
Progress In Electromagnetics Research, PIER 27, 185–335, 2000

INTRINSIC INFRARED RADIATION OF THE SEA

SURFACE

C. Bourlier, J. Saillard, and G. Berginc

IRESTE-Laboratoire SEI/EP CNRS 2018
Rue C. Pauc
La Chantrerie -BP 60601
44306 Nantes Cedex 3
France

Prologue– The infrared contrast of ships at sea is of importance for
those who want to detect, identify and achieve target acquisition and
for those who want to protect to enhance target vessel’s first strike
capability and hence its survivability. Infrared signature control or
stealth technology is changing the face of naval warfare and is rapidly
becoming a key performance parameter in warship design. The infrared
contrast is determined by a large number of parameters. Temperatures
of the ship structure and the ambient sea and air are important. But
the infrared and visible signature is due not only to target emissions
but to the immediate target background. Infrared signature designs are
driven by signature generation mechanisms and threat sensors charac-
teristics. Definition of threat sensor types (operating bands, resolution
capability) helps to focus infrared and visual signature control on the
spectral regions and spatial dimensions of greatest interest. One of the
more common divisions of the visual or infrared signature definition is
the separation based on so-called imaging versus non-imaging sensors.
Imaging sensors threats are represented by the human eye and aids such
as televisions, FLIRs (forward-looking infrared) and image intensifiers.
These threats possess the ability to resolve and process silhouette and
internal target pattern detail. Non imaging sensors depend on target
signal strength and background separation. Nonimaging sensor threat
are represented by missile seekers, IRSTs (infrared search and track)
and terminally guided submunitions. The more recent generation IR
missile seeker threats use the 3 to 5 µm band, future threat seekers
are likely to use imaging focal plane arrays. Infrared search and track
systems work in the same 3 to 5 µm band as do missile seekers. Future
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systems may include the 8 to 12 µm band in addition to 3 to 5 µm in
an effort to obtain more skin signature. These threats rely on radar
or inertial navigation to place the IR seeker in position to acquire the
target. The IR guidance can take over in the terminal phase after
the target is confirmed. The threat tracker incorporates automatic
gain control to adapt the background level. The target may appear as
either negative or positive in contrast to the background. The global
signature depends on the sea and sky clutters.
Unresolved signatures result from the difference between the signal
received with the target present compared to that received with the
target absent. Signature control design requires that the total radiation
occluded by the target is supplied by the target. The suppression goal
is to minimize target contrast.
Resolved signatures result from pattern-related features including not
only the pattern of major recognizable components but also the internal
texture of the components. Signature control design requires that such
features be disguised. The suppression goal is pattern deception.
The concept of signature control includes everything that minimizes
signatures and signal with the aim of delaying or preventing detection
and identification. This signature control allows an increase of its
own counter-measures and sensors. The benefits gained from reducing
infrared signatures are an increased performance of its own sensors and
an increase in the performance of its own counter-measures, provided
that the radiated and scattered energy from the ship is substantially
lower than that of the counter-measures. But the most important
benefit of IR signature control is when the infrared signature is so
low that even if it is possible to detect the vessel, identification and
engagement are impossible. To obtain the later benefit, the infrared
signatures must be at the same level as or lower than the environmental
background noise (the sea clutter).
We have seen that target signature results from the difference between
the target and its immediate background and clutter. The sky back-
ground may be reflected by the target. Clutter effects are determined
by threat. Reflection from the ocean surface have the effect of alter-
ing the apparent shape and spectral content of the target. Reflection
occurs in calm seas and in certain solar scenarios.
For nonimaging sensors target total emissions is reduced to match the
background emission which is given by the sea emission. Unresolved
target signatures depend on background intensity mean values as well
as on intensity variations. Contrast should be reduced to some level
compared with the sensor’s internal noise level.
For resolved targets, imaging sensors see internal target detail and
external shape detail. Target signatures are defined by their pattern
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features. Resolved target signature depend on background intensity
mean values, clutter intensity variations on the size scale of the internal
target detail.
Infrared contrast complexity, as we have mentioned before, is due to a
number of physical phenomena:

- spectral response of sensor
- spatial resolution of sensor
- range and aspect angle (azimuth and elevation)
- solar heating
- internal heating sources
- wind cooling determined by convective heat transfer
- radiation from exhaust gases
- sea clutter emissivity
- sea state and temperature
- sun glint at the sea surface
- sea surface reflection of cold sky or cloud background

These phenomena are in general difficult to model. Cold sky cooling
is countered by water condense and wind effect. Exhaust gas emission
peaks in C02 extinguishes at ranges 3–5 µm . But the most difficult
phenomena to characterize are the sea surface emission and reflection.
We present in this paper a self-consistent model of two-dimensional sea
emissivity which is a key parameter in sea background model.
The ocean study requires the knowledge of several parameters in or-
der to compute the scattering, the emissivity and the reflectivity of
the sea surface. In theory, the ocean is represented by an ergodic and
stationary process of second order with three dimensions: one tempo-
ral component and two spatial components. This description requires
the knowledge of two functions. Firstly, either the two-dimensional
sea spectrum or its inverse Fourier transform, the two-dimensional sea
autocorrelation function. Secondly, the probability distribution func-
tion for either wave heights or slopes. Various sea spectrum found in
literature [1, 3, 7, 9–13], e.g., the Pierson, Apel and Elfouhaily spec-
tra established in the 70’s, 94 and 97 respectively. These spectra have
similar gravity waves but differ in capillary waves. On the opposite,
the sea autocorrelation function is often modeled by a gaussian and ex-
ponential anisotropic behaviors [16], involving that all characteristics
of the sea spectra are not included. With the aim to take them into
account, the two-dimensional autocorrelation function of the heights is
modeled rigorously as a function of the wind speed, the wind direction
and the distance between two points located on the sea surface. The
slope probability density assumed to be gaussian requires the calculus
of the slope variances in the upwind and crosswind directions. They
are determined from the Pierson, Apel and Effouhaily spectra. The
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results are compare with the Cox and Munk model [18]. These differ-
ent concepts are developed in the first chapter.
Theories for wave scattering from rough surfaces generally assume that
whole surface is illuminated by the incident beam. In practice some
regions of the sea surface may be screened by other parts of the surface.
This phenomenon is quantified by the shadowing function equal to the
ratio of the illuminated surface [23]. Early developments of shadowing
theories (Wagner [19], Smith [20, 21]) assume that the shadowing and
shadowed point are uncorrelated, involving that the shadowing func-
tion is independent of the autocorrelation function. They also suppose
that the surface is one-dimensional and that the observed surface is
infinite. Recently Ricciardi and Sato [25, 26] showed that the shadow-
ing function is rigorously defined by Rice’s infinite series of integrals.
This series is computed for uncorrelated gaussian process. Wagner’s
approach retains only the first term of these series, whereas the Smith
formulation uses the Wagner model by introducing a normalization
function. In the second chapter we introduce the correlation on the
Smith and Wagner shadowing functions, for any autocorrelation func-
tion, and for a given observation length. The obtained results are
generalized in the monostatic and bistatic two-dimensional cases with
and without correlation. The new method improves the previous re-
sults without correlation, and may be applied for any autocorrelation
function and for any observed surface. For simulations in the two-
dimensional case, we use the autocorrelation function modeled in the
first chapter.
In the last chapter, the two-dimensional emissivity of the sea surface is
computed. This magnitude characterizes the intrinsic radiation of the
sea surface in the infrared frequencies. As the temperature measured
by the infrared camera depends on the emissivity, it is an important
parameter for retrieving the sea surface temperature from remotely
sensed radiometric measurements, such as from satellites. In literature,
articles [32–34] assume that the surface is isotropic and the shadow is
not taken into account. The emissivity model developed by [35, 36] is
valid when the averages slopes of the sea surface are smaller than unity,
involving the use of the Smith one-dimensional shadowing function. We
present in the last chapter, our model of the emissivity based on [35,
36]. We do not introduce any hypothesis on the slopes, and we use
the two-dimensional shadowing function with and without correlation
developed in the second chapter. The polarization is also taken into
account.



Intrinsic infrared radiation of the sea surface 189

1. STUDY OF THE SEA BEHAVIOR

1.1 Introduction

1.2 Study of the Waves
1.2.1 The Wave Development
I.2.2 The Dispersive Relationship

1.2.2.1 Gravity Waves
1.2.2.2 Capillary Waves
1.2.2.3 Gravity and Capillary Waves

1.2.3 Fetch
1.2.4 Conclusion

1.3 The Sea Statistical Approach
1.3.1 Statistics of Stochastic Processes

1.3.1.1 Second-order Properties
1.3.1.2 Stationary Process
1.3.1.3 Ergodicity
1.3.1.4 Marginal Probability

1.3.2 Configuration of the Problem
1.3.3 The Autocorrelation Function
1.3.4 The Probability Density
1.3.5 Two-Scale Model

1.4 Sea Spectra
1.4.1 Introduction
1.4.2 The Friction Speed
1.4.3 Gravity Spectra
1.4.4 Global Spectra: Gravity and Capillary

1.4.4.1 The Pierson Spectrum
1.4.4.2 The Apel Spectrum
1.4.4.3 The Elfouhaily, Chapron, Katsaros and Vandemark

Spectrum
1.4.4.4 Simulations

1.4.5 The Angular Functions

1.5 The Autocorrelation Function
1.5.1 The Spatial Autocorrelation Function

1.5.1.1 Introduction



190 Bourlier et al.

1.5.1.2 The Analytical Determination of the Angular
Integration

1.5.1.3 Simulation and Modeling
1.5.1.4 Conclusion

1.5.2 Slope Variances
1.5.2.1 The Variance Definition and Angular Integration
1.5.2.2 Numerical Integration over the Wave Number
1.5.2.3 Simulations

1.6 Conclusion

2. THE SHADOWING FUNCTION

2.1 Introduction

2.2 The One-dimensional Monostatic Shadowing Function
without Correlation
2.2.1 Introduction
2.2.2 The Definition of the Shadowing Function
2.2.3 The Wagner, Smith and Ricciardi-Sato Approaches

2.2.3.1 Wagner and Smith
2.2.3.2 Ricciardi-Sato

2.2.4 Application for an Uncorrelated Process of the Infinite
Surface
2.2.4.1 Wagner and Smith
2.2.4.2 Ricciardi-Sato
2.2.4.3 Simulation on a Gaussian Process

2.3 The One-dimensional Monostatic Shadowing Function
with Correlation
2.3.1 Expressions of the Wagner and Smith Conditional

Probabilities
2.3.1.1 Wagner
2.3.1.2 Smith
2.3.1.3 Conclusion

2.3.2 Expressions of the Wagner and Smith Shadowing
Functions
2.3.2.1 The Wagner and Smith Averaged Shadowing

Functions
2.3.2.2 Reduction of the Integration Domain



Intrinsic infrared radiation of the sea surface 191

2.3.2.3 Note
2.3.3 Generation of the Random Surface

2.3.3.1 The Problem Configuration
2.3.3.2 Simulations in the Lorentzian and Gaussian

Cases
2.3.3.3 The Numerical Shadowing Function: Reference

Solution
2.3.4 Simulations on an Infinity Surface

2.3.4.1 The Gaussian Autocorrelation Function
2.3.4.2 The Lorentzian Autocorrelation Function
2.3.4.3 The Damped Autocorrelation Functions

2.3.5 Conclusion

2.4 The One-dimensional Bistatic Shadowing Function
2.4.1 Determination of the Bistatic Shadowing Function

2.4.1.1 Problem Description
2.4.1.2 Study of the Three Cases
2.4.1.3 Conclusion

2.4.2 Application on the Smith Shadowing Function
2.4.2.1 The Reference Solution-algorithm
2.4.2.2 The Uncorrelated Shadowing Function
2.4.2.3 The Correlated Shadowing Function
2.4.2.4 Simulation on an Infinite Surface

2.4.3 Conclusion

2.5 The Two-dimensional Shadowing Function
2.5.1 Generalization of the Monostatic and Bistatic Cases

without Correlation
2.5.1.1 Expression of the Slope Probability Density
2.5.1.2 Simulations

2.5.2 Generalization of the Monostatic and Bistatic Cases with
Correlation
2.5.2.1 The Height and Slope Joint Probability in
Cartesian Coordinates
2.5.2.2 The Height and Slope Joint Probability in Polar

Coordinates
2.5.2.3 The Height and Slope Joint Marginal Probability
2.5.2.4 The Smith Conditional Probability
2.5.2.5 The Smith Shadowing Function
2.5.2.6 Simulations



192 Bourlier et al.

2.5.3 Conclusion

2.6 Conclusion

3. EMISSIVITY OF THE SEA SURFACE

3.1 Introduction

3.2 Preliminaries
3.2.1 Diffraction by a Facet
3.2.2 Definitions

3.2.2.1 The Blackbody
3.2.2.2 The Wien Law
3.2.2.3 The Real Bodies-emissivity
3.2.2.4 Coefficients of Reflection, Absorption and

Transmission
3.2.2.5 The Fresnel Reflection coefficients
3.2.2.6 The Sea Refractive Index

3.2.3 Conclusion

3.3 The Two-dimensional Emissivity
3.3.1 The One-dimensional Emissivity

3.3.1.1 Geometry of the Problem
3.3.1.2 The Average Emissivity
3.3.1.3 The Normalized Average Emissivity
3.3.1.4 Conclusion

3.3.2 The Two-dimensional Emissivity
3.3.2.1 The Problem Geometry
3.3.2.2 Determination of the Emissivity

3.4 Simulations
3.4.1 Emissivity Determined with the Smith Uncorrelated

Shadowing Function
3.4.1.1 Calculus
3.4.1.2 Particular Cases
3.4.1.3 Simulations of the Emissivity
3.4.1.4 Simulations of the Infrared Temperature

3.4.2 Emissivity Determined with the Smith Correlated
Shadowing Function
3.4.2.1 Calculus



Intrinsic infrared radiation of the sea surface 193

3.4.2.2 Notice
3.4.2.3 Simulations

3.5 Conclusion

Epilogue

Appendix 1. The Wagner and Smith Shadowing Functions of
the Uncorrelated Process for an Infinite
Surface

Appendix 2. The Ricciardi-Sato Shadowing Function of the
Uncorrelated Process for an Infinite Surface

Appendix 3. The Wagner Conditional Probability of the
Correlated Gaussian Process

Appendix 4. The Smith Conditional Probability of the
Correlated Gaussian Process

Appendix 5. The Smith Uncorrelated Bistatic Shadowing
Function for an Infinite Surface

Appendix 6. The Smith Two-dimensional Conditional
Probability of the Correlated Gaussian Process

References

1. STUDY OF THE SEA BEHAVIOR

1.1 INTRODUCTION

The first part of this chapter deals with the fundamental concepts
used for the study of the sea surface characterized by two regions:
capillary and gravity waves. The fetch is also introduced. It is very
difficult to model a sea deterministic representation due to non linear
energy transfer between waves. Since the ocean presents an uncoordi-
nate aspect, a statistical approach is used. This approach requires the
knowledge of two-dimensional sea spectra giving the energy distribu-
tion as a function of the wave number and the wind direction. This
aspect is introduced in the third paragraph. The last paragraph is
the originality of this chapter. It presents the spatial autocorrelation
function of the heights of the sea, which is a relevant information nec-
essary to determine the electromagnetic scattering from a sea surface
[8, 16] (Kirchhoff’s model and shadowing function). The autocorrela-
tion function is modeled from the Elfouhaily, Chapron, Katzaros and
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Vandemark spectrum [9] established in 97’s, which is a synthesis of the
works have done since 70’s about ocean behavior. In literature [16],
the autocorrelation function is classically set to anisotropic gaussian
or anisotropic exponential. We show that our results improve previous
ones. The slope variances are also determined, in order to characterize
the slope probability density.

1.2. STUDY OF THE WAVES

The first paragraph introduces the wave behavior, and the second part
gives the dispersive equation of gravity and capillary waves. The defi-
nition of fetch is also introduced.

1.2.1 The Wave Development

As the wind blows, waves with short wavelength arise (capillary
waves) supported by the surface tension. Their amplitude and the
wavelength increase due to non linear energy transfer. Such waves are
named gravity waves and are supported by the gravitational force. As
the wind keeps on blowing waves become stationary. On the opposite,
if the wind stops waves of short wavelength vanish quickly, whereas
waves with long wavelength damp slowly, and can propagate on a long
distance.

In general, we consider two types of sea surface: the wind sea, and
the swell. The wind sea is the set of locally created waves, and the swell
corresponds to a wind sea old, with regular amplitude and constant
period waves longer than wind sea ones.

1.2.2 The Dispersive Relationship

Contrary to electromagnetic wave propagation in vacuum, gravity
and capillary sea waves are dispersive, i.e., their propagation speed
depends on the wavelength.

1.2.2.1 Gravity Waves

Gravity waves are ruled by a balance between the gravity and the
waves inertia. Using a linear approximation, the angular frequency is
given by the following equation [1, 2]:

ω2 = gktanh(kd) (1.1)
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where g = 9, 81ms−2 represents the gravitational acceleration, k the
wave number in rad/m with k = 2π/λ, λ the wavelength in meter,
and d the water depth in meter. In deep water (kd > 3) , equation
(1.1) becomes:

ω =
√

gk (1.2)

The wave velocity is defined by:

vph =
ω

k
⇒ vph =

√
g

k
=

√
λ

√
g

2π
(1.3)

This shows that short wavelength waves propagate slower than waves
with longer wavelength. The speed of gravity waves is proportional to
the square root of the wavelength.

1.2.2.2 Capillary Waves

The behavior of capillary waves is characterized by the following
dispersive equation [1, 3]:

ω2 =
τ

ρ
k3tanh(kd) (1.4)

This behavior is very different from the gravity wave one, where τ =
74.10−3N · m−1 is the surface tension, and ρ = 103kg · m−3 its mass
density. In deep water, (1.4) becomes:

ω2 =
ρ

τ
k3 (1.5)

The speed in deep water is formulated as:

vph =

√
τk

ρ
=

√
2πτ

τ

1√
λ

(1.6)

Unlike gravity waves, the celerity of capillary waves is proportional to
the inverse of the square root of the wavelength.

1.2.2.3 Gravity and Capillary Waves

In the transition zone, the speed in deep water is given by:

v2
ph = g/k + τk/ρ (1.7)
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The lowest speed vphm is obtained from equation (1.7):

km =
√

gρ

τ
⇒ vphm = 4

√
4gτ

ρ
and ωm =

√
2gkm (1.8)

km = 3, 64 rad/cm; vphm = 23 cm/s; ωm = 84, 5 rad/s; λm =
1, 73 cm . Finally the pulsation ω , the velocity speed vph , and the
group speed vg are, in deep water:

ω2 = gk

(
1 +

k2

k2
m

)
vph =

√
g

k

(
1 +

k2

k2
m

)

vg =
dω

dk
=

1
2

(
g + 3g

k2

k2
m

)
/

√

gk

(
1 +

k2

k2
m

) (1.9)

In figure 1.1 the angular frequency is represented as a function of the
wave number. Figure 1.2 shows the velocity speed as a function of
the wavelength. We notice that capillary waves are predominant for
short wavelengths, whereas gravity waves are predominant for long
wavelengths.

1.2.3 Fetch

At a given location (figure 1.3), the sea state does not only depend
on the wind local strength, but also on the distance, called fetch [4],
on which the wind has blown. If we consider a wind blowing with a
constant speed, V , from the coast, and a point far from the coast
(point B) , waves reach a maximum amplitude which does not depend
on the wind speed V . Wave amplitudes increase with the fetch F0

linked to V . On the contrary, if the point (point A) is close to the
coast, the fetch will be smaller and wave amplitudes will depend on
the distance from the coast. For a given wave speed, there exists a
moving limit which separates two regions.The first one corresponds to
the transitory state, i.e., where the wave height depends on the distance
from the coast. The second one corresponds to the steady state, where
the height is a function of the wind speed only.

1.2.4 Conclusion

At each point of the surface, waves result from a sum of waves
locally generated by the wind, and waves coming from any areas. Due
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Figure 1.1 Angular frequency as a function of the wave number.

Figure 1.2 Velocity speed a a function of the wavelength.
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Figure 1.3 Fetch.

Figure 1.4 Random process.

to these interactions, the phenomenon can hardly be quantified. Since
the ocean presents an uncoordinate aspect, the fluctuations of the sea
are classically represented by a three dimensional random process.

1.3 THE SEA STATISTICAL APPROACH

1.3.1 Statistics of Stochastic Processes

A stochastic process (figure 1.4) can be represented by a family of
real or complex functions {x(t, ξ)} [5]. In this interpretation, t and ξ ,
are variables. If ξ = ξi is fixed, then x(t, ξ) = x(t, ξi) is a single time
function. If t = ti is fixed, then x(t, ξ) = x(ti, ξ) is a random variable
(RV) equal to the state of the given process at time ti . Its statistical
behavior is characterized by the distribution function F (x, ti) or by
its probability density p(x, ti) . Their knowledge gives the main orders
of RV.
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1.3.1.1 Second-order Properties

The statistic mean value of the RV xi = x(ti, ξ) is equal to:

m(ti) = E[x(ti, ξ)] =
∫

xip(x, ti)dxi (1.10)

where the symbol E denotes the expected value. Let {x1 = x(t1, ξ),
x2 = x(t2, ξ)} be two random variables assumed to be real, the auto-
correlation function R is defined by:

R(t1, t2) = E[x(t1, ξ)x(t2, ξ)] =
∫∫

x1x2p(x1, x2, t1, t2)dx1dx2 (1.10a)

where p(x1, x2, t1, t2) denotes the second order probability density of
the process x(t, ξ) at the times {t1, t2} for a ξ fixed.

1.3.1.2 Stationary Process

A stochastic process x(t, ξ) is called strict-sense stationary, if its
statistical properties are invariant to a shift of the origin. This means
that the processes x(t, ξ) and x(t + τ, ξ) have the same statistics for
any τ . A stochastic process is stationary of second order if its one and
second orders statistical are invariant in the time and equations (1.10)
and (1.10a) become:

R(t1, t2) = R(τ) and m(ti) = m with τ = t2 − t1 (1.10b)

1.3.1.3 Ergodicity

A stochastic process x(t, ξ) is called ergodic if the time averages
are equal to the statistical means:

xn = lim
T→∞

1
2T

T∫

−T

xn(t, ξi)dt =
∫

xn(ti, ξ)p(x)dx (1.10c)

1.3.1.4 Marginal Probability

Let p(x, y) be a two variable probability density, the marginal prob-
ability p(x) is defined by:

p(x) =
∫

p(x, y)dy (1.10d)
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1.3.2 Configuration of the Problem

The fluctuations of the sea are represented by a three dimensional
random process z(⇀r, t) : one temporal and two spatial components.
The vector ⇀r(x, y) stands for the spatial location of the point repre-
sented by its cartesian coordinates (x, y, z) at the time t . Further-
more, the process is supposed to be stationary and ergodic.

Figure 1.5 Mathematical representation of the sea.

For an ergodic and stationary process, the surface behavior is com-
pletely determined by the knowledge of its spectrum or its autocorrela-
tion function, and its slope density probability [5]. Literature provides
various sea spectra. The autocorrelation function is calculated from
the spectrum by the way of an inverse Fourier transform.

1.3.3 The Autocorrelation Function

In a Cartesian coordinate system (x, y, z) , the surface shift z(⇀r, t)
at a point specified by ⇀r(x, y) and at time t may be generally ex-
pressed as a two-dimensional integral of a plane-wave mode of the
surface wave [6], each mode being specified by a two-dimensional wave
number vector

⇀

k :

z(⇀r, t) =
1
2

∞∫

−∞

∞∫

−∞

{
a

(⇀

k
)
ej[⇀

k·⇀r−ω(k)t] + a∗
(⇀

k
)
e−j[⇀

k·⇀r−ω(k)t]
}

d
⇀

k (1.11)

with a(
⇀

k) the complex amplitude of the plane wave mode of a given
wave number vector, and a∗(

⇀

k) the complex conjugate of a(
⇀

k) . ω(k)
is the angular frequency function of k . Since the function z(⇀r, t) is real
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we have a∗(−⇀

k) = a(
⇀

k) , moreover the average surface displacement
〈z(⇀r, t)〉 is chosen equal to zero. The spectrum Ψ(

⇀

k) is defined as
follows:

ψ(
⇀

k) =
〈∣
∣a

(⇀

k
)∣∣2

〉
= ψ

(
−⇀

k
)

(1.12)

where 〈 〉 stands for the mean operator. Since the sea surface is sup-
posed to be homogeneous in space i.e., the fetch is infinite, and to be
stationary in time, the corresponding autocorrelation function Z is
[6]:

Z
( ⇀

R; τ
)

=
〈
z(⇀r, t)z(⇀r′, t′)

〉
=

∞∫

−∞

∞∫

−∞

ψ(
⇀

k) cos
[⇀

k(ω)
⇀

R − ωτ
]
d

⇀

k (1.13)

with
⇀

R = ⇀r′ − ⇀r and τ = t′ − t . Moreover (figure 1.6):

⇀

R =
∥∥ ⇀

R
∥∥·⇀o = R·(⇀x cos φ+⇀y sinφ)

⇀

k =
∥∥⇀

k
∥∥·⇀s = k·(⇀x cos Θ+⇀y sin Θ)

(1.14)

Figure 1.6 Polar coordinates.

where ⇀o is the unitary vector of
⇀

R in the viewing direction φ with
respect to x , and ⇀s the unitary vector between the directions Θ and
x . The axis (Ox) shows the wind direction. In polar coordinates the
autocorrelation function becomes:

Z(R, φ; τ) =

∞∫

0

π∫

−π

S(k,Θ) cos[kR cos(Θ − φ) − ωτ ]dΘdk (1.15)

The quantity S(k,Θ) = kψ(k,Θ) represents the sea spectrum. Spec-
tra are often defined as a function of the angular frequency S(ω, Θ) .
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The relation between S(k,Θ) and S(ω, Θ) is given by:

S(ω, Θ) = S(k,Θ)
dk

dω
=

S(k,Θ)
vg(k)

(1.16)

The dispersive equation (1.9) is expressed as a function of the wave
number k . We notice that the spatial autocorrelation function (τ = 0)
in cartesian coordinates is obtained from the real part of the inverse
Fourier transform of the spectrum:

Z(Rx, Ry) =

∞∫

−∞

∞∫

−∞

S(kx, ky)√
k2

x + k2
y

cos(kxRx + kyRy)dkxdky

= �





TF−1



 S(kx, ky)√
k2

x + k2
y









(1.17)

with Θ = atan(ky/kx) and k =
√

k2
x + k2

y (1.17a)

1.3.4 The Probability Density

The slope probability density of waves is assumed to be a zero mean
gaussian:

p(γx, γy) =
1

2πσxσy

√
1 − ρ2

exp

(
−1

2(1 − ρ2)

[
γ2

x

σ2
x

+
γ2

y

σ2
y

− 2ργxγy

σxσy

])

(1.18)
where {σ2

x, σ2
y} are the slope variances in the upwind and crosswind

directions, and ρ the crosscorrelation coefficient. The linearity of the
gaussian process involves that the height probability density is gaussian
[7], as depicted:

p(ξ) =
1√
2πω

exp
(
− ξ2

2ω2

)
(1.19)

where ω2 is the height variance. The knowledge of the gaussian signal
spectrum implies the knowledge of its statistical distribution (para-
graph 1.5.2).
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1.3.5 Two Scale Model

In paragraph 1.2.2, we have seen that the sea surface is characterized
by the capillary and gravity waves. In order to include these two
behaviors, a two scale model [8] is used to represent the ocean surface.
It is obtained by superposing two surfaces (figure 1.7):

z(x, t) = zc(⇀r, t) + zg(⇀r, t) (1.20)

zc(⇀r, t) is the small scale structure ruled by capillary waves, and
zg(x, t) is the high scale structure ruled by gravity waves. Supposing
that the process is stationary in time and space, the autocorrelation
function is (τ = t′ − t,

⇀

R = ⇀r′ − ⇀r) :

Z(
⇀

R, τ) =
〈
z(⇀r, t)z(⇀r′, t′)

〉
= Zc(

⇀

R, τ) + Zg(
⇀

R, τ) + 2Zcg(
⇀

R, τ) (1.21)

with






Zc(
⇀

R, τ) = 〈zc(⇀r, t)zc(⇀r′, t′)〉
Zg(

⇀

R, τ) = 〈zg(⇀r, t)zg(⇀r′, t′)〉
Zcg(

⇀

R, τ) = 〈zc(⇀r, t)zg(⇀r′, t′)〉
(1.21a)

Figure 1.7 Two scales model.

