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Effect of the observation length on the two-dimensional
shadowing function of the sea surface:
application on infrared 3–13-mm emissivity

Christophe Bourlier, Joseph Saillard, and Gérard Berginc

An analytical approach of the two-dimensional emissivity of a rough sea surface in the infrared band is
presented. The emissivity characterizes the intrinsic radiation of the sea surface. Because the tem-
perature measured by the infrared camera depends on the emissivity, the emissivity is a relevant
parameter for retrieving the sea-surface temperature from remotely sensed radiometric measurements,
such as from satellites. This theory is developed from the first-order geometrical-optics approximation
and is based on recent research. The typical approach assumes that the slope in the upwind direction
is greater than the slope in the crosswind direction, involving the use of a one-dimensional shadowing
function with the observed surface assumed to be infinite. We introduce the two-dimensional shadowing
function and the surface observation length parameters that are included in the modeling of the two-
dimensional emissivity. © 2000 Optical Society of America

OCIS codes: 010.4450, 030.6600, 080.2720, 000.5490.
1. Introduction

The emissivity of a rough sea surface is an important
parameter for correcting the surface temperature
from radiometric sensors. It has been established
that the surface temperature must be estimated to
0.1 K involving an emissivity error of approximately
0.002. Consequently the emissivity must be deter-
mined accurately. References 1–3 assume that the
two-dimensional surface is isotropic and ignore the
shadowing function. The model developed by Yoshi-
mori et al.4,5 is valid, because the average slopes of
he sea surface are smaller than unity, allowing for
he use of the one-dimensional Smith shadowing
unction. The theory is developed from the first-
rder geometrical-optics approximation, and multiple
eflections are neglected. All cited references as-
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sume that the observed surface is infinite. In this
paper the problem of the two-dimensional shadowing
function and emissivity of the sea surface with re-
spect to the observation length are investigated.

In Section 2 the two-dimensional shadowing func-
tion is calculated, and the one-dimensional case is
studied to choose between the Wagner6 or the
Smith7,8 shadowing function. The one-dimensional
sea surface is generated for Gaussian and Lorentzian
autocorrelation functions; the method applied is
based on that expanded in Ref. 9. The effect of the
observation length on the shadowing function is also
compared with the correlation length given in Ref. 10.
From the simulations it was established that Smith’s
formulation is the most suitable. A criterion was
determined for comparing the effect of the observa-
tion length with the length correlation obtained from
the height spatial autocorrelation function used in
Ref. 10. The results obtained are generalized to the
two-dimensional surface.

The emissivity is computed in Section 3 from the
results obtained in Section 2 and the approach devel-
oped in Ref. 10. The emissivity then includes the
wind direction, the incidence angle, the wind speed,
and the observation length. The slope variance
in the wind direction is estimated from the Cox
and Munk capillary wave model,11 whereas in Ref. 5
it is computed with Joint North Sea Wave Project
~JONSWAP! gravity waves.
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In Section 4 the emissivity for an infinite surface
is compared with that obtained in Ref. 5 and is
simulated for different observation lengths. The
values of the sea refraction index are given in Ref.
12.

2. Two-Dimensional Shadowing Function

The one-dimensional shadowing function is defined
as the ratio of the illuminated surface. It varies
between 0 for grazing incidence angles and 1 for
normal incidence angles. In the literature the
emissivity is either ignored1–3 or computed by the

pproaches formulated by Wagner6 or Smith.7,8

The Smith shadowing function is similar to Wag-
ner’s, but Smith introduces a normalization func-
tion in the denominator. To compare these
different models, the sea surface is generated with
a Gaussian process, with Gaussian and Lorentzian
autocorrelation functions. From the algorithm de-
veloped by Brokelman and Hagfors9 and from the
sea surface the exact solution of the shadowing
function is then calculated. Since Smith and Wag-
ner assume an infinite surface, the observation
length effect on the shadow is studied, and the steps
of the calculus of the one-dimensional shadowing
function are presented to extend the results to the
two-dimensional surface.

