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Effect of Correlation Between Shadowing and
Shadowed Points on the Wagner and Smith

Monostatic One-Dimensional Shadowing Functions
Christophe Bourlier, Joseph Saillard, and Gérard Berginc

Abstract—The Wagner [1] and Smith [2], [3] classical monos-
tatic one-dimensional (1-D) shadowing functions assume that the
joint probability density of heights and slopes is uncorrelated, thus
inducing an overestimation of the shadowing function. The goal of
this article is to quantify this assumption. More recently, Ricciardi
and Sato [4], [5] proved that the shadowing function is given rig-
orously by Rice’s infinite series of integrals. We observe that the
approach proposed by Wagner retains only the first term of this
series, whereas the Smith formulation uses the Wagner model by
introducing a normalization function. In this article, we first calcu-
late the shadowing function based on the Ricciardi and Sato work
for an uncorrelated process. We will see that the uncorrelated re-
sults do not have any physical sense. Next, the Wagner and Smith
formulations will be modified in order to introduce the correlation.
Correlated and uncorrelated results are compared with the refer-
ence solution, which is determined by generating a surface [8] for a
Gaussian autocorrelation function. So, we will show that the corre-
lation improves the results for values 2 , where represents
the slope of incident ray and the slopes variance of the surface.
Finally, our results will be compared to those given in [9], deter-
mined from the first three terms of Rice’s series, but the shadowing
function used is not averaged over the slopes.

Index Terms—Electromagnetic scattering by rough surfaces.

I. INTRODUCTION

T HE monostatic shadowing function characterizes the sur-
face fraction which is visible by an observant. Work on

the shadowing function has been going on since the 1960’s in
order to determine the electromagnetic scattering from a ran-
domly rough surface. The energy scattered from the total sur-
face is multiplied by the shadowing function [6]. The analyt-
ical shadowing function proposed by Beckmann [7] is equal to
the illuminated portion of the surface and it varies from one at
normal incidence to zero at grazing angle. Brokelman and Hag-
fors [8] suggested that a shadowing function is equal to the frac-
tion specular points that are illuminated rather than the fraction
of all surface points. They showed that the analytical function
proposed by Beckman is accurate for grazing and quasi-normal
angles of the surface, whereas there is a difference in their re-
sults between those two boundaries.

For an observation length , the shadowing function
is equal to the probability that the point
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on a random rough surface of given height above the mean
plane and with local slope is illuminated, when
the surface is crossed by a beam incident from direction
Fig. 1. It is equal [1]–[3] to

with

(1)

where is the conditional probability that the beam
intersects the surface in the interval , given the ray
does not cross the surface in the interval is the Heavi-
side function and cot denotes the slope of incident beam.
Therefore, the averaged shadowing function over the slopes
and over the heights is given by

(2)
where is the joint probability density of heights and
slopes. In [9], Kapp and Brown only determine the integration
over Substituting (1) into (2), we obtain

(3)

Ricciardi and Sato [4], [5] showed that the function is
given by Rice’s infinite series of integrals (Section I). Wagner
retains only the first term of the series, whereas Smith uses
the Wagner formulation combined with a normalization func-
tion (Section III). Moreover, they assume that the process is
Gaussian and uncorrelated. The Ricciardi and Sato expression
is calculated assuming an uncorrelated Gaussian process and
we show that the analytical solution obtained has no physical
meaning. Next, the Wagner and Smith formulations are used in
order to introduce the correlation. We show that the shadowing
functions are always given in function of only one parameter

where represents the slope of incident
beam, and the slopes variance of the surface. But they also
depend on the autocorrelation function and its first and second
derivatives. So we can say that the autocorrelation function is a
constant if we neglect the correlation.
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Fig. 1. The monostatic configuration of the shadowing function.

In order to estimate this hypothesis, the Wagner and Smith
classical shadowing functions and those calculated with the cor-
relation, are compared with the reference solution obtained by
generating a Gaussian surface (Section IV). We show that the
effect of the correlation improves the results and it is negligible
when the parameteris greater than 1.4. Finally, our results will
be compared to those given in [9], found from the first three
terms of Rice’s series, but their shadowing function is not aver-
aged over the slopes.

II. SATO AND RICCIARDI APPROACHES

Ricciardi and Sato [4], [5] show that the functionis given
by an infinite series

(4a)

with

(4b)

where is the joint
probability that the incident ray of equation
crosses the surface with a slope inferior to the
slope surface’s abscissa in the intervals ,

, conditionally to
the knowledge of is the joint
probability density of vectors and

at abscissa points
knowing . The problem is slightly different from these
presented by [4] and [5] because the probability density
is conditioned in our case by the variables whereas
[4] and [5] only consider the term .