Furthermore, the structures are independent, thus:

Zcg(
⇀

R, τ) = 0 ⇒ Z(
⇀

R, τ) = Zc(
⇀

R, τ) + Zg(
⇀

R, τ) (1.22)

In the spectral domain, the autocorrelation function Zg(
⇀

R, τ) of the
high scale structure is obtained by integrating the spectrum between
[0; kcg] , whereas the small scale structure Zc(

⇀

R, τ) is integrated be-
tween [kcg;∞] . The calculus of the wave number kcg between gravity



204 Bourlier et al.

and capillary waves is the major issue of this model. Nevertheless
this quantity is not necessary to determine the probability density of
z(⇀r, t) .

Let {pg(ξ, ωg), pc(ξ, ωc)} be the gaussian probability densities of
independent random variables, respectively, {zg, (⇀r, t), zc(⇀r, t)} . The
resulting probability density p(ξ, ω) ruling z(⇀r, t) is equal to the con-
volution product pg(ξ, ωg)∗pc(ξ, ωc) . Since, the convolution product
of two gaussian processes is a gaussian process, p(ξ, ω) is gaussian
with its variance equal to ω2 = ω2

g + ω2
c (equation (1.22)). Once the

probability density is being known, the description of the sea necessi-
tates either its spectrum or its autocorrelation function. The following
paragraph introduces spectra presented in literature.

1.4 SEA SPECTRA
1.4.1 Introduction

During the 60’s, sea spectra have been studied at various frequencies
bands (L to Ku) , i.e., between two and eighteen GHz. Classically, a
sea spectrum is set to:

S(k,Θ) = M(k)f(k,Θ) (1.23)

where M(k) represents the isotropic part of the spectrum modulated
by f(k,Θ) corresponding to the angular function.

Since this spectrum is even, the angular function is given by [9]:

f(k,Θ) =
1
2π

[1 + ∆(k) × cos(2Θ)] (1.24)

The first angular functions established in the 70’s did not check this
condition.

1.4.2 The Friction Speed

The wind friction speed uf is defined by the boundary wind speed
over the sea surface and does not depend on the height. Table 1.1 gives
the relations between this speed and the Beaufort scale and the wind
speed at ten meters above the sea. The wind speed uz in cm/s, at an
altitude z in cm, is given as a function of the friction speed uf , in
cm/s by [3]:

uz
uf

0, 4
ln

(
z

z0

)
with z0 =

0, 684
uf

+ 4, 28 × 10−5u2
f − 4, 43 × 10−2

(1.25)



Intrinsic infrared radiation of the sea surface 205

Figure 1.8. Wind speed as a function of the friction speed.

Table 1.1 Beaufort scale.

Beaufort Descriptive terms Friction speed Wind speed 10 m

scale in cm/s above the sea in

m/s

0 Calm < 1 < 0, 2

1 Very slight breeze 2–6 0,4–1,4

2 Slight breeze 7–12 1,7–3,3

3 Little breeze 13–18 3,6–5,3

4 Breeze 19–28 5,6–7,8

5 Well breeze 28–43 7,8–10,6

6 Fresh 44–62 10,8–13,8

7 High fresh 63–83 14,0–17,1

8 Breakwind 84–108 17,3–20,7

9 High breakwind 109–136 20,9–24,4

10 Sorm 137–168 24,6–28,4

11 Storm fierce 169–206 28,5–32,6

12 Hurricane > 207 32,7

In figure 1.8, the speed uz above the sea is plotted as a function of
the friction speed uf , for z = {5, 10, 20} meters.
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1.4.3 Gravity Spectra

The first one-dimensional spectra M(k) established in the 70’s by
Pierson- Moskowitz MPM (k) [1, 10–12] JONSWAP (Joint North Sea
Wave Project) MJ(k) [13], give the energy of gravity waves:

MPM (k) =
4, 05 × 10−3

k3
exp

(
−0, 74g2

k2u4
19

)
(1.26)

MJ(k) = MPM (k)×3, 3
exp

[

−

(√
k

k0
−1

)2

2δ2

]

avec
δ =

{
0, 07 si k < k0

0, 09 si k > k0

k0 = 0, 769g/u2
19

(1.27)
where g = 9, 81 m · s−2 is the gravitational acceleration, u19 is the
wind speed in m/s at an altitude of 19.5 m above the sea, and k
the wave number. In the left part of figure 1.9 shows the Pierson-
Moskowitz normalized spectrum as a function of the wave number k ,
for uf = {84, 49, 12} cm/s. We notice that all curves have a maximum
kP

peak corresponding to the velocity speed vpeak
ph :

kP
peak = 0, 702

g

u2
19

and vpeak
ph = 1, 194u19 (1.28)

When the velocity speed is inferior to the wind speed, the waves are
strongly shaped by the wind, and their energy increases until the wave
speed reaches a value close to vpeak

ph . Their energy is then maintained
by the wind. We notice that as the friction speed increases, the wave
number maximum decreases due to gravity waves.

In figure 1.9 (right), the Pierson-Moskowitz and JONSWAP spectra
are compared for a friction speed uf = 49 cm/s. We observe that
the Pierson-Moskowitz and JONSWAP spectra are similar, excepted
around the value k0 ≈ kP

peak = 4, 4 × 10−4 rad/cm corresponding to a
friction speed equal to 49 cm/s.

In fact in this area, the exponent in equation (1.27) is maximum
implying a peak overshoot (about 70%), which decreases quickly when
one goes far from this value to tend to the Pierson-Moskowitz spec-
trum. All these spectra are right for a fully developed sea, i.e., for an
infinite fetch. JONSWAP propose a new model developed from the
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Figure 1.9 The Pierson-Moskowitz and JONSWAP spectra as a func-
tion of the wave number.

first one (1.27), which takes into account the fetch X in meter [13]:

SJM (k) =
α

2k3
exp

(
−5

4
k2

m

k2

)
3, 3

exp

[

−

(√
k

km
−1

)2

2δ2

]

(1.29)

avec






δ =
{

0, 07 si k ≤ km

0, 09 si k > km

km = 483, 6
g

u2
10

X
−0,66

et






α = 0, 076X
−0,22

X =
gX

u2
10

(1.29a)

In figure 1.10, this spectrum is plotted as a function of the wave
number k for different values of fetch X = {500, 100, 50} km with
uf = 30 cm/s . As the fetch decreases, the peak moves to higher wave
number, i.e., to shorter wavelengths.

1.4.4 Global Spectra: Gravity and Capillary

The Pierson spectrum [3, 10, 12] is one of the first spectra pub-
lished in the literature to describe capillary waves. Today, its behavior
remains invariant in gravity zone, but has been modified in capillary
zone. The John R. Apel spectrum [7, 9] and scientists Donelan, Banner
and Jahne is a synthesis of works done in 80’s and 90’s about ocean



208 Bourlier et al.

Figure 1.10 The JONSWAP spectrum as a function of the wave num-
ber k with uf = 30 cm/s.

spectra modeling. Unfortunately this spectrum does not fit some phys-
ical criteria in capillary zone (paragraph 1.5.2).

So T. Elfouhaily, B. Chapron, K. Katsaros, D. Vandemark [9] have
established a spectrum which agrees with the experiments and some
physical conditions about the slopes given by capillary spectrum (para-
graph 1.5.2).

1.4.4.1 The Pierson Spectrum

Pierson [3, 10, 12] depicts the wave spectrum as a function of the
wave number k . It is obtained from the Pierson-Moskowitz expression:

MP (k) = Mi(k) ki−1 < k < ki rad/cm (1.30)

with

M1(k) =
4, 05 × 10−3

k3
exp

(
−0, 74g2

k2u4
19

)
0 < k < k1 =

k2u
2
m

u2
f

(1.30a)

M2(k) =
4, 05 × 10−3

k
1/2
1 k5/2

k1 < k < k2 = 0, 359 (1.30b)
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M3(k) = M4(k3)
(

k

k3

)q

k2 < k < k3 = 0, 942 (1.30c)

M4(k) = 0, 875(2π)p−1g
1−p
2

(
1 +

3k2

k2
m

)
/

[
k

(
1 +

k2

k2
m

)]p+1
2

k3 < k < k4 (1.30d)

M5(k) = 1, 473 × 10−4u3
f

k6
m

k9
k4 < k (1.30e)

km = 3, 63 p = 5 − log uf um = 12 cm/s q =
log[M2(k2)/M4(k3)]

log(k2/k3)
(1.30f)

k4 can be found numerically by setting M4(k) equal to M5(k) , and
uf is the friction velocity. The term M1(k) represents the gravity
region (Pierson-Moskowitz) and M4(k) the capillary waves. u19 is
the wind speed at an altitude of 19.5 meters above the sea.

1.4.4.2 The Apel Spectrum

The Apel spectrum MA(k) is given by:

MA(k) = k−3 · Lo(k) · Jp(k) · ID(k) · Ci(k, u10) (1.31)

with

Lo(k) = e−
k2

p

k2 kp = g/(u2
10

√
2) (1.31a)

Jp(k) = 1, 7
exp

[(√
k

kp
−1

)2

2δ2

]

δ = 0, 40 (1.31b)

ID(k) = ΘS

√
2πerf

(
π

ΘS

√
2

)
ΘS = 1/

√

0, 28 + 10
(

k

kp

)−1,3

(1.31c)

Ci = A(Rro + S · Rres)Vdis (1.31d)




Rro = 1/[1 + (k/kro)2] Rres = aksech

(
k − kres

kw

)

S(u10) = eln 10[s1+s2(1−e−u10/un )] Vdis = e−k2/k2
dis

(1.31e){ kro = 100 kres = 400 kw = 450 kdis = 6283
s1 = −4, 95 s2 = 3, 45 un = 4, 7 A = 0, 00195 a = 0, 8
sech(x) = 2/(ex + e−x)

(1.31f)



210 Bourlier et al.

k is in rad/m. The term Lo(k) represents the gravity region and
Ci the capillary waves. The function Jp(k) describes the overshoot
of wave energy near the sea spectral peak similarly to the JONSWAP
modeling (equation (1.27)).

1.4.4.3 The Elfouhaily, Chapron, Katsaros and Vandemark Spectrum

The spectrum [9] established in 97’s is a synthesis of the works
done since the 70’s on ocean behavior description. It is obtained from
experimental and theoretical facts that Apel and Pierson did not take
into account, like for example the Cox and Munk model [12] (paragraph
1.5.2). Moreover the fetch is included. This spectrum is formulated
as:

ME(k) =
k−3

2vph
(αgvgFg + αcvphmFc)κ

exp

[

−

(√
k

kp
−1

)2

2δ2

]

exp

(

−
5k2

p

4k2

)

(1.32)
with:

αg = 6 × 10−3
√

Ω vg = u10/Ω Fg = exp

[

− Ω√
10

(√
k

kp
− 1

)]

(1.32a)

κ =
{

1, 7 0, 84 < Ω ≤ 1
1, 7 + 6 log Ω 1 < Ω ≤ 5

{
δ = 0, 08(1 + 4/Ω3) kp = Ω2g/u2

10

Ω = 0, 84tanh
[
(X/2, 2 × 104)0,4

]−0,75

(1.32b)

αc = 10−2

{
1 + ln(uf/vphm) uf ≤ vphm

1 + 3 ln(uf/vphm uf > vphm
Fc = exp

[

−1
4

(
k

km
− 1

)2
]

(1.32c)

km = 363 rad/m vphm = 0, 23 m/s vph =

√
g

k

(
1 +

k2

k2
m

)
(1.32d)

Equations (1.32d) coming from paragraph 1.2.2. The quantity X de-
notes the fetch in meter. So for a fully developed sea, i.e., an infinite
fetch, the inverse wave age Ω is equal to 0.84, then δ = 0, 62; kp ≈
g/(u2

10

√
2); κ = 1, 7 . These values are close to Apel’s ones. The first

term (index g) of equation (1.32) represents the gravity zone.
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1.4.4.4 Simulations

In figure 1.11 the Elfouhaily (equation (1.32)) with Ω = 0, 84) , Apel
(equation (1.31)) and Pierson (equation (1.30)) spectra are plotted as
a function of the wave number, for a friction speed uf = 30 cm/s.

Figure 1.11 Spectra as a function of the wave number for a given
friction speed uf = 30 cm/s.

The curves are normalized by the maximum value of the Elfouhaily
spectrum. We observe that the spectra have the same behavior. In
fact they slightly differ around the peak. The wave number kpeak and
the corresponding value of the spectrum Mpeak are given in table 1.2.

We notice that the Apel spectrum maximum is smaller than the
Elfouhaily and Pierson ones. The maxima are obtained from gravity
waves, since capillary waves are negligible.

Physically the integration of the spectrum over the wave number k
between zero and the infinite is equal to the height variance (table 1.2),
where gravity waves are more important. This property is verified in
paragraph 1.5.1.3. The slope variance is obtained by multiplying the
spectrum by the square wave number k2 . In this case, the capillary
zone is not negligible. Figure 1.12 illustrates this notice.
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Table 1.2 Spectra maxima values.

Elfouhaily Apel Pierson

Peak wave number kpeak 0, 976kp 0, 931kp 0, 876kp

in rad/m

Spectrum peak Mpeak 0, 001343/k3
p 0, 000966/k3

p 0, 001345/k3
p

in rad3/m3

Height variance 0, 00193/k2
p 0, 00140/k2

p 0, 00176/k2
p∫ ∞

0
M(k)dk

Figure 1.12 Spectra multiplied by k2 as a function of the wave num-
ber, for a given friction speed uf = 30 cm/s.

1.4.4.5 The Angular Functions

The spectra described in the last paragraph give a one-dimensional
description of the waves propagation. In fact every spectral ray is
propagating in the beam direction Θ ∈ [−π, π] according to the wind
direction. The spectrum S(k,Θ) is two-dimensional:

S(k,Θ) = M(k)f(k,Θ) (1.33)

where f(k,Θ) is the angular function, moreover, the spectrum being
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even (equation (1.12)), f(k,Θ) must be written [9]:

f(k,Θ) =
1
2π

[1 + ∆(k) × cos(2Θ)] (1.34)

The first angular function developed in the 70’s did not check the
condition (1.34). The Elfouhaily [9], Apel [9] and Pierson [1] terms
{∆E(k),∆A(k),∆P (k)} are respectively:





∆E(k) = tanh

[

a0+ag

(
vph

vg

)2,5

+ ac

(
vphm

vph

)2,5
] {

a0 = 0, 173 ag = 4
ac = 0, 13

uf

vphm

∆A(k) = tanh

[

0, 173 + 6, 168
(

k

kp

)−1,3
]

∆P (k) = 1
(1.35)

We notice that ∆P (k) is independent of the wave number k . The
velocity speeds {vg, vph, vphm} are given by equations (1.32a) and
(1.32d). In figure 1.13 the functions {∆E(k), ∆A(k), ∆P (k)} of
Elfouhaily (Ω = 0, 84) , Apel and Pierson are plotted as a function
of the wave number, and for a friction speed uf = 30 cm/s, corre-
sponding to a gravity peak about kpeak = 0, 1 rad/m (table 1.2).

Figure 1.13 Angular function terms {∆E(k),∆A(k),∆P (k)} as a
function of the wave number, for a friction speed uf = 30 cm/s.
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We observe that the Apel function decreases with the wave number,
and is superior to the Elfouhaily one in gravity zone (k ∈ [kpic; 10kpic]) ,
whereas in capillary waves, the Elfouhaily term reaches a maximum
corresponding to the wave number value where the velocity is equal to
the group speed.

1.4.6 Conclusion

The first sea spectra have been established in the 70’s in order to
determine the electromagnetic scattering from the sea rough surface.
We can quote the Pierson and the JONSWAP gravity spectra. Today,
these spectra are still identical in the gravity zone, whereas they have
significantly evolved in capillary waves:

- The Apel spectrum is a synthesis of works done in the 80’s and
the 90’s.

- The Elfouhaily spectrum which based on Apel’s works including
physical criteria in capillary zone.

In general, sea spectra depend on the wave number, the wind speed and
the fetch. An other characteristic is their angular behavior which gives
the energetic spreading of the waves as a function of the wind direction.
This function has been also modified in order to be symmetric in the
upwind and crosswind directions. This property is illustrated in figure
1.14.

Figure 1.14 The Elfouhaily normalized two-dimensional spectrum for
a friction speed uf = 30 cm/s and Ω = 0, 84.
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The statistical approach allows to characterize the sea either by its
spectrum or its autocorrelation function. The subject of this paragraph
is to model the autocorrelation function introduced in the correlated
shadowing function.

1.5 THE AUTOCORRELATION FUNCTION

The goal of the paragraph is to model the spatial autocorrelation func-
tion of the heights, which represents an important parameter in the cor-
related shadowing function formulation. We use the Elfouhaily spectral
configuration [9].

The slope variances calculated with the Pierson, Apel and [9] are
also compared with the Cox and Munk model.

1.5.1 The Spatial Autocorrelation Function

1.5.1.1 Introduction

Substituting equation (1.24) into (1.23), the sea spectrum S(k,Θ)
is given by:

S(k,Θ) =
1
2π

M(k)[1 + ∆(k) × cos(2Θ)] (1.36)

where M(k) represents the spectrum isotropic part, and Θ the angle
between the wave and wind directions. So, using equation (1.15), the
autocorrelation function is:

Z(R, φ; τ) =
1
2π

∞∫

0

π∫

−π

M(k)[1 + ∆(k)

× cos(2Θ)] cos[kR cos(Θ − φ) − ωτ ]dΘdk (1.37)

The spatial autocorrelation function of the heights R0(R, φ) is ob-
tained for τ = 0 :

R0(R, φ) =
1
2π

∞∫

0

π∫

−π

M(k)[1+∆(k)×cos(2Θ)] cos[kR cos(Θ−φ)]dΘdk

(1.38)
If the double integral is determined numerically in cartesian coordi-
nates {kx = k cos Θ, ky = k sin Θ} (equation (1.17)) by a FFT algo-
rithm, R0(R, φ) depends on the two parameters {Rx = R cos φ, Ry =
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R sinφ} . In order to reduce the parameters number, the angular inte-
gration is analytic.

1.5.1.2 The Analytical Determination of the Angular Integration

We know that [14] (equation 9.1.44 Abramowitz):

cos(x cos α) = J0(x) + 2
∞∑

m=1

(−1)mJ2m(x) cos(2mα) (1.39)

where J2m is the Bessel function of order 2m and the first kind, then
we show:

π∫

−π

cos[x cos(Θ − φ)] · cos(aΘ)dΘ

=
{

0 if a odd
(−1)p2πJa(x) cos(aφ) if a = 2p even (1.40)

Using equation (1.40), the angular integration of the spatial autocor-
relation function is equal to:

R0(R, φ) = I0(R)−cos(2φ)I2(R) with






I0(R) =

∞∫

0

M(k)J0(Rk)dk

I2(R) =

∞∫

0

M(k)J2(Rk)∆(k)dk

(1.41)
Physically the term I0 represents the isotropic part, whereas I2 is the
anisotropic part.

1.5.1.3 Simulation and modeling

In order to determine the numerical integration of R0 , it is nec-
essary to find the inferior boundary k1 and the superior boundary
k2 . In fact only a study of the spectrum M(k) can lead to these
boundaries, since the function ∆(k) is contained between zero and
one. We show that the values {k1, k2} that reach the value of 10−5

of maximum are:
{

k1 = 0, 28kp

k2 = 64kp
with kp =

Ω2g

u2
10

(1.42)
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In figure 1.15 the terms {I0(R), I2(R)} are plotted as a function of the
distance R , for friction speeds uf = {20, 40, 60, 80} cm/s. As the wind
speed increases, we observe that the anisotropic term I2(R) moves to-
wards higher wave numbers, but its maximum remains constant. We
also observe that the autocorrelation function variations are identi-
cal. In figure 1.15 are plotted in crosses and in circles the functions
{I0(R), I2(R)} modeled by:






I0(R) = I0(0) cos
(

R

L′
0

)
/

[

1 +
(

R

L0

)2
]

I2(R) = I0(0)AJ2

(
R

L′
2

)
/

[

1 +
(

R

L2

)2
] (1.43)

where J2 is the Bessel function of second order and the first kind.
On the right is represented the absolute error between the numerical
(equation (1.41)) and modeled results as a function of the distance R ,
and the wind direction φ . We observe that the absolute error is very
small. For modeling, the autocorrelation must be even and derivable
at zero with respect to R . These conditions were not verified in [ 15] .

In figure 1.16 the parameters Pi = {I0(0), L0, L
′
0, A, L2, L

′
2} are

represented as functions of the speed u10 , defined at an altitude of
ten meters above the sea. We notice a straight line with logarithmic
scales, so Pi can be written:

Pi = ai · ubi

10 with u10 ∈ [2; 17]m/s (1.44)

where the constants {ai, bi} are given in table 1.3. and are obtained
from the mean square method. In the same figure the new values are
plotted. Since the root mean square RMS is small, the approximation
by (1.44) of the different parameters {ai, bi} is correct.

We notice that the height variance ω2 = I0(0) is proportional to
the fourth power of the wind speed u10 . This value checks the given
result in table 1.3, where ω2 = 0, 00193/k2

p = 4, 011 × 10−5u4
10 has

been found from gravity waves, instead of 3, 953 × 10−5u4,04
10 for the

totality spectrum. The correlation length L0 is proportional to the
square of u10 . The autocorrelation function is:
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Figure 1.15 On the left, {I0(R), I2(R)} are plotted as a function
of R . On the right, the absolute error between the numerical an
modeled results are represented as a function of the distance R , and
the direction φ .
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Figure 1.16 Autocorrelation function parameters as functions of the
friction speed.

Table 1.3 Function autocorrelation parameters.

Pi I0(0) = ω2 L0 L′
0 A L2 L′

2

ai 3, 953 × 10−5 0, 154 0, 244 3, 439 0, 157 0, 138
bi 4, 04 2, 04 1, 91 0, 11 1, 95 2, 05

RMS in % 0, 4 1, 0 2, 1 3, 5 1, 9 1, 1

R0(R, φ;u10) =ω2

{

cos
(

R

L′
0

)
/

[

1 +
(

R

L0

)2
]

−A cos(2φ)J2

(
R

L′
2

)
/

[

1 +
(

R

L2

)2
]}

(1.45)

In order to quantify the anisotropic effect of the autocorrelation func-
tion, we show that the maximum of I2(R)/ω2 at abscissa R2M of
ordered I2M which is nil at abscissa R20 is a function of the correla-
tion length L0 (in meter):

R2M ≈ 1, 50L0 I2M ≈ 0, 28 R20 ≈ 4, 57L0 (1.45a)
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Figure 1.17 the correlation length is plotted as a function of the
friction speed or the Beaufort scale.

In figure 1.17 the correlation length is plotted as a function of the
friction speed or the Beaufort scale.

1.5.1.4 Conclusion

The behavior of the spatial autocorrelation function of the heights
is modeled by a damped lorentzian for the isotropic part, whereas the
anisotropic part is characterized by the product of the Bessel function
(second order and first kind ) and a lorentzian (equation (1.45)). The
different lengths depend on the speed u10 defined at an altitude of ten
meters above the sea (table 1.3) . They are approximately proportional
to the square of u10 , whereas the height variance ω2 is function of
the fourth power of u10 . For the Apel and Pierson spectra, we find
the same autocorrelation function as Elfouhaily, but the parameters of
table 1.3 change slightly. Physically, the shift of the spectrum centered
on the wave number kpeak involves that the autocorrelation function
is equal to zero for a given abscissa.

The gaussian and exponential autocorrelation functions [16] over-
estimate the low-frequency spectrum, because the Fourier transform
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is gaussian and lorentzian respectively [8]. The calculus of the shad-
owing function requires the knowledge of the autocorrelation function
and the slope probability density.

1.5.2 Slope Variances

To characterize a second order stationary process, we have to know
its autocorrelation function and the slope statistical p(γx, γy) sup-
posed to be gaussian:

p(γx, γy) =
1

2π
√

σ2
xσ2

y − σ4
xy

exp

(

−1
2

[γxγy]
[

σ2
x σ2

xy

σ2
xy σ2

y

]−1 [
γx

γy

])

(1.46)

σ2
x =

∂2

∂x2
[−P (x, y)]

∣
∣
∣
∣x=0
y=0

σ2
y =

∂2

∂y2
[−P (x, y)]

∣∣∣∣x=0
y=0

σ2
xy =

∂2

∂x∂y
[−P (x, y)]

∣∣∣∣x=0
y=0

(1.46a)

where P (x, y) is the slope autocorrelation function, {σ2
x, σ2

y} are the
slope variances in the upwind and crosswind directions, and is σ2

xy

the crossvariance. The spectrum is even with respect to {x, y} , the
autocorrelation function is also even, so P (or H) depend on X =
x2, Y = y2 , then, we show:

σ2
xy =

∂2

∂x∂y
[−P (x2, y2)]

∣∣∣∣x=0
y=0

= 4xy
∂2

∂X∂Y
[−P (XY )]

∣∣∣∣x=0
y=0

= 0

(1.46b)
If {X = |x|, Y = |y|} , the autocorrelation function is even, but is not
derivable at zero. So, we have to give up this solution. Substituting,
equation (1.46b) into (1.46), p(γx, γy)

p(γx, γy) =
1

2πσxσy
exp

(

− γ2
x

2σ2
x

−
γ2

y

2σ2
y

)

(1.46c)
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1.5.2.1 The Variance Definition and Angular Integration

The slope autocorrelation functions {Px(R, φ; τ);Py(R, φ; τ)} in the
upwind and crosswind directions {x, y} are in polar coordinates re-
spectively [6]:






Px(R, φ; τ) =

∞∫

0

π∫

−π

S(k,Θ)[k × cos(Θ − φ)]2

· cos[kR cos(Θ − φ) − ωτ ]dΘdk

Py(R, φ; τ) =

∞∫

0

π∫

−π

S(k,Θ)[k × sin(Θ − φ)]2

· cos[kR cos(Θ − φ) − ωτ ]dΘdk

(1.47)

The slope variances are defined for {τ = 0, R = 0, φ = 0} :

σ2
x =

∞∫

0

π∫

−π

S(k,Θ)[k × cos Θ]2dΘdk

σ2
y =

∞∫

0

π∫

−π

S(k,Θ)[k × sin Θ]2dΘdk

(1.48)

Using the symmetry of the spectrum S(k,Θ) (equation (1.36)), we
show that the integration of the variance over Θ gives:

{
σ2

x = α + β
σ2

y = α − β
with






α =
1
2

∞∫

0

k2 × M(k)dk

β =
1
4

∞∫

0

k2 × M(k)∆dk

(1.49)

The slope variances are obtained from the integration of the spectrum
M(k) multiplied by the squared wave number.