A. One-Dimensional Shadowing Function

1. Mathematical Development
For an observation length L0 the shadowing function
S~u, F, L0! is equal to the probability that the point

~j0, g0! on a random rough surface, of given height j0
above the mean plane and with local slope g0 5 ]zy]y,
is illuminated as the surface is crossed by an incident
beam from incidence angle u ~Fig. 1!,6–8

S~u, F, L0! 5 Y~m 2 g0!expF2*
0

L0

g~uuF; l !dlG , (1)

with

Y~m 2 g0! 5 H0 if g0 $ m
1 if g0 , m

, (19)

Fig. 1. Illustration of shadowing function.
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here g~uuF; l !dl is the conditional probability that
he ray intersects the surface in the interval @l; l 1
l# and with knowledge that the ray does not cross
he surface in the interval @0; l#. Y is the Heaviside
unction. In the Wagner ~index W! and the Smith
index S! approaches, g~uuF; l !dl is defined as fol-
ows,

gW~uuF; l ! 5 *
m

`

~g 2 m!p~j ; guj0, g0!dg, j 5 j0 1 ml,

gS~uuF; l ! 5

*
m

`

~g 2 m!p~j ; guj0, g0!dg

*
2`

`

*
2`

j01ml

p~j ; guj0, g0!djdg

5
gW~uuF; l !

*
2`

`

*
2`

j01ml

p~j ; guj0, g0!djdg

, (2)

here p~j ; guj0, g0! is the slopes’ $g0, g% and the
heights’ $j0, j% joint probability density and m 5 cot u
s the slope of the incident ray. Note that Smith
ntroduces a normalization function in the denomi-
ator.
The uncorrelated Gaussian process states that

p~j!p~g! 5
1

2psv
expS2

j2

2v2 2
g2

2s2D , (3)

where $v2, s2% denote the height and the slope vari-
ances of the surface, respectively. When we substi-
tute Eq. ~3! into Eqs. ~2!, the integration over g yields

gW~luF, u! 5 mL~v!
1

vÎ2p
expF2Sj0 1 ml

Î2v
D2G ,

gS~luF, u! 5 gW~luF, u!
2

1 1 erfSj0 1 ml

Î2v
D $ gW~luF, u!,

(4)

with

L~v! 5
exp~2v2! 2 vÎp erfc~v!

2vÎp
,

v 5
m

Î2s
5

cot u

Î2s
, (49)

here $erf, erfc% denote the error and the complemen-
ary error functions, respectively. When we substi-
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Table 1. Definition of the Autocorrelation Functions
tute Eqs. ~4! into Eqs. ~2!, the integrations over l
ields

SW~u, F, L0! 5 Y~m 2 g0!expH2
L

2 FerfcS j0

Î2v
D

2 erfcSj0 1 mL0

Î2v
DGJ ,

SS~u, F, L0! 5 Y~m 2 g0!3 1 2
1
2

erfcS j0

Î2v
D

1 2
1
2

erfcSj0 1 mL0

Î2v
D4

L

. (5)

Smith @Eq. ~20! of Ref. 7# and Wagner @Eq. ~17! of Ref.
# assume an infinite surface L0 3 `. The average

shadowing function over the slopes g0 and the heights
j0 is defined as

S~u, L0! 5 *
2`

`

*
2`

`

S~u, F$j0, g0%, L0!p~j0, g0!dj0 dg0.

(6)

Substituting Eqs. ~5! into Eq. ~6!, performing the in-
tegrations over the slopes g0 and the heights j0, and
using the variable transformation h0 5 j0y~=2v!,
or an uncorrelated Gaussian process we get

SW~v, L0! 5
1

Îp
F1 2

1
2

erfc~v!G *
2`

`

expH2h0
2

2
L

2
@erfc~h0! 2 erfc~h0 1 y0 v!#Jdh0,

SS~v, L0! 5
1

Îp
F1 2

1
2

erfc~v!G *
2`

`

exp~2h0
2!