For an uncorrelated Gaussian stationary process and with
zero mean is given by

(5)

where are the variance of slopes and heights respec-
tively. Substituting (5) into (4b), becomes

(6)

We obtain after integration over

with

erfc
(7)
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Fig. 2. Wagner and Sato–Ricciardi uncorrelated shadowing functions.

with erfc the complementary error function. Substituting (7)
into (4) and doing the different integrations we can write

with

erf erf
(8)

Using relations (8) and (1), the shadowing function integrated
for an infinite length is given by

erfc (9)

Substituting (9) into (2), the averaged shadowing function is

erfc
with

(10)

The Wagner shadowing function [1] obtained from [4] and
[5] first term is given by

erfc
(11)

Fig. 2 represents the Wagner ((10)) and Sato–Ricciardi ((11))
functions. We observe an identical behavior of these two curves
for ; on the other hand, it differs for lower values corre-
sponding to grazing incidence angles and we can write

and (12)

Physically, the shadowing function is equal to zero at the
grazing angle , which involves that when the corre-
lation is not introduced, the Sato and Ricciardi uncorrelated re-
sults are not correct at grazing angles. On the other hand, the
Wagner result is accurate but overestimates the shadowing func-
tion. The phenomenon modeling is not being accurate enough,

Fig. 3. Functionsf for a Gaussian autocorrelation function.

it is essential to include the correlation. Unfortunately, the com-
plexity of (4) makes the analytical determination of function
very difficult, indeed impossible. Nevertheless, the analytical
calculations are possible for Wagner’s and Smith’s correlated
functions.

III. W AGNER AND SMITH APPROACHES WITHCORRELATION

The Wagner function [1] is given by the first term
of the series (4)

(13a)
Smith [2], [3] uses the Wagner formulation by introducing a

normalization function

(13b)
A correlated Gaussian stationary process with zero mean is

defined as follows:

(14a)
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with

and

(14b)

where is the spatial autocorrelation function assumed even
and derivate at zero, its first and second derivatives.
The heights variance is equal to and the slopes vari-
ance is . is the determinant of the covariance ma-
trix and . Substituting (14b), (14a) into (13a),
and perfoming the integration over we obtain

(15a)

with (15b), shown at the bottom of the page, and

(15c)

Using the same method, the determination of the Smith con-
ditional probability leads to (16a), shown at the bottom of the
page, with

(16b)

The function introduced at the denominator of (16a) repre-
sents the Smith normalization. In the Gaussian case, the auto-
correlation function is

with (17)

where is the correlation length. The first and second
derivatives are defined as follows:

and

(18)
Substituting (17), (18) into (15c), we obtain

with

(15b)

erfc

erf
(16a)
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Fig. 4. Algorithm of shadowing function.

(19)

Using (19), (15b), and (16b) and making the variables trans-
formations

with
(20)

we obtain (21), shown at the bottom of the next page.

Therefore, the Smith and Wagner conditional probabil-
ities depend on four variables and functions

. According to (3), the averaged shadowing
function, for a Gaussian stationary process with mean zero and
for infinite observation length, is given by

(22)

Using the variables transformation of (20), (22) becomes

(23)
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The integration interval of function is defined between zero
and the infinite. In order to reduce this domain, the integral is
separated into two parts

(24)

The transition integration boundary is obtained when

for
for

(25)

The terms (19) are represented in Fig. 3 versus the re-
duced variable . We observe that the intercorrelation functions

are very weak for and that the correla-
tion functions become independent ofand are equal
to one, therefore, . In fact, (25) corresponds to Wagner
and Smith hypothesis, moreover, they assume that . Sub-
stituting (25) into (21), we obtain

(26)
Substituting (26) into (15a), (16a) and into (24),

are given by

erfc

erfc (27)

Using (24) and (23), the Wagner and Smith shadowing func-
tions are defined as follows:

(28a)

with

(28b)

Wagner and Smith assume leading to

with

(29)
Table I summarizes the calculations of the averaged one-di-

mensional (1-D) monostatic shadowing function over the slopes
and over the heights for a Gaussian autocorrelation func-

tion. This determination requires three linked integrations. The
first calculates the exact integration of functionon the interval

The second one is made over according to the
variable . Thus, the last result obtained is multiplied by
and integrated over. The Wagner and Smith classical shad-
owing functions do not take into account the correlation, i.e.,

is equal to zero. This involves that the integration
over becomes independent of, then the two integrations over

of are independent and resolved analyti-
cally ((29)). Finally, the shadowing function depends on only
one parameter where represents the slope of in-
cident beam and the slopes root mean square.