1.5.2.2 Numerical Integration over the Wave Number

In the case of slopes, the studied spectrum is k2M(k) . Gravity
waves determine the lower value of the numerical integration. Applying
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Figure 1.18 Slope total variance calculated from the Elfouhaily, Apel,
Pierson spectra and the Cox-Munk, model as a function of the friction
speed.

the same approach as in paragraph 1.5.1.3, the value k1 reaching the
value of 10−5 of the maximum is equal to:

k1 = 0, 29kp (1.50)

Unlike the height variance, capillary wave is not negligible. The supe-
rior boundary k2 is chosen to 10−4 of the maximum:

k2 = 2000 rad/m (1.50a)

1.5.2.3 Simulations

In figure 1.18 the Elfouhaily, Apel and Pierson total variance equal
to σ2

x+σ2
y = 2α [17] is plotted as a function of the friction speed. It also

represents the Cox and Munk model obtained from aerial photographs
[18]: {

σ2
x = 3, 16 × 10−3 · u12

σ2
y = 0, 003 + 1, 92 × 10−3 · u12

(1.51)

where u12 is the wind speed in m/s, at an altitude 12, 5 m above the
sea.



224 Bourlier et al.

We observe that the Apel and Pierson models overestimate the slope
total variance, because they have a inaccurate gravity wave, whereas
the Elfouhaily results agree with Cox and Munk ones.

1.6 CONCLUSION

The ocean presents an uncoordinate aspect, so the fluctuations of the
sea are represented by a three dimensional random variable: one tem-
poral and two spatial components. This process is also supposed to
be ergodic and stationary. The stationarity involves that the autocor-
relation function is obtained from the spectrum by an inverse Fourier
transform. Moreover, we suppose that the density probability of the
heights is gaussian characterized by its variances and its mean values.
The linearity of this process involves a gaussian distribution of the
slopes.

The main difficulty is the determination of the sea spectra. In the lit-
erature, the JONSWAP and Pierson spectra are widely used to describe
gravity waves. For capillary waves, the Pierson-Moskowitz spectrum
is the most used. Recently these models have been improved. The
Apel and Elfouhaily spectra are a synthesis of works done in 80’s and
between 1990 and 1996 respectively.

Generally spectra depend on the wave number, the wind speed and
the fetch. Another characteristic of the spectrum is its angular distri-
bution, which gives the waves energetic spreading as a function of the
wind direction.

The slope variances have been calculated analytically and simulated
in order to compare with different sea spectra (Elfouhaily, Apel, Pier-
son), and the Cox and Munk model. The Elfouhaily results are close
to Cox and Munk ones, whereas for both other spectral configurations,
the results are very different, due to inaccuracy in capillary zone.

Finally, the spatial autocorrelation function of the heights has been
modeled from the Elfouhaily spectrum. Its behavior is a damped
lorentzian for its isotropic part, whereas its anisotropic part is charac-
terized by the product of a Bessel function (second order and the first
kind) and a lorentzian (equation (1.45)). Their variations are repre-
sented In figure 1.19. For the Apel and Pierson spectra, the autocorre-
lation function is the same as obtained from the Elfouhaily spectrum,
but the parameters change slightly.
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Figure 1.19 Modeled autocorrelation function from the Elfouhaily
spectrum, as a function of the wind direction φ , for a given friction
speed uf .

2. THE SHADOWING FUNCTION

2.1 INTRODUCTION

The goal of this chapter is to generalize the methods developed by
Wagner [19] and Smith [20, 21] concerning the calculus of the shadow-
ing function and to extend them to the two-dimensional case. Their
approach is rigorously studied, in order to quantify the hypothesis in-
troduced by these authors, since the shadowing function is a relevant
parameter introduced in the electromagnetic scattering, emissivity, re-
flectivity of sea surface.

First, the Smith and Wagner models are exposed for a monostatic
configuration, and are obtained from an uncorrelated gaussian pro-
cess. Physically, this hypothesis involves that the shadowing function
is independent of the autocorrelation function and the viewed surface
is infinite. Moreover Ricciardi and Sato [25, 26] proved that the shad-
owing function is rigorously defined by Rice’s infinite series of inte-
grals. We observe that the approach proposed by Wagner retains only
the first term of these series, whereas the Smith formulation uses the
Wagner model by introducing a normalization function. The Wagner
and Smith models are generalized for any uncorrelated probability
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densities. The shadowing function based on the Ricciardi-Sato works is
also determined to consider an uncorrelated gaussian process. Since
the correlation is not taken into account, the result has not physical
meaning.

In the second section, the Wagner and Smith formalisms are modi-
fied by introducing the correlation. The correlated and uncorrelated
results are compared with the reference solution, obtained by gen-
erating an infinite surface of a gaussian process, for lorentzian and
gaussian autocorrelation functions. We show that the correlation im-
proves results and is negligible above µ = 2σ , where µ represents the
slope of the incident beam and σ the slope standard deviation. A
general method is established for calculating the shadowing function
for a known-length surface and, for any autocorrelation functions.
This method is applied on damped autocorrelation functions.

In the third part, the correlated and uncorrelated results are gener-
alized to the bistatic case. Finally, the two-dimensional shadowing
functions with and without correlation are simulated for a real sea from
the autocorrelation function modeled in the first chapter.

2.2 THE ONE-DIMENSIONAL MONOSTATIC

SHADOWING FUNCTION WITHOUT CORRELATION

In this part, in order to introduce the Wagner an Smith hypothesis, we
describe their approach for the determination of the one-dimensional
shadowing function.

2.2.1 Introduction

In the monostatic case (transmitter and receiver at the same loca-
tion), the shadowing function characterizes the surface fraction which
is invisible from the receiver. In the bistatic case (transmitter and re-
ceiver at different location), the surface fraction is invisible from both
transmitter and receiver. Work about the shadowing function has been
done from the 60’s, in order to determine the electromagnetic scatter-
ing from a randomly rough surface. To take into account this phe-
nomenon, the scattered energy by the total surface is multiplied by
the shadowing function S [22].

The analytic shadowing function proposed by Beckmann [23] is
equal to the illuminated surface portion of the surface, and it varies
from one at normal incidence to zero at grazing angle. Another shad-
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owing function given by Brokelman and Hagfors [24], corresponding to
ratio of illuminated point number having a specular refexion over the
entire surface points. Both authors [24] do not propose any analytic
solution of the shadowing function, since their results are obtained
from numerical simulations. They showed that the analytic function
suggested by Beckman [23] is correct for grazing and quasi-normal in-
cidence angles, whereas it exists a difference for intermediate values.

Today, there are two approaches developed by [19] and Smith [20,
21] in 1967 to model the shadowing function based on an identical
mathematical approach about conditional probabilities.

2.2.2 The Definition of the Shadowing Function

The shadowing function is equal to the fraction of the illuminated
surface over the total surface. For an observation length L , the shad-
owing function S(θ, F ) is equal to the probability that an arbitrary
point F (ξ0, γ0) at abscissa τ = 0 on a random rough surface, of given
height ξ0 above the mean plane, and with local slope γ = ∂z/∂y
is illuminated, when the surface is crossed by an incident beam from
direction θ according to the vertical z (figure 2.1):

Figure 2.1 Shadowing function for a monostatic configuration.

The shadowing function for a surface length L0 [19–21] is:

S(θ, F ) = Υ(µ − γ0) · exp



−
L0∫

0

g(τ |F, θ)dτ



 (2.1)



228 Bourlier et al.

with

Υ(µ − γ0) =
{

0 si γ0 ≥ µ
1 si γ0 < µ

µ = cot θ (2.1a)

where g(τ |F, θ)dτ is the conditional probability that the ray inter-
cepts the surface in the interval [τ ; τ + dτ ] , knowing that it is not
cross in the interval [0; τ ] . Υ is represented in figure 2.2.

Figure 2.2 Variation of Υ .

The average shadowing function S(θ) over the slopes and heights
is given by:

S(θ) =

∞∫

−∞

∞∫

−∞

S(θ, F{ξ0, γ0})p(ξ0, γ0)dξ0dγ0 (2.2)

where p(ξ0, γ0) is the joint probability density of the slopes and
heights. S(θ) is the experimentally measured quantity. The main
difficulties to calculate the shadowing function is based on the determi-
nation of g . The analytic expression of g(τ) is rigorously ennounced
by Ricciardi and Sato [25, 26], previous works has been done in 1967
by Wagner and Smith [19–21]. There are two main approaches to cal-
culate the shadowing function, Smith and Wagner formulations are
particular cases of the Ricciardi-Sato works.

2.2.3 The Wagner, Smith and Ricciardi-Sato Approaches

2.2.3.1 Wagner and Smith

The conditional probability g(τ |F, θ)dτ of Wagner is the conditional
probability for the studied point F (ξ0, γ0) to be darkened at the ab-
scissa τ + dτ of slope superior to the slope ray incident (γ > µ) ,
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conditionally to the knowledge of the studied point. Mathematically
we have [19]:

gW (τ |F, θ) =

∞∫

µ

(γ − µ) · p(ξ = ξ0 + µτ, γ|ξ0, γ0; τ)dγ (2.3)

The conditional probability g(τ |F, θ)dτ of Smith is the conditional
probability for the studied point F (ξ0, γ0) to be darkened at the ab-
scissa τ +dτ (circumstance of Wagner) knowing it is not cut it by the
abscissa surface τ . It is given by [20, 21]:

gS(τ |F, θ) =

∞∫

µ

(γ − µ) · p(ξ = ξ0 + µτ, γ|ξ0, γ0; τ)dγ

∞∫

−∞

dγ

ξ0+µτ∫

−∞

p(ξ, γ|ξ0, γ0; τ)dξ

=
gW (τ |F, θ)

∞∫

−∞

dγ

ξ0+µτ∫

−∞

p(ξ, γ|ξ0, γ0; τ)dξ

(2.4)

Smith uses the Wagner formulation combined with a normalization
function.

2.2.3.2 Ricciardi-Sato

Ricciardi and Sato give the rigorous expression of the function g
without any hypothesis [25, 26]:

gR(τ |F, θ) =W1(τ |F, θ) −
τ∫

0

W2(τ1, τ |F, θ)dτ1

+

τ∫

0

dτ1

τ∫

τ1

W3(τ2, τ1, τ |F, θ)dτ2

− . . . + (−1)n−1

τ∫

0

dτ1

τ∫

τ1

dτ2 . . .

τ∫

τn−3

dτn−2
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·
τ∫

τn−2

Wn(τn−1, τn−2, . . . , τ1, τ |F, θ)dτn−1 (2.5)

Wn(τn−1, τn−2, . . . , τ1, τ |F, θ) =

∞∫

µ

dγ1

∞∫

µ

dγ2 . . .

∞∫

µ

dγn

n∏

i=1

(γi − µ) · p2n+2

(
�S, �G|ξ0, γ0; τ

)
n ≥ 2 (2.5a)

where Wn(τn−1, τn−2, . . . , τ1, τ |F, θ)dτn−1dτn−2 . . . dτ2dτ1 is the joint
probability that the incident ray of equation Sn = ξ0 +µln (µ = cot θ)
crosses the surface ξ(τn) , with a slope µ inferior to the slope γn of at
abscissa τn , in the intervals {[τ1; τ1+dτ1], [τ2; τ2+dτ2], · · · , [τn−1; τn−1

+dτn−1]} , conditionally to the knowledge of F (ξ0, γ0) . The joint prob-
ability density of vectors �ST = [S1, S2, . . . , Sn] and �GT = [γ1, γ2, . . . ,

γn] at abscissa points {τ1, τ2, . . . , τn} knowing {ξ0, γ0} is p2n+2(�S, �G|
ξ0, γ0; τ) . The problem is slightly different from these presented by Ric-
ciardi and Sato, because the probability density p2n+2 is conditioned
in our case by the variables {ξ0, γ0} , whereas they only consider the
term ξ0.

The Wagner formulation is obtained for n = 1 and γ = γ1.

2.2.4 Application for an Uncorrelated Process of the Infinite
Surface

The different formulations of the function g are applied for an un-
correlated process, and for an infinite observation length. We
calculate the average shadowing function, given by (equation (2.1) into
(2.2) with L0 → ∞) :

S(θ) = S(θ)L0→∞ =

∞∫

−∞

µ∫

−∞

p(ξ0, γ0) · exp



−
∞∫

0

g(τ |F, θ)dτ



 dξ0dγ0

(2.6)
S(θ) is first determined in the Wagner and Smith cases, for any uncor-
related process, and the results are then compared with Ricciardi-Sato
ones, for uncorrelated gaussian process.
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2.2.4.1 Wagner and Smith

The Wagner and Smith shadowing functions calculated in appendix
1 are valid for an any uncorrelated process, and for an infinite obser-
vation length:





SW (v) = Λ′ × 1 − e−Λ

Λ
SS(v) = Λ′ × 1

Λ + 1






Λ =
1
µ

∞∫

µ

(γ − µ)p(γ)dγ Λ′ =

µ∫

−∞

p(γ)dγ

v = µ/(σ
√

2) = cot θ/(σ
√

2)
(2.7)

where p(γ) is the slope density probability. The general expression of
SS(v) is identical to [27]. According to the following inequalities:

x

1 + x
< 1 − e−x < x and x > 0 ⇒ 1

1 + x
<

1 − e−x

x
< 1

(2.7a)
we have:

1
1 + Λ

<
1 − e−Λ

Λ
< 1 ⇒ SS(v) < SW (v) < Λ′ < 1 (2.8)

with Λ > 0 . The Smith shadowing function is then always inferior to
the Wagner one.

2.2.4.2 Ricciardi-Sato

We show in appendix 2 that the Ricciardi-Sato shadowing function
for an uncorrelated gaussian process and for an infinite observation
length is:

SR(v) =
[
1 − erfc(v)

2

] [
E1(−e−Λ) − E1(−1)

Λe1

]






E1(x) =

∞∫

1

e−xt

t
dt

v =
µ√
2σ

=
cot θ√

2σ
(2.9)

where σ2 is the slope variance.

2.2.4.3 Simulation on a Gaussian Process

In the gaussian case, the probability density is written:

p(γ) =
1

σ
√

2π
exp

(
− γ2

2σ2

)
(2.10)
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Substituting equation (2.10) into (2.7), the Wagner and Smith shad-
owing functions for an uncorrelated gaussian process are:






SW (v) = Λ′ × 1 − e−Λ

Λ
SS(v) = Λ′ × 1

Λ + 1

with






Λ =
[
e−v2 − v

√
πerfc(v)

]
/(2v

√
π)

Λ′ = 1 − 1
2
erfc(v) v =

µ√
2σ

(2.11)
For an uncorrelated gaussian process, the shadowing functions {SW (θ),
SS(θ), SR(θ)} given by equations (2.11) and (2.9) depend only on pa-
rameter v equal to the ratio of the incident ray slope over the surface
standard deviation, multiplied by

√
2 . In figure 2.3 the shadowing

functions are plotted as a function of v . We observe that Smith’s
results are inferior to Wagner’s and verify equation (2.8). The Wag-
ner and Ricciardi-Sato curves have an identical behavior for v ≥ 0, 6 ,
whereas they differ for smaller values, corresponding to incidence an-
gles close to 90◦ . Indeed:

SR(0) = e−1/2 = 0, 184 and SW (0) = 0 (2.12)

Physically the shadowing function is equal to zero at a grazing angle
of 90◦ . So, when the correlation is not included, the Sato-Ricciardi
results do not give satisfying results at grazing angles, whereas the
Wagner results are correct but overestimate the shadowing function.
The modeling of this phenomenon being inaccurate, it is then essential
to include the correlation. Unfortunately the complexity of equation
(2.5) does not allow to analytically determine the function gR . Nev-
ertheless, the analytic calculus of the Wagner and Smith uncorrelated
functions g are possible.

2.3 THE ONE-DIMENSIONAL MONOSTATIC
SHADOWING FUNCTION WITH CORRELATION

The goal of this part, is to quantify the hypothesis introduced by Smith
and Wagner for the determination of the monostatic one-dimensional
shadowing function. They assume that the joint probability density of
the slopes and heights is uncorrelated, involving that the shadowing
function is independent of the autocorrelation function. The Wagner
and Smith approaches are applied for a correlated gaussian process.
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Figure 2.3 The Wagner, Smith and Ricciardi-Sato shadowing func-
tions as a function of v.

2.3.1 Expressions of the Wagner and Smith Conditional Prob-
abilities

This part gives the theoretical expressions of the Wagner and Smith
correlated conditional probabilities, for a given observation
length.

2.3.1.1 Wagner

We show that the joint probability p(ξ, γ|ξ0, γ0; τ) expression is
(appendix 3):

p(ξ, γ|ξ0, γ0; τ) =
σω

2π
√

|[C]|
× exp

[

−Ci11

(
ξ2
0 + ξ2

)
+ Ci33

(
γ2

0 + γ2
)

2|[C]|

+
ξ2
0

2ω2
+

γ2

2σ2
(2.13)

−2Ci12ξ0ξ + 2Ci34γ0γ + 2Ci13(ξ0γ0 − ξγ) + 2Ci14(ξ0γ − ξγ0)
2|[C]|

]
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and





Ci11 = ω2
(
σ4 − R2

2

)
− R2

1σ
2

Ci12 = R0

(
R2

2 − σ4
)
− R2

1R2

Ci13 = −R1

(
R0σ

2 + ω2R2

)






Ci14 = R1

(
R2

1 − R0R2 − ω2σ2
)

Ci33 = σ2
(
ω4 − R2

0

)
− R2

1ω
2

Ci34 = R2

(
ω4 − R2

0

)
+ R2

1R0

|[C]| =
C2

i33 − C2
i34

ω4 − R2
0

(2.13a)

where R0 is the autocorrelation function assumed even and derivable
at the origin, and {R1, R2} are its first and second derivatives. The
height variance ω2 is equal to R0(0) and the slope variance σ2 is
−R2(0) . |[C]| is the determinant of the covariance matrix [C] . The
first index i in Ciij denotes the elements of the inverse matrix [C]−1 .

From equation (2.3), the Wagner conditional probability gW (τ |F, θ)
is:

gW (τ |F, θ) =
σω exp[−D − µ(µA + 2B)]

4πA
√
|[C]|

·
[
1 − e

(B+µA)2

A

√
π

B + µA√
A

erfc
(

B + µA√
A

)]
(2.14)

with





A =
Ci33

2|[C]|
B =

ξ0Ci14 − ξCi13 + γ0Ci34

2|[C]| ξ = ξ0 + µτ

D =

(
ξ2
0 + ξ2

)
Ci11 + 2ξ0ξCi12 + 2γ0(ξ0Ci13 − ξCi14) + γ2

0Ci33

2|[C]|

− ξ2
0

2ω2
− γ2

0

2σ2

(2.14a)

2.3.1.2 Smith

From equations (2.4) and (2.13), the Smith conditional probability
is given by:
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gS(τ |F, θ) =
1
π

√
A1

A

×








exp
[
−D − µ(µA + 2B) − ξ2

0

2ω2
− γ2

0

2σ2

]

×
[
1 − e

(B+µA)2

A

√
π

B + µA√
A

erfc
(

B + µA√
A

)]








exp
(

B2
1

A1
− C1

) {
erf

(
A1ξ + B1√

A1

)
+ 1

}

(2.15)





A1 =
(
Ci11Ci33 − C2

i13

)
E1 E1 =

1
2Ci33|[C]|

B1 = [ξ0 (Ci12Ci33 + Ci14Ci13) + γ0 (Ci13Ci14 − Ci14Ci34)]E1

C1 =
[
ξ2
0(Ci11Ci33 − C2

i14) + γ2
0(C2

i33 − C2
i34)

+2ξ0γ0(Ci13Ci33 − Ci14Ci34)]E1

(2.15a)
The function introduced in the denominator of equation (2.15) repre-
sents the Smith normalization.

2.3.1.3 Conclusion

The Wagner and Smith classical shadowing functions assume that
the correlation is null, involving (equation (2.13)):

{
R0 = 0
R1 = 0
R2 = 0

⇒






Ci12 = 0
Ci13 = 0
Ci14 = 0
Ci34 = 0

and






|[C]| = σ4ω4

Ci11 = σ4ω2

Ci33 = σ2ω4

⇒






A = 1/
(
2σ2

)

B = 0
D = ξ2/

(
2ω2

)






A1 = 1/
(
2ω2

)

B1 = 0

C1 =
ξ2
0

2ω2
+

γ2
0

2σ2

(2.16)

Substituting relations (2.16) into (2.14) and (2.15), the Wagner and
Smith uncorrelated conditional probabilities are:






gW (τ |F, θ) = Λµ
1

ω
√

2π
exp

(
− ξ2

2ω2

)

gS(τ |F, θ) = gW (τ |F, Θ)
2

1 + erf
(
ξ/

[√
2ω

]) ≥ gW (τ |F, Θ)
(2.16a)
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The conditional probability depends on {ω, σ} . In the gaussian and
lorentzian cases (table 2.1) the value of {ω, σ} are equal, involving an
identical shadowing function. On the contrary, when the correlation is
included, the shadowing functions are not equal, due to the functions
{R0, R1, R2} which are different in each case.

Table 2.1 Gaussian and lorentzian autocorrelation functions.

Functions Functions R1 and f1 Functions R2 and f2 Standard

R0 and f0 Deviation

of slopes σ

Gaussian R0 = ω2e
− τ2

L2 R1 = −2ω2

L

τ

L
e
− τ2

L2 R2 = −2ω2

L2
e
− τ2

L2

(
1 − 2

τ2

L2

)
σ =

ω
√

2

L

f0 = e−y2
f1 =

√
2ye−y2

f2 = e−y2
(1 − 2y2) η =

σL

ω
=

√
2

Lorentzian R0 =
ω2

1 +
τ2

L2

R1 = −2ω2

L

τ

L

(
1 +

τ2

L2

)2
R2 = −2ω2

L2

1 − 3
τ2

L2
(

1 +
τ2

L2

)3
σ =

ω
√

2

L

f0 =
1

1 + y2
f1 =

y
√

2

(1 + y2)2
f2 =

1 − 3y2

(1 + y2)3
η =

σL

ω
=

√
2

2.3.2 Expressions of the Wagner and Smith Shadowing Func-
tions

In this part, we show that the Wagner and Smith averaged one-
dimensional monostatic shadowing functions only depend on one pa-
rameter v = µ/(σ

√
2) whatever the autocorrelation function. µ is

the slope of the incident beam and σ the slope standard deviation.
The introduction of the variable v permits to reduce the number of
degrees of freedom from two {θ, σ} to one v.

2.3.2.1 The Wagner and Smith Averaged Shadowing Functions

In order to give the shadowing function as a function of v , define
the following relations:

R0 = ω2f0 R1 = −σωf1 R2 = −σ2f2 (2.17)

{R1;R2} are set to negative sign so that the functions {f1; f2} are
positive at the neighborhood of zero. Substituting equations (2.17)
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into (2.13a), we show:





Ci11

2|[C]| =
1

2ω2
· f11

fM
Ci12

2|[C]| =
1

2ω2
· f12

fM
Ci33

2|[C]| =
1

2σ2
· f33

fM
Ci34

2|[C]| =
1

2σ2
· f34

fM
Ci13

2|[C]| =
1

2σω
· f13

fM
Ci14

2|[C]| =
1

2σω
· f14

fM

with






fM =
f2
33 − f2

34

1 − f2
0

=
|[C]|
(ωσ)4

f11 = 1 − f2
2 − f2

1

f12 = f0f
2
2 + f2

1 f2 − f0

f33 = 1 − f2
0 − f2

1

f34 = f2
0 f2 + f2

1 f0 − f2

f13 = f1(f0 − f2)
f14 = f1(1 − f2

1 − f0f2)

(2.17a)
For a finite surface L0 the shadowing function is (equation (2.1)):

S(θ, F ) = Υ(µ − γ0) · exp



−
L0∫

0

g(τ |F, θ)dτ



 (2.17b)

For a gaussian process, the average shadowing function over the slopes
and heights is:

S(θ) =
1

2πσω

∞∫

−∞

µ∫

−∞

exp
(
− ξ2

0

2ω2
− γ2

0

2σ2

)

· exp



−
L0∫

0

g(τ |F{ξ0, γ0}, θ)dτ



 dξ0dγ0 (2.18)

Performing the following variable transformation:

h0 =
ξ0√
2ω

γ0√
2σ

= v − p0 y =
τ

L
(2.18a)

where L is the length of correlation, we have:

S(v) =
1
π

∞∫

−∞

∞∫

0

exp
[
−h2

0 − (v − p0)2
]

· exp



−L

y0∫

0

g(y|F{h0, p0}, θ)dy



 dh0dp0 (2.19)
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The variable transformation allows to reduce the integration bound-
aries, then:
{
−∞ < h0 < ∞ → −3 < h < 3 due to exp(−32) = 1, 23 × 10−4

0 < p0 < ∞ → 0 < p < 3 + v due to exp(−32) = 1, 23 × 10−4

(2.19a)
When the normalized observation length y0 is infinite, the integration
domain of the function g is contained between zero and infinite. In
order to reduce this domain, the integral is split in two parts. The
analytic integration of the second term becomes then possible.