3 3 1 2
1
2

erfc~h0!

1 2
1
2

erfc~h0 1 y0 v!4
L

dh0, (7)

with

y0 5
L0

l0
, l0 5

v

s
, v 5

cot u

Î2s
, (79)

here y0 is the normalized observation length with
respect to the length l0. The integration over h0 is

Gau

Autocorrelation function v2 exp

Filter coefficient vS 2

LÎp
D 1
numerical, and for an infinite observation length this
integration can be analytically determined @Eq. ~24!
of Ref. 7, Eq. ~20! of Ref. 6#. The shadowing func-
tions then depend on only one parameter, v.

2. Simulations
We compute the exact solution by generating the
sampled surface y~i!, to compare the Smith and the
Wagner shadowing functions. The method used is
based on a Fourier transform.13 Let x~i! be the
known sampled input signal, y~i! the output signal to
be determined, and $g~i!, G~ f !% the spatial and fre-
quency impulse response of the filter. The aim is to
compute the filter coefficients, with knowledge of the
autocorrelation function.

If x~i! is a stationary random process of second
order with a power spectral density Fx~ f !, then y~i! is
a stationary random second-order process, whose
power spectral density F~ f ! verifies

F~ f ! 5 uG~ f !u2Fx~ f !. (8)

ince the autocorrelation must be even, the impulse
esponse is real, leading to

G~ f ! 5 @F~ f !yFx~ f !#1y2. (9)

Furthermore,

y~i! 5 g~i! p x~i!, (10)

where p is the convolution product. y~i! is computed
by application of Gaussian white noise with a vari-
ance vb

2 to the input. Its power spectral density is
equal to Fx~ f ! 5 vb

2. Substitution of Eq. ~9! into Eq.
10! leads to

y~i! 5 ~1yvb!w~i! p x~i!, (11)

with

w~i! 5 TF21@ÎF~ f !#. (119)

he filter coefficients for Gaussian and Lorentzian
utocorrelation functions are given in Table 1. Lc

denotes the length correlation, and the standard
slope deviation s is equal to the negative value of the
utocorrelation function second derivative at 0. We
btain the numerical shadowing function by applying
n algorithm defined in Ref. 9. In Fig. 2 the differ-
nt shadowing functions @Eqs. ~7! and numerical re-
ults# are plotted as functions of the parameter v for
n infinite surface. We see that for grazing angles
orresponding to v3 0 the shadowing function tends

n Lorentzian

i2

c
2D v2

1 1 ~iyLc
2!2

S2
2i2

Lc
2D 2vS 1

Lcp
D 1y2 1

1 1 ~2iyLc!
2

ssia

S2
L

y2

exp
10 July 2000 y Vol. 39, No. 20 y APPLIED OPTICS 3435
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toward 0, whereas for normal angles v 3 2 it con-
verges to 1, because the surface is entirely illumi-
nated. In Fig. 3 the differences between the
shadowing functions and the one defined for an infi-
nite Gaussian surface are represented versus v.
Since Wagner’s difference is greater than Smith’s, the
Smith model is kept as comparison in this paper. It
is also observed that the shadowing function for a
Gaussian surface is similar to that obtained with a
Lorentzian surface.

In Fig. 4 the one-dimensional Smith shadowing
function is plotted as a function of v and y0 @Eqs. ~7!#.

or v constant the shadowing function increases
when y0 decreases. In Fig. 5 the relative error be-
tween the one-dimensional Smith shadowing func-
tion and that obtained from an infinite surface is
represented. It is defined in percentage by

ES 5 100 3
SS~v, y0! 2 SS~v!

SS~v, y0!
. (12)

Fig. 2. One-dimensional shadowing function for an infinite sur-
face as a function of the parameter v.

