zﬁ"(hf14—h1fn)+ 2vfa(v-p)
(KA +2B) = —= 7, -

. e_vz —v.frerfe(v)

WAGNER A
function Gy Gy = 5-erfeth+y2v) v = ;—”ﬁ A P
S B? (o)
L SSn S2J1—tSerfc(S)] R ” 277,74
= N v Ah,+B
e - erfe(~S3) Sy = 1j_ 1
Ay
SMITH
function. g¢L 2 2
¢ Sifm=211 F~f F13f33= Fraf,
2 1133 14 2 /337 34 33 34
s _py .33 I3 v - R 33 T4
€= F3afy *=p) Iafy +2h(v= )2 RESTIY
y B, h(f12f33+2f14f;3)+(V—p)ﬁ(f13f34—f14f33)
an =
JA Jf33fM(f,1f3,-2f2 )
J_ f,,f33—2ff3 _J: ./i fllf33 2f|3
RESTY s
SMITH erfc(h+y,ﬁv A
Gy = —ln[l ———2——q

function: G,

TABLE I
RoOOT MEAN SQUARE ERRORS OFSHADOWING FUNCTIONS
Shadowing Decorrelated Deccorelated Correlated Corraleted
functions Wagner Smith Wagner Smith
RMS en % 3,2 1,3 3,0 04

pared with their theoretical distribution. We observe a Gaussiaally, at the bottom of Fig. 5 are represented the behaviors of
behavior with zero mean (centered on zero), the power is cahe normalized autocorrelation functions. In the input, we ob-

tained between-30 and3c. The behavior remains Gaussiarserve a peak centered on zero, which is theoretically the Dirac
distributioné(¢), whereas in the output we observe the expected

because the filter is linear.
The input and output signals, respectively, are plotted in tlitocorrelation function because the difference between the the-
middle of Fig. 5. The input signal is very noisy whereas theretical curve and the one determined from filter coefficients is

output signal becomes smoother thanks to the correlation. &imall.
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tionary Gaussian process, for a Gaussian autocorrelation func-

C ~ tion. So, the Wagner and Smith correlated results are lower than
rof N e —— the uncorrelated ones but are greater than those obtained by the
S R B W : 1 : . . .

104,* N e | reference solution. Nevertheless, the Smith model is very close
£ 1 X ~+—+ Wagner : correlated | to the reference solution (Figs. 6, 7) and we show that the effect
é b5 0-0 Smith: correlated | of the correlation is negligible when the incidence angle is infe-

i ® ~ : . . . .
2 ! U rior to atar{0.5/c), whereo? is the slopes variance. Finally, the
2 ' SR T N DAV S B R . . . . . . .
ER RN o : analytical expressions of the shadowing functions given in this
< ' . ~ : : : . H .
A ; SN R N article allow to obtain a best accurate than those presentedin [9].
! *\ L L The prospect of this work is to extend the method in the two-di-
R R S ST . : mensional configuration, i.e., introduce the second component
A ~ ; : . . .
gp’v)’ ; %*;’ew?*’ee;"“sﬁ&::lisﬁegw - 2. In this case, the sp_atlal auto_correlatlon fL_Jnct_Ru'(a:, y) de-
0 0z 04 06 08 1t 12 14 16 18 2 pends on the Cartesian coordinatesy), which involves that
Parameter v we must give the new expression of the covariance mgdfias
a function of Ro(z, y). In literature, we have found any paper,
Fig. 7. Absolute error of shadowing function. which presents this aspect.
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