2.3.2.2 Reduction of the Integration Domain

We can write:

L

y0∫

0

gdy = L

yt∫

0

gdy + L

y0∫

yt

gdy = G + Gt (2.20)

The integration boundary of transition yt is defined by:

fij = 0 for i �= j fij = 1 for i = j (2.20a)

In figure 2.4 the terms fij are represented as a function of y , for
gaussian and lorentzian autocorrelation functions (table 2.1). We ob-
serve that the intercorrelation functions {f12; f34; f13; f14} become null
when y ≥ ytG = 3 in the gaussian case, y ≥ ytL = 6 for the lorentzian
case, whereas the correlations terms {f11; f33} become independent
of y and are equal to unity. The limits {ytG, ytL} are obtained when
equations (2.20a) are verified involving that {ytG = 3, ytL = 6} . Wag-
ner and Smith assumed that equations (2.20a) are verified for any val-
ues of y , involving that equation (2.20) is reduced to Gt with yt = 0 .
This condition is plotted in solid line in figure 2.4. Making variable
transformations given by equations (2.18a), the Wagner and Smith
conditional probabilities are (equations (2.16a)) (without correlation):

gW (h) =
Λv

L
√

π
· e−h2

gS(h) =
gW (h)

1 − erfc(h)
2

(2.21)

with 




Λ =
[
e−v2 − v

√
πerfc(v)

]
/(2v

√
π)

h = h0 + y
µL

ω
√

2
= h0 + y × vη η =

σL

ω

(2.21a)
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Substituting equations (2.21) into the second integral (2.20), the ana-
lytic integration of g on the range [yt; y0] is:






GtW (h0, v) =

y0∫

yt

gW (h0, v)dy =
Λ
2

[erf(hf ) − erf(ht)]

GtS(h0, v) =

y0∫

yt

gS(h0, v)dy = − ln






1 − erfc(ht)
2

1 − erfc(hf )
2






Λ

{
ht = h0 + ytvη
hf = h0 + y0vη

(2.21b)

In table 2.1, we notice that η =
√

2 , but this equation is not always
checked (damped autocorrelation functions). Substituting equation
(2.20) into (2.19), the shadowing function is given by:

S(v) =
1
π

∞∫

−∞

I(h0)




∞∫

0

J(h0, p0)dp0



 dh0






I(h0) = exp
[
−h2

0 − Gt(h0, v)
]

J(h0, p0) = exp



−(v − p0)2 − L

yt∫

0

g(y, h0, p0, v)dy





(2.22)

2.3.2.3 Note

The Wagner and Smith models assume that the surface is infinite
y0 = ∞ involving that hf = ∞ and yt = 0 ⇒ ht = h0 , thus:






SW (v) =
1
π

∞∫

−∞

e−h2
0−Λerfc(h0)dh0

∞∫

0

e−(v−p0)2dp0 = Λ′ × 1 − e−Λ

Λ

SS(v) =
1
π

∞∫

−∞

e−h2
0 ·

[
1− erfc(h0)

2

]Λ

dh0

∞∫

0

e−(v−p0)2dp0 = Λ′ × 1
Λ + 1

(2.22a)
We have the same solution as in (2.11).
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Figure 2.4 Gaussian and lorentzian autocorrelation functions.
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2.3.2.4 Conclusion

In table 2.2 is summarized the calculus of Wagner and Smith av-
erage one-dimensional monostatic shadowing functions for a gaussian
process and for any autocorrelation function. Their determination re-
quires three linked integrations. First is performed the exact integra-
tion of the function g on the interval [0; yt] . The second one is done
over J(h0, p0) according to the variable p0 . The last obtained result
is multiplied by I(h0) , and integrated over h0 . The terms fij given
by equations (2.17a) contain the complete information about the au-
tocorrelation function. The integration of the function g must respect
the following convergence criteria:

fM > 0 f33 > 0 (2.23)

The Wagner and Smith classical shadowing functions do not take into
account the correlation, i.e., yt is equal to zero. The J(h, p) inte-
gration over p then becomes independent of h , both integrations over
{p, h} of {J(p), I(h)} are independent and resolved analytically (equa-
tions (2.22a)). Finally for any autocorrelation function, the shadowing
function depends on parameter v = µ/σ

√
2 and on the observation

length y0 normalized to the correlation length. µ represents the slope
of the incident beam and σ the slope standard deviation. With the
aim of comparing the Smith and Wagner results, with or without cor-
relation, and to estimate their hypothesis, the shadowing function is
calculated numerically with any hypothesis. It is the reference solution,
but the surface has to be generated.

2.3.3 Generation of the Random Surface

The numerical shadowing function requires to generate a random
surface.

Figure 2.5 Issue configuration.
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Table 2.2 Summary of the calculus of the average one-dimensional
shadowing function for any autocorrelation function.

S(ν) =
1

π

∞∫

−∞

I(h0)




∞∫

0

J(h0, p0)dp0



 dh0

Shadowing

function

I(h0) = exp
[
−h2

0 − Gt(h0, ν)
]

J(h0, p0) = exp



−(ν − p0)
2 − L

yt∫

0

g(y, h0, p0, ν)dy





Intergration h0 ∈ [−3; 3] p0 ∈ [0; 3 + ν] h = h0 + y × νη

η
√

fM

2πf33
· e−D−ν(νA+2B) ·

[
1 − eS2√

πSerfc(S)

]
with






S =
B + νA√

A

η =
σL

ω
= cste

Wagner

gW L

funcion

and






D =

(
h2
0 + h2

)
f11 + 2h0hf12 + 2(ν − p0)(h0f13 − hf14) + (ν − p0)

2f33

fM
− h2

0 − (ν − p0)
2

S =
h0f14 − hf13 + (ν − p0)f34 + νf33√

f33fM

µ(µA + 2B) =
ν2f33 + 2ν(h0f14 − hf13) + 2νf34(ν − p0)

fM

Wagner

Gt
Λ

2
[erf(h0 + y0νη) − erf(h0 + ytνη)]

function

η

π

√
f11f33 − f2

13

f33
·
e−D−ν(νA+2B)−h2

0−(ν−p0)2 ·
[
1 − eS2√

πSerfc(S)

]

e
B2

1
A1

−C1 · erfc
(
−A1h + B1√

A1

)

Smith

gSL

funcion 




C1 = h2
0 ·

f11f33 − f2
14

f33fM
+ (ν − p0)

2 ·
f2
33 − f2

34

f33fM
+ 2h0(ν − p0) ·

f13f33 − f14f34

f33fM

B1√
A1

=
h0(f12f33 + f14f13) + (ν − p0)(f13f34 − f14f33)√

f33fM (f11f33 − f2
13)

√
A1 =

√
f11f33 − f2

13

f33fM

Smith

Gt − ln

[
1 − erfc(h0 + ytνη)/2

1 − erfc(h0 + y0νη)/2

]Λ

funcion

2.3.3.1 The Problem Configuration

Let x(i) be the known sampled input signal, y(i) the output sig-
nal (figure 2.5) to determine and {g(i), G(f)} the spatial and frequen-
tial impulse response of the filter. The goal of this paragraph is to
calculate the filter coefficients knowing the autocorrelation functions
{Rx(i), Ry(i)} of samples {x(i), y(i)} respectively. The Fourier trans-
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form method [28, 29] is used. If x(i) is a stationary random process
of second order with a power spectral density Φx(f) then y(i) is a
stationary random second order process, whose power spectral density
Φy(f) checks:

my = G(0) · mx Φy(f) = |G(f)|2 · Φx(f) (2.24)

where mx and my are respectively the means of input and output
samples of the filter. If the impulse response is real, we have:

G(f) =

√
Φy(f)
Φx(f)

(2.24a)

Furthermore:
y(i) = g(i)∗x(i) (2.25)

where ∗ is the convolution product. Substituting equation (2.24a) into
(2.25). y(i) leads to:

y(i) = TF−1

[√
Φy(f)/Φx(f)

]
∗ x(i) (2.25a)

Applying to the input of the filter a gaussian white noise, then its
power spectral density is defined by:

Φx(f) = ω2
b (2.26)

where ω2
b is noise variance. The signal y(i) is:

y(i) =
1
ωb

· w(i)∗x(i) with w(i) = TF−1

[√
Φy(f)

]
(2.27)

The filter coefficients {wG(i), wL(i)} are for gaussian and lorentzian
autocorrelation functions (table 2.1), respectively:

wG(i) = ωy ·
√

2
L
√

π
· exp

(
−2i2

L2

)
wL(i) = ωy ·2

√
1

Lπ

1
1 + (2i/L)2

(2.27a)
where L is the correlation length and ω2

y the sample variance.
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2.3.3.2 Simulations in the Lorentzian and Gaussian Cases

In figure 2.6 are represented the input and output characteristics of
the filter for a gaussian and lorentzian unitary variance ω2

y autocorre-
lation functions. For this instance, the correlation length L is equal
to 200, the input of the filter is a white noise with 100000 = 500L
samples, its variance is unitary and its mean mb is equal to zero. In
the top left of figure, the output sample normalized histogram is com-
pared with its theoretical distribution. Both curves show a gaussian
behavior. We also notice that the mean is null (centered to zero) and
whole energy is concentrated between −3ωb and 3ωb . In top center
and top right of figures, are plotted the output samples normalized
histograms and their theoretical distribution for each autocorrelation
function. We observe a gaussian behavior (because the filter is lin-
ear) with a null mean value my , checking the equation (2.24) with
mx = mb = 0.

In center figures are represented respectively the behavior of in-
put x(i) and output surfaces {yG(i), yL(i)} . The input is very noisy
whereas the output becomes smoother due to the correlation. Finally,
in bottom figures the input and output samples normalized autocor-
relation functions are plotted. At the input, we observe a centered
peak at zero, which theoretically is Dirac function δ(i) , whereas at
the output we obtain the expected autocorrelation functions. Indeed,
the difference between theoretical curve and the curve obtained from
filter coefficients is weak.

2.3.3.3 The Numerical Shadowing Function: Reference Solution

In order to estimate the hypothesis introduced by Wagner and
Smith, the one-dimensional shadowing function is determined numer-
ically from the algorithm [8, 24] summarized in figure 2.7. The pro-
cedure of calculus is checked by substituting a sinusöıdal surface of
equation z(y) = A sin(By) to the random surface. Indeed the point
y1 where the surface is in the shadow verifies:

dz

dy

∣∣∣∣
y=y1

= A · B · cos(By1) = − cot θ ⇒ y1 = acos
(− cot θ

AB

)
/B

(2.28)
The point y2 where the surface emerges of the shadow checks the
following equation:

z(y1) − z(y2) + (y1 − y2) cot θ = 0 (2.28a)



Intrinsic infrared radiation of the sea surface 245

Figure 2.6 Random surfaces for different autocorrelation functions.

This equation is resolved by dichotomy. Then the shadowing function
over one period is equal to:

SN (θ) = 1 − B[y2(θ) − y1(θ)]
2π

(2.28b)

In figure 2.8 are compared the shadowing functions obtained from both
methods with {A = 0, 5;B = 5} . The number of samples is 5000. The
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Figure 2.7 Algorithm of the shadowing function.

similarity of both curves validates the algorithm.

2.3.4 Simulations on an Infinity Surface

In this section, the Smith and Wagner shadowing functions (table
2.2) with and without correlation (equations (2.22a)) are simulated for
an infinite surface (y0 = ∞) . With the aim to quantify the hypoth-
esis of Wagner and Smith classical approaches (without correlation),
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Figure 2.8 Comparison of the two methods of the determination of
the shadowing function for a sinusoidal surface.

they are compared to the reference solution. This shadow is obtained
from generating surfaces (paragraph 2.3.3.3) for lorentzian and gaus-
sian autocorrelation functions. Finally, damped behaviors of gaussian
and lorentzian envelopes are simulated.

2.3.4.1 The Gaussian Autocorrelation Function

In figure 2.9 are represented the shadowing functions for a gaussian
surface. The reference solution is in solid line. The Wagner and Smith
results are plotted in dashed line without taking into account the corre-
lation, whereas in circles and crosses the correlation is included. We ob-
serve that the correlation involves a decreasing of the shadowing func-
tion. In figure 2.10 the absolute errors between shadowing functions
and the reference solution are plotted. For v ≥ 1, 4 , the correlation is
negligible when the incidence angle is inferior to θc = atan(0.505/σ) ,
with σ the slope standard deviation. For v < 1, 4 , the correlation
divides the absolute error by about three. Finally, the Smith results
are better than the Wagner ones.
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Figure 2.9 One-dimensional monostatic shadowing functions as a
function of v for a gaussian surface.

2.3.4.2 The Lorentzian Autocorrelation Function

In figure 2.11 are represented the same curves as in figure 2.9, but
for a lorentzian surface. We also notice that the results including the
correlation are very close to the reference solution. In figure 2.12 the
absolute error between the shadowing functions and the reference solu-
tion are compared. We observe that the Smith results are better than
the Wagner ones. Like for the case of a gaussian autocorrelation func-
tion, the correlation is negligible for v ≥ 1, 4 , and divides the absolute
error by about three.

Since in table 2.2, the slope variance σ2 is the same for a lorentzian
and gaussian autocorrelation function, the Wagner and Smith classi-
cal shadowing functions are equal in each case due to the fact that
v = cot θ/(σ

√
2) . On the contrary, correlated shadowing functions are

different (figure 2.13 and figure 2.14), because the terms fij are not
identical for gaussian and lorentzian surfaces (figure 2.4).
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Figure 2.10 Absolute errors between shadowing functions and the
reference solution as a function of v for a gaussian surface.

2.3.4.3 The Damped Autocorrelation Functions

In the first chapter, we have shown that the isotropic part of the
autocorrelation function is damped lorentzian (paragraph 1.5.1.3). In
order to show this property, simulations are realized on the following
surfaces:






R0(τ) = ω2 exp
(
− τ2

L2

)
cos

(aτ

L

)
Damped gaussian

R0(τ) = ω2 cos
(aτ

L

)
/

(
1 +

τ2

L2

)
Damped lorentzian

(2.29)

For each autocorrelation function, table 2.3 gives the functions {f0,
f1, f2, σ, η} . Since the analytical determination of the filter coefficients
is not possible, the reference solutions are not simulated. Moreover,
we only keep the Smith model. In figure 2.15, the Smith shadowing
functions with and without correlation are represented as a function
of v , and for a = {1, 2} . We observe that the correlated results are
slightly different according to the autocorrelation functions, whereas
the more a increases the more the gap between the correlated and
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Figure 2.11 One-dimensional monostatic shadowing functions as a
function of v for a lorentzian surface.

Figure 2.12 Absolute errors between shadowing functions and the
reference solution as a function of v for a lorentzian surface.
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Figure 2.13 Monostatic one-dimensional shadowing function of Wag-
ner according to v.

Figure 2.14 Monostatic one-dimensional shadowing function of Smith
according to v.
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Table 2.3 Damped autocorrelation functions.

Damped gaussian Damped lorentzian

f0 e−y2
cos(ay) cos(ay)/(1 + y2)

f1
e−y2

[2y cos(ay) + a sin(ay)]√
2 + a2

1√
2 + a2

[
2y cos(ay)

(1 + y2)2
+

a sin(ay)

1 + y2

]

f2
e−y2

[(2 + a2 − 4y2) cos(ay) − 4ay sin(ay)]

2 + a2

1

2 + a2

{
cos(ay)

[
a2

1 + y2
+

2(1 − 3y2)

(1 + y2)3

]

−4ay sin(ay)

(1 + y2)2

}

{σ, η} σ =
ω
√

2

L

√

1 +
a2

2
η =

√
2 + a2 σ =

ω
√

2

L

√

1 +
a2

2
η =

√
2 + a2

uncorrelated shadowing functions increases. We also notice that the
correlation becomes negligible when v ≥ 1, 4 . In figure 2.16, The
Smith correlated shadowing function of damped lorentzian surface are
compared with the parameter a = {0, 1, 2} . We observe that the
results vary slightly with a.

2.3.5 Conclusion

The Wagner and Smith classical approaches neglect the correlation,
and overestimate the shadowing function. It physically means it is
independent of the autocorrelation function.

The simulations realized on lorentzian and gaussian infinite sur-
faces show the correlated results are better than uncorrelated ones,
and the correlation can be negligible for incidence angles inferior to
θc = atan(0.505/σ) . Moreover, the advantage to include the corre-
lation is to take into account the surfaces which have the same slope
variance (tables 2.2 and 2.3). The results obtained from the Smith
correlated shadowing effect for the lorentzian and gaussian autocorre-
lation functions are similar and vary slightly with a . On the contrary,
when a increases, the gap between correlated and uncorrelated results
increases, but becomes null when the incidence angle is inferior to θC .
Finally, in the rest of this chapter, we only keep the Smith model since
its results are better than Wagner’s ones.
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Figure 2.15 The Smith one-dimensional monostatic shadowing func-
tion of damped autocorrelation function for a = {1, 2} as a function
of v.
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Figure 2.16 The Smith correlated one-dimensional monostatic shad-
owing function of damped lorentzian autocorrelation function for a =
{0, 1, 2} as a function of v.

2.4 THE ONE-DIMENSIONAL BISTATIC SHADOWING
FUNCTION

The formalism exposed in previous paragraphs, is extended to the
bistatic case for a gaussian process. So, the bistatic problem is equiv-
alent to two independent monostatic configurations, defined by the
transmitter and by the receiver. The Smith monostatic solutions with
or without correlation are extended to bistatic case, then compared
with the reference solution obtained by generating the surface.

2.4.1 Determination of the Bistatic Shadowing Function

2.4.1.1 Problem Description

For a stationary process, the bistatic shadowing function represents
the probability S(θ1, θ2|F ) that the incident (y < 0) and reflected
(y > 0) rays for respective observation angles {θ1, θ2} are not crossed
by the surface, knowing that they cross each other at the point F
located on the surface with height ξ0 and slope γ0 (figure 2.17).
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Figure 2.17 Bistatic configuration of the shadowing function.

Let S(θ1|θ2, F ) be the probability that the incident ray does not
intercept the surface, knowing that the reflected ray does not cross
the surface, and that the two rays cut each other at the point F .
S(θ2|θ1, F ) is defined by analogy with S(θ1|θ2, F ) . Applying the
Bayes theorem, we have:

S(θ1, θ2, |F ) = S(θ1|θ2, F ) · S(θ2|F ) = S(θ2|θ1, F ) · S(θ1|F ) (2.30)

where {S(θ1|F ), S(θ2|F )} are the conditional probabilities. According
to the value of θ2 , we have to distinguish three cases [19] (figure 2.18).
We set θ1 to negative values.

Figure 2.18 Geometric representation of the three cases.
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2.4.1.2 Study of the Three Cases

Case (a) θ2 ∈ [0;π/2]

Assuming that the probability to cut the incident ray is independent
of the probability to cut the reflected ray, we have:

S(θ1, θ2, |F ) = S(θ1|F ) · S(θ2|F ) (2.30a)

Case (b) θ2 ∈ [θ1; 0]

Using equation (2.30), the conditional probability is:

S(θ1, θ2, |F ) = S(θ2|θ1, F ) · S(θ1|F ) = 1 · S(θ1|F ) (2.30b)

Case (c) θ2 ∈ [−π/2; θ1]

Using equation (2.30), the conditional probability is:

S(θ1, θ2, |F ) = S(θ1|θ2, F ) · S(θ2|F ) = 1 · S(θ2|F ) (2.30c)

2.4.1.3 Conclusion

The bistatic conditional probability is for angles {θ1; θ2} :

S(θ1, θ2, |F ) =






S(θ1|F ) · S(θ2|F ) for θ2 ∈
[
0;

π

2

]

S(θ1|F ) for θ2 ∈ [θ1; 0]
S(θ2|F ) for θ2 ∈

[
−π

2
; θ1

] (2.31)

The bistatic shadowing function is obtained from two monostatic shad-
owing functions defined by the angular positions of the transmitter and
the receiver. The average shadowing function over the slopes is:

S(θ1, θ2) =
1

2πσω

∞∫

−∞

∞∫

−∞

S(θ1, θ2, |F ) · exp
(
− ξ2

0

2ω2
− γ2

0

2σ2

)
dξ0dγ0

(2.32)

2.4.2 Application on the Smith Shadowing Function

2.4.2.1 The Reference Solution-Algorithm

In order to determine the bistatic shadowing function obtained by
generating the surface with N samples, is built a table indexed to
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the number of the sample. Table 2.4 gives two fields defining the
transmitter and the receiver.

Table 2.4 Fields definition.

Index i Transmitter E Receiver R

[1;N ] Ei = 1 illuminated Ri = 1 illuminated
Ei = 0 hidden Ri = 0 hidden

Sample i is said to be “hidden” if it is invisible for the transmitter
or the receiver. So, the numerical shadowing function is:

SN (θ1, θ2) =
1
N

N∑

i=1

Ei · Ri if θ2 > 0 then Ri = RN−i (2.33)

Note that if the receiver angle is positive, the surface is then flip in the
left/right direction.

2.4.2.2 The Uncorrelated Shadowing Function

For an infinite surface the Smith bistatic uncorrelated shadowing
function is (appendix 5):

SS(v1, v2) =






1 − 1
2
[erfc(v1) + erfc(v2)]

Λ1 + Λ2 + 1
for 0 ≤ v2 < ∞

1 − 1
2
erfc(v2)

Λ2 + 1
for −v1 ≤ −v2 < 0

1 − 1
2
erfc(v1)

Λ1 + 1
for −∞ ≤ −v2 < −v1

(2.34)
with






vi =
cot (|θi|)√

2σ

Λi =
[
e−v2

i − vi
√

πerfc(vi)
]
/(2vi

√
π)

i = {1, 2} (2.34a)
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2.4.2.3 The Correlated Shadowing Function

For a surface with length L0 , the shadowing function is (equation
(2.1)):

SS(θ, ξ0, γ0) = Υ(µ − γ0) · exp



−
L0∫

0

g(τ)dτ



 (2.35)

Case (a) θ2 ∈ [0;π/2]
Substituting equation (2.35) into (2.30a), the Smith shadowing func-

tion is given by:

SS(θ1, θ2|F ) = Π[µ1;µ2] · exp



−
0∫

−L0

gS1(τ)dτ −
L0∫

0

gS2(τ)dτ





= Π[µ1;µ2] · exp



−
L0∫

0

[gS1(−τ)dτ + gS2(τ)]dτ



 (2.36)

where {gS1; gS2} are respectively the receiver and transmitter condi-
tional probabilities. The definition of Π[µ1;µ2] is given in appendix
5. From generalizing the monostatic results contained in table 2.2, we
show that the Smith averaged monosatic shadowing function is:

SS(v1, v2) =
1
π

∞∫

−∞

e−h2
0











1 − erfc(h0 + ytv1η)
2

1 − erfc(h0 + y0v1η)
2






Λ1

·






1 − erfc(h0 + ytv2η)
2

1 − erfc(h0 + y0v2η)
2






Λ2 


v2∫

−v1

J(h0, p0)dp0









dh0

with (2.37)

J(h0, p0) = exp





−p2

0 − L

yt∫

0

[gS1(−y) + gS2(y)]dy






The parameters {v1 ≥ 0, v2 ≥ 0, Λ1, Λ2} are given by equations
(2.34a).
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Conditional probabilities
Using equation (2.4), the Smith receiver conditional probability

(y > 0) is:

gS2(y) =

∞∫

µ2

(γ − µ2) · exp[−A · γ2 − 2B · γ − D]dγ

∞∫

−∞

ξ0+µ2yL0∫

−∞

exp[−A · γ2 − 2B · γ − D]dξdγ

(2.38)

Its expression is given in table 2.2 by substituting {v − p0 → p0; v →
v2} . Applying the same principle for the emitter, the conditional prob-
ability (y < 0) becomes:

gS1(−y) =

−|µ1|∫

−∞

(−γ − |µ1|) · exp[−A · γ2 − 2B · γ − D]dγ

∞∫

−∞

ξ0+|µ1|yL0∫

−∞

exp[−A · γ2 − 2B · γ − D]dξdγ

(2.38a)

Setting γ′ = −γ in the numerator integral, we have:

gS2(−y) =

∞∫

|µ1|

(γ′ − |µ1|) · exp[−A · γ2 + 2B · γ′ − D]dγ′

∞∫

−∞

ξ0+|µ1|y∫

−∞

exp[−A · γ2 − 2B · γ − D]dξdγ

(2.38b)

gS2(y) become gS1(−y) to permute B to −B at the numerator and
to permute µ2 to |µ1| at the numerator and at the denominator.

Synthesis
- When 0 ≤ v2 < ∞ , the shadowing function is given by equation

(2.37). gS2(y) is calculated from the monostatic expression of gS

listed in table 2.2, by replacing {v → v2; v2−p0 → p0} . gS1(−y)
is determined by substituting {v → v1; v1 − p0 → p0; fij(y) →
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fij(−y)} . Moreover, B is changed by its opposite −B , which
is equivalent to replace in the expressions of {S;µ(µA + 2B)} ,
the {f13; f14; f34} by their opposite. In the case where the auto-
correlation is even, we show that the functions {f12; f11; f33; f34}
are even, whereas {f13; f14} are odd. It is then equivalent to
replace in {S;µ(µA + 2B)}, f34 by −f34 and in C, {f13; f14}
by {−f13;−f14}.

- When −v1 ≤ −v2 < 0 the shadowing function is obtained from
the monostatic expression of gS given in table 2.2, by changing
v → v2.

- When −∞ ≤ −v2 < −v1 the shadowing function is obtained
from the monostatic expression of gS given in table 2.2, by mak-
ing v → v1.

2.4.2.4 Simulation on an Infinite Surface

In this part, the Smith bistatic one-dimensional shadowing function
without correlation (equation (2.34)) and with correlation (equation
(2.37)) are simulated, for an infinite surface (y0 = ∞) of damped
gaussian autocorrelation function (equation (2.29)) .

In figure 2.19 is plotted the bistatic shadowing function obtained by
generating a gaussian surface (a = 0) . For a very rough surface (high
standard deviation of slopes σ , i.e., vi = µi/σ

√
2 small), the shadow-

ing function decreases quickly. For incidences near 90◦ , corresponding
to vi → 0 , the surface is highly shaded (S → 0) . On the contrary,
for normal incidences (vi near to two), all the surface is illuminated
(S = 1) . The variation between these two asymptoties values equal to
0 as much as σ.

In figure 2.20 the absolute errors between the reference solution and
the correlated and correlated bistatic shadowing functions are com-
pared. For |vi| ≥ 1.4 , the effect of the correlation is negligible. We
also see for |vi| < 1.2 that the absolute error is divided by about three.

In figure 2.21, the absolute errors between the correlated and the
uncorrelated results are represented for a = {1, 2} . We observe that
the error varies weakly with a , and becomes null for |vi| ≥ 1.4 . In
figure 2.22 are plotted the differences between the shadowing functions
obtained for a = 0 (gaussian case) and the ones determined for a =
{1, 2}.
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Figure 2.19 One-dimensional bistatic shadowing function obtained
by generating a gaussian infinite surface with a = 0.

2.4.3 Conclusion

The formalism exposed in the previous paragraphs has been gen-
eralized to the one-dimensional bistatic case. The bistatic problem is
equivalent to two independent monostatic configurations defined by
the transmitter and by the receiver. The correlated and uncorrelated
monostatic solutions of Smith have been extended and compared with
the reference solution obtained by generating a surface. The simu-
lations realized on an infinite surface for a gaussian autocorrelation
function show that the Smith correlated results are close to the ones
obtained with the reference solution. The absolute error between the
Smith uncorrelated shadowing function and the reference solution is
multiplied by about three when the parameters |vi| are inferior to 1.4,
corresponding to incidence angles inferior to |θic| = atan(0.505/σ).

2.5 THE TWO-DIMENSIONAL SHADOWING FUNCTION

We have shown that one-dimensional shadowing function depends on
the autocorrelation function in the correlated case, or on the slope
variance only when the correlation is not included. For an anisotropic
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Figure 2.20 Absolute error between the uncorrelated and correlated
bistatic shadowing functions of Smith and the numerical solution ob-
tained from a gaussian surface (a = 0).