Fig. 3. Difference between one-dimensional shadowing functions
for an infinite surface and that obtained from the infinite Gaussian
surface.
436 APPLIED OPTICS y Vol. 39, No. 20 y 10 July 2000
The equation y0 5 =6yv is plotted as a dashed curve.
It is seen that this curve is similar to that obtained
from a relative error equal to 0.1%. This means that
the observation length can be assumed to be infinite,
because y0 $ =6yv is equivalent to u # ul 5 atan@L0y
~2s=3l0!# @Eqs. ~79!#. From the two-scale model14

the parameter l0 is computed with the gravity wave
characterized by the height spatial autocorrelation
function R0~l ! defined as10

R0~l ! 5 v2 cos~lyL9c!

1 1 ~lyLc!
2 , (13)

with

v2 5 3.953 3 1025u10
4.04, Lc 5 0.154u10

2.04,

L9c 5 0.244u10
1.91; (139)

thus

l0 5
v

s
5 vYS2

d2R0

dl2 U
l50
D1y2

5
Lc

@2 1 ~LcyL9c!
2#1y2 , (14)

Fig. 4. Smith one-dimensional shadowing function as a function
of parameter v and normalized correlation length.

Fig. 5. Relative error between the Smith one-dimensional shad-
owing function and that obtained from an infinite surface.
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where the slope variance s2 in the capillary wave is
determined from the Cox and Munk model11 given as

s2 5 0.003 1 5.08 3 1023u12, (15)

where $u10, u12% are the wind speeds at 10 and 12.5 m
above sea level. The wind speed uz, in centime-
tersys, at an altitude z, in centimeters, is given as a
function of the friction speed uf, in centimetersys, in15

uz 5
uf

0.4
lnS z

z0
D , (16)

with

z0 5
0.684

uf
1 4.28 3 1025uf

2 2 4.43 3 1022. (169)

n Fig. 6 the limit angle ul is plotted with respect to
the friction speed uf, in centimetersys, and the obser-
vation length L0, in meters. As we show in Fig. 6, for
a L0 constant, ul decreases when uf increases,
whereas for a given uf the limit angle is proportional
to L0. This means that for $uf 5 50 cmys; L0 5 260
m% the surface can be considered to be infinite if the
incidence angle is smaller than 88°.

B. Two-Dimensional Shadowing Function

In this subsection the one-dimensional shadowing
function is extended to the two-dimensional sea sur-
face. The two-dimensional shadowing function is
characterized in polar coordinates by the azimuth
angle f ~observation direction according to the wind!
and by the incidence angle u ~Fig. 7!. For a constant
direction f, the issue is one dimensional. The idea is
to extend the one-dimensional results to the two-
dimensional surface by execution of a rotation of an
angle f around the ~Oz! axis. The one-dimensional
joint probability density of the slopes and the heights
becomes p~j, gx, gyuj0, g0x, g0y; x, y! in the wind ~Ox!
nd the cross wind ~Oy! directions. For an uncorre-
ated Gaussian surface the joint probability density is

Fig. 6. Incidence limit angle as a function of wind friction speed
and observation length.
xpressed in the ~OX! ~angle f! direction as ~see
ppendix A!

p~j, gX! 5
1

vsX2p
expS2

gX
2

2sX
2 2

j2

2v2D , (17)

with

sX
2 5 a 1 b cos~2f!, a 5

sx
2 1 sy

2

2
,

b 5
sx

2 2 sy
2

2
, (179)

here sX
2 is the slope variance in the direction

~OX! and $sx
2, sy

2% are the slope variances in the
upwind and the crosswind directions, respectively.
When we compare Eqs. ~17! and ~3!, the two-

imensional probability is obtained from the one-
imensional probability by substitution of

g with gX,

s with sX. (18)

Therefore from Eqs. ~7! Smith’s two-dimensional
shadowing function is

SS~u, f, L0! 5
1

Îp
F1 2

1
2

erfc~v!G *
2`

`

exp~2h0
2!