IV. SIMULATIONS

In order to estimate the introduced hypothesis, the shadowing
function is determined numerically by generating the surface
[8]. It is the reference solution because it does not assume any
hypothesies. The surface is generated by applying to the
input of the filter of impulse response , a Gaussian white
noise of unitary variance with zero mean, which involves
that , where denotes the convolution product.

(21)
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Fig. 5. Random surface generation of Gaussian autocorrelation function.

Fig. 6. One-dimensional monostatic shadowing function.

For a Gaussian autocorrelation function of unitary variance, its
impulse response is given by

(30)

In order to estimate the hypothesis introduced by Wagner and
Smith, the uncorrelated (29) and correlated (Table I) shadowing
functions are compared with the reference solution. Fig. 6 de-
picts the different shadowing functions. The reference solution
is in solid line, the Wagner and Smith results without the cor-
relation are plotted in dotted line, whereas the correlation is in-
cluded in crosses and circles. We observe that the effect of the
correlation decreases the values of the shadowing function with
an identical behavior. In Fig. 7, the absolute error between the
reference solution and the Wagner and Smith shadowing func-
tions are shown. For values of , the effect of the correla-
tion is negligible, corresponding to incidence angles inferior or
equal to atan , where is the slopes variance. For
values of , the correlation divides the absolute error by
about three (Table II). The results obtained by Smith are better
than those determined by Wagner.The shadowing function is de-
termined numerically by applying the algorithm of Fig. 4 [8].
The output and input signals of the filter are represented at the
top of Fig. 5 for a Gaussian autocorrelation function. The white
noise generated is composed of samples and
the correlation length is equal to 200. The first two figures
represent the input and the output normalized histograms, com-
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TABLE I
WAGNER’S AND SMITH’S SHADOWING FUNCTIONS FOR AGAUSSIAN AUTOCORRELATIONFUNCTION

TABLE II
ROOT MEAN SQUARE ERRORS OFSHADOWING FUNCTIONS

pared with their theoretical distribution. We observe a Gaussian
behavior with zero mean (centered on zero), the power is con-
tained between and The behavior remains Gaussian
because the filter is linear.

The input and output signals, respectively, are plotted in the
middle of Fig. 5. The input signal is very noisy whereas the
output signal becomes smoother thanks to the correlation. Fi-

nally, at the bottom of Fig. 5 are represented the behaviors of
the normalized autocorrelation functions. In the input, we ob-
serve a peak centered on zero, which is theoretically the Dirac
distribution , whereas in the output we observe the expected
autocorrelation function because the difference between the the-
oretical curve and the one determined from filter coefficients is
small.
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Fig. 7. Absolute error of shadowing function.

Fig. 8. Comparison of Kapp’s and Brown’s models to our results for� =

0:3:

In [9], Kapp and Brown have calculated the averaged
shadowing function over the heights from the first
three terms of Rice’s series while including the correlation. In
order to compare their results with ours, those are multiplied
by erfc representing the slopes integration. The
Wagner and Smith correlated shadowing functions, that of
Kapp–Brown, and the reference solution are plotted in Fig. 8
versus the incidence angle for a variance slopes . We
observe that the Kapp and Brown results are less accurate than
ours and their model diverges at grazing angles.

V. CONCLUSION

In this article, we have quantified the effect of the correla-
tion on the Wagner and Smith 1-D monostatic shadowing func-
tions. Ricciardi and Sato proved that the shadowing function is
equal to an infinite series of Rice (4). We showed that the ob-
tained uncorrelated analytical resulthas not physical sense. On
the other hand, the Wagner solution given by the first term of
this series is correct, but overestimates the shadowing function.
In order to estimate the effect of the correlation, the Wagner
and Smith formulations are used by considering a correlated sta-

tionary Gaussian process, for a Gaussian autocorrelation func-
tion. So, the Wagner and Smith correlated results are lower than
the uncorrelated ones but are greater than those obtained by the
reference solution. Nevertheless, the Smith model is very close
to the reference solution (Figs. 6, 7) and we show that the effect
of the correlation is negligible when the incidence angle is infe-
rior to atan , where is the slopes variance. Finally, the
analytical expressions of the shadowing functions given in this
article allow to obtain a best accurate than those presented in [9].
The prospect of this work is to extend the method in the two-di-
mensional configuration, i.e., introduce the second component

. In this case, the spatial autocorrelation function de-
pends on the Cartesian coordinates , which involves that
we must give the new expression of the covariance matrixas
a function of . In literature, we have found any paper,
which presents this aspect.
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