Figure 2.21 Absolute error between the correlated and uncorrelated
one- dimensional bistatic shadowing functions of Smith for a = {1, 2}.
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Figure 2.22 Difference between the Smith one-dimensional bistatic
shadowing function obtained for a = 0 and the ones determined for
a = {1, 2}.

surface these parameters depend on the observation direction φ ac-
cording to the wind direction. This paragraph introduces this concept
in the shadowing function.

2.5.1 Generalization of the Monostatic and Bistatic Cases
without Correlation

The two-dimensional shadowing function is characterized in polar
coordinates by the azimut φ (observation direction according to the
wind), and the incidence angle θ (figure 2.23). For a constant direction
φ , the issue is one-dimensional. So, the idea is to extend the one-
dimensional results to the two-dimensional case by executing a rotation
with an angle φ around the (Oz) axis.

2.5.1.1 Expression of the Slope Probability Density

The slope probability density in cartesian coordinates (x, y, z) (see
paragraph 1.5.2) is:

p(γx, γy) =
1

2πσxσy
exp

(

− γ2
x

2σ2
x

−
γ2

y

2σ2
y

)

and
{

σ2
x = α + β

σ2
y = α − β

(2.39)
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Figure 2.23 Two-dimensional configuration.

In order to determine the slope probability density p(γX , γY ) in the
direction φ , we make a base transformation (X, Y, z) . The former
coordinates (γx, γy) are expressed the new ones (γX , γY ) as:

{
γx = γX cos φ − γY sinφ
γy = γX sinφ + γY cos φ

(2.39a)

Substituting equations (2.39a) into (2.39), we have:

p(γX , γY ) =
1

2π
√

α2 − β2
exp(−aγ2

Y − 2bγY − c) · J (2.40)

with

a =
α + β sin(2φ)
2(α2 − β2)

b =
β sin(2φ)

2(α2 − β2)
γX c =

α − β cos(2φ)
2(α2 − β2)

γ2
X

(2.40a)
where J is the jacobian. The probability in the direction φ is obtained
by calculating the marginal probability p(γX) defined by:

p(γX) =

∞∫

−∞

p(γX , γY )dγY (2.40b)

Knowing that:
∞∫

−∞

exp(−aγ2
Y − 2bγY − c)dγY =

√
π

a
exp

(
b2

a
− c

)
(2.40c)
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then (J = 1) :

p(γX) =
1

σX

√
2π

exp
(
− γ2

X

2σ2
X

)
with σ2

X = α + β cos(2φ) (2.41)

The marginal probability in the direction φ is gaussian and its vari-
ance is σ2

X .

2.5.1.2 Simulations

For an infinite surface, the Smith monostatic one-dimensional shad-
owing function without correlation is for a gaussian process:

SS(v) =
[
1 − erfc(v)

2

]
1

Λ + 1
Λ =

[
e−v2− v

√
πerfc(v)

]

2v
√

π
v =

cot θ√
2σ

(2.41a)
Therefore, the one-dimensional case becomes two-dimensional, chang-
ing σ by σX . For the bistatic case the reasoning is similar to the one
used in (2.34) where {v1, v2} are defined by:

v1 =
cot (|θ1|)√

2[α + β cos(2φ1)]
v2 =

cot (|θ2|)√
2[α + β cos(2φ2)]

(2.41b)

In the left part of figure 2.24, the slope standard deviation σ obtained
from the Cox and Munk model (equation (1.51)) is plotted as a function
of the friction speed uf , and the direction φ . In the right part of figure
is represented the inferior limit angle θc = atan(0.505/σ) where the
correlation is negligible as a function of the direction φ , for different
friction speeds. We see that the limit is contained between [64; 76]◦

with uf ∈ [20; 80] cm/s, and that it is inversely proportional to the
friction speed.

In figure 2.25, the two-dimensional monostatic shadowing function
is represented as a function of directions {θ, φ} , and for different values
of the wind speeds uf = {20, 40, 60, 80} cm/s. We notice that the
shadowing effect is important for angles close to 90◦ , i.e., when the
correlation becomes not negligible. We also observe that the results
are hardly appreciable according to φ , so the shadowing function does
not depend in a significant way on the anisotropic medium.

In figure 2.26, the two-dimensional bistatic shadowing function is
plotted as a function of directions {θ2, φ} with φ = φ1 = φ2 , for
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Figure 2.24 Standard deviation of slopes as a function of the friction
speed and the direction φ Limit angle as a function of the observation
direction φ.

Figure 2.25 The Smith two-dimensional monostatic shadowing func-
tion as a function of observation directions, for different wind speeds.
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Figure 2.26 The Smith uncorrelated bistatic two-dimensional shad-
owing function as a function of {θ2, φ = φ1 = φ2} , and for an incidence
angle |θ1| and a friction speed uf given.
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different incident angles |θ1| = {70, 75, 80, 85}◦ and friction speeds
uf = {20, 60} cm/s. We observe that when the incident angle θ1 is
near 90◦ the shadow becomes more greater.

2.5.2 Generalization of the Monostatic and Bistatic Cases
with Correlation

When the correlation is included in the one-dimensional case, the
calculus of the conditional probability is based on the determination of
the probability density p(ξ = ξ0 + µτ, γ|ξ0, γ0; τ) . This quantity has
to be extended in the two-dimensional case.

2.5.2.1 The Height and Slope Joint Probability in Cartesian Coordi-
nates

The probability density p(ξ, γ|ξ0, γ0; τ) in the directions {(0x),
(0y)} becomes:

p(ξ, γx, γy|ξ0, γ0x, γ0y;x, y) (2.42)

Using the Bayes theorem, we have:

p(ξ, γx, γy|ξ0, γ0x, γ0y;x, y)= p(ξ0, ξ, γ0x, γx, γ0y, γy;x, y)/p(ξ0, γ0x, γ0y)
(2.42a)

For a six dimension gaussian process p(ξ0, ξ, γ0x, γx, γ0y, γy;x, y) is:

p(ξ0, ξ, γ0x, γx, γ0y, γy;x, y)=
1

(2π)3
√

|[Cxy]|
exp

(
−1

2

−→T

V xy [Cxy]−1
−→
V xy

)

(2.43)
with −→T

V xy = [ξ0, ξ, γ0x, γx, γ0y, γy] (2.43a)

where |[Cxy]| is the determinant of the covariance matrix [Cxy] . The
exponent xy denotes the choice of the base. Using the same way as
exposed in appendix 3, we show:

[Cxy]=






R0(�0) R0 −R1x(�0) R1x −R1y(�0) R1y

R0 R0(�0) −R1x −R1x(�0) −R1y −R1y(�0)
−R1x(�0) −R1x −R2x(�0) −R2x −R2xy(�0) −R2xy

R1x −R1x(�0) −R2x −R2x(�0) −R2xy −R2xy(�0)
−R1y(�0) −R1y −R2xy(�0) −R2xy −R2y(�0) −R2y

R1y −R1y(�0) −R2xy −R2xy(�0) −R2y −R2y(�0)






(2.44)
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with 




R1x =
∂R0

∂x
R1y =

∂R0

∂y

R2x =
∂2R0

∂x2
R2y =

∂2R0

∂y2
R2xy =

∂2R0

∂x∂y

where R0(x, y) is the autocorrelation function in Cartesian coordi-
nates. The spectrum being even according to {x, y} involves an even
autocorrelation function, R0 depends then on X = x2, Y = y2 .
Thus, we show:

R1x(�0) =
[
2x

∂R0

∂X

]

x=0
y=0

= 0 R1y(�0) =
[
2y

∂R0

∂Y

]

x=0
y=0

= 0

R2xy(�0) = 4
[
xy

∂2R0

∂X∂Y

]

x=0
y=0

= 0
(2.44a)

Substituting equations (2.44a) into (2.44), the covariance matrix of the
probability density p(ξ0, ξ, γ0x, γx, γ0y, γy;x, y) is:

[Cxy] =






ω2 R0 0 R1x 0 R1y

R0 ω2 −R1x 0 −R1y 0
0 −R1x σ2

x −R2x 0 −R2xy

R1x 0 −R2x σ2
x −R2xy 0

0 −R1y 0 −R2xy σ2
y −R2y

R1y 0 −R2xy 0 −R2y σ2
y






(2.44b)

where R0(�0) = ω2 is the height variance, and {−R2x(�0) = σ2
x,−R2y(�0)

= σ2
y} the slope variances in the upwind and crosswind directions.

We notice that the matrix [Cxy] is symmetrical. In order to follow
the same approach as for the one-dimensional case, p(ξ0, ξ, γ0x, γx,
γ0y, γy;x, y) must be expressed in the polar coordinates.

2.5.2.2 The Height and Slope Joint Probability in Polar Coordinates

The vector
−→T

V xy = [ξ0 ξ γ0x γx γ0y γy] in the (x, y) base is obtained

from vector
−→T

V XY = [ξ0 ξ γ0X γX γ0Y γY ] in the new (X, Y ) base by
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(generalization of equation (2.39a)):

−→
V xy =










ξ0

ξ
γ0x

γx

γ0y

γy










=










1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos φ 0 − sinφ 0
0 0 0 cos φ 0 − sinφ
0 0 sinφ 0 cos φ 0
0 0 0 sinφ 0 cos φ



















ξ0

ξ
γ0X

γX

γ0Y

γY










= [O6]
−→
V XY (2.45)

thus:

−→T

V xy [Cxy]−1
−→
V xy =

−→T

V XY [O6]T [Cxy]−1[O6]
−→
V XY

=
−→T

V XY
(
[O6]−1[Cxy][O6]

)−1 −→
V XY (2.45a)

We notice that [O6]T = [O6]−1 . Moreover we show:

[CXY ] = [O6]−1[Cxy][O6]

=






ω2 R0 0 CXY
14 0 CXY

16

R0 ω2 −CXY
14 0 −CXY

16 0
0 −CXY

14 CXY
33 CXY

34 CXY
35 −CXY

36

CXY
14 0 CXY

34 CXY
33 −CXY

36 CXY
35

0 −CXY
16 CXY

35 −CXY
36 CXY

55 −CXY
56

CXY
16 0 −CXY

36 CXY
35 −CXY

56 CXY
55





(2.45b)

with






CXY
14 = R1x cos φ + R1y sinφ

CXY
16 = −R1x sinφ + R1y cos φ

CXY
34 = −R2x cos(φ)2 − R2y sin(φ)2 − R2xy sin(2φ)

CXY
36 = −(R2x − R2y)

2
sin(2φ) + R2xy cos(2φ)

CXY
56 = R2x sin(φ)2 + R2y cos(φ)2 − R2xy sin(2φ)

CXY
33 = σ2

x cos(φ)2 + σ2
y sin(φ)2

CXY
35 = −

(
σ2

x − σ2
y

)

2
sin(2φ)

CXY
55 = σ2

x sin(φ)2 + σ2
y cos(φ)2

(2.45c)
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Writing:





R1x =
∂R0

∂x
=

∂R0

∂R

∂R

∂x
+

∂R0

∂φ

∂φ

∂x

R1y =
∂R0

∂y
=

∂R0

∂R

∂R

∂y
+

∂R0

∂φ

∂φ

∂y

R2x =
∂R1x

∂x
=

∂R1x

∂R

∂R

∂x
+

∂R1x

∂φ

∂φ

∂x

R2y =
∂R1y

∂y
=

∂R1y

∂R

∂R

∂y
+

∂R1y

∂φ

∂φ

∂y

R2xy =
∂R1x

∂y
=

∂R1x

∂R

∂R

∂y
+

∂R1x

∂φ

∂φ

∂y

(2.45d)

we show that the functions CXY
ij in polar coordinates are given by:






CXY
14 =

∂R0

∂R
= R1R CXY

16 =
1
R

∂R0

∂φ
=

R1φ

R

CXY
34 = −∂2R0

∂R2
= −R2R

CXY
36 = − 1

R2

(
∂R0

∂φ
− R

∂2R0

∂R∂φ

)
= − 1

R2
(R1φ − RR2Rφ)

CXY
56 =

1
R2

(
R

∂R0

∂R
+

∂2R0

∂φ2

)
=

1
R2

(RR1R + R2φ)

(2.45e)

where R0(R, φ) is the autocorrelation function in polar coordinates. In
the first chapter we have shown that R0 is given by (equation (1.41)):

R0(R, φ) = I0(R) − cos(2φ)I2(R) (2.46)

where I0 denotes the isotropic part, whereas I2 is the anisotropic part.
Substituting equations (2.46) and (2.45e) into (2.45c), the probability

density p

(−→T

V XY ;R, φ

)
in the base (X, Y ) and in polar coordinates

is (jacobian J = |[O6]| = 1) :

p(ξ0, ξ, γ0X , γX , γ0Y , γY ;R, φ) =
1

(2π)3
√

|[CXY ]|

· exp
(
−1

2

−→T

V XY [CXY ]−1
−→
V XY

)
(2.47)
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with

[CXY ] =










ω2 R0 0 R1R 0 CXY
16

R0 ω2 −R1R 0 −CXY
16 0

0 −R1R σ2
X −R2R σ2

XY −CXY
36

R1R 0 −R2R σ2
X −CXY

36 σ2
XY

0 −CXY
16 σ2

XY −CXY
36 σ2

Y −CXY
56

CXY
16 0 −CXY

36 CXY
36 −CXY

56 σ2
Y















R0 = I0 − cos(2φ)I2

R1R =
∂R0

∂R
=

dI0

dR
− cos(2φ)

dI2

dR

R2R =
∂2R0

∂R2
=

d2I0

dR2
− cos(2φ)

d2I2

dR2

CXY
16 =

1
R

∂R0

∂φ
=

2I2 sin(2φ)
R

CXY
36 =

2 sin(2φ)
R2

(
R

dI2

dR
− I2

)

CXY
56 =

1
R

dI0

dR
− cos(2φ)

R2

(
R

dI2

dR
− 4I2

)

ω2 = R0(0) σ2
XY = −β sin 2φ

σ2
X = α + β cos(2φ)

σ2
Y = α − β cos(2φ)

(2.47a)

and

α =
σ2

x + σ2
y

2
β =

σ2
x − σ2

y

2
(2.47b)

where {σ2
x, σ2

y} are the slope variances in the upwind and crosswind
directions. The covariance matrix corresponding to p(ξ0, γ0X , γ0Y ) is
given by:

p(ξ0, γ0X ,γ0Y ) =
1

√
2π

3

∣∣∣∣∣∣




CXY

11 CXY
13 CXY

15

CXY
31 CXY

33 CXY
35

CXY
51 CXY

53 CXY
55





∣∣∣∣∣∣

− 1
2

· exp



−1
2
[ξ0 γ0X γ0Y ]




CXY

11 CXY
13 CXY

15

CXY
31 CXY

33 CXY
35

CXY
51 CXY

53 CXY
55





−1 


ξ0

γ0X

γ0Y









(2.48)
with




CXY

11 CXY
13 CXY

15

CXY
31 CXY

33 CXY
35

CXY
51 CXY

53 CXY
55



 =




ω2 0 0
0 σ2

X σ2
XY

0 σ2
XY σ2

Y



 (2.48a)
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Substituting equations (2.48) and (2.47) into (2.42a), we obtain:

p(ξ, γX , γY |ξ0, γ0X , γ0Y ;R, φ)

=
ωσY σX

√
1 − ρ2

√
2π

3√|CXY ]|
exp

[
−1

2

−→T

V XY [CXY ]−1
−→
V XY

+
ξ2
0

2ω2
+

1
2(1 − ρ2)

(
γ2

0X

σ2
X

+
γ2

0Y

σ2
Y

− 2ργ0Xγ0Y

σXσY

)]

with ρ =
σ2

XY

σXσY
(2.49)

where the covariance matrix is given by equation (2.47a).

2.5.2.3 The Height and Slope Joint Marginal Probability

The marginal probability density p(ξ, γX |ξ0, γ0X ;R, φ) is ob-
tained by integrating equation (2.49) over the interval γY ∈]−∞;∞[ .
So it is based on the calculus of the inverse matrix [CXY ]−1 , which is
very difficult to find analytically.

We use an analytic-numeric approach, that is to say the inverse
matrix is estimated numerically, whereas the marginal probability is
determined by using the analytic properties of the inverse matrix. Then
we show:

[CXY ]−Λ =
1

|[CXY ]|






CXY
i11 CXY

i12 CXY
i13 CXY

i14 CXY
i15 CXY

i16
CXY

i12 CXY
i11 −CXY

i14 −CXY
i13 −CXY

i16 −CXY
i15

CXY
i13 −CXY

i14 CXY
i33 CXY

i34 CXY
i35 CXY

i36
CXY

i14 −CXY
i13 CXY

i34 CXY
i33 CXY

i36 CXY
i35

CXY
i15 −CXY

i16 CXY
i35 CXY

i36 CXY
i55 CXY

i56
CXY

i16 −CXY
i15 CXY

i36 CXY
i35 CXY

i56 CXY
i55






(2.50)
where CXY

iij are the elements of the inverse covariance matrix [CXY ]
multiplied by the determinant

∣
∣[CXY ]

∣
∣ . They are obtained numeri-

cally. Moreover:





[
γx

γy

]
=

[
cos φ − sinφ
sinφ cos φ

] [
γX

γY

]

[
γ0x

γ0y

]
=

[
cos φ − sinφ
sinφ cos φ

] [
γ0X

γ0Y

]

⇒
[

γx − γ0x

γy − γ0y

]
=

[
cos φ − sinφ
sinφ cos φ

] [
γX − γ0X

γX − γ0Y

]
(2.50a)
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and

ξ = ξ0 + µR ⇒






γx =
∂ξ

∂x
=

∂ξ0

∂x
+ µ

∂R

∂x
= γ0x + µ cos φ

γy =
∂ξ

∂y
=

∂ξ0

∂y
+ µ

∂R

∂y
= γ0y + µ sinφ

(2.50b)
Substituting equation (2.50b) into (2.50a), we have:

[
γX − γ0X

γY − γ0Y

]
=

[
cos φ − sinφ
sinφ cos φ

]−1 [
µ cos φ
µ sinφ

]
=

[
µ
0

]

⇒
{ γX = γ0X + µ

γY = γ0Y
(2.50c)

Using equations (2.50c), (2.50) and (2.49), we show that the probability
density p(ξ, γX , γY |ξ0, γ0X , γY ;R, φ) is:

p(ξ, γX , γY |ξ0, γ0X , γY ;R, φ) =
ωσY σX

√
1 − ρ2

√
2π

3√|[CXY ]|
· exp

(
−A2γ

2
Y − 2B2γY − C2

)
(2.51)

with





A2 =
CXY

i55 + CXY
i56

|[CXY ]| − 1
2σ2

Y (1 − ρ2)

B2 =
(ξ0 − ξ)

(
CXY

i15 + CXY
i16

)
+ (γ0X + γX)

(
CXY

i35 + CXY
i36

)

2 |[CXY ]|
+

ργ0X

2σXσY (1 − ρ2)

C2 = − γ2
0X

2σ2
X(1 − ρ2)

− ξ2
0

2ω2

(2.51a)

Using equation (2.40c), the marginal probability density p(ξ, γX |
ξ0, γ0X ;R, φ) is then equal to:

p(ξ,γX |ξ0, γ0X ;R, φ)

=

∞∫

−∞

p(ξ, γX , γY |ξ0, γ0X , γY ;R, φ)dγY



Intrinsic infrared radiation of the sea surface 275

=
ωσY σX

√
1 − ρ2

√
2π

3√|[CXY ]|

√
π

A2
× exp

(
B2

2

A2
− C2

)

=
ωσX

√
1 − ρ2

2π
√

E/σ2
Y

exp
(

ξ2
0

2ω2
+

γ2
0X

2σ2
X

− a1ξ
2
0 + a2ξ

2+ a9γ
2
X + a10γ

2
0X

2|[CXY ]|

−a3ξ0ξ + a4γ0XγX + a5ξ0γ0X − a6ξγX + a7ξ0γX − a8ξγ0X

|[CXY ]|

)

(2.52)

with:





a1 = a2 = CXY
i11 −

(
CXY

i15 + CXY
i16

)2

E

E = 2A2|[CXY ]| = 2
(
CXY

i55 + CXY
i56

)
− |[CXY ]|

σ2
Y (1 − ρ2)

a3 = CXY
i12 +

(
CXY

i15 + CXY
i16

)2

E

a4 = CXY
i34 −

(
CXY

i35 + CXY
i36

)2

E
− ρ

(
CXY

i35 + CXY
i36

)

2A2σXσY (1 − ρ2)

a5 = CXY
i13 −

(
CXY

i15 + CXY
i16

) (
CXY

i35 + CXY
i36

)

E
− ρ

(
CXY

i15 + CXY
i16

)

2A2σXσY (1 − ρ2)

a6 = CXY
i13 −

(
CXY

i15 + CXY
i16

) (
CXY

i35 + CXY
i36

)

E

a7 = CXY
i14 −

(
CXY

i15 + CXY
i16

) (
CXY

i35 + CXY
i36

)

E

a8 = CXY
i14 −

(
CXY

i15 + CXY
i16

) (
CXY

i35 + CXY
i36

)

E
− ρ

(
CXY

i15 + CXY
i16

)

2A2σXσY (1 − ρ2)

a9 = CXY
i133 −

(
CXY

i35 + CXY
i36

)2

E

a10 =CXY
i133 −

(
CXY

i35 + CXY
i36

)2

E

−
[

ρ2|[CXY ]|
2A2σ2

Xσ2
Y (1 − ρ2)2

+
ρ

(
CXY

i35 + CXY
i36

)

A2σXσY (1 − ρ2)
+

ρ2|[CXY ]|
σ2

X(1 − ρ2)

]

(2.52a)
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In the one-dimensional case the probability is given by (equation
(2.13)):

p(ξ,γ|ξ0, γ0; τ)

=
σω

2π
√

|[C]|
× exp

[

−Ci11

(
ξ2
0 + ξ2

)
+ Ci33

(
γ2

0 + γ2
)

2|[C]| +
ξ2
0

2ω2
+

γ2
0

2σ2

− Ci12ξ0ξ + 2Ci34γ0γ + 2Ci13(ξ0γ0 − ξγ) + 2Ci14(ξ0γ − ξγ0)
|[C]|

]

(2.52b)
So by comparing equations (2.52) and (2.52b), the one-dimensional
probability is obtained from the two-dimensional probability by sub-
stituting:

ωσX

√
1 − ρ2

2π
√

E/σ2
Y

to
ωσ

2π
√

|[C]|

{σX to σ
γX to γ
γ0X to γ0

(2.52c)

and {
a1, a2 to Ci11

a9, a10 to Ci33

a3 to Ci12

{
a4 to Ci34

a5, a6 to Ci13

a7, a8 to Ci14

(2.52d)

The calculus of the two-dimensional probability requires 9 coefficients
ai∈[2;10] , whereas in the one-dimensional case we have 6 coefficients.

Uncorrelated surface
The correlation is negligible when:

I0 = 0 I2 = 0 (2.53)

Then, the covariance matrix in polar coordinates is (equation (2.47a)):

[CXY ] =






ω2 0 0 0 0 0
0 ω2 0 0 0 0
0 0 σ2

X 0 ρσXσY 0
0 0 0 σ2

X 0 ρσXσY

0 0 ρσXσY 0 σ2
Y 0

0 0 0 ρσXσY 0 σ2
Y






with ρ =
σ2

XY

σXσY
(2.53a)
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with ρ the crosscorrelation coefficient. The inverse matrix is given by:

[CXY ]−1 =
























∣
∣[CXY

]∣∣

ω2
0 0 0

0

∣
∣[CXY

]∣∣

ω2
0 0

0 0

∣
∣[CXY

]∣∣

σ2
X(1 − ρ2)

0

0 0 0

∣
∣[CXY

]∣∣

σ2
X(1 − ρ2)

0 0
−ρ

∣
∣[CXY

]∣∣

σXσY (1 − ρ2)
0

0 0 0
−ρ

∣∣[CXY
]∣∣

σXσY (1 − ρ2)
0 0
0 0

−ρ
∣∣[CXY

]∣∣

σXσY (1 − ρ2)
0

0
−ρ

∣∣[CXY
]∣∣

σXσY (1 − ρ2)∣∣[CXY
]∣∣

σ2
Y (1 − ρ2)

0

0

∣∣[CXY
]∣∣

σ2
Y (1 − ρ2)






(2.53b)
and

|[CXY ]| = (ωσXσY )4(1 − ρ2)2

Substituting the matrix elements of |[CXY ]|−1 into equation (2.52a)
we have:






a1

2|[CXY ]| =
a2

2|[CXY ]| =
1

2ω2

a9

2|[CXY ]| =
a10

2|[CXY ]| =
1

2σ2
X

a3 = a4 = a5 = a6 = a7 = a8 = 0
E = ω4σ4

Xσ2
Y (1 − ρ2)

(2.53c)
Then using equations (2.53c) and (2.52), the conditional probability in
the uncorrelated case is:

p(ξ, γX |ξ0, γ0X ;R, φ) = p(ξ, γX) =
1

2πωσX
× exp

[
− ξ2

2ω2
− γ2

X

2σ2
X

]

(2.54)
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This equation corresponds to the classical probability density of gaus-
sian process without correlation

Probability expression in the isotropic case
If the surface is isotropic, then I2(R) = 0 and

CXY
16 = 0 CXY

36 = 0 σ2
XY = 0 ⇒ ρ = 0 (2.55)

The covariance matrix [CXY ] is given by:

[CXY ] =
[

[C] [0]
[0] [Q]

]
(2.55a)

[CXY ] is then composed of two matrices {[C], [Q]} , where [C] cor-
responds to the one-dimensional covariance matrix obtained from ap-
pendix 3 (equation (3.3c)) with R1 = R1R, R2 = R2R . The inverse
matrix is:

[CXY ]−1 =
1

|[C]||[Q]|

[
[C]−1 [0]
[0] [Q]−1

]
(2.55b)

Moreover we show from equations (2.52a) that:






a1 = a2 = CXY
i11 = Ci11 a5 = a6 = CXY

i13 = Ci13

a3 = CXY
i12 = Ci12 a7 = a8 = CXY

i14 = Ci14

a4 = CXY
i34 = Ci34 a9 = a10 = CXY

i33 = Ci33

E =
|[CXY ]|σ2

Y

|[Q]|

(
1 − CXY

56

σ2
Y

)2

= |[C]|σ2
Y

(
1 − CXY

56

σ2
Y

)2
(2.55c)

Substituting equation (2.55c) into (2.52), p(ξ, γX |ξ0, γ0X ;R) becomes:

p(ξ, γX |ξ0, γ0X ;R)

=
ωσX

2π

∣∣∣∣1 − CXY
56

σ2
Y

∣∣∣∣
√

|[C]|

× exp
[

ξ2
0

2ω2
+

γ2
0X

2σ2
X

− Ci11(ξ2
0 + ξ2) + Ci33(γ2

0X + γ2
X)

2|[CXY ]|

− 2Ci12ξ0ξ+2Ci34γ0XγX +2Ci13(ξ0γ0X−ξγX)+2Ci14(ξ0γX−ξγ0X)
2|[CXY ]|

]

(2.55d)
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We obtain the same solution that in the one-dimensional case (equation
(2.52b) with:

γX = γ γ0X = γ0 σX = σ
√

|[C]| →
√

|[C]|
∣
∣
∣
∣1 − CXY

56

σ2
Y

∣
∣
∣
∣ (2.55e)

2.5.2.4 The Smith Conditional Probability

In appendix 6 we show that the Smith two-dimensional conditional
probability gS(R, φ|{ξ0, γ0X}, θ) is given by:

gS =
1
π

√
A1X

AX

×






exp[−CX − µ(µAX + 2BX)]

×
[
1 − e

(BX+µA)2

A

√
π

BX + µAX√
AX

erfc
(

BX + µAX√
AX

)]






exp
(

B2
1X

A1X
− C1X

) {
erf

[
A1Xξ + B1X√

A1X

]
+ 1

}

(2.56)
with






AX =
a9

2|[CXY ]| BX =
a7ξ0 − a9ξ + a4γ0X

2|[CXY ]|
CX =

a1ξ
2
0 + a2ξ

2 + 2a3ξ0ξ + 2a5ξ0γ0X − 2a8ξγ0X + 2a10γ
2
0X

2|[CXY ]|
(2.56a)

and:





A1X = (a2a9 − a2
6)E1X E1X =

1
2a9|[CXY ]|

B1X = [ξ0(a3a9 + a6a7) + γ0(a6a4 − a8a9)]E1X

C1X = [ξ2
0(a1a9 − a2

7) + γ2
0(a10a9 − a2

4) + 2ξ0γ0(a5a9 − a4a7)]E1X

(2.56b)
Applying equations (2.52d), equations {(2.56), (2.56a), (2.56b)} are
similar to {(2.15), (2.15a), (2.14a)} , respectively.