3 F 1 2 1y2 erfc~h0!

1 2 1y2 erfc~h0 1 y0 v!G
L~v!

dh0, (19)

with

y0~f! 5
L0

l0~f!
, v 5

cot u

Î2sX~f!
. (199)

In Figs. 8 and 9 Smith’s two-dimensional shadow-
ing function for an infinite observation length, and for
uf 5 $20, 40% cmys, is plotted as a function of the
direction f and the incidence angle u. It is noted
that the shadowing effect is important for angles
close to 90°, that it decreases with wind speed, but
that these results are hardly appreciable according to

Fig. 7. Two-dimensional configuration of shadowing function.
10 July 2000 y Vol. 39, No. 20 y APPLIED OPTICS 3437
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f. The shadowing function then does not depend
significantly on the anisotropy of the medium.

3. Application on the Two-Dimensional Emissivity

In this section the two-dimensional emissivity is de-
termined. Yoshimori et al.5 assumed that the slope
in the upwind direction is greater than that defined
in the crosswind direction, allowing for the use of a
one-dimensional shadowing function. Our method
includes the two-dimensional shadowing function es-
tablished in Section 2. No hypothesis on the slope
distribution is used, which is the original aspect of
this paper, with reasoning based on Ref. 5.

A. Mathematical Development

Let M be a point of the surface defining the origin of
artesian coordinates ~x, y, z! ~Fig. 10!, n the unitary

vector in the direction z, n9 the unitary vector normal
to the facet at M, and s the unitary vector of the

Fig. 8. Smith two-dimensional shadowing function for infinite
observation length with uf 5 20 cmys, function of direction f, and
incidence angle u.

Fig. 9. Smith two-dimensional shadowing function for infinite
observation length with uf 5 40 cmys, function of the direction f,
nd incidence angle u.
438 APPLIED OPTICS y Vol. 39, No. 20 y 10 July 2000
iewing direction characterized by the $u, f% angles.
hese vectors in polar coordinates are defined as

n 5 S0
0
1
D , n9 5

1
~1 1 gx

2 1 gy
2!1y2 S2gx

2gy

1
D ,

s 5 Ssin u cos f
sin u sin f

cos u
D , (20)

where $gx, gy% are the slopes of the surface in the wind
and the crosswind directions.

Let w 5 ~n9, s! be defined as follows:

cos w 5 n9 z s 5
cos u 2 ~gx cos f 1 gy sin f!sin u

~1 1 gx
2 1 gy

2!1y2 .

(21)

f we assume that Kirchhoff ’s law @Eq. ~9! of Ref. 3# is
atisfied at the water–air interface, the local emissiv-
ty of the facet is expressed in the direction w as

e 5 @1 2 ur~uwu!u2#, (22)

here r is Fresnel’s formula either in vertical polar-
zation V ~parallel to the incidence plane! or horizon-
al polarization ~orthogonal to the incidence plane!
iven by

rV~w! 5
n cos w 2 cos w9

n cos w 1 cos w9
,

rH~w! 5
cos w 2 n cos w9

cos w 1 n cos w9
, with sin w9 5 sin wyn,

(23)

here n is the refractive index of the sea water, w is
he incidence angle according to the normal facet, and
9 is the refraction angle that can be found by the
nell–Descartes law. The air refractive index is as-

Fig. 10. Two-dimensional configuration of the facet.
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sumed to be equal to 1. The slope anisotropy prob-
ability density p~gx, gy! is assumed to be Gaussian,

p~gx, gy! 5
1

2p~sx
2sy

2 2 sxy
4!1y2 expH2

1
2

@yx gy#

3 Fsx
2 sxy

2

sxy
2 sy

2 G21Sgx

gy
DJ , (239)

here sxy
2 is the slope cross correlation.

For the two-dimensional autocorrelation function
R0~x, y!10 to be even in the upwind ~Ox! and cross-
wind the ~Oy! directions, sxy

2 5 0, which leads to

p~gx, gy! 5
1

2psxsy
expS2

gx
2

2sx
2 2

gy
2

2sy
2D . (230)

References 1–3 assume that sx
2 5 sy

2 5 s2. When
we introduce the shadowing function S, the average
emissivity e# for all facets of slopes $gx, gy% is then
equal to5

e#~u, f! 5
1

2psxsy *
2`

`

*
2`

`

@1 2 ur~uwu!u2#expS2
gx

2

2sx
2

2
gy

2

2sy
2D 3 g 3 Sdgxdgy, (24)

here g is a normalization function defined in Ref. 5,

g 5
n9 z s

~n z n9!~n z s!
5 1 2 ~gx cos f 1 gy sin f!tan u.

(25)

Reference 5 neglects gy
2 in comparison with 1 1

gy
2, and Eqs. ~21! and ~25! become Eqs. ~2.26! and

2.21!, respectively, of Ref. 5, which is similar to as-
uming $gy, f% 5 0. This means that the average

emissivity is obtained from a single integration over
gx. To use the two-dimensional shadowing function
S, the emissivity has to be determined in the f di-
rection, i.e., in the new base ~X, Y! as depicted in Fig.
10. From the previous coordinates ~gx, gy! the new
coordinates ~gX, gY! are

gx 5 gX cos f 2 gY sin f,

gy 5 gX sin f 1 gY cos f. (26)

Substituting Eqs. ~26! into Eqs. ~24!, we get

e#~u, f! 5
1

2p~a2 2 b2!1y2 *
2`

`

*
2`

`

@1 2 ur~uwu!u2#exp~2agY
2

2 2bgYgX 2 cgX
2! 3 g 3 SdgXdgY, (27)

with

cos w 5
cos u 2 gX sin u

~1 1 gX
2 1 gY

2!1y2 g 5 1 2 gX tan u,

a 5
a 1 b cos~2f!

2~a2 2 b2!
, b 5

b sin~2f!

2~a2 2 b2!
,

c 5
a 2 b cos~2f!

2~a2 2 b2!
, a 5 ~sx

2 1 sy
2!y2,

b 5 ~sx
2 2 sy

2!y2. (279)

Thus, for a finite observation length L0, it is shown
that the Smith average uncorrelated two-
dimensional shadowing function @Eq. ~19!# over the
height is the following,

SS~u, f, gX! 5
Y~cot u 2 gX!

Îp *
2`

`

exp~2h0
2!

3 F 1 2 1y2 erfc~h0!

1 2 1y2 erfc~h0 1 y0 v!G
L~v!

dh0, (28)

where $y0~f!, v% are given by Eqs. ~199!. Since the
ntegration over gX is not computed, the term 1 2
rfc~v!y2 is replaced with Y~cot u 2 gX!. Substitut-

ing Eq. ~28! into Eq. ~27!, we have

e#~u, f! 5
1

2pÎp~a2 2 b2! *
2`

` H*
2`

cotu

3 @1 2 ur~uwu!u2#exp~2agY
2 2 2bgYgX 2 cgX

2!

3 ~1 2 gX tan u!dgXJdgY *
2`

`

exp~2h0
2!

3 F 1 2 1y2 erfc~h0!

1 2 1y2 erfc~h0 1 y0 v!GL~v!

dh0. (29)

For an infinite observation length y0 3 `, Eq. ~29!
becomes

e#~u, f! 5
1

2p@L~v! 1 1#~a2 2 b2!1y2 3 *
2`

cotu

exp~2cgX
2!

3 ~1 2 gX tan u!H*
2`

`

@1 2 ur~uwu!u2#exp~2agY
2

2 2bgYgX!dgYJdgY. (299)

ince the incidence angle u is equal to 90°, i.e., $v, m%
3 0, Eq. ~299! leads to

e#~90°, f! 5
1

sx@2p~a2 2 b2!#1y2 *
0

`

gX exp~2cgX
2!H*

2`

`

3 @1 2 ur~uwu!u2#exp~2agY
2

2 2bgYgX!dggJdgX. (290)

Since in Ref. 3 the effect of the shadow is not taken
into account, at grazing angles the mean emissivity
diverges, because tan u tends to infinity. When the
shadowing function is included, the quantity tan
uy@L~v! 1 1# converges to =2pysX.
10 July 2000 y Vol. 39, No. 20 y APPLIED OPTICS 3439
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B. Simulations

In Fig. 11 the emissivities @e#V~u, f! 1 e#H~u, f!#y2
determined for f 5 $0°, 90°% and u 5 $60°, 85°% are
ompared with those obtained in Ref. 5, as a function
f the wind speed u10 defined at 10 m above sea level.