2.5.2.5 The Smith Shadowing Function

We have seen in paragraph 2.5.2.3 that the correlated two-dimen-
sional shadowing function is obtained from the correlated one-dimen-



280 Bourlier et al.

sional shadowing function by using equations (2.52c) and (2.52d). In
order to use table 2.2, we must determine the fij functions in the
two-dimensional case. Define the following relations:

{
R0 = ω2f0 R1R = −ωσXf1R, R2R = −σ2

Xf2R

CXY
36 = −σY σXfXY

36 CXY
16 = −ωσY fXY

16 CXY
56 = −σ2

Y fXY
56
(2.57)

We show that the inverse matrix [fXY ]−1 keeps the similar structure
that [CXY ]−1 :

[fXY ]−1 =
1

|[fXY ]|








fXY
i11 fXY

i12 fXY
i13 fXY

i14 fXY
i15 fXY

i16
fXY

i12 fXY
i11 −fXY

i14 −fXY
i13 −fXY

i16 −fXY
i15

fXY
i13 −fXY

i14 fXY
i33 fXY

i34 fXY
i35 fXY

i36
fXY

i14 −fXY
i13 fXY

i34 fXY
i33 fXY

i36 fXY
i35

fXY
i15 −fXY

i16 fXY
i35 fXY

i36 fXY
i55 fXY

i56
fXY

i16 −fXY
i15 fXY

i36 fXY
i35 fXY

i56 fXY
i55








(2.58)
but

[fXY ] =






1 f0 0 −f1R 0 −fXY
16

f0 1 f1R 0 fXY
16 0

0 f1R 1 f2R ρ fXY
36

−f1R 0 f2R 1 fXY
36 ρ

0 fXY
16 ρ fXY

36 1 fXY
56

−fXY
16 0 fXY

36 ρ fXY
56 1






ρ =
σ2

XY

σXσY

(2.58a)
The set of functions CXY

ijk introduces in equations (2.52a) becomes
f2d

ijk , and {ai, A2} are determined by taking {σX , σY } = 1 because
the variable transformations (2.57) it is equivalent to normalize by
{σX , σY } . Applying the same reasoning as paragraph 2.3.2, table 2.2
becomes in the Smith two-dimensional case, the following equation:

S(v, φ) =
1
π

∞∫

−∞

exp
(
−h2

0

) [
1 − erfc(h0 + ytvη)/2
1 − erfc(h0 + y0vη)/2

]Λ(v)

·




∞∫

0

J(h0, p0X , φ)dp0X



 dh0

with

J(h0, p0X , φ) = exp



−(v − p0X)2 − L

yt∫

0

gS(y, h0, p0X , φ, v)dy




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with

gS =
η

π

√
a2a9−a2

6

a9

exp[−CX−v(vAX+2BX)]
[
1−eS2

X
√

πSXerfc(SX)
]

exp
(

B2
1X

A1X
− C1X

) {
erf

[
A1Xh + B1X√

A1X

]
+ 1

}

with (2.59)





CX =

(
a1h

2
0 + a2h

2 + 2a3h0h + 2a5h0(v − p0X)

− 2a8h(v − p0X) + a10(v − p0X)2

)

|[fXY ]|
SX =

h0a7 − ha6 + (v − p0X)a4 + va9√
a9|[fXY ]|

v(vAX + 2BX) =
v2a9 + 2v(h0a7 − ha6) + 2va4(v − p0X)

|[fXY ]|
C1X =h2

0 ·
a1a9 − a2

7

a9|[fXY ]| + (v − p0X)2

· a10a9 − a2
4

a9|[fXY ]| + 2h0(v − p0X) · a5a9 − a4a7

a9|[fXY ]|
B1X√
A1X

=
h0(a3a9 + a6a7) + (v − p0X)(a6a4 − a8a9)√

a9|[fXY ]|(a2a9 − a2
6)

√
A1X =

√
a2a9 − a2

6

a9|[fXY ]|

2.5.2.6 Simulations

In the first chapter we have shown that the autocorrelation function
in polar coordinates is modeled by:

R0(R, φ;u10) =ω2

{

cos
(

R

L′
0

)
/

[

1 +
(

R

L0

)2
]

− A cos(2φ) · J2

(
R

L′
2

)
/

[

1 +
(

R

L2

)2
]}

(2.60)

In table 2.5 are given the elements of the covariance matrix (2.58a).
They are obtained from equation (2.60). In figure 2.27 ai , the deter-
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Table 2.5 Parameters of the covariance matrix in polar coordinates.

R0 ω2

{
cos

(
R

L′
0

)
/

[
1 +

(
R

L0

)2
]
− A cos(2φ)J2

(
R

L′
0

)
/

[
1 +

(
R

L2

)2
]}

f0 =

f00 − f02 cos(2φ)

{
f00 = cos(yr0)/(1 + y2)

f02 = AJ2(yr2)/[1 + (yr1)
2]

with

{
y = R/L0 r0 = L0/L′

0

r1 = L0/L2 r2 = L0/L′
2

f1R =

− f1R0 − f1R2 cos(2φ)

σX






f1R0 = −2y cos(yr0)

(1 + y2)2
− r0 sin(yr0)

1 + y2

f1R2 = A






r2

[
J1(yr2) −

2J2(yr2)

yr2

]

1 + (yr1)2
−

2yr2
1J2(yr2)

[1 + (yr1)2]
2






f2R =

− f2R0 − f2R2 cos(2φ)

σ2
X






f2R0 = cos(yr0)

[
8y2

(1 + y2)2
− r2

0 − 2

1 + y2

]
1

1 + y2
+

4r0y sin(yr0)

(1 + y2)2

f2R2 =A

([
r2J0(yr2) −

3J1(yr2)

y
+

6J2(yr2)

r2y2

]
r2

1 + (yr1)2

− [2yr2J1(yr2) − 3J2(yr2)]
2r2

1

[1 + (yr1)2]
2

+
8y2r4

1J2(yr2)

[1 + (yr1)2]
3

)

{fXY
16 , fXY

36 , fXY
56 }






fXY
16 =

2f02 sin(2φ)

yσY
fXY
36 = −2 sin(2φ)

y2σXσY
(yf1R2 − f02)

fXY
56 = − 1

σ2
Y

[
f1R0

y
+

cos(2φ)

y2
(4f02 − yf1R2)

]

{σ2
X , σ2

Y , σ2
XY , ρ, η}

{
σ2

X = α + β cos(2φ)

σ2
Y = α − β cos(2φ)

σ2
XY = −β sin(2φ)

with

{
α = 2 + r2

0 β = Ar2
2/4

ρ = σ2
XY /(σXσY ) η = σX

minant |[fXY ]| of the covariance matrix, are plotted as a function of
y = R/L0 , for wind directions φ = {0, 45, 90}◦.

We observe that {a1, a9, a10, |[fXY ]|} tend to one when y ≥ yt = 6 ,
whereas {ai∈[3;8]} tend respectively to zero. So, when y ≥ yt = 6 , the
correlation is negligible and we obtain equation (2.53c).

Figure 2.28 summarizes the steps of the determination of the corre-
lated shadowing function.

On the left of figure 2.29, for an infinite surface, the Smith two-
dimensional correlated monostatic shadowing function for uf = {40,
60} cm/s is plotted as a function of the direction φ according to the
wind direction and the parameter v . We observe that the shadow-
ing function varies slightly with the direction φ , the anisotropic ef-
fect is then not very important. On the right of figure 2.29, the
difference between the correlated and uncorrelated results for uf =
{40, 60} cm/s are represented as a function of the direction φ and
v . We note that the correlation is negligible when v becomes su-
perior to 1.4, corresponding to an incidence angle equal to θC =
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Figure 2.27 Terms {ai, |[fXY ]|} as a function of the distance y and
for directions φ = {0, 45, 90}◦.
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Figure 2.28 Steps for the calculus of the correlated shadowing
function.

atan[0, 5
√

α + β cos(2φ)] . As the difference becomes more greater
than zero, the correlated results are superior to the uncorrelated ones,
involving that the correlated shadowing function overestimates the
shadow. Indeed in the one-dimensional case, we have seen that the
uncorrelated shadowing function overestimated the shadow. So, the
correlation must be include when the difference becomes inferior to
zero. This limit is given by the curve named zero of the figure 2.29
(right). The method applied to the bistatic case is similar to the one
used in paragraph 2.4.2.3.
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Figure 2.29 On the left, the Smith two-dimensional correlated mono-
static shadowing function for uf = {20, 40} cm/s, as a function of the
wind direction φ and v . On the right, the difference between the cor-
related and uncorrelated results for uf = {20, 40} cm/s, as a function
of the wind direction φ and v.

2.5.3 Conclusion

In this part, The one-dimensional shadowing functions have been ex-
tended to the two-dimensional case. At first, we calculated the Smith
uncorrelated shadowing function in polar coordinates as a function of
incidence angles {θ1, θ2} , the wind directions {φ1, φ2} and the slope
standard deviation. Using the same reasoning, we determined rigor-
ously the correlated covariance matrix in polar coordinates, and we
shown the two-dimensional shadowing function is obtained from re-
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sults of the one- dimensional shadowing function by replacing the new
functions f2d

iij . Moreover we have proved that the monostatic uncorre-
lated condition is given by θ < atan[0, 5

√
α + β cos(2φ)] = θC . In the

bistatic case its expression is |θ1,2| < atan{0, 505
√

α + β cos(2φ1,2)] =
θ1C,2C . The parameters {α, β} are obtained from the Cox and Munk
model in capillary waves. Table 2.6 gives the maxima limit angle (with
φ1 = φ2 = 0◦)θC when the correlation becomes negligible, and it is
contained between [60; 86]◦.

Table 2.6 Limit angle of correction.

Beaufort scale 1 2 3 4 5 6 7 8 9

Friction uf in cm/s 2 7 13 19 28 44 63 84 109

Speed u10 in m/s 0,4 1,7 3,6 5,6 7,8 10,8 14,0 17,3 20,9

Limit angle θC in ◦ 85 81 77 75 72 69 67 64 62

2.6 CONCLUSION

At first, the Wagner and Smith one-dimensional monostatic shadow-
ing functions is calculated for an infinite surface with an uncorrelated
gaussian process (equations (2.7)). Ricciardi and Sato give the rigorous
expression of the shadowing function by Rice’s infinite series of inte-
grals (equation (2.5)) . We determine analytically these series for an
infinite surface with an uncorrelated gaussian process (equation (2.9)),
and unfortunately the obtained result do not have a physical mean-
ing. The Wagner formulation (equation (2.11)) obtained from the first
term of the series is correct, but overestimate the shadowing function,
whereas the Smith one is close to the reference solution.

In order to quantify the correlation effect, the Wagner and Smith
one-dimensional monostatic shadowing functions is determined for a
correlated gaussian process (table 2.2). For an infinite surface, the
simulations show that for gaussian and lorentzian autocorrelation func-
tions, the correlated results are inferior to the uncorrelated ones, but
are superior to ones obtained from the reference solution. Neverthe-
less the Smith correlated model is very close to the reference solution.
Moreover we show that the effect of the correlation is negligible when
the incidence angle is inferior to θC = atan(0, 505/σ) , corresponding
to a shadow equal to 0.97. σ denotes the slope standard deviation.
Physically, neglecting the correlation means that the shadowing func-
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tion is independent of the autocorrelation function. Simulations are
also presented for damped autocorrelation functions.

The Smith one-dimensional shadowing function is extended to bista-
tic case without and with correlation. It depends on two monostatic
shadowing functions defined by the location of the emitter θ1 , and
receiver θ2 . The simulations in the correlated case prove that the
correlation is negligible when the incidence angles θ1,2 are inferior to
θiC = atan(0, 505/σ).

The set of one-dimensional results are generalized to the two-dimen-
sional configurations. We show that the uncorrelated shadowing func-
tion depends on incidence angles {θ1, θ2} , slope variances σ2

1,2 =
α+β cos(2φ1,2) where {φ1, φ2} are the observation directions accord-
ing to the wind direction. The parameters {α, β} are given by the
Cox and Munk model in capillary waves. In order to use the one-
dimensional result, the covariance matrix is expressed in polar coordi-
nates which is the main difficulty of the shadowing function calculus.

The simulations show that the correlation becomes negligible when
the incidence angle is inferior to θC = atan

(
0, 505

√
α + β cos(2φ)

)
.

In this chapter we have considered an infinite surface for simulations,
but the method may be applied on any observation length.
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3. EMISSIVITY OF THE SEA SURFACE

3.1 INTRODUCTION

The intrinsic thermal radiation of a body is characterized by two quan-
tities: its emissivity and the spectral radiance of a blackbody. A black-
body is a body which totally absorbs any incident radiation. For any
material, Kirchhoff [30, 31] shows that its radiance is equal to the ra-
diance of a blackbody which would radiate at the same temperature
multiplied by a coefficient named emissivity. The mathematical expres-
sion of the blackbody radiance as a function of the temperature and
wavelength is given by Planck’s distribution, involving that the body
at surrounding temperature radiates in the near infrared (Wien’s law).
On the contrary the emissivity is difficult to model, it depends on the
surface parameters (temperature, roughness) and on the incident beam
characteristics (wavelength, incidence angle and polarization).

The goal of this chapter is to determine the two-dimensional in-
frared emissivity of the sea surface. Articles [32] and [33] use a similar
approach for computing emissivity. They assume that the sea surface
is isotropic and the shadowing effect is not included. In [34] suppose
that the surface is isotropic and the shadowing effect is quantified by
an heuristic approach. Our study is based on recent works presented in
[35] and [36]. These authors use a similar approach than [32] and [33]
with more rigorous analysis by introducing the shadowing function.
In order to use the one-dimensional shadowing function, these authors
assume that the slope in the crosswind direction γy can be neglected
with respect to the one defined in the wind direction γx . This means
that they neglect γ2

y in comparison with 1 + γ2
x . This hypothesis al-

lows them to consider a one-dimensional problem, involving that the
knowledge of the two-dimensional shadowing function is not required.
Moreover, they use the JONSWAP gravity spectrum (equation (1.29))
for the calculus of the slope variance, whereas we use the Cox and
munk capillary model. Since our model assumes no hypothesis on the
slopes, the emissivity is obtained from the two- dimensional shadowing
function developed in chapter 2. Moreover the correlating effect of the
shadowing function introduced in chapter 2 is also quantified.

The first paragraph of this chapter shows that the diffraction is
negligible, involving that the scattered power from the sea surface is
defined in the specular component, given by the geometric optic theory.
The concepts of the radiometry are also presented. The determination
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of the emissivity requires the knowledge of three following parame-
ters: the probability density of the slopes assumed to be gaussian,
the two-dimensional monostatic shadowing function studied in chap-
ter 2, and the Fresnel coefficient giving the polarization information.
In the second paragraph, are determined the one-dimensional and two-
dimensional emissivities. In the last part, simulations are realized for
different sea states and results are compared to the ones obtained in
[35] and [36].

3.2 PRELIMINARIES

We show in this first part that the emitted power in the specular di-
rection is more important than the one diffracted in the all half-space.
In the second part, the quantities required for the calculus of the emis-
sivity are introduced.

3.2.1 Diffraction by a Facet

The radiation at a point has been approximated by a plane to the
facet at the point [34]. This approximation is valid only if:

2πd cos3(θ1) � λ (3.1)

with d the radius of facet curvature at the point, λ the wavelength,
and θ1 the angle between the normal to the facet and the observation
direction. Equation (3.1) involves that the ocean wave is sufficiently
smooth relative to the infrared spectrum, λ is on about the order ten
µm , which means that the tangent plane assumption is valid even for
capillary waves. Define a facet of length a , inclined of an angle χ
along the horizontal plane (figure 3.1).

The diffracted normalized intensity by the surface around the nor-
mal is defined as follows:

I =
sin2(πu∆θ)
(πu∆θ)2

with





u = a/λ a = ω

√

1 +
1
σ2

∆θ = sin(θ1) − sin(θ2)
(3.2)

where ω denotes the surface height with a slope σ = tanχ . The first
zero of the intensity is given by ∆θ0 = 1/u . In the infrared domain,
the wavelength λ is approximatively ten µm whereas a is about one
cm at minimum, thus u ≈ 103 . As the viewing direction is different
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Figure 3.1 Diffracted intensity by a facet.

Figure 3.2 Diffracted normalized intensity by a facet.

of the specular direction (figure 3.2) involving ∆θ �= 0 , the diffracted
intensity becomes null due to ∆θ0 ≈ 0, 06◦ , so the power radiated is
defined in the specular direction θ1 = θ2 given by the geometric optic
theory.
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3.2.2 Definitions

The set of the magnitudes introduced in [30] and [31] are mono-
chromatic. For a polychromatic beam we have to sum over the spectral
bandwidth.

3.2.2.1 The Blackbody

A blackbody is a body which totally absorbs any received radiation.
Max Planck showed that its brightness L(λ, T ) is given by:

L(λ, T ) =
C1λ

−5

e
C2
λT − 1

with
{

C1 = 1, 192 · 10−16W · m2

C2 = 1, 439 · 10−2m · K (3.3)

where T is the absolute temperature in Kelvin, and λ the wavelength
in meter. In figure 3.3 the variations of the isotherm brightness are
plotted. The unity is W · sr−1 · m−2.

Figure 3.3 Normalized brightness of blackbody as a function of the
wavelength for different temperatures.
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3.2.2.2 The Wien Law

The isotherms of Planck’s distribution represented in figure 3.3 reach
a maximum λm verifying the following relation:

λmT = cste = 2897µm · K (3.4)

Equation (3.4) named Wien’s law shows that the hotter body the more
its maximum shifts to a small wavelength. The electromagnetic spec-
trum defined between the infrared and the visible extends from 700 nm
to one mm. Equation (3.4) involves that to a given wavelength cor-
responds a temperature (figure 3.4). We observe that between 5.6 µm
and 14 µm the temperatures are defined between −66 and 244 Celsius
degrees, this region is named the thermal infrared. The limit values
may change according to authors.

Figure 3.4 Correspondence between the wavelength and the temper-
ature.

3.2.2.3 The Real Bodies-Emissivity

Physically a blackbody does not exist, but its theoretical model can
be applied on any body. Indeed, Kirchhoff shown that for a real body,
its brightness l(λ, T, θ) is obtained from the blackbody one L(λ, T ) ra-
diating at the same temperature multiplied by a coefficient ε(λ, T, θ) :

l(λ, T, θ) = ε(λ, T, θ)L(λ, T ) (3.5)

where ε(λ, T, θ) denotes the emissivity. It depends on the wavelength,
on the sea state (temperature T , roughness), and on the viewing direc-
tion θ . Since it is contained between zero and one, the radiation of the
real body is always inferior to a blackbody at the same temperature.
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3.2.2.4 Coefficients of Reflection, Absorption and Transmission

Let φi be an incident flux arriving on the surface of a dioptre char-
acterized by the refraction indexes {n1, n2} . The incident flux is de-
composed in three parts (figure 3.5):

Figure 3.5 Coefficients of reflection, absorption and transmission.

where {Φr,Φa,Φt} respectively denote the reflected, absorbed and
transmitted flux by the material of index n2 . The conservation of the
energy implies:

Φi = Φr + Φa + Φt (3.6)

The reflection κ , absorption α and transmission τ power coefficients
are given by:

κ =
Φr

Φi
α =

Φa

Φi
τ =

Φt

Φi
(3.6a)

Substituting equations (3.6a) into (3.6), we obtain:

κ + α + τ = 1 (3.6b)

The blackbody is defined by α = 1 . The thermal equilibrium con-
ditions of a body located inside a closed enclosure involves that the
emissivity of body is equal to its absorption coefficient:

ε = α (3.6c)

Using equations (3.6c) and (3.6b), the emissivity of an opaque (τ = 0)
body becomes:

ε = 1 − κ (3.7)

This relation is used to determine the emissivity of the sea surface.
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3.2.2.5 The Fresnel Reflection Coefficients

For an incidence angle θ1 , the Fresnel reflection coefficients in ver-
tical polarization rv (parallel to the incidence plane) and in horizontal
polarization rH (orthogonal to the incidence plane) are given by (fig-
ure 3.5):






rV (θ1) =
tan(θ1 − θ2)
tan(θ1 + θ2)

=
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2

rH(θ1) =
sin(θ2 − θ1)
sin(θ1 + θ2)

=
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

(3.8)

The emissivity is obtained from both quantities. Since the emissivity
is proportional to the power density, we must use the Fresnel reflection
coefficients {κV , κH} in power defined by:

κV (θ1) = |rV (θ1)|2 κH(θ1) = |rH(θ1)|2 (3.8a)

3.2.2.6 The Sea Refractive Index

The emissivity depends on the Fresnel coefficients defined from in-
dexes n2 sea and n1 air. The air index is assumed equal to the unity.
The goal of this part is to quantify the index n2 as a function of
the wavelength λ . Wien’s law involves that the body of surrounding
temperature radiate in infrared. Thermal signals may result from self-
emission or incident reflections of the background. The wavelength
are in the infrared range of about 0.7 to l00 µm . The attenuation of
infrared radiation is frequency and temperature dependent. A number
of so-called windows exist in the practical range of infrared radiation
frequencies. In these windows the transmittance of the infrared radia-
tion is high. The windows of practical interest for the infrared optronic
systems are the 8 to 13 µm window, the 3 to 5 µm window and the
near-infrared window (0.7 to 2 µm) . Between these windows, we find
absorption bands, mainly due to the presence of water vapor and car-
bon dioxide in the absorption. In this paper, we do not study the near
infrared band. The sea refraction index is then studied in the interval
from 3 to 13 µm . In figure 3.6, the real and complex parts of the in-
dex [37] are plotted as a function of the wavelength for a temperature
equal to 25◦C . We observe that the real part is proportional to the
inverse of the wavelength, whereas for the imaginary part is the con-
trary. Moreover with the interval between 4 and 12 µm , the real part
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Figure 3.6 Water reflection index as a function of the wavelength for
a temperature T = 25◦C.

is greater that the imaginary part, with respective mean values equal
to 1.262 and 0.053.

3.2.3 Conclusion

The wavelength in the infrared is very inferior to the curvate radius
of the sea surface, involving that the whole diffracted energy is defined
in the specular direction, given by the geometric optic theory. Since for
a dielectric, the emissivity is obtained from Fresnel’s power coefficients,
the emissivity is a function of the three following parameters: the
medium index, thus of the temperature, and if the medium is dispersive
of the wavelength, the incidence and reflection angles modulated by
the surface roughness, the polarimetric information is contained in the
Fresnel coefficients.

3.3 THE TWO-DIMENSIONAL EMISSIVITY

The goal of this paragraph is to model the two-dimensional emissivity
from the parameters defined in the previous paragraph. It is calculated
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in the one-dimensional and two-dimensional cases.

3.3.1 The One-Dimensional Emissivity

We have seen in paragraph 3.2.2.4 that the emissivity of the body
depends on the Fresnel coefficients, which are function of the incidence
angle and refraction indexes. For a given incidence, the reflection an-
gle is modulated by the surface roughness characterized by the slope
distribution. The shadowing function is also included. The goal of this
section is to introduce these parameters in the calculus of the emissivity
[35, 36].

3.3.1.1 Geometry of the Problem

In the cartesian coordinates (z, x) (figure 3.7), M is a surface point
of height z(x, t) and abscissa x at the time t . The surface is assumed
to be one-dimensional involving that the component y is nil. Let �n
be the unitary vector in the direction z , �n′ the unitary vector normal
to the surface element dS at the point M , and �s the unitary vector
between the viewing direction and z . Define ϕ = ˆ(�n′,�s).

Figure 3.7 Geometry of the problem.

According to (3.7), the local emissivity ε of the facet in the direction
ϕ is [35]:

ε = [1 − |r(|ϕ|)|2] · f (3.9)

The dependences in frequency and temperature are omitted. The
function f characterizes the surface statistical behavior of the local
slope γ.
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3.3.1.2 The Average Emissivity

The function f = p(γ)S(θ, γ) is composed of two terms. The shad-
owing function S(θ, γ) , and the slope probability density p(γ) as-
sumed to be gaussian:

p(γ) =
1√
2πσ

· exp
(
− γ2

2σ2

)
(3.10)

where σ is the slope standard deviation. f being a probability density,
it has to be normalized. This function fN is determined in the next
paragraph. Moreover (figure 3.8) we have:

tanχ =
∂z

∂x
= γ and ϕ = θ + χ ⇒ ϕ = θ + atanγ (3.10a)

These equations imply that the emissivity ε(θ, γ) in the viewing di-
rection θ is:

ε(θ, γ) = [1 − |r(|θ + atanγ|)|2]fN (θ, γ) (3.10b)

The average emissivity ε(θ, γ) is then given by:

ε(θ) =

∞∫

−∞

ε(θ, γ)dγ (3.11)

3.3.1.3 The Normalized Average Emissivity

By definition, we have:

fN = f · g and

∞∫

−∞

fNdγ =

∞∫

−∞

f · g · dγ = 1 (3.12)

The sum of observed surfaces Sobs in the Σ plane normal to the
viewing direction θ is equal to the projected surface S0 in the same
plane (figure 3.8), so:

∫

S0

dSobs cos ϕ = S0 cos θ (3.12a)
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Figure 3.8 Determination of the normalized function.

moreover

dSobs =

∞∫

−∞

f · dS · dγ (3.12b)

Substituting equation (3.12b) into (3.12a) we obtain:

∫

S0

dS

∞∫

−∞

f · cos ϕdγ = S0 cos θ (3.12c)

Since dS = dx/ cos χ (figure 3.7), we have:

∫

S0

dx

∞∫

−∞

f · cos ϕ

cos χ
· dγ = S0 cos θ ⇒

∞∫

−∞

f · cos ϕ

cos θ cos χ
· dγ = 1

(3.12d)
Comparing equations (3.12d) with (3.12), the normalized function g
is given by:

g(θ, γ) =
cos ϕ

cos θ cos χ
=

�n′ ·�s
(�n · �n′)(�n ·�s) = 1 − γ tan θ (3.13)
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3.3.1.4 Conclusion

The one-dimensional emissivity for a gaussian process with a vari-
ance σ2 is:

ε(θ, σ) =

∞∫

−∞

(1 − γ tan θ)[1 − |r(|θ + atanγ|)|2]√
2πσ

exp
(
− γ2

2σ2

)
S(θ, γ)dγ

(3.14)
where r is the Fresnel reflection coefficient and S the shadowing func-
tion.

3.3.2 The Two-dimensional Emissivity

In this paragraph we determine the two-dimensional emissivity. In
order to use the one-dimensional shadowing function, the authors of
article [36] use an hypothesis on the slope probability density. Since our
method includes the two- dimensional shadowing function established
in chapter 2, we make no hypothesis on the slope distribution, it is the
originality of our work.

3.3.2.1 The Problem Geometry

Let M be a point of the surface defining the origin of cartesian coor-
dinates (x, y, z) (figure 3.9), �n the unitary vector in the direction z, �n′

the unitary vector normal to the facet at M , and �s the unitary vec-
tor of the viewing direction characterized by the {θ, φ} angles.These
vectors are defined by:

�n =




0
0
1



 �n′ =
1

√
1 + γ2

x + γ2
y




−γx

−γy

1



 �s =




sin θ cos φ
sin θ sinφ

cos θ



 (3.15)

where {γx, γy} are the slopes of the surface in the wind and cross-
wind directions. Define ϕ = ˆ(�n′,�s).

3.3.2.2 Determination of the Emissivity

The way is similar to the one exposed in the one-dimensional case.
According to equation (3.7), the local emissivity of the facet in the
direction ϕ is given by:

ε = [1 − |r(|ϕ|)|2] · fN (3.16)
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Figure 3.9 Two-dimensional configuration.

The function fN = p·S ·g is composed of three terms. The slope prob-
ability density p(γx, γy) assumed to be gaussian (equation (1.46c)):

p(γx, γy) =
1

2πσxσy
exp

(

− γ2
x

2σ2
x

−
γ2

y

2σ2
y

)

(3.16a)

The angle ϕ is defined by:

cos ϕ = �n′ ·�s =
cos θ − (γx cos φ + γy sinφ) sin θ

√
1 + γ2

x + γ2
y

(3.16b)

The two-dimensional normalization function becomes:

g =
�n′ ·�s

(�n · �n′)(�n ·�s) =

√
1 + γ2

x + γ2
y cos ϕ

sz
=

√
1 + γ2

x + γ2
y cos ϕ

cos θ
(3.17)

Substituting equation (3.16b) into (3.17) g is given by:

g =
cos θ − (γx cos φ + γy sinφ) sin θ

cos θ
= 1 − (γx cos φ + γy sinφ) tan θ

(3.17a)
the average emissivity ε(θ, φ) in the directions {θ, φ} is then:

ε(θ, φ) =
1

2πσxσy

∞∫

−∞

∞∫

−∞

[1−|r(|ϕ|)|2]·exp

(

− γ2
x

2σ2
x

−
γ2

y

2σ2
y

)

·g ·S ·dγxdγy

(3.18)
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The angle ϕ = ϕ(θ, φ, γx, γy) and the function g = g(θ, φ, γx, γy) are
given by equations (3.16b) and (3.17a). S = S(θ, φ, γx, γy) denotes
the two-dimensional monostatic shadowing function integrated over
the heights.

3.4 SIMULATIONS

In this paragraph, the two-dimensional emissivity is simulated in ver-
tical and horizontal polarizations. Since Smith results are better than
Wagner ones, we use the Smith two-dimensional shadowing function.
In [36] the slope variance is determined from the JONSWAP gravity
spectrum, whereas we use the Cox and Munk model (equation (1.51)),
which gives the slope variance in capillary wave. The correlation of
the shadowing function is also introduced, and the emissivity obtained
from [36] is compared with our model.

3.4.1 Emissivity Determined with the Smith Uncorrelated
Shadowing Function

3.4.1.1 Calculus

In order to calculate the shadowing function S = S(θ, φ, γx, γy) the
emissivity must be determined in the wind direction φ i.e., in the new
base (X, Y ) (figure 3.9). From the previous coordinates (γx, γy) the
new coordinates (γX , γY ) are:

{
γx = γX cos φ − γY sinφ
γy = γX sinφ + γY cos φ

(3.18a)

Substituting equations (3.18a) into (3.18) we have:

ε(θ, φ) =
1

2π
√

α2 − β2

∞∫

−∞

∞∫

−∞

[1 − |r(|ϕ|)|2]

· exp
(
−aγ2

Y − 2bγY γX − cγ2
X

)
· g · S · dγXdγY

with






cos ϕ =
cos θ − γX sin θ
√

1 + γ2
X + γ2

Y

g = 1 − γX tan θ

a =
α + β cos(2φ)
2(α2 − β2)

b =
β sin(2φ)

2(α2 − β2)
c =

α − β cos(2φ)
2(α2 − β2)

(3.19)
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where {α, β} are defined by:

α =
(
σ2

x + σ2
y

)
/2 β =

(
σ2

x − σ2
y

)
/2 (3.19a)

with {σ2
x, σ2

y} the slope variances in the wind and crosswind directions.
For an infinite sea surface, we have shown that the Smith averaged
uncorrelated two-dimensional monostatic shadowing function over the
height is the following (equation (2.41a)):

SS(θ, φ, γX)=
Υ(µ − γX)

Λ + 1
with






v =
µ√
2σ

=
cot θ

√
2[α + β cos(2φ)]

Λ =
[
e−v2 − v

√
πerfc(v)

]
/(2v

√
π)

(3.20)
Since the shadowing function is not integrated over the slopes, the term
1 − erfc(v)/2 is not taken into account. Substituting equation (3.20)
into (3.19), the emissivity is equal to:

ε(θ, φ) =
1

2π(Λ + 1)
√

α2 − β2

µ∫

−∞

e−cγ2
X · (1 − γX tan θ)

·






∞∫

−∞

[1 − |r(|ϕ|)|2] · e−aγ2
Y −2bγY γX · dγY





dγX (3.21)

in order to make the double integrations we set:

vX =
√

cγX vY =
√

aγY (3.21a)

thus:

ε(θ, φ) = ε0

µ
√

c∫

−∞

e−v2
X ·

(
1 − vX√

c
tan θ

)

·






∞∫

−∞

[1 − |r(|ϕ|)|2] · e−v2
Y − 2β sin(2φ)√

α2−β2 cos2(2φ)
vXvY · dvY





dvX

with ε0 =
1

π(Λ+ 1)

√
α2 − β2

α2−β2 cos2(2φ)
ϕ = acos






cos θ− vX√
c

sin θ

√

1 +
v2
X

c
+

v2
Y

a






(3.22)
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3.4.1.2 Particular Cases

When the incidence angle θ is equal to zero i.e., {v, µ} → ∞ ,
equation (3.22) becomes:

ε(0, φ) =
1
π

√
α2 − β2

α2 − β2 cos2(2φ)

∞∫

−∞

e−v2
X

·






∞∫

−∞

[1 − |r(|ϕ|)|2] · e−v2
Y − 2β sin(2φ)√

α2−β2 cos2(2φ)
vXvY · dvY





dvX

(3.22a)
Assuming that cos ϕ ≈ 1 (equation (3.19) with θ = 0 and γ2

X +γ2
Y �

1) , we have:

ε(0, φ) =
1 − |r(0)|2

π

√
α2 − β2

α2 − β2 cos2(2φ)

∞∫

−∞

e−v2
X

·






∞∫

−∞

e
−v2

Y − 2β sin(2φ)√
α2−β2 cos2(2φ)

vXvY · dvY





dvX

=1 − |r(0)|2 (3.22b)

We obtain the emissivity of the plane surface. When the incidence
angle θ is equal to 90◦ i.e., {v, µ} → 0 , equation (3.22) becomes:

ε(90, φ) =
2(α2 − β2)√

π[α2 − β2 cos2(2φ)]

∞∫

0

vXe−v2
X

·






∞∫

−∞

[1 − |r(|ϕ|)|2] · e−v2
Y − 2β sin(2φ)√

α2−β2 cos2(2φ)
vXvY · dvY





dvX

(3.22c)

3.4.1.3 Simulations of the Emissivity

In figure 3.10, the vertical εV and horizontal εH integrated emissiv-
ities over the wavelength are plotted as a function of the angles {φ, θ} ,
for different friction speeds uf = {20, 40, 60} cm/s. {εV , εH} are ob-
tained from equation (3.22) with |r(|ϕ|)|2 = {|rV (|ϕ|)|2,
|rH(|ϕ|)|2} where {rV , rH} denote the Fresnel coefficients.
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Figure 3.10 On the left and right the vertical V and horizontal H
uncorrelated integrated emissivities over λ ∈ [3; 5]µm as a function of
the angles {φ, θ} for different friction speeds uf = {20, 40, 60} cm/s
with T = 25◦C.
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The emissivities are integrated over the interval [3;5] µm with an
integration step equal to 0.2 µm , and the water index n2 is defined
from paragraph 3.2.2.6 at the temperature T = 25◦C.

We observe that the emissivities decrease when the angles {φ, θ}
tend to 90◦ , and their variations is very slight with the wind direction
φ , involving that the emissivity is weakly sensitive to the anisotropic
of the sea surface.

For a normal incidence θ = 0 , the emissivities are sensitively equal
(table 3.1) to the ones obtained from the plane surface:

εV (0, 0) ≈ εH(0, 0) ≈ 1 − |rV (0)|2 ≈ 1 − |rH(0)|2

=
4n1n2

(n2 + n1)2
=

4n2

(n2 + 1)2
= 0.975 (3.22d)

where the operator ¯ denotes the mean value over the wavelength. As
the friction speed increases the emissivities increases, and we note that
in vertical V polarization the gap ∆εV is smaller than the one ∆εH

obtained from a horizontal polarization H (table 3.1), and the am-
plitudes of {∆εV ,∆εH} are inversely proportional to the wind speed.
Moreover, at neighborhood of the mean Brewster angle defined by
θB = atan(|n2|/n1) ≈ 54◦ , the emissivity V increases weakly.

Table 3.1 Particular values of the emissivity.

λ ∈ [3; 5]µm λ ∈ [8; 12]µm
εi(0, 0) εi(90, 90) ∆εi εi(0, 0) εi(90, 90) ∆εi

uf = 20 cm/s V : 0.996 V : 0.666 V : 0.330 V : 0.998 V : 0.672 V : 0.326
H : 0.973 H : 0.456 H : 0.517 H : 0.988 H : 0.533 H : 0.455

uf = 40 cm/s V : 0.994 V : 0.739 V : 0.255 V : 0.997 V : 0.744 V : 0.253
H : 0.972 H : 0.527 H : 0.445 H : 0.987 H : 0.606 H : 0.381

uf = 60 cm/s V : 0.993 V : 0.776 V : 0.216 V : 0.996 V : 0.780 V : 0.216
H : 0.971 H : 0.567 H : 0.404 H : 0.987 H : 0.646 H : 0.341

In figure 3.11, are plotted curves similar to the ones of figure 3.10,
but the emissivities are integrated over the interval [8;12] µm . Since
the mean index n2|λ∈[8;12]| equal to 1.21 is smaller than n2|λ∈[3;5]|
equal to 1.37, the emissivities of figure 3.11 are greater than the ones
obtained for the case where the integration interval is [3;5] µm (table
3.1).
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Figure 3.11 On the left and right the vertical V and horizontal H
uncorrelated integrated emissivities over λ ∈ [8; 12]µm as a function
of the angles {φ, θ} for different friction speeds uf = {20, 40, 60} cm/s
with T = 25◦C.
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3.4.1.4 Simulations of the Infrared Temperature

From Kirchhofft’s equation (3.5), the temperature Ta is defined by:

L(Ta) = ε · L(T ) with L(T ) =
C1λ

−5

e
C2
λT − 1

(3.23)

where L denotes the blackbody brightness (equation (3.3)), T the
medium temperature in Kelvin, and λ the wavelength. So:

Ta =
C2

λ

1

ln
[(

e
C2
λT − 1 + ε

)
/ε

] (3.23a)

In figure 3.12, are plotted the uncorrelated temperatures integrated
{TaV , TaH} over λ ∈ [3; 5]µm and λ ∈ [8; 12]µm (measured by the
infrared camera) defined in the vertical V and horizontal H planes,
as a function of the angles {φ, θ} , and for uf = {40, 60} cm/s with
T = 25◦C . As the incidence angle θ and the wind speed decrease,
the temperature rises. The variations ∆TaH of the temperature TaH

are more important than the ones ∆TaV of TaV (table 3.2), involving
that the horizontal component H is more sensitive to a variation of
the emissivity.

Table 3.2 Particular values of the temperature.

V : 24.9
H : 24.0

V : 17.7
H : 10.1

V : 7.2
H : 13.9

V : 24.8
H : 23.8

V : 16.9
H : -2.7

V : 7.9
H : 26.5

V : 24.8
H : 23.9

V : 18.9
H : 11.8

V : 5,9
H : 12.1

V : 24.7
H : 23.8

V : 14.3
H : 0.6

V : 10.4
H : 23.2

λ 3 5;[ ] µm∈ λ 8 12;[ ] µm∈

Tapi 0 0,( ) Tapi 90 90,( ) ∆Tapi Tapi 0 0,( ) Tapi 90 90,( ) ∆Tapi

uf 40 cm s⁄=

uf 60 cm s⁄=

According to table 3.1 and table 3.2, a small variation of the emissiv-
ity ∆εi can involve an important variation of the temperature ∆Tai ,
as show in figure 3.13, where is plotted the average ∆Ta/∆ε as a func-
tion of the emissivity for λ ∈ [3; 5]µm and λ ∈ [8; 12]µm . ∆Ta/∆ε
is given by:

∆Ta

∆ε
≈ dTa

dε
=

C2

(
e

C2
λT − 1

)

ελ ln

(
e

C2
λT − 1 + ε

ε

)2 (
e

C2
λT − 1 + ε

)
(3.23b)
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Figure 3.12 The vertical V and horizontal H uncorrelated inte-
grated temperatures over λ ∈ [3; 5]µm and λ ∈ [8; 12]µm as a func-
tion of the angles {φ, θ} for different friction speeds uf = {40, 60}
cm/s with T = 25◦C.
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Figure 3.13 Mean ratio ∆Ta/∆ε as a function of the emissivity for
λ ∈ [3; 5]µm and λ ∈ [8; 12]µm.

Since the ratio ∆Ta/∆ε is inversely proportional to the wavelength,
the variation of the temperature ∆Ta is more important for λ ∈
[8; 12]µm , it is equal to 76, whereas for λ ∈ [3; 5]µm is approxi-
matively equal to 34.

In figure 3.14, the mean emissivities [εV (θ, φ) + εH(θ, φ)]/2 deter-
mined for φ = {0, 90}◦ and θ = {60, 85} are compared with those
obtained in [36], as a function of the wind speed u10 defined at ten
meters above the sea. The refractive index of the water is equal to
1.19. There are two differences between their model and ours. Firstly
we make no hypothesis over the slopes variance, whereas they neglect
γ2

y in comparison with 1 + γ2
x . This hypothesis allows them to con-

sider a one-dimensional problem, and involves that the knowledge of
the two-dimensional shadowing function is not required. The second
difference remains in the fact that they use the slope variances ob-
tained from the JONSWAP gravity spectrum, whereas we use the Cox
and munk capillary model.
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Figure 3.14 Comparison of our results with those obtained in litera-
ture.

3.4.2 Emissivity Determined with the Smith Correlated
Shadowing Function

In Chapter 2, we have determined the Smith correlated two-dimen-
sional monostatic shadowing functions. The goal of this part is to
introduce this quantity in the emissivity formulation and to compare
it with results obtained without correlation.

3.4.2.1 Calculus

In this case, for an infinite surface, we have shown that the Smith
uncorrelated two-dimensional monostatic shadowing functions is given
by:

SS(θ, φ, γX) =
Υ(µ − γX)√

π

∞∫

−∞

[

1 − erfc(h0 + yt

√
2v

2

]Λ

· exp



−h2
0 − L

yt∫

0

gS(y, h0, p0, v)dy



 dh0 (3.24)
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where LgSdy is the two-dimensional conditional probability containing
the information on the autocorrelation function defined in (2.59) of
chapter 2. The limit yt , is obtained when the correlation is negligible.
In this case it is equal to 6.

h0 corresponds to the integration over the height. The variable p0

(equation (2.18a)) is defined by:

p0 = v − γ0√
2σ

= v − γx√
2σ

= v − γX

√
c = v − vX (3.24a)

Substituting equation (3.24) into (3.19) and making the variable trans-
formations of (3.21a), we show:

ε(θ, φ) =
1

π
√

π

√
α2 − β2

α2 − β2 cos2(2φ)

×
µ
√

c∫

−∞






∞∫

−∞

[1 − |r(|ϕ|)2]e−v2
X−v2

Y − 2β sin(2φ)√
α2−β2 cos2(2φ)

vXvY

·
(

1 − vX√
c

tan θ

) 


∞∫

−∞

I(h0)J(h0, vX)dh0



 dvY





dvX (3.25)

with

I(h0) = e−h2
0

[

1 − erfc(h0 + yt

√
2v)

2

]Λ

J(h0, vX) = exp



−L

yt∫

0

gS(y, h0, vX , v)dy





(3.25a)

The determination of the two-dimensional correlated emissivity re-
quires four integrations over {y, vX , h0, vY }.

3.4.2.2 Notice

The correlation is negligible when {yt = 0} involving that:

I(h0) = e−h2
0 [1 − erfc(h0)/2]Λ J(h0, vX) = 1 (3.26)

The function J(h0, vX) becomes independent of {h0, vX} , the inte-
gration of I(h0) gives then:
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Figure 3.15 On the left, the mean emissivity (εV + εH)/2 as a func-
tion of the wind direction φ and the incidence angle θ for uf =
{20, 40} cm/s and λ = 4µm . On the right the difference between
the correlated and uncorrelated emissivities as a function of the wind
direction φ and the incidence angle θ for uf = {20, 40} cm/s and
λ = 4µm.

∞∫

−∞

I(h0)dh0 =
√

π

Λ + 1
(3.26a)

Substituting equation (3.26a) into (3.25), the expression (3.25) be-
comes equal to (3.22).

3.4.2.3 Simulations

In figure 3.15 the mean emissivity (εV + εH)/2 and the difference
between the correlated and uncorrelated mean emissivities are plotted
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as a function of the wind direction φ and the incidence angle θ for
uf = {20, 40} cm/s and λ = 4µm . We observe an enhancement of
the emssivity for the grazing angles due to the fact that the shadow
is overestimated involving an increasing of the emissivity. The corre-
lation becomes negligible according the Table 2.6 when the incidence
angle θ < 75◦ for uf = 20 cm/s and θ < 70◦ for uf = 40 cm/s .
So, the correlation involves an emissivity’s discontinuity, which phys-
ically is not observed. This phenomeon depends on the choice of the
autocorrelation function.

3.5 CONCLUSION

In this chapter the two-dimensional emissivity is rigorously determined
for a gaussian process, and depends on the following parameters. The
incidence angle θ , and the angle φ between the viewing and the wind
directions. The slope variances {σ2

x, σ2
y} defined in the wind and cross-

wind directions. The Fresnel coefficients {rV , rH} depending on the
polarization and the medium index n2 function of the temperature T
and the wavelength. Due to the atmospheric absorption, the infrared
wavelength are studied over the intervals [3; 5]µm and [8; 12]µm ,
where the refraction index of the water varies between from 1.1 to 1.
5, and its imaginary part is very small.

For an infinite surface, the simulations show that the uncorrelated
emissivity increases with the wind speed and the wavelength, whereas
it decreases with the incidence angle. Moreover it varies slightly with
the wind direction and is more important in the H plane orthogonal
to the incidence plane. Article [36] assumes that the slope variance in
the wind direction is very superior to the one defined in the crosswind
direction, which implies that the problem becomes one-dimensional.
Moreover These authors use the slope variances are obtained from the
JONSWAP gravity spectrum, whereas we take the Cox and Munk
capillary model.

Figure 3.14 compares our emissity model and the [36] one. We also
compare the correlated and uncorrelated emissivities obtained from
the Smith monostatic two-dimensional shadowing function, and we
observe that the correlation has not physical meaning for grazing angles
due to an overestimation of the correlated shadowing function. For
simulations we have chosen an infinite surface, but our method may
be applied on a finite observation area.
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Epilogue

The two-dimensional spatial autocorrelation function of the heights
has been modeled in polar coordinates as a function of the wind direc-
tion φ and the distance R between two points located on the surface.
According to the wind direction φ , the fact that sea spectrum is even
in the upwind and crosswind directions involves that the autocorre-
lation depends on cos(2φ) . In the Elfouhaily spectrum formulation
which is the most recent in literature, the isotropic part of the auto-
correlation function is modeled by a damped lorentzian, whereas the
anisotropic part is represented from a Bessel function (second order
and first kind) multiplied by a lorentzian. Both functions depend on
parameters linked to the wind speed u10 defined ten meters above
the sea. The correlation length is approximately proportional to the
square of u10 and the height variance is proportional to the fourth
power of u10 . With the Pierson and Apel spectra we obtain the same
results, but the parameters vary slightly. Slopes computed from the
Elfouhaily spectrum are similar to the ones obtained from the Cox
and Munk model. Unlike the Pierson and Apel spectra, slopes are
overestimated due to an inaccuracy of their spectrum in the capillary
zone.

In order to quantify the hypothesis introduced by Wagner’s and
Smith’s one-dimensional shadowing functions, we compute the shad-
owing function with correlation. It then depends on the autocorrela-
tion function, moreover we have considered a finite observation length.
We compare the correlated and the uncorrelated results for a damped
lorentzian and damped gaussian autocorrelation functions, with the
exact solution obtained from generating an infinite surface. The re-
sults show that the correlation is negligible when the incidence angle
is inferior to θc = atan(0.5/σ) , where σ is the slope standard de-
viation, and the correlation improves the shadow. The Smith one-
dimensional function is extended to bistatic case with and without
correlation. The set of one-dimensional results are generalized to the
two-dimensional surface. We show that in the monostatic case, the
shadowing function depends on the incidence angle θ and the slope
variance σ2(φ) = α + α cos(2φ) in the direction φ , where {α, β} de-
pend on the wind speed. For the bistatic case, the shadowing function
depends on θi and σ2(φi) = α+β cos(2φi) . i = 1 corresponds to the
emitter location and i = 2 characterizes the receiver location. Results
obtained from the two-dimensional autocorrelation function modeled
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in the first chapter, show that the correlation is negligible when the in-
cidence angle is inferior to θc = atan[0.5/σ(φ)] , and for grazing angles,
correlation then overestimates shadow.

For the emissivity, we compare our model with [36] which assumes
that the slope variance in the upwind direction is greater than the one
defined in the crosswind direction, and allows to the use of the one-
dimensional shadowing function. Results are plotted in figure 3.14.
We also compare the correlated and uncorrelated emissivities obtained
from the Smith two-dimensional shadowing functions. We observe that
the correlation overestimates the emissivity at grazing angles because
the correlated shadowing function is overestimated. The set of the
uncorrelated simulations assumes that the observed surface is infinite,
but our method may be applied on a finite observed surface.