The refractive index of the water is equal to 1.19.
There are two differences between the model in Ref.
5 and ours. No assumption is taken on the slope
variance, whereas in Ref. 5 gy

2 is neglected in com-
parison with 1 1 gx

2. The second difference is the
fact that Ref. 5 uses the slope variances obtained from
the JONSWAP gravity spectrum, whereas in this pa-
per the Cox and Munk capillary model is applied.

From the two-scale model,14 the parameter l0 is
computed by use of the two-dimensional height spa-
tial autocorrelation function R2d~l, f! defined10 as

R2d~1, f! 5 v23R0~l !

v2 2 A cos~2f!

J2S l
L29

D
1 1 S l

L2
D24 , (30)

with

A 5 3.439 L2 5 0.157u10
1.95 L92 5 0.138u10

2.05;

(309)

hus

l0~f! 5
v

s
5

v

H ]2

]l2 @2R2d~l, f!#Ul50J1y2

5
Lc

@2 1 ~LcyL9c!
2 1 ~Ay4!cos~2f!~LcyL92!

2#1y2 , (31)

with $sx
2, sy

2% as the slope variances in the upwind
and the crosswind directions determined from the
Cox and Munk model11 given by

sx
2 5 3.16 3 1023u12,

sy
2 5 0.003 1 1.92 3 1023u12. (319)

Fig. 11. Comparison of authors’ results with those obtained in
Ref. 5.
440 APPLIED OPTICS y Vol. 39, No. 20 y 10 July 2000
The emissivity is plotted in Fig. 12 versus direction f
and the incidence angle u for a finite observation
ength of 60 m. The wavelength l 5 4 mm, and the
riction speed uf 5 40 cmys. The refractive index of

the sea water n~l, T! is obtained from Ref. 12 with a
temperature T 5 25 °C. It is observed that the
emissivity varies slightly with the direction f, imply-
ing that the emissivity is weakly sensitive to the
anisotropic factor of the sea surface. When the in-
cidence angle is less than the limit angle ul, equal to
84° in Fig. 6, it is observed that the emissivity is
similar to that calculated for an infinite observation
length ~Fig. 13!, whereas for incidence angles much
reater than 86° the emissivity increases, reaches 1
nd finally converges to 2.2. This result has no
hysical meaning, because the emissivity must be
ower than unity. The phenomenon occurs because
he observation length y0 in Eq. ~29! is equal to a
onstant for any u. In practice, when the incidence
ngle u tends to 90°, the observation length becomes
nfinite, which means that the emissivity is similar to
hat obtained in Fig. 13 @Eq. ~299!#. The emissivity,

Fig. 12. Emissivity as a function of the direction f and the inci-
dence angle, for finite observation length of 60 m. $l 5 4 mm, uf 5
0 cmys%.

Fig. 13. Emissivity as a function of direction f and incidence
ngle, for infinite observation length. $l 5 4 mm, uf 5 40 cmys%.
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with Wagner’s shadowing function, was simulated,
and a similar behavior is observed.

Note that the Wagner6 and the Smith7 one-
imensional shadowing functions assume that the
lopes’ $g0, g% and the heights’ joint probability den-

sity is uncorrelated, which involves an overestima-
tion of the shadow.16 Moreover, Ricciardi and
Sato17,18 proved that the shadowing function is well
defined by Rice’s infinite series of integrals. The ap-
proach proposed then by Wagner retains only the
first term of these series, whereas the Smith formu-
lation uses the Wagner model and introduces a nor-
malization function @Eqs. ~2!#.