APPENDIX 1. THE WAGNER AND SMITH
SHADOWING FUNCTIONS OF THE UNCORRELATED
PROCESS FOR AN INFINITE SURFACE

In this appendix, the Wagner and Smith shadowing functions are de-
termined for an uncorrelated process, and for an infinite observation
length (equation (2.6)):

S(θ) =

∞∫

−∞

µ∫

−∞

p(ξ0, γ0) exp



−
∞∫

0

g(τ |F, θ)dτ



 dξ0dγ0 (A1.1)

A1.1 Wagner

The Wagner conditional probability is given by (equation (2.3)):

gW (τ |F, θ) =

∞∫

µ

(γ − µ)p(ξ = ξ0 + µτ, γ|ξ0, γ0; τ)dγ (A1.2)

Using the Bayes theorem, the probability p(ξ, γ|ξ0, γ0; τ) becomes:

p(ξ, γ|ξ0, γ0; τ) =
p(ξ, γ, ξ0, γ0; τ)

p(ξ0, γ0; τ)
(A1.2a)

The process being uncorrelated involves:

p(ξ, γ|ξ0, γ0; τ) =
p(ξ, ξ0) · p(γ, γ0)

p(ξ0, γ0)
=

p(ξ)p(ξ0)p(γ)p(γ0)
p(ξ0)p(γ0)

= p(ξ)p(γ)

(A1.2b)
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Substituting equation (A1.2b) into (A1.2), the Wagner function
gW (τ |F, θ) is:

gW (τ |F, θ) = µΛp(ξ) with Λ =
1
µ

∞∫

µ

(γ − µ)p(γ)dγ (A1.3)

Moreover ξ = ξ0 + µτ , thus:

∞∫

0

gW (τ |F, θ)dτ = µΛ

∞∫

0

p(ξ0 + µτ)dτ = Λ

∞∫

ξ0

p(ξ)dξ (A1.4)

Substituting equation (A1.4) into (A1.1), the shadowing function is
given by:

SW (θ) =






∞∫

−∞

p(ξ0) · exp




−Λ

∞∫

ξ0

p(ξ)dξ




 dξ0






µ∫

−∞

p(γ0)dγ0 (A1.5)

Set P be a primitive of p(h) :

P =
∫

p(h)dh (A1.6)

thus

SW (θ) =



e−ΛP (∞)

∞∫

−∞

dP (ξ0) · eΛP (ξ0)




µ∫

−∞

p(γ0)dγ0 (A1.6a)

The integration over ξ0 gives:

SW (θ) =

[
1 − e−Λ{P (∞)−P (−∞)}

Λ

] µ∫

−∞

p(γ0)dγ0 (A1.6b)

Moreover

P (∞) − P (−∞) =

∞∫

−∞

p(h)dh = 1 (A1.6c)
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The Wagner shadowing function is then:

SW (θ) = Λ′× 1 − e−Λ

Λ
Λ =

1
µ

∞∫

µ

(γ −µ)p(γ)dγ Λ′ =

µ∫

−∞

p(γ)dγ

(A1.7)

A1.2 Smith

The Smith conditional probability is given by (equation (2.4)):

gS(τ |F, θ) = gW (τ |F, θ)/




∞∫

−∞

dγ

ξ0+µτ∫

−∞

p(ξ, γ|ξ0, γ0; τ)dξ



 (A1.8)

Substituting equations (A1.2b) and (A1.3) into (A1.8) we have:

gS(τ |F, θ) = µΛp(ξ)/

ξ∫

−∞

p(ξ1)dξ1 (A1.9)

Making the variable transformation we obtain:

∞∫

0

gS(τ |F, θ)dτ = µΛ

∞∫

0





p(ξ)/




ξ∫

−∞

p(ξ1)dξ1









dτ

= Λ

∞∫

ξ0





p(ξ)/




ξ∫

−∞

p(ξ1)dξ1









dξ (A1.10)

Using equation (A1.6), the integration over τ gives:
∞∫

0

gS(τ |F, θ)dτ = Λ

∞∫

ξ0

dP (ξ)/[P (ξ) − P (−∞)]

= −ln|P (ξ0) − P (−∞)|Λ (A1.11)

Substituting equation (A1.11) into (A1.1), the Smith shadowing func-
tion is given by:

SS(θ) =






∞∫

−∞

p(ξ0) · |P (ξ0) − P (−∞)|Λdξ0






µ∫

−∞

p(γ0)dγ0 (A1.12)
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The integration over ξ0 gives:

SS(θ) =
{

1
Λ + 1

[
|P (ξ0) − P (−∞)|Λ

]∞
−∞

} µ∫

−∞

p(γ0)dγ0 (A1.12a)

Using equation (A1.6c), we show that:

SS(θ) = Λ′/(Λ + 1) (A1.13)

APPENDIX 2. THE RICCIARDI-SATO SHADOWING
FUNCTION OF THE UNCORRELATED PROCESS FOR
AN INFINITE SURFACE

In this appendix, the Ricciardi-Sato shadowing function is determined
for an uncorrelated process, and for an infinite observation length
(equation (2.6)):

S(θ) =

∞∫

−∞

µ∫

−∞

p(ξ0, γ)) exp



−
∞∫

0

g(l|F, θ)dl



 dξ0dγ0 (A2.1)

A2.1 Introduction

The Ricciardi-Sato function gR(l|F, θ) is defined by (2.5):

gR(l|F, θ) =
∞∑

n=1

(−1)n−1In(l|F, θ) (A2.2)






I1(l|F, θ) = W1(l|F, θ)

In(l|F, θ) =

l∫

0

dl1

l∫

l1

dl2 · · ·
l∫

ln−2

Wn(l, l1, · · · , ln−1|F, θ)dln−1

Wn(l, l1, · · · , ln−1|F, θ) =

∞∫

µ

dγ1

∞∫

µ

dγ2 · · ·
∞∫

µ

dγn

n∏

i=1

(γi − µ) · p2n+2

(
�S, �G|ξ0, γ0; l

)

(A2.2a)
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Using the Bayes theorem, the probability density p2n+2

(
�S, �G|ξ0, γ0; l

)

is:

p2n+2

(
�S, �G|ξ0, γ0; l

)
= p2n+2

(
�S, �G, ξ0, γ0; l

)
/p (ξ0, γ0; l) (A2.3)

For an uncorrelated gaussian process p2n+2

(
�S, �G|ξ0, γ0; l

)
is given by:

p2n+2

(
�S, �G|ξ0, γ0; l

)

= p2n

(
�S, �G; l

)

=
1

(2π)n(−a2a0)n/2

n∑

i=1

exp
(
−ξ0 + µli)2

2a0
+

γ2
i

2a2

)
(A2.3a)

Physically a0 represents the height variance and −a2 = σ2 the slope
variance. Substituting equation (A2.3a) into Wn , we have:

Wn =exp

[

− 1
2a0

n∑

i=1

(ξ0 + µli)2
]

·





1

2π
√

|a2|a0

∞∫

µ

(γ − µ) · exp
[
− γ2

2|a2|

]
dγ






n

(A2.4)

If a2 < 0 is verified then the integral is convergent. The integration
over γ of Wn gives:

Wn = exp

[

− 1
2a0

n∑

i=1

(ξ0 + µli)2
] [

µΛ√
2πa0

]n

with (A2.5)





Λ =

[
e−v2 − v

√
πerfc(v)

2v
√

π

]

v = µ/(σ
√

2)

A2.2 Calculus of the Integral In

Case n = 1
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The case n = 1, I1 is:

I1 = W1 = exp
[
− ξ2

1

2a0

] [
µΛ√
2πa0

]
with ξ1 = ξ0 + µl0 = ξ0 + µl

(A2.6)
Case n = 2

I2 =

l∫

0

W2dl1

=
[

µΛ√
2πa0

]2
l∫

0

exp
[
−(ξ0 + µl)2

2a0
− (ξ0 + µl1)2

2a0

]
dl1

[
µΛ√
2πa0

]2

exp
[
−(ξ0 + µl)2

2a0

] l∫

0

exp
[
−(ξ0 + µl1)2

2a0

]
dl1 (A2.7)

Setting u = (ξ0 + µl1)/
√

2a0 , the integration of I2 gives:

I2 =
[

µΛ√
2πa0

]
exp

[
−(ξ0+µl)2

2a0

] {
Λ
2

[
erf

(
ξ0+µl√

2a0

)
−erf

(
ξ0√
2a0

)]}

(A2.7a)
Case n = 3

I3 =

l∫

0

dl1




l∫

l1

W3dl2



 (A2.8)

∗ Integration over l2 :

l∫

l1

W3dl2 =
[

µΛ√
2πa0

]3

exp
[
−ξ2

1 + ξ2
2

2a0

] l∫

l1

exp
[
−(ξ0 + µl2)2

2a0

]
dl2

(A2.8a)
or

[
µΛ√
2πa0

] l∫

l1

exp
[
−(ξ0+µl2)2

2a0

]
dl2 =

Λ
2

[
erf

(
ξ0+µl√

2a0

)
−erf

(
ξ0+µl1√

2a0

)]

(A2.8b)



Intrinsic infrared radiation of the sea surface 321

so

l∫

l1

W3dl2 =
[

µΛ√
2πa0

]2

exp
[
−ξ2

1 + ξ2
2

2a0

]
Λ
2

[
erf

(
ξ0+µl√

2a0

)
−erf

(
ξ0+µl1√

2a0

)]

(A2.8c)
∗ Integration over l1 :

Substituting equation (A2.8c) into (A2.8) we have:

I3 =
[

µΛ√
2πa0

]2 Λ
2

exp
[
− ξ2

1

2a0

] l∫

0

exp
[
−(ξ0 + µl1)2

2a0

]

[
erf

(
ξ0 + µl√

2a0

)
−erf

(
ξ0 + µl1√

2a0

)]
dl1 (A2.8d)

Setting u = (ξ0 + µl1)/
√

2a0 we have:

l∫

0

e
− (ξ0+µl1)2

2a0

[
erf

(
ξ0+µl√

2a0

)
−erf

(
ξ0+µl1√

2a0

)]
dl1

=
√

2a0

µ

ξ0+µl√
2a0∫

ξ0√
2a0

e−u2
[
erf(u) + erf

(
ξ0 + µl√

2a0

)]
du (A2.8e)

Moreover

u2∫

u1

exp[−u2]erf(u)du =
√

π

4
[erf2(u2) − erf2(u1)] (A2.8f)

Substituting equation (A2.8f) into (A2.8e), integral (A2.8e) becomes:
√

2a0

µ

{
π

4

[
erf2

(
ξ0√
2a0

)
− erf2

(
ξ0 + µl√

2a0

)]

+ erf
(

ξ0 + µl√
2a0

)
π

2

[
erf

(
ξ0 + µl√

2a0

)
− erf

(
ξ0√
2a0

)]}

=
√

πa0

2
√

2µ

[
erf

(
ξ0√
2a0

)
− erf

(
ξ0 + µl√

2a0

)]2

(A2.8g)
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Using equation (A2.8g) and (A2.8d) we obtain:

I3 =
[

µΛ√
2πa0

]2 Λ
2

exp
[
− ξ2

1

2a0

] √
πa0

2
√

2µ

[
erf

(
ξ0√
2a0

)
− erf

(
ξ0 + µl√

2a0

)]2

=
[

µΛ√
2πa0

]
exp

[
− ξ2

1

2a0

]
1
2

{
Λ
2

[
erf

(
ξ0√
2a0

)
− erf

(
ξ0 + µl√

2a0

)]}2

(A2.8h)
Case n = 4

I4 =

l∫

0

dl1






l∫

l1

W3




l∫

l2

W4dl3



 dl2





(A2.9)

Applying the same reasoning as previously we show:

I4 =
[

µΛ√
2πa0

]
exp

[
− ξ2

1

2a0

]
1
6

{
Λ
2

[
erf

(
ξ0 + µl√

2a0

)
− erf

(
ξ0√
2a0

)]}3

(A2.9a)
n ≥ 1 integer

Generalizing equations (A2.6), (A2.7a), (A2.8h), (A2.9a), we prove:





I1 =
[

µΛ√
2πa0

]
exp

[
−(ξ0 + µl)2

2a0

]
n = 1

In =
[

µΛ√
2πa0

]
exp

[
−(ξ0 + µl)2

2a0

]
Xn−1

(n − 1)!
n > 1

with X =
Λ
2

[
erf

(
ξ0 + µl√

2a0

)
− erf

(
ξ0√
2a0

)]
(A2.10)

2.3 Calculus of the Shadowing Function

Using equation (A2.10) and (A2.2), the function gR becomes:

gR =
[

µΛ√
2πa0

]
exp

[
−(ξ0 + µl)2

2a0

]

·
[
1 − X +

X2

2
− X3

6
+ · · · + (−1)p Xp

p!

]

= g0 · exp(−X) with g0 =
[

µΛ√
2πa0

]
exp

[
−(ξ0 + µl)2

2a0

]

(A2.11)
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Substituting equation (A2.11) into (A2.1), and making the integration
over γ0 , the Ricciardi-Sato shadowing function SR(θ) for an uncorre-
lated process is given by:

SR(θ) =
1√

2πa0

[
1 − 1

2
erfc(v)

]

∞∫

−∞

exp
(
− ξ2

0

2a0

)
exp



−
∞∫

0

g0 · exp(−X)dl



 dξ0 (A2.12)

with erfc the complementary error function. Setting u = (ξ0 + µl)/
(
√

2a0) , the integral over l is:

∞∫

0

g0 · exp(−X)dl =
Λ√
π

exp
[
Λ
2

erf(v)
] ∞∫

ξ0√
2a0

exp
[
−Λ

2
erf(u) − u2

]
du

(A2.13)
or

∫
exp

[
−Λ

2
erf(u) − u2

]
du = −

√
π

Λ
exp

[
−Λ

2
erf(u)

]
(A2.13a)

so ∞∫

0

g0 · exp(−X)dl = 1 − exp
[
−Λ

2
erfc

(
ξ0√
2a0

)]
(A2.13b)

Setting x = ξ0/
√

2a0 and Substituting equation (A2.13b) into (A2.12),
the shadowing function is given by:

SR(θ) =
1√
π

[
1 − 1

2
erfc(v)

] ∞∫

−∞

e−x2
e−1+exp[−Λ

2 erfc(x)]dx (A2.14)

Making the variable transformation z = −Λerfc(x)/2 , the integral
(A2.14) becomes:

SR(θ)=
[
1 − 1

2
erfc(v)

]
e−1

Λ

0∫

−Λ

eexp(z)dz =
e−1

Λ

[
1 − 1

2
erfc(v)

] 1∫

e−Λ

et

t
dt

(A2.14a)
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with t = exp(z) . The Ricciardi-Sato shadowing function is then:






SR(v) =
[
1 − erfc(v)

2

] [
E1(−e−Λ) − E1(−1)

Λe1

]

E1(x) =

∞∫

1

e−xt

y
dy =

−∞∫

−x

et

t
dt

(A2.15)

where E1 is the exponential integral function.

APPENDIX 3. THE WAGNER CONDITIONAL
PROBABILITY OF THE CORRELATED GAUSSIAN
PROCESS

This appendix determines the Wagner conditional probability for a
correlated gaussian process (equation (2.3)):

gW (τ |F, θ) =

∞∫

µ

(γ − µ)p(ξ = ξ0 + µτ, γ|ξ0, γ0; τ)dγ (A3.1)

A3.1 Calculus of the Probability Density

Using the Bayes theorem, we have:

p(ξ, γ|ξ0, γ0; τ) = p(ξ, γ, ξ0, γ0; τ)/p(ξ0, γ0) (A3.2)

For 4-dimensions gaussian process p(ξ, γ, ξ0, γ0; τ) is given by

p(ξ, γ|ξ0, γ0; τ)=
√

C11C33−C31C13

2π
√

|[C]|
e
− 1

2
�V T [C]−1�V + 1

2 [ξ0,γ0]

[
C11 C13

C31 C33

]−1[
ξ0

γ0

]

with �V =






ξ0

ξ
γ0

γ




 (A3.3)
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and

[C] =
[

[CHH ] [CHP ]
[CPH ] [CPP ]

]

{i, j} =
{

1 → ξ0

2 → ξ

with






Cij
HH = 〈ξi(τi)ξj(τj)〉 = R0(τi − τj)

Cij
PP =

〈
ξ̇i(τi)ξ̇j(τj)

〉
= −R2(τi − τj)

Cij
HP =

〈
ξi(τi)ξ̇j(τj)

〉
= −R1(τi − τj)

Cij
PH =

〈
ξ̇i(τi)ξj(τj)

〉
= −R1(τj − τi)

(A3.3a)
R0 is the autocorrelation function, R1 its first derivative over τ , and
R2 its second derivative. |[C]| is the determinant of the covariance
matrix [C] . The autocorrelation function being even we have:
{

R0(−[li − lj ]) = R0(li − lj) R2(−[li − lj ]) = R2(li − lj)
R1(−[li − lj ]) = −R1(li − lj) R1(0) = 0 (A3.3b)

The covariance matrix becomes with τ = l2 − l1 :

[C] =






R0(0) R0(−τ) −R1(0) −R1(−τ)
R0(τ) R0(0) −R1(τ) −R1(0)
−R1(0) −R1(τ) −R2(0) −R2(−τ)
−R1(−τ) −R1(0) −R2(τ) −R2(0)






=






ω2 R0 0 R1

R0 ω2 −R1 0
0 −R1 σ2 −R2

R1 0 −R2 σ2




 (A3.3c)

where ω2 is the height variance equal to R0(0) , and σ2 the slope vari-
ance equal to −R2(0) . Moreover we show that the inverse covariance
matrix [C]−1 is:

[C]−1 =
1

|[C]|






Ci11 Ci12 Ci13 Ci14

Ci12 Ci11 −Ci14 −Ci13

Ci13 −Ci14 Ci33 Ci34

Ci14 −Ci13 Ci34 Ci33




 (A3.4)

with:





Ci11 = ω2
(
σ4 − R2

2

)
− R2

1σ
2

Ci12 = R0

(
R2

2 − σ4
)
− R2

1R2

Ci13 = −R1

(
R0σ

2 + ω2R2

)

Ci14 = R1

(
R2

1 − R0R2 − ω2σ2
)

(A3.5)






Ci33 = σ2
(
ω4 − R2

0

)
− R2

1ω
2

Ci34 = R2

(
ω4 − R2

0

)
+ R2

1R0

|[C]| =
(
C2

i33 − C2
i34

)
/

(
ω4 − R2

0

) (A3.6)
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Substituting equations (A3.4) and (A3.3c) into (A3.3) we obtain:

p(ξ, γ|ξ0, γ0; τ)=
σω

2π
√

|[C]|

× exp

[

−Ci11

(
ξ2
0+ξ2

)
+Ci33

(
γ2

0 + γ2
)

2|[C]| +
ξ2
0

2ω2
+

γ2
0

2σ2

−

(
2Ci12ξ0ξ + 2Ci34γ0γ

+ 2Ci13(ξ0γ0− ξγ) + 2Ci14(ξ0γ− ξγ0)

)

2|[C]|









(A3.7)

A3.2 Calculus of the Conditional Probability

Using equations (A3.7) and (A3.1), the Wagner conditional proba-
bility is given by:

gW (τ |F, θ) =
σω

2π
√

|[C]|

∞∫

µ

(γ − µ) exp(−Aγ2 − 2Bγ − D)dγ (A3.8)

with





A =
Ci33

2|[C]| B =
ξ0Ci14 − ξCi13 + γ0Ci34

2|[C]|

D =

(
ξ2
0 + ξ2

)
Ci11 + 2ξ0ξCi12 + 2γ0(ξ0Ci13 − ξCi14) + γ2

0Ci33

2|[C]|

− ξ2
0

2ω2
− γ2

0

2σ2

(A3.8a)
or:

∞∫

µ

(γ − µ)e−A·γ2−2B·γ−Ddγ

=
e−D−µ(µA+2B)

2A
·
[
1 − e

(B+µA)2

A

√
π

B + µA√
A

erfc
(

B + µA√
A

)]

(A3.9)
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so:

gW (τ |F, θ) =
σω exp[−D − µ(µA + 2B)]

4πA
√

|[C]|

·
[
1 − e

(B+µA)2

A

√
π

B + µA√
A

erfc
(

B + µA√
A

)]
(A3.10)

If the conditions A > 0 and |[C]| > 0 are satisfied then gW (τ |F, θ)
is real.

APPENDIX 4. THE SMITH CONDITIONAL
PROBABILITY OF THE CORRELATED GAUSSIAN
PROCESS

This appendix determines the Smith conditional probability for a cor-
related gaussian process (equation (2.4)):

gS(τ |F, θ) =
gW (τ |F, θ)

∞∫

−∞

dγ

ξ0+µτ∫

−∞

p(ξ, γ|ξ0, γ0; τ)dξ

(A4.1)

Using equation (A3.10) we have:

gW (τ |F, θ) =
σω exp[−D − µ(µA + 2B)]

4πA
√
|[C]|

·
[
1 − e

(B+µA)2

A

√
π

B + µA√
A

erfc
(

B + µA√
A

)]
(A4.2)

and the denominator is:

I =
σω

2π
√

|[C]|

ξ0+µτ∫

−∞




∞∫

−∞

exp[−Aγ2 − 2Bγ − D]dγ



 dξ (A4.3)

I =
σω

2π
√

|[C]|

√
π

A

ξ0+µτ∫

−∞

exp
(

B2

A
− D

)
dξ (A4.3a)



328 Bourlier et al.

Setting:
B2

A
− D = −A1ξ

2 − 2B1ξ − D1 (A4.4)

and applying the following relation:

ξ′∫

−∞

exp
(
−A1ξ

2 − 2B1ξ − D1

)
dξ

=
1
2

√
π

A1
exp

(
B2

1

A1
− D1

) [
erf

(
A1ξ

′ + B1√
A1

)
+ 1

]
(A4.4a)

We show that the integration over ξ is:

I =
σω

4
√

|[C]|A1A
exp

(
B2

1

A1
− D1

) {
erf

[
A1(ξ0 + µτ) + B1√

A1

]
+ 1

}

(A4.5)
with:






A1 =
Ci11Ci33 − C2

i13

2Ci33|[C]|
B1 = ξ0

Ci12Ci33 + Ci14Ci13

2Ci33|[C]| + γ0
Ci13Ci34 − Ci14Ci33

2Ci33|[C]|
D1 =ξ2

0

Ci11Ci33 − C2
i14

2Ci33|[C]| + γ2
0

C2
i33 − C2

i34

2Ci33|[C]|

+ 2ξ0γ0
Ci13Ci33 − Ci14Ci34

2Ci33|[C]| − ξ2
0

2ω2
− γ2

0

2σ2

(A4.5a)

Substituting equation (A4.5) and (A4.2) into (A4.1), the function
gS(τ) is given by:

gS(τ |F, θ) =
1
π

√
A1

A

·
exp[−D − µ(µA + 2B)]

[
1 − e

(B+µA)2

A
√

π
B + µA√

A
erfc

(
B + µA√

A

)]

exp
(

B2
1

A1
− D1

) {
erf

[
A1(ξ0 + µτ) + B1√

A1

]
+ 1

}

(A4.6)
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Figure 5A.1 Definition of the pulse function.

APPENDIX 5. THE SMITH UNCORRELATED BISTATIC
SHADOWING FUNCTION FOR AN INFINITE SURFACE

The Smith uncorrelated monostatic shadowing function in the ob-
servation direction θ is given by (equations (2.16a) into (2.1) with
L0 = ∞) :

SS(θ|F ) = Υ(µ − γ0) ·
[
1 − 1

2
erfc(h0)

]Λ(v)

(A5.1)

Cases (a): θ2 ∈ [0;π/2]
Substituting equation (A5.1) into (2.31), we have:

SS(θ1, θ2|F )
= SS(θ1|F )SS(θ2|F )

= Υ(µ1 + γ0)
[
1 − erfc(h)

2

]Λ(|v1|)
Υ(µ2 − γ0)

[
1 − erfc(h)

2

]Λ(v2)

(A5.2)
We note that in the Heaviside function Υ(µ1 + γ0) , the sign in front
of γ0 is positive because the emitter is defined by y < 0 . Or figure
A5.1:

Υ(µ1 + γ0) · Υ(µ2 − γ0) = Π[µ1;µ2] (A5.3)

with Π[µ1;µ2] is the pulse function of bandwidth [µ1;µ2](µ1 < 0 and
µ2 > 0) . Using equations (A5.3) and (A5.2), the shadowing function
becomes:

SS(θ1, θ2|F ) = Π[µ1;µ2] ·
[
1 − 1

2
erfc(h)

]Λ(|v1|)+Λ(v2)

(A5.4)
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Substituting equation (A5.4) into (2.32), the average shadowing func-
tion is given by :

SS(θ1, θ2) =
1

2πσω

∞∫

−∞

µ2∫

−|µ1|

[
1 − 1

2
erfc(h)

]Λ(|v1|)+Λ(v2)

· exp
(
− ξ2

0

2ω2
− γ2

0

2σ2

)
dξ0dγ0 (A5.5)

The integration gives:

SS(θ1, θ2) =
1 − 1

2
[erfc(|v1|) + erfc(v2)]

Λ(|v1|) + Λ(v2) + 1
(A5.6)

Conclusion
The cases (b) and (c) are known monostatic cases (equation

(2.22a)) involving the bistatic uncorrelated shadowing function is the
following:

SS(v1, v2) =






1 − 1
2
[erfc(v1) + erfc(v2)]

Λ1 + Λ2 + 1
for 0 ≤ v2 < ∞

1 − 1
2
[erfc(v2)]

Λ2 + 1
for −v1 ≤ −v2 < 0

1 − 1
2
[erfc(v1)]

Λ1 + 1
for −∞ ≤ −v2 < −v1

(A5.7)

with






vi =
cot(|θi|)√

2σ

Λi =
[
e−v2

i − vi
√

πerfc(vi)
]
/(2vi

√
π)

i = {1, 2}

(A5.7a)

APPENDIX 6. THE SMITH TWO-DIMENSIONAL
CONDITIONAL PROBABILITY OF THE CORRELATED
GAUSSIAN PROCESS

This appendix determines The Smith two-dimensional conditional
probability gS(R, φ|{ξ0, γ0X}, θ) of the correlated gaussian process



Intrinsic infrared radiation of the sea surface 331

(equation (2.4)). It is equal to:

gS =

∞∫

µ

(γX − µ)p(ξ, γX |ξ0, γ0X ;R, φ)dγX

∞∫

−∞

dγX




ξ0+µτ∫

−∞

p(ξ, γX |ξ0, γ0X ;R, φ)dξ





=
I1

I2
(A6.1)

with:

p(ξ, γX |ξ0, γ0X ;R, φ)

=
ωσX

√
1 − ρ2

2π
√

E/σ2
Y

exp
(

ξ2
0

2ω2
+

γ2
0X

2σ2
X

− a1ξ
2
0 + a2ξ

2 + a9γ
2
X + a10γ

2
0X

2|[CXY ]|

−a3ξ0ξ + a4γ0XγX + a5ξ0γ0X − a6ξγX + a7ξ0γX − a8ξγ0X

|[CXY ]|

)

(A6.1a)
We apply the same way as appendix 4. We can write:

p(ξ, γX |ξ0, γ0X ;R, φ) =
ωσX

√
1 − ρ2

2π
√

E/σ2
Y

exp
(
−AXγ2

X − 2BXγX − DX

)

(A6.2)
with






AX =
a9

2|[CXY ]| BX =
a7ξ0 − a9ξ + a4γ0X

2|[CXY ]|
DX =

a1ξ
2
0 + a2ξ

2 + 2a3ξ0ξ + 2a5ξ0γ0X − 2a8ξγ0X + a10γ
2
0X

2|[CXY ]|

− ξ2
0

2ω2
− γ2

0X

2σ2
X

(A6.2a)
The integration over γX gives for the numerator (equation (A3.9));

I1 =
ωσX

√
1 − ρ2 exp[−DX − µ(µAX + 2BX)]

4πAX

√
E/σ2

Y

·
[
1 − e

(BX+µA)2

A

√
π

BX + µAX√
AX

erfc
(

BX + µAX√
AX

)]
(A6.3)
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and for the numerator we have:

I2 =
ωσX

√
1 − ρ2

2π
√

E/σ2
Y

√
π

AX

ξ0+µR∫

−∞

exp
(

B2
X

AX
− DX

)
dξ (A6.4)

Setting:
B2

X

AX
− DX = −A1Xξ2 − 2B1Xξ − D1X (A6.5)

We show that the integration over ξ (equation (A4.4a)) is:

I2 =
ωσX

√
1 − ρ2

4
√

A1XAXE/σ2
Y

exp
(

B2
1X

A1X
− D1X

)

·
{

erf
[
A1X(ξ0 + µR) + B1X√

A1X

]
+ 1

}
(A6.6)

with:





A1X =
a2a9 − a2

6

2a9|[CXY ]|
B1X = ξ0

a3a9 + a6a7

2a9|[CXY ]| + γ0
a6a4 − a8a9

2a9|[CXY ]|
D1X =ξ2

0

a1a9 − a2
7

2a9|[CXY ]| + γ2
0

a10a9 − a2
4

2a9|[CXY ]| + 2ξ0γ0
a5a9 − a4a7

2a9|[CXY ]|

− ξ2
0

2ω2
− γ2

0X

2σ2
X

(A6.6a)
Substituting equation (A6.6) and (A6.3) into (A6.1), the function
gS(R|F, θ, φ) is given by:

gS =
1
π

√
A1X

AX

·






exp[ − DX − µ(µAX + 2BX)]

×
[
1 − e

(BX+µA)2

A

√
π

BX + µAX√
AX

erfc
(

BX + µAX√
AX

)]






exp
(

B2
1X

A1X
− D1X

) {
erf

[
A1X(ξ0 + µR) + B1X√

A1X

]
+ 1

}

(A6.7)
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IRESTE, Nantes, France, 1996.

2. Gjessing, D. T., “Target adaptive matched. illumination radar:
Principles and applications,” IEE Electromagnetic Waves Series,
Vol. 22, IEE eds, 1989.

3. Ulaby, F. T., R. K. Moore, and A. K. Fung, “Microwave remote
sensing,” Theory to Applications, Vol. 3, ARTECH House, INC.,
1986.
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