4. Conclusion

The two-dimensional emissivity with respect to
Smith’s two-dimensional shadowing function has
been investigated in this paper. It was calculated
extensively for an uncorrelated Gaussian process and
for a given observation length. Our model of the
emissivity is based on Ref. 5, but contrary to this
reference, no hypothesis on the slope behaviors of the
sea surface is used. From simulations in the one-
dimensional case the Smith shadowing function is
chosen, because Smith’s7 results are close to the exact
solution, whereas Wagner’s6 results are less accu-
rate. A criterion for functions of the incidence angle
and the wind speed is also found, which allows us to
determine when the surface may be considered infi-
nite. In the two-dimensional case, for an infinite
surface, the simulations show that the emissivity de-
creases slightly with the wind direction and de-
creases with the incidence angle. For a constant
finite observation length, we see that at grazing an-
gles, i.e., when the criterion on an infinite surface is
not verified, the emissivity is much greater than 1,
which is not expected, because in practice the obser-
vation length increases with the incidence angle.
Also, the Smith shadowing function model assumes
that the heights’ and the slopes’ joint probability den-
sity is uncorrelated.16

Appendix A

The slopes’ $g0, g% and the heights’ $j0, j% one-
imensional joint probability density p~j ; guj0, g0!

becomes p~j, gx, gyuj0, g0x, g0y; x, y! in the directions
$~Ox!, ~Oy!%, so for an uncorrelated Gaussian process,

p~j, gx, gy! 5
1

Î2p3 Îu@Cxy# u
exp~21y2VxyT@Cxy#21Vxy!,

(A1)

with

@Cxy# 5 Fv2 0 0
0 sx

2 0
0 0 sy

2G , Vxy 5 S j
gx

gy

D , (A2)

where $sx
2, sy

2% are the slope variances in the upwind
and the crosswind directions, respectively, and v2 is
the height variance. The exponent xy denotes the
ase ~x, y!, and the symbol T is the transpose vector.
ince the correlation is not included, the probability

s independent of the height spatial autocorrelation
unction. To determine the slope probability density
~j, gx, gy! in the direction f, we use a base trans-

formation ~X, Y, z!. The former coordinates ~gx, gy!
are expressed in the new form ~gX, gY! as

Vxy 5 S j
gx

gy

D 5 F1 0 0
0 cos f 2sin f
0 sin f cos f

GS j
gX

gY

D 5 @O3#VXY.

(A3)

hus

VxyT@Cxy#21Vxy 5 VXYT~@O3#
21@Cxy#@O3#!

21VXY, (A4)

with @O3#T 5 @O3#21. When we substitute Eqs. ~A2!
nd ~A3! into Eq. ~A4!, and use Eq. ~A1!, the proba-

bility density p~j, gx, gy! in the base ~x, y! becomes p~j,
gX, gY! in the base ~X, Y! ~Jacobian factor equal to 1!,

p~j, gX, gY! 5
1

Î2p3vsXsY~1 2 r2!1y2
expF2

j2

2v2

2
1

2~1 2 r2! SgX
2

sX
2 1

gY
2

sY
2 2

2rgXgY

sXsY
DG ,

(A5)

ith

sX
2 5 a 1 b cos~2f!,

sY
2 5 a 2 b cos~2f!,

r 5
2b sin~2f!

$a2 2 @b cos~2f!#2%1y2, (A6)

where a 5 ~sx
2 1 sy

2!y2, b 5 ~sx
2 2 sy

2!y2; $sX
2, sY

2%
re the slope variances in f and f 1 py2 directions;

and r is the slope cross-correlation coefficient. The
probability in the direction f is obtained by calcula-
tion of the marginal probability p~j, gX! defined as

p~j, gX! 5 *
2`

`

p~j, gX, gY!dgY, (A7)

which leads to

p~j, gX! 5
1

vsX2p
expS2

gX
2

2sX
2 2

j2

2v2D . (A8